
Università di Pisa
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A COMBINED APPROACH FOR EVALUATING PAPERS,
AUTHORS AND SCIENTIFIC JOURNALS

DARIO A. BINI∗, GIANNA M. DEL CORSO† , AND F. ROMANI †

Abstract. An integrated model for ranking scientific publications together with authors and
journals recently presented in [Bini, Del Corso, Romani, ETNA 2008] is closely analyzed. The
model, which relies on certain adjacency matrices H, K and F obtained from the relations of citation,
authorship and publication, provides the ranking by means of the Perron vector of a stochastic matrix
obtained by combining H, K and F . Some perturbation theorems concerning the Perron vector
previously introduced by the authors are extended to more general cases and a counterexample to
a property previously addressed by the authors is presented. The theoretical results confirm the
consistency and effectiveness of our model. Some paradigmatic examples are reported together with
some results obtained on a real set of data.
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1. Introduction. Ranking scientific publications independently of their con-
tents is a problem of great practical importance and of particular theoretical interest.
Most of the attempts for evaluating the quality of a scientific publication are based
on the analysis of the citations received.

Recently, in [3] an integrated model was proposed where publications and authors
are ranked based on the relationship of citation and (co-)authorship. The main idea
is that the rank of a subject is given by the weighted sum of the ranks of the other
subjects which are related to it by means of either citation or authorship. So, for
instance, a paper receives importance by the papers that cite it, as well as by the
authors who have written it. Similarly, an author receives importance by the papers
that he/she has written, as well as by his/her coauthors. A more general model based
on three classes, Authors, Papers and Journals, is also outlined and some problems
are addressed.

In this paper we further investigate the three-class model outlined in [3], and
discuss about the possible normalization techniques which make the behavior of the
model closer to the desired behavior of the evaluation system still preserving the
overall mathematical consistency.

We extend the perturbation results presented in [3] and provide some examples
which give more insights to the properties of the Perron eigenvector which represents
the ranking of the subjects involved in the evaluation system.

The results of some numerical experiments performed with the three-class model
are reported. We performed tests with real and with synthetic data. The experiments
showed that our model is robust to spam, in the sense that it measures quality without
favoring journals which publish too many papers or authors who write many low
quality papers. The rank of a journal turns out to be independent of the number of
papers that it publishes being closer to the average quality of its papers.

The paper is organized as follows. In Section 2 we formalize the model by showing
that the desired rank is the Perron vector of a suitable 3× 3 block matrix. Then we
discuss about different normalizations of each block that, still preserving the row-
stochasticity of the matrix, provide a model which is consistent with the real requests
of the evaluation system. A brief discussion on the role of time and the comparison

∗Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy.
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with the existing models, of which our proposal turns out to be a generalization,
conclude the section.

In Section 3 we introduce some perturbation theorems that generalize the ones
presented in [3] and provide a sort of theoretical validation of our model. In fact, the
theorems confirm the expected behavior where a paper which receives new citations
must increase its rank. By means of a counterexample we show that if more papers
receive new citations, not necessarily all of them will increase their rank. This issue
was addressed in [3] as an open problem.

Section 4 is devoted to numerical experiments; conclusions are drawn in Section
5.

2. The basic model. Usually, the evaluation of the research performed by a
scholar is done by analyzing the papers he/she has published. The quality of his/her
papers is mainly measured by considering the notoriety of the journal where the papers
appear; sometimes also the citations count is taken into account as criterion. In this
section we elaborate the integrated three-class model introduced in [3] where papers,
authors and journals mutually contribute to the attribution of a ranking score of each
others.

The idea is that in order to evaluate an author we have to consider not only
the quality of the journals where his/her papers have been published but also the
quality of every single paper of this author. Moreover, also the quality of the co-
authors must be taken into account. In fact, an important author who writes a joint
paper with a less important one, expresses a sort of trusting vote by conferring to
that author more visibility with respect to the international community. Similarly, to
evaluate the quality of a paper one has to look at the quality of the journal where the
paper is published, at the citations received and at the prestige of its authors. Also
when evaluating a journal we take into account not only the cross-citations among
journals as done by many methods such as Impact Factor [7], Eigenfactor [2], and
many others [4, 11], but also the quality of every single paper published there and the
authoritativeness of the scholars writing on that journal.

Let us formalize this idea in mathematical terms.
Assume we are given nP papers together with the bibliographic data of each

paper. In particular, of each paper we know the authors, the journal where the paper
is published and the list of citations contained in the paper. With this information we
can construct three matrices: the matrix F accounting for the journal publishing each
paper, the matrix K which stores information about authorship and the matrix H
which records the citation structure among papers. In particular, let nJ be the total
number of distinct journals where the nP papers are published, and let nA the number
of distinct authors who authored the given nP papers. We find that F = (fi,j) is an
nJ × nP binary matrix where

fi,j =
{

1 if paper j is published in journal i
0 otherwise,

K = (ki,j) is an nA × nP binary matrix such that

ki,j =
{

1 if author i has written paper j
0 otherwise,

and H = (hi,j) is an nP × nP matrix such that

hi,j =
{

1 if paper i has paper j in its reference list
0 otherwise.
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We can combine these three matrices to obtain the following 3× 3 block matrix

A =

 FHFT FKT F
KFT KKT K
FT KT H

 (2.1)

of size N = nJ + nA + nP .
Each block of this matrix expresses the relationship between the subjects belong-

ing to the three classes Journals, Authors and Papers. More specifically, the entry in
position (i, j) of the block FHFT contains the number of citations that the papers
published in journal j receives from the papers published in journal i; the entry in
position (i, j) of the block FKT contains the number of papers that author i has
published in journal j; the entry in position (i, j) of the block KKT contains the
number of joint papers that author i has in collaboration with author j.

We can scale the rows of A to obtain a row-stochastic matrix P = Diag(d)−1A,
where d = Ae, and e = (1, . . . , 1)T , provided that d has no null component. In this
way, the entries of P = (pi,j) can be used as weights to transfer amounts of importance
from a subject to another subject. More precisely, numbering the subjects from 1 to
N , the importance πj of subject j is the weighted sum of the importances πi of all
the other subjects i which are in relation with j, where the weights are pi,j , that is

πj =
N∑
i=1

πipi,j .

This condition expresses the fact that π = (πi) is eigenvector of P corresponding to
the eigenvalue 1:

πT = πTP.

The row stochasticity of P implies that the overall amount of importance that a
subject i transfers to the other subjects coincides with the importance of i. In other
words, the amount of importance in the system is neither created nor destroyed.

To guarantee the existence of a unique vector π, such that πi > 0 and
∑
i πi =

1, we need A to be irreducible. Under this condition, the vector d has nonzero
components so that the matrix P can be constructed, and the Perron Frobenius
theorem [9] guarantees the existence and the uniqueness of π. Moreover, in order to
have nice convergence properties of iterative algorithms for the computation of π we
need A to be aperiodic.

There are many ways to enforce irreducibility, for example as done for the Google
matrix [5]. A way to obtain an irreducible and aperiodic matrix which fits better in
our model is to introduce a dummy paper, a dummy author, and a dummy journal,
similarly to what done for the one-class model [3]. The dummy paper is cited by every
paper and it cites back all the papers except itself. The dummy paper is written by
the dummy author and is published in the dummy journal. Mathematically, this
corresponds to consider the matrices Ĥ, K̂ and F̂ obtained from H,K and F as
follows,

Ĥ =
[
H e
eT 0

]
, K̂ =

[
K 0
0T 1

]
, F̂ =

[
F 0
0T 1

]
,

and to replace H,K and F in (2.1) with Ĥ, K̂ and F̂ , respectively.
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Theorem 2.1. The matrix Â obtained by replacing the blocks H, K and F in
(2.1) with the blocks Ĥ, K̂, and F̂ , respectively, is irreducible and aperiodic.

Proof. In order to prove that Â is irreducible we have to show that the underlying
graph is strongly connected. This is true since every paper is connected to its authors
and to the journal publishing it and every paper is connected to every other paper
trough the dummy paper. To prove that Â is aperiodic it is sufficient to prove that
there are cycles of length 2 and 3, since the period of an irreducible nonnegative square
matrix is the greatest common divisor of the lengths of the cycles (see [9], Ch. 9),
and gcd(2, 3) = 1. This is always the case if H 6= 0 with the cycles i→ dummy→ i of
length 2 and i→ j → dummy→ i of length 3, where i→ j corresponds to a nonzero
(non-diagonal) entry of H, and dummy denotes the dummy paper.

2.1. Row and column scaling. In the previous section we simply propose to
scale the rows of A in order to obtain a row-stochastic matrix. A more flexible way,
introduced in [3], consists in performing a separate normalization of the blocks of A.
That is, each block of A is normalized to yield nine row-stochastic matrices; then these
matrices are compounded with weights Γ = (γi,j)i,j=1,3, where Γ is row stochastic,
into a new stochastic matrix. The entries of this new matrix are used to weight the
amount of importance that each class (Journal, Authors, and Papers) gives to the
other classes. In this section we discuss some issues related to the different kinds of
normalization.

Denote by

Q =

 JJ JA JP
AJ AA AP
PJ PA PP

 , (2.2)

where each block is row-stochastic and is obtained from the corresponding block in
the matrix Â of Theorem 3.1, so for example JJ is the stochastic matrix obtained by
the row-normalization of F̂ ĤF̂T .

Here, the notation used in (2.2) points out the role of each block with respect to
the classes Journals, Authors and Papers. For instance, the entries of the block JA
weight the amount of importance that Journals transfer to Authors.

Let Γ = (γi,j) be a 3× 3 row-stochastic matrix, then the matrix

P =

 γ1,1 JJ γ1,2 JA γ1,3 JP
γ2,1AJ γ2,2AA γ2,3AP
γ3,1 PJ γ3,2 PA γ3,3 PP

 . (2.3)

is row-stochastic and its entries pi,j ≥ 0 express the amount of importance that subject
i transfers to subject j. The parameters γi,j can be used to tune the role that each
class has with respect to the other classes. For instance, choosing γ3,3 greater than
γ2,3 and γ1,3 means to base the importance of papers more on the citations that they
receive rather than on the importance of their authors or of the journals where they
are published.

Row normalization is not always well suited with the real model. In fact, row
normalization of the block in position (2, 3), used to compute the influence of the
authors on the papers, would imply that the importance received by a paper from its
authors is the sum of the importances of the authors. In this way, papers coauthored
by many authors would receive much more importance than papers authored by a
single author having a comparable prestige. In this case, a column normalization of
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the block would be more suited since it corresponds to assign to a paper the average
of the importances of its authors.

Similarly, in our model the importance of a journal should not depend on the
number of papers published but on their quality. This means that we have to apply
a column normalization to blocks (1, 1) and (3, 1) in order to assign to the journal
the average instead of the sum of the importances of papers and of the authors who
publish in this journal.

Unfortunately, column normalization of a blockB does not provide a row-stochastic
matrix. Row-stochasticity is required if we wish to respect the condition that each
subject evenly distributes its importance to all the other subjects to which is related.

A solution to this problem proposed in [3] is the following. Assume that we are
given an m× n block B where its last column concerns the dummy subject. Assume
that B has been normalized in some way so that it is not stochastic anymore. In
order to make B stochastic, still keeping almost unchanged the role of its entries as
weights in the evaluation model, we apply the following normalization on the matrix
B

si =
n∑
j=1

bi,j , bi,j ←

{
bi,j/si, j = 1, . . . , n if si ≥ 1

bi,j , j = 1, . . . , n− 1, bi,n = 1− si if si < 1
(2.4)

Observe that with this normalization, if the sum s of the entries in a row exceeds 1
then all the entries are divided by their sum. If the sum of the entries is less than 1,
their values are left unchanged except for the dummy entry whose value is the amount
needed to have a stochastic row. To motivate this strategy, consider the case where a
row has only one nonzero entry with a small value. The customary row normalization
would turn this entry to 1, our normalization would leave this value unchanged.

Now we separately examine each block of the matrix Q and discuss the kind of
normalization that is more suited for the model to make it more realistic.

2.1.1. Importance of papers. The blocks that concur in assigning importance
to a paper are: JP , AP and PP .

• The block PP is obtained from Ĥ simply dividing each row by the number of
its nonzero entries, that is PP = diag(Ĥe)−1Ĥ. In this way, a paper receives
importances by the papers that cite it, moreover that paper distributes its
importance uniformly among the papers in its reference list.

• AP is obtained from K̂ by first normalizing the latter matrix by columns, and
then by rows according to the procedure (2.4); in this model a paper receives
a sort of weighted average of the importances of its authors instead of the
sum of their importances.

• JP is obtained from F̂ by dividing each entry by the maximum µ among
the number of papers published on each journal and then by applying the
row-normalization (2.4). This means that

JP =
[ 1

µF (I − 1
µF )e

0 1

]
.

In this way, the importance that a journal gives to a paper does not depend
on the number of papers published in the journal. That is, each journal gives
the same part of its importance to its papers independently of the number of
papers published. The importance left is assigned to the dummy paper.
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2.1.2. Importance of authors. The blocks that concur in assigning impor-
tance to an author are: JA, AA and PA. The rank of an author should depend on
the quality of the paper the author has written, the authoritativeness of his/her co-
authors and the prestige of the journals where his/her papers are published. This is
guaranteed by the following normalization of the blocks JA, AA and PA.

• Matrix PA is obtained by row-normalization of the matrix K̂T , that is

PA = diag(K̂Te)−1K̂T .

• Block AA is obtained by row-normalization of the matrix K̂K̂T , that is

AA = diag(K̂K̂Te)−1K̂K̂T .

• The matrix JA is obtained from F̂ K̂T which contains the number of papers
that each author has published on a given journal. An author will receive
from each journal a fraction of the importance of the journal where he/she
has published. In order to guarantee the rank of an author to be a right
trade-off between quality and quantity, we divide uniformly each entry of the
matrix by the maximum number of authors publishing in all the journals.
Let ω be such a constant computed as ω = max(F̂ K̂Te). We then apply
procedure (2.4), assigning the importance left to the dummy author. Note
that dividing each entry by ω guarantees that authors publishing in journals
where only a restricted number of authors have published, are not favored.

2.1.3. Importance of journals. The rank of a journal depends on the quality
of the papers published in that journal, on the quality of its authors and from the
citations received by the other journals. In order to guarantee that quality wins over
quantity we propose the following scaling of the rows of JJ , AJ and PJ to make them
row-stochastic.

• The block PJ is obtained from F̂T first normalizing by column. In fact, the
rank of a journal should not depend on the number of papers published by
that journal, but rather on their quality. After the column normalization we
apply procedure (2.4) to obtain a row stochastic matrix.

• AJ is obtained from matrix K̂F̂T which contains the number of papers written
by an author on a given journal. We first divide each entry of K̂F̂T by
β = max(K̂F̂Te), that is the number of papers written by the author who
wrote more papers and then we normalize by row using the procedure (2.4).
Scaling the entries by β guarantees that the rank of a journal depends also
on the number of different authors publishing in it.

• Block JJ accounts for how citations among journals contributes to the rank
of a journal. We start with matrix F̂ ĤF̂T , which contains the citation’s
count among journals. To obtain JJ we first normalize by column dividing
by the total number of papers published on a given journal, and then we
apply normalization (2.4).

To better understand the way we normalize each block, let us consider the fol-
lowing example.

Example 1. Consider the case where we have 6 papers, 4 authors and 3 journals
and the matrices involved (including the dummy subjects) are the following:
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Ĥ =



0 1 0 1 1 0 1
0 0 1 1 1 0 1
1 0 0 1 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0


, K̂ =


1 0 0 1 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1

 ,

F̂ =


1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1

 .
Performing the normalization described in Section 2.1 we obtain the blocks:

JP =


1
2 0 0 1

2 0 0 0
0 1

2 0 0 1
2 0 0

0 0 1
2 0 0 1

2 0
0 0 0 0 0 0 1

 , AP =


3
4 0 0 1

4 0 0 0
0 3

4 0 1
4 0 0 0

0 0 3
4

1
4 0 0 0

0 0 0 0 1
2

1
2 0

0 0 0 0 0 0 1

 ,
and PP is obtained by row normalization of H. The matrices involved in the compu-
tation of the rank of authors are

JA =


1
2

1
4

1
4 0 0

0 1
2 0 1

2 0
0 0 1

2
1
2 0

0 0 0 0 1

 , AA =


1
2

1
4

1
4 0 0

1
4

1
2

1
4 0 0

1
4

1
4

1
2 0 0

0 0 0 1 0
0 0 0 0 1

 ,
and

PA =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1
3

1
3

1
3 0 0

0 0 0 1 0
0 0 0 1 0
0 0 0 0 1


.

Finally, for the rank of journals we get the following matrices

JJ =


1
8

1
4

1
8

1
2

1
8

1
8

1
4

1
2

2
7

1
7 0 4

7
1
3

1
3

1
3 0

 , AJ =


1 0 0 0
1
2

1
2 0 0

1
2 0 1

2 0
0 1

2
1
2 0

0 0 0 1

 , PJ =



1
2 0 0 1

2
0 1

2 0 1
2

0 0 1
2

1
2

1
2 0 0 1

2
0 1

2 0 1
2

0 0 1
2

1
2

0 0 0 1


.
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Using uniform weights γi,j = 1/3, it turns out that the dominant left Perron vector
is π = (πJ ,πA,πP ), where

πJ = (0.0658, 0.0566, 0.0541, 0.1567)
πA = (0.0387, 0.0429, 0.0422, 0.0648, 0.1448)
πP = (0.0305, 0.0301, 0.0295, 0.0362, 0.0351, 0.0351, 0.0391, 0.1329).

Then, disregarding the dummy players, journal 1 is more important than journal 2
and journal 3, author 4 is the one with higher rank, and paper 6 although is receiving
just 2 citations, is the one with a higher rank because it is written by the best author
on the best journal.

2.2. Comparisons with the existing models. Indeed the value of a scientific
product can change over the time. In fact, the Impact Factor (IF) [7] of a journal
varies along the years, and similarly, an author can be more important in certain years
and less important in others. In our model we can determine the change of importance
of a subject over the time, and we may also evaluate the change of the importance
of this subject for a given year, depending on the year in which the evaluation is
performed. So, for instance, the value of a given paper, or of a given journal issue can
change year after year. And it can be interesting to track the importance of a subject
along the time, like to evaluate the “average life” of a paper, i.e., how long a paper
remains interesting.

Our model can easily perform this if we modify it in a simple way. First, we
sort the papers by time in increasing order. Second, we need to disaggregate journals
in the following way: a single journal is split into many “copies” depending on the
year of publication. This splitting can be performed in pairs (like it is done with the
computation of IF) or in single years. In this way, each subject is a journal plus the
year, and they are ordered in increasing time. Similarly we should do with authors
if we want to evaluate an author in his scientific life. The adjacency matrix that we
obtain this way is much larger than the original one.

If we wish to take a picture of the importance of the different scientific subjects
from year Y, we have just to consider the principal submatrix of the full adjacency
matrix formed by the rows and columns related to the years preceding Y and apply
the algorithm.

Observe that the column sum of the entries in the block JJ provides the number
of citations received by each journal. In the model where journals are split according
to the publication year in groups formed by two years, this sum provides the impact
factor (IF) [7]. In fact, for computing the IF of the journals for a given year it is
enough to consider the submatrix of the block JJ of the adjacency matrix formed by
the citations up to that year and take the column sums related to the journals of the
last pair of years, normalizing by the total number of papers published in the two
previous years.

Observe also that the left eigenvector of the stochastic matrix obtained by scaling
the rows of the block JJ by means of the row-sum of its entry is related to the
Eigenfactor of [2]. The difference is that in [2] the adjacency matrix of journal citations
is constructed without introducing a dummy journal, but is introduced a rank-one
correction like in the Google approach in order to have irreducibility and acyclicity.

The novelty of our approach is that each subject contributes to the rank of the
other subjects, while the previous approaches [2, 4, 11, 12] propose to rank journals
only on the basis of the citations cumulatively received by all the papers published
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on a given journal. On the contrary we are ranking a journal on the basis of the
importance of every single paper therein published. In [1] three different methods for
ranking departments on the basis of the PhD placements of their faculty is considered.
The matrices involved in those models are three as in our, but just one (that counting
the number of faculties who received a degree from university i employed in university
j) is used to get the rank.

It is important to point out that by choosing the parameter γi,j such that γi,i = 1,
i = 1, 2, 3 and limiting the analysis to a single class among Journal, Authors, Papers,
we get the one-class model for the single classes. Choosing γ1,1 = 1, γ1,2 = γ1,3 = 0,
and limiting the analysis to the classes Authors and Papers we obtain the two-class
model of [3].

Concerning the one-class (Papers) and the two-class (Authors, Papers) models we
can prove some perturbation results in the line followed in [3]. This is done in the
next section.

3. Perturbation results. In a citation-based model, one expects that a paper
which receives a new citation should increase its rank more than any other paper does.
The following theorem, proved in [3], formalizes this property in terms of perturbation
of the Perron vector and can be applied to the one-class and the two-class models
where adding a new citation changes only one entry of the row-stochastic matrix.

Theorem 3.1. Let H be an irreducible adjacency matrix, let (r, s) be a pair of
integers such that hr,s = hr,r = 0 and q be the number of nonzero entries in the r-th
row. Define Ĥ = (ĥi,j) such that ĥr,s = 1, i = 1, . . . , k, ĥi,j = hi,j otherwise. Let
P = diag(He)−1H, P̂ = diag(Ĥe)−1Ĥ and denote by π and π̂ their corresponding
left Perron vectors. Then

σ
π̂r
πr
≤ π̂j
πj
≤ π̂s
πs

j = 1, . . . , n, (3.1)

for σ = q/(q + 1). Moreover,

π̂j
πj

<
π̂s
πs
, if hr,j 6= 0 (3.2)

and

1 <
π̂s
πs
. (3.3)

We may ask what happens if several papers receive a citation from the same
paper. The following result formalizes this case.

Theorem 3.2. Let H be an irreducible adjacency matrix, let (r, s1), . . . , (r, sk)
be pairs of integers such that hr,si

= hr,r = 0 for i = 1, . . . , k and q be the number
of nonzero entries in the r-th row. Define Ĥ = (ĥi,j) such that ĥr,si

= 1, ĥi,j = hi,j
otherwise. Let P = diag(He)−1H, P̂ = diag(Ĥe)−1Ĥ and denote by π and π̂ their
corresponding left Perron vectors. Then

σ
π̂r
πr
≤ π̂j
πj
≤

(
k∏
i=1

π̂si

πsi

)1/k

≤ max
i

π̂si

πsi

j = 1, . . . , n, (3.4)
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for σ = q/(q + k). Moreover,

π̂j
πj

<

(
k∏
i=1

π̂si

πsi

)1/k

, if hr,j 6= 0 (3.5)

and

1 <

(
k∏
i=1

π̂si

πsi

)1/k

. (3.6)

Proof. Let us consider the case k = 2. The matrices Ĥ and P̂ can be viewed as
obtained in two elementary steps where we first compute Ĥ1 from H by adding the
link from r to s1 and then we compute Ĥ2 = Ĥ from H1 by adding the link from r
to s2. Denoting x,y and z the left Perron vectors of P , P̂1 and P̂2 = P̂ , respectively,
from Theorem 3.1 applied to H and Ĥ1 we find that

ys1/xs1 ≥ yi/xi, i 6= s1

where the inequality is strict if hr,i 6= 0. From Theorem 3.1 applied to Ĥ1 and Ĥ2 we
find that

zs2/ys2 ≥ zi/yi, i 6= s2

where the inequality is strict if hr,i 6= 0. From the above two expressions we deduce
that

zi
xi

=
zi
yi
· yi
xi
≤ zs2
ys2
· ys1
xs1

,

whence we get

zi
xi
≤ zs2
xs2
· xs2
ys2
· ys1
xs1

.

Since the role of s1 and s2 can be interchanged, we obtain the dual inequality

zi
xi
≤ zs1
xs1
· xs1
ys1
· ys2
xs2

.

Multiplying both sides of the latter two inequalities yields(
zi
xi

)2

≤ zs1
xs1
· zs2
xs2

, i 6= s1, s2,

which proves the main inequality in (3.4) for k = 2. Moreover, the inequality is strict
if hr,i 6= 0. The lower bound on π̂j/πj given in (3.4) follows similarly. In the general
case where k > 2 the proof can be carried out with the same technique by looking
at Ĥ as the matrix obtained after performing k transformation steps where at each
step we add only one citation from paper r to paper si, for i = 1, 2, . . . , k. Equation
(3.6) follows directly from Theorem 3.1 applied at the last step of the transformations
chain.

The above theorem states that in the one-class and in the two-class models, if we
add k new citations from paper r to k different papers, then for at least one paper



EVALUATING SCIENTIFIC PRODUCTS 11

the increase of rank is larger than the one obtained by the other papers. One would
expect that all the papers that receive a citation should increase their rank more than
the other papers. This is false in general, as we will show in the next section.

A similar result can be proved if we assume that only paper s receives a citation
from papers r1, r2, . . . , rk.

Theorem 3.3. Let H be an irreducible adjacency matrix, let (r1, s), . . . , (rk, s)
be pairs of integers such that hri,s = hri,ri

= 0 for i = 1, . . . , k and qi be the number
of nonzero entries in the ri-th row. Define Ĥ = (ĥi,j) such that ĥri,s = 1, ĥi,j = hi,j
otherwise. Let P = diag(He)−1H, P̂ = diag(Ĥe)−1Ĥ and denote by π and π̂ their
corresponding left Perron vectors. Then

min
i=1,k

σi
π̂ri

πri

≤

(
k∏
i=1

σi
π̂ri

πri

)1/k

≤ π̂j
πj
≤ π̂s
πs

j = 1, . . . , n,

for σi = qi/(qi + 1). Moreover,

π̂j
πj

<
π̂s
πs
, if hr,j 6= 0,

and 1 < bπs

πs
.

Proof. The proof is carried out with the same technique used for Theorem 3.2.

3.1. A counterexample. If a set of papers receive new citations, one would
expect that the ranks of all these papers increase more than the ranks of the remaining
papers do. Proving this property was addressed in [3] as an open problem. Here we
provide an example which shows that this apparently intuitive property is false.

Indeed, there may exist situations where a paper which is not cited has an increase
of rank larger than the one of some of the cited papers. This happens if this paper
is cited by the papers which receive a citation and if the latter papers are sufficiently
many. There are cases where some cited paper has even a decrease of rank since the
number of cited papers is so large that not all of them can have an increase of rank
due to the conservation of the overall rank. These counter-intuitive situations are
shown by means of a very simple example.

Consider the one-class model formed by papers numbered from 1 to n plus the
dummy paper, which is numbered as n + 1. The dummy paper cites and is cited by
all the other papers. Moreover paper i cites paper i+ 1, for i = 1, . . . , n. For n = 5,
the adjacency matrix of this system is given by

H =


0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1
1 1 1 1 1 0


while the row-stochastic matrix obtained by H is

P =


0 1/2 0 0 0 1/2
0 0 1/2 0 0 1/2
0 0 0 1/2 0 1/2
0 0 0 0 1/2 1/2
0 0 0 0 0 1/2

1/n 1/n 1/n 1/n 1/n 0


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Now assume that paper 1 cites papers 2, 3, . . . , n− 1. In this way, the adjacency
matrix is

Ĥ =


0 1 1 1 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1
1 1 1 1 1 0


while the row-stochastic matrix obtained by H is

P̂ =


0 1/(n− 1) 1/(n− 1) 1/(n− 1) 0 1/(n− 1)
0 0 1/2 0 0 1/2
0 0 0 1/2 0 1/2
0 0 0 0 1/2 1/2
0 0 0 0 0 1/2

1/n 1/n 1/n 1/n 1/n 0


The graphs associated with the two systems are shown in Figure 3.1

For n = 7, the left Perron vectors π and π̂ of P and P̂ are

π = (0.05259, 0.07888, 0.09203, 0.09860, 0.10189, 0.10353, 0.10436, 0.36812)

π̂ = (0.05119, 0.05972, 0.08958, 0.10451, 0.11197, 0.11570, 0.10904, 0.35830)

while their ratio is given by

π̂/π = (0.97334, 0.75704, 0.97334, 1.05986, , 1.09893, 1.11754, 1.04487, 0.97334)

Observe that, among the papers that receive a new citation, i.e., papers 3, 4, 5
and 6, only paper 6 has the highest increase of rank (1.11754); papers 4 and 5 have a
lower increase while paper 3 has a decrease of rank. Observe also that paper 7 which
does not receive new citations has still an increase of rank. The latter change is due
to the fact that paper 7 is cited by paper 6 which is cited by paper 4 which is cited
by paper 3. A new citation received by papers 3, 4 , 5 and 6 provides an induced
increase of rank of paper 7. The fact that paper 3 has a decrease of rank, despite it
receives a new citation, seems at first glance quite odd, but it can be easily explained.
The number of new citations, i.e., 4, is rather large with respect to the overall number
of papers, moreover, paper 7 and 8 which do not receive citations receive importance
indirectly. However there cannot be a general increase of importance because the rank
of all the papers sum up to 1. This way some papers must decrease their rank.

4. Numerical experiments. We performed a number of experiments both on
real and synthetic data. The goal of our experimentation is twofold. On one hand
we use these experiments to validate the model by showing that the normalization
proposed in Section 2.1 are effective. On the other hand we want to show that the
ranking provided by our model is not equivalent to a simple counting of citations
received, but it captures also concepts such as prestige or reputation. We report some
results obtained applying our method to the matrix P in (2.3) with uniform weights,
that is, choosing γi,j = 1/3.

For our experiments we use real data taken from the CiteSeer dataset, which can
be freely downloaded from the CiteSeer web site [6]. CiteSeer is a scientific literature
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Figure 3.1. Two systems, made of n papers plus the dummy paper, differ for n−3 new citations
from paper 1 to papers 3, 4, . . . , n− 1. Paper n− 1 receives the largest increase of rank. For n ≥ 10,
paper n has an increase of rank larger than that of paper n− 3. For n ≥ 7, paper 3 has a decrease
of rank

digital library and search engine that focuses primarily on the literature in computer
and information sciences [8]. CiteSeer crawls and gathers academic and scientific
documents on the web and uses autonomous citation indexing to permit querying by
citation or by document and then ranking them by citation impact.

The CiteSeer index used is a download of June 2007 consisting of about 800,000
papers. This dataset was first cleaned to remove some incorrect references, such as
items without an author or isolated items. We obtained a dataset consisting of approx-
imately 250,000 authors and 350,000 papers in XML format. However, in the XML
format it is not contained the information about the journals where the papers were
published. For a small part of papers it is possible however to recover the journal in-
formation crossing the XML file with the Bib-TeX file still available from the CiteSeer
site. We obtained in this way a set of about 37,000 papers, written by approximately
41,000 authors and published in 2829 journals or conference proceedings.

The dataset obtained is not well suited for our algorithm for many reasons. Firstly,
among the 2829 journals, more than a half (exactly 1636), appear with just a paper in
the database. This means that we have to rank a journal on the basis of the quality of
only one paper therein published. For the subject Authors we have a similar problem,
since many well-known scholars appear as authors of only a small number of papers,
this is mainly due to the fact that the CiteSeer index is built starting from papers
available on-line (mostly technical reports) or spontaneously submitted. This means
that the index doesn’t contain all the papers that appear on a certain journal issue,
but just those appearing in the reference list of some other indexed paper. Another
problem with this database is that proceedings of the same conference appear several
times as different journals, one for each year the conference has taken place. It should
be more appropriate to group them under the same journal, since the reputation of a
conference builds up over the years.

These observations tell us that we have to evaluate the results in Tables 4.1, 4.2
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paper pos. cit.
Kirkpatrick, Gelatt, Vecchi - Simulated Annealing - SCIENCE 1 174
Diffie, Hellman - Cryptography- IEEE Trans. Inform. Theory, 3 122
Elman- Finding Structure in Time - Cognitive Science 10 84
Van Gelder, Ross, Schlipf - General Logic Programs - J. ACM 2 127
Sunderam - PVM - Concurrency, Practice and Experience 8 92
Harel - Statecharts - Science of Computer Programming 4 107

Table 4.1
Experimental results for the subject Papers. In the first column papers in order of decreasing

rank are listed with the name of the authors and a short identification of the title of the paper,
and the abbreviation of the Journal. The second column contains the position in the list ordered
by decreasing number of citations, the third column reports the number of citation received by the
paper.

and 4.3 in the light of these specific features of the database. For instance, concerning
the subject Journals, we adopted a column-normalization for the block JJ in order
to make the rank of a journal independent of the number of papers published by en-
hancing quality over quantity. However, for the characteristics of our data, it happens
(as for the journal SCIENCE or J R STATIST SOC B in Table 4.3) that journals
with just a paper, pops up in the ranking because the only paper published there 1

is very good. Also not so prestigious journals with just a paper score a rank higher
than expected because the importance of the only paper therein published is higher
than the average importance of papers published on other journals. This particular
example show that this database is too incomplete, since we should consider in the
game also those papers published on a given journal that did not get any citations.
This will decrease the importance of the journal because of the normalization of block
JJ .

Note that the results obtained with this model for the category Papers and Au-
thors differs from that obtained in [3] using the two-class model. Indeed, we are using
different data where important and highly cited papers which score a high value of
rank are no more present in our database. In fact, we could keep in the database only
the items with an associated journal, and for most of the papers this information was
missing.

The behavior of our method on a more realistic dataset is described in Figures 4.1.
These plots represent the validation of our method on a set of 260,000 papers from a
single discipline. These papers were published in 1131 journals by more than 100,000
different authors. Here we present just the statistical behavior of the method.

From 4.1 we can see that the rank of a journal doesn’t depend on the number of
papers that were published in that journal. However, it turns out that the journals
publishing many papers receive a good ranking score. The second plot in Figure 4.1
shows the dependence on the total number of citations received.

As underlined before, the CiteSeer database but also the papers used to produce
Figure 4.1 are not complete, in the sense that they do not index complete issues of
a journal, but the index is constructed bottom-up, starting from a bunch of papers
and adding to the index the papers in their bibliography. A more suitable index
should be constructed considering instead a more complete database, where all the
papers appearing on a given journals are considered. Unfortunately, we do not have

1In the first example S. Kirkpatrick, C. D. Gelatt, Jr., M.P. Vecchi, Optimization by Simulated
Annealing, Science, Number 4598, 13 May 1983.
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Author num. cit num. pap. av. num. cit.
Oded Goldreich 196 75 2.6
Moni Naor 209 53 3.9
Douglas C. Schmidt 131 49 2.7
Sally Floyd 372 55 13.3
Henry G. Baker 57 24 2.4
Moshe Vardi 88 47 1.8
Jun Zhang 54 29 1.9
G. W. Stewart 49 31 1.6
Marek Karpinski 83 54 1.5
Jack J. Dongarra 166 69 2.4

Table 4.2
Experimental results for the subject Author. In the first column the top authors are ranked

in decreasing order of rank. In the remaining columns there are reported: the number of citation
received, the number of papers by the author and indexed in the dataset, and the average number of
citation per paper.

Journal pos. cit. #cit/#pap.
LECTURE NOTES IN COMPUTER SCIENCE 1 4839 0.72
SCIENCE 69 174 174
THEORETICAL COMPUTER SCIENCE 2 1915 1.68
15TH INT. CONF. DISTR. COMP. SYS. 220 35 35
J R STATIST SOC B 220 35 35
ELECTR. COLLOQ. COMP. COMP. (ECCC) 42 319 1.09
INFORMATION PROCESSING LETTERSG. 20 1194 0.94

Table 4.3
Experimental results for the subject Journal. In the first column the top Journals or conference

proceedings are ranked in decreasing order of rank. The second column contains the position in
the list ordered by decreasing number of citations, the third column reports the number of citations
received by the journal. In the fourth column the average number of citations obtained by papers
published in the corresponding journal is reported. Note that the fourth and fifth journal are ex-aequo
at the 220-th position in the list ordered by number of citations, in fact they collect 35 citations.
Actually, both these journals are represented by only one paper in our database, and this paper is of
a good quality so that the rank of the two journals pops up in the list.

Figure 4.1. Experimental results for the subject Journal. In the first plot it is shown the
dependence of the rank of journals on the number of papers it published. The second plot shows the
dependence on the number of citation received.
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Figure 4.2. Histogram of number of papers receiving a given number of citations. More than
500 papers receive just a citation, very few of them receive more than 80 citations.
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Figure 4.3. Histogram of number of bibliographic items contained in the papers. It has a
Gaussian-like shape where most of the papers have a list of around 15 items in the reference list and
very few papers have less than 5 or more than 25 items.

access to a database of this kind so, we simulated this behavior by building up a
synthetic database, with statistical properties similar to those of real data. The index
we constructed is small but the result produced show a good behavior of our method.
We simulated an index with 2,500 papers, 150 authors and 20 journals. Figure 4.2
shows the histogram of the citations received by papers. The idea was to build up a
database where very few papers receive many citations, and most of them just one
or two citations. A power-law distribution [10] can model this kind of behavior. The
length of the reference list of papers, has the behavior described by histogram 4.3.

Concerning authorship, we generated data where the majority of papers have a
single author, and where papers written by 5 or more authors are less numerous.
Indeed, this feature is closer to scientific areas like pure mathematics rather than
other areas like experimental physics where it is more likely to encounter papers with
a huge list of coauthors. However, the normalizations performed on blocks AJ , AA
and AP guarantee that the rank does not depend on the number of authors of a paper.

The papers are more or less uniformly distributed over the 20 journals, so we
have that each journal publish on the average 125 papers with a minimum of 99 and
a maximum of 157.

The experiments performed on these data go into three different directions. We
want to analyze the behavior of the rank with respect to the quantity, the sum of
quality and the mean quality. In particular, the goal is to show that journal rank is
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Figure 4.4. Dependence of the rank of a journal on the mean rank value of the papers it
publishes
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Figure 4.5. Author’s value versus number of papers written.

independent of the number of papers it publishes, but it depends on the quality of
the papers therein published and on the quality of the authors publishing there. In
Figure 4.4 it is reported the dependence of the rank of journals on the mean “quality”
of the papers published there. We see an almost linear dependence, that means that
journals ranking higher publish papers with a higher rank. The rank of Journals is
almost uncorrelated with the number of papers or the number of authors publishing
there, while the dependence of the rank of a journal on the average of the values of
the authors with a paper on that journal is very similar to that reported in Figure 4.4.

Concerning the rank of authors, we expect this rank to be somehow dependent
on the number of authored papers and on their value. Figures 4.5 and 4.6 report the
result obtained. We see that the value of an author grows almost linearly with the
number of papers written while the rank of authors increases with the sum of the
values of its papers but the behavior is not linear.

In Figure 4.7 we plot the value of papers versus the number of citations received.
We have a strong dependence on the number of incoming references but the rank of
a paper is not obtained by simply counting the number of citation received.

The dependence of the rank of a paper on the value of its “mean” author is plotted
in Figure 4.8. Even if there is not a strong dependence, we see that there are no low
rank papers written by important authors. On the contrary also important papers
are written by authors with a low mean value.

5. Conclusions. We presented a model for evaluating the quality of scientific
publications, the productiveness of authors and the prestige of journals. The main
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Figure 4.6. Author’s rank versus sum of the values of the papers written.
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Figure 4.7. Rank of papers versus the number of citations received.
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Figure 4.8. The rank of papers is plotted versus the value of the mean author of the paper.
For each paper, the value of the mean author is given by the arithmetic mean of the coauthors.

idea is that the rank of a subject (such as a journal, an author or a paper) is obtained
as the weighted sum of the ranks of the other subjects. In this way the rank of a paper
does not depend only on the citations received by the paper, but also on the prestige
of the journal where the paper is published and on the quality of the author writing
it. We discussed how the rank of every subject can be obtained as the Perron vector
of a stochastic, irreducible matrix that can be constructed from the citation matrix
H, the matrix K accounting for authorship and the matrix F which keeps track of
the journal where a paper is published. We obtained a 3 × 3 block matrix, and in
Section 2.1 we discussed the kind of normalization more suited for each block to make
the model more realistic. We also gave some perturbation results for a simpler model
proposed in [3] accounting only for the subjects Authors and Papers, together with a
counterexample concerning an issue pointed out in [3].
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The proposed model was tested both on real and synthetic data. The experiments
showed that the normalization of the block of the matrix make the model robust to
spam, in the sense that it measures quality without favoring journals which publish too
many papers or authors who write many low quality papers. This is reflected on the
fact that the rank of a journal is independent of the number of papers that it publishes
but it is closer to the average quality of its papers, and that the rank of a paper
cannot be obtained simply counting the number of references received. The model
can be however further improved introducing the factor time which allows to weight
differently new and old citations. It is possible to introduce another improvement to
avoid self citations. This can be done by removing from the list of incoming reference
all citations coming from papers written by one of the authors of the paper.

The normalization of the various blocks proposed in Section 2.1 are uniform except
for the dummy subject. It is however possible to normalize accordingly to a different
distribution. For example, this can be done in the case of the authors of a paper are
listed in a non alphabetic order or when it is clear which of the authors should get
more credit for a paper.

We proposed this ranking method in the framework of research evaluation, it
is however possible to use the same approach for other ranking problems where the
influence of a subject depends on the importance of other subjects, such as the problem
of ranking news stories and news agencies or the ranking of web sites on the basis of
web pages.
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