
ARTICLE  IN  PRESS
Journal of Computational and Applied Mathematics ( ) –

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Stable and unstable cross-grid PkQl mixed finite elements for the
Stokes problem
María G. Armentano a,∗, Jordi Blasco b
a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
b Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Campus Sud, Edifici H, Avgda. Diagonal 647, 08028, Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 22 December 2008
Received in revised form 29 June 2009

MSC:
65N12

Keywords:
Stokes problem
Mixed finite elements
Stability analysis
Macroelement technique
Cross-grid

a b s t r a c t

In this paper we develop and analyze a family of mixed finite element methods for the
numerical solution of the Stokes problem in two space dimensions. In these schemes,
the pressure is interpolated on a mesh of rectangular elements, while the velocity is
approximated on a triangular mesh obtained by dividing each rectangle into four triangles
by its diagonals. Continuous interpolations of degrees k for the velocity and l for the
pressure are considered, so the new finite elements are called cross-grid PkQl. A stability
analysis of these approximations is provided, based on the macroelement technique of
Stenberg. The lowest order P1Q1 and P2Q1 cases are analyzed in detail; in the first case, a
global spurious pressure mode is shown to exist, so this element is unstable. In the second
case, however, stability is rigorously proved. Numerical results obtained in these two cases
are also presented, which confirm the existence of the spurious pressuremode for the P1Q1
element and the stability of the P2Q1 element.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In order to approximate the solution of the Stokes problemby finite elementmethods, there are basically two approaches.
The first one consists in approximating the two independent variables, velocity and pressure, using different spaces for each
one. This leads to mixed finite element methods, examples of which can be found in [1–8] and in the references therein;
mixed methods have been widely analyzed and the theory of mixed problems is well-established nowadays; see [9] (in
particular, the paper by D. Boffi, F. Brezzi and M. Fortin, Finite Elements for the Stokes problem on pages 45–100) and [10].
The second approach, which is based on stabilized formulations, consists in modifying the discrete problem by the addition
of new terms which enhance its stability (see [11–18] and the references therein).
Both of these approaches have some advantages and some disadvantages. For mixed finite element methods the general

theory states that the convergence of these methods is only guaranteed if the discrete spaces are selected such that
they satisfy the well-known inf–sup condition (see [9,10]). On the other hand, stabilized methods depend on algorithmic
parameters which have to be tuned to get optimal results.
In thisworkwe introduce and analyze a new family ofmixed finite elementmethods inwhich the pressure is interpolated

on a mesh of rectangular elements and the velocity on a triangular mesh obtained by dividing each rectangle into four
triangles by its diagonals. The meshing strategy is usually called cross-grid, and similar ideas were employed in [9,10,19,6,
7,20,21]. We denote by PkQl the elements in which the velocity is interpolated in each triangle by polynomials of degree no
greater than k and the pressure is interpolated in each rectangle by polynomials of degree in each variable no greater than
l, with k ≥ l ≥ 1.
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In order to analyze the stability of these methods, we use the well-known macroelement technique of Stenberg [22–24]
which allows us to reduce the analysis of the global stability to a simple local condition.We prove that if themethod satisfies
a local condition, optimal order of convergence can be obtained. We analyze the lowest order P1Q1 element and show the
existence of a global spurious pressure mode, so convergence of the pressure does not hold for this element. The alternate
nature of the nodal values of the pressure in this spurious mode resembles the structure of the well-known checkerboard
mode of theQ1P0 element (see for instance [9,25,26]). On the other hand, we prove that the cross-grid P2Q1 element satisfies
the local estimate and thus the inf–sup condition, so it yields optimally convergent solutions.
Some numerical results are also presented which confirm the presence of the spurious pressure mode for the P1Q1

element and the stability of the P2Q1 element. Although our methods are introduced and analyzed only in the case of
rectangular elements, they can also be appropriately defined in meshes of general quadrilateral elements; we include some
numerical experiments on such meshes which show that the nodal checkerboard mode is also present in that case for the
P1Q1 element, so the presence of this spurious model is not removed by mesh distortion. The P2Q1 element, moreover,
gives a correct pressure solution and so we conjecture the stability of our cross-grid P2Q1 element for general meshes of
quadrilateral elements.
The rest of the paper is organized as follows. In Section 2we state the Stokes problem and introduce the PkQlmixed finite

element approximations. In Section 3 we present the stability analysis based on the macroelement technique. In Section 4
we analyze the stability of the lowest order cases P1Q1 and P2Q1. Finally, in Section 5 we present some numerical examples.

2. Cross-grid PkQl finite element approximation of the Stokes problem

In this section we recall the Stokes problem and we introduce the new family of cross-grid PkQl mixed finite element
methods for its numerical approximation.

2.1. Problem statement

Let Ω ⊂ R2 be an open, bounded and polygonal domain. We consider the classical Stokes problem which models the
slow motion of an incompressible viscous fluid occupyingΩ:{

−µ∆u+∇p = f inΩ,
∇ · u = 0 inΩ,
u = 0 on Γ := ∂Ω,

(2.1)

where u is the fluid velocity, p is the pressure, f ∈ (H−1(Ω))2 (the dual space of (H10 (Ω))
2) is a given body force per unit

mass and µ > 0 is the kinematic viscosity, which we assume constant.
Let V := (H10 (Ω))

2 and Q := L20(Ω) = {q ∈ L
2(Ω) :

∫
Ω
q = 0}. The weak form of (2.1) is given by: Find u ∈ V and p ∈ Q

such that{
a(u, v)+ b(v, p) = 〈f, v〉V ′×V ∀v ∈ V ,
b(u, q) = 0 ∀q ∈ Q , (2.2)

where the bilinear forms a(·, ·) and b(·, ·) are defined on V × V and V × Q , respectively, as

a(u, v) = µ
∫
Ω

∇u : ∇v u, v ∈ V ,

b(v, q) = −
∫
Ω

∇ · v q v ∈ V , q ∈ Q .

The norms and seminorms in (Hm(D))2, with m an integer, are denoted by ‖ · ‖m,D and | · |m,D respectively and (·, ·)D
denotes the inner product in L2(D) or (L2(D))2 for any subdomain D ⊂ Ω . The domain subscript is dropped for the case
D = Ω .
The bilinear form a(·, ·) is coercive in V and there exists a constant β > 0 (see for instance [9]) such that for all q ∈ Q

sup
06=v∈V

b(v, q)
‖v‖1

≥ β‖q‖0. (2.3)

According to the general theory of mixed problems [9,10] these conditions ensure that there exists a unique solution of
problem (2.2).
Let now Vh ⊂ V and Qh ⊂ Q be finite dimensional spaces. The standard Galerkin approximation of (2.2) is given by: Find

(uh, ph) ∈ Vh × Qh such that{
a(uh, v)+ b(v, ph) = 〈f, v〉V ′×V ∀v ∈ Vh,
b(uh, q) = 0 ∀q ∈ Qh.

(2.4)
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In order to have a stable and convergent approximation, the discrete spaces Vh and Qh have to satisfy the well-known
LBB condition, i.e. there should exist a constant β̃ > 0, independent of h, such that

sup
06=v∈Vh

b(v, q)
‖v‖1

≥ β̃‖q‖0 ∀q ∈ Qh. (2.5)

Then, if (2.5) holds the theory of mixed finite element methods [9,10] states that problem (2.4) has a unique solution which
is stable and optimally convergent, i.e. there exists a positive constant C such that

‖u− uh‖1 + ‖p− ph‖0 ≤ C{ inf
v∈Vh
‖u− v‖1 + inf

q∈Qh
‖p− q‖0}. (2.6)

2.2. Cross-grid PkQl mixed finite elements

We now consider a partition Ch of Ω̄ into rectangular elements K , which we assume to be regular, i.e. there exists a
constant σ > 0 independent of the mesh size h such that

hK ≤ σρK ∀K ∈ Ch,

where hK denotes the diameter of K and ρK the diameter of the largest ball contained in K .
Then, we divide each rectangle K by its diagonals into four triangles and we call Th the resulting mesh of triangular

elements T .
Using the standard notation Pk for the space of polynomials of degree not greater than k and Ql for the space of

polynomials of the form q(x, y) =
∑
j αjpj(x)qj(y)with pj and qj polynomials of degree less than or equal to l, the cross-grid

PkQlmixed finite element spaces for the approximation of the velocity and the pressure are defined, respectively, as follows:

Vh = {v ∈ V : v|T ∈ (Pk)
2, ∀ T ∈ Th}

Qh = {q ∈ Q ∩ H1(Ω) : q|K ∈ Ql, ∀K ∈ Ch}.

The cases of interest are, of course, those for which l ≤ k. For l = k, we have approximations of the same order for the
two variables, although not equal approximations. For l = k− 1 the orders of the interpolation errors in the error estimate
(2.6) are balanced. Moreover, we are interested in continuous pressure approximations only, so we assume that l ≥ 1.

3. Stability analysis—The macroelement technique

The goal of this section is to analyze the stability of cross-grid PkQl mixed finite element approximations of the Stokes
problem by means of the satisfaction of the discrete inf–sup condition (2.5).
Our stability analysis is based on the well-known macroelement technique of Stenberg (see [22–24]). In the general

setting, a macroelement is defined as a connected set M of adjoining (velocity) elements T ∈ Th. The macroelement parti-
tioning is calledMh. TwomacroelementsM and M̄ are said to be equivalent if there is a one-to-one and continuousmapping
G:M → M̄ such that:
(i) G(M) = M̄ .
(ii) For all T ⊂ M , G(T ) = T̄ ⊂ M̄ .
(iii) For all T ⊂ M , G|T = FT̄ ◦ F

−1
T , where FT and FT̄ are affine mappings from the reference element T̃ onto Tj and T̂ ,

respectively.

The macroelement partitioningMh is usually required to satisfy the following assumptions:
(M1) There is a fixed set of equivalence classesDi, i = 1, . . . , n, of macroelements such that eachM ∈ Mh belongs to one

ofDi.
(M2) There is a positive integer L such that each T ∈ Th is contained in at least one and not more than Lmacroelements of

Mh.

The cross-grid structure of our velocity mesh Th makes the macroelement technique especially suitable for the stability
analysis of such elements. The natural choice for macroelements in our case is M = K , so the macroelements are indeed
the rectangular pressure elements (we use the notationM for the macroelements from now on, rather than using K , since it
is standard in this context). Condition (M2) is automatically satisfied with this choice, with L = 1. We take the unit square
M̂ = [0, 1] × [0, 1] as the reference macroelement. Since in our case every M ∈ Mh is a rectangle of the partition Ch, it is
clear that there exists an affine transformation FM such that:

(i) FM(M̂) = M .
(ii) If we denote by T̂i, 1 ≤ i ≤ 4, the four triangles in M̂ obtained by dividing it by its diagonals, then Tj = FM(T̂j) are the
four triangles ofM obtained by dividing it by its diagonals.

(iii) FM
|T̂j
= FTj ◦ F

−1
T̂j
, j = 1, . . . , 4, where FTj and FT̂j are the mappings from the reference element T̃ , i.e. the triangle of

vertices (0, 0), (1, 0) and (0, 1), onto Tj and T̂j respectively.
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Thus, all macroelements are equivalent, and condition (M1) is also automatically satisfied, with n = 1. For each macroele-
mentM , let us define the following finite element spaces consistent with Vh and Qh:

VM = {v ∈ (H10 (M))
2
: v|T ∈ (Pk)

2, ∀T ⊂ M}
QM = Ql(M).

For the elements in QM we define the following seminorm:

|q|M = hM‖∇q‖0,M
and for q ∈ Qh let

‖q‖2h =
∑
M∈Ch

h2M‖∇q‖
2
0,M ,

which can also be written as

‖q‖2h =
∑
M∈Ch

|q|2M .

From now on, C denotes a generic positive constant, possibly different at different occurrences, which is independent of h
but may depend on the mesh parameter σ and some other parameters introduced in the text.
The following lemmas are the tools for showing that the global stability estimate (2.5) can be obtained from local stability

estimates. The proofs follow the same arguments as those given in [22–24]. We have incorporated a modification in the last
step of the proof of the following lemmawith respect to that of Lemma 1 of [23], and so we give the proof for completeness.

Lemma 3.1. If there exists a constant C such that for any M ∈ Ch

sup
06=v∈VM

(∇ · v, q)M
|v|1,M

≥ C |q|M ∀q ∈ QM , (3.7)

then there exists a constant C such that the following stability inequality holds:

sup
06=v∈Vh

(∇ · v, q)
‖v‖1

≥ C‖q‖h ∀q ∈ Qh. (3.8)

Proof. Given q ∈ Qh, the local stability estimate (3.7) implies that for anyM ∈ Ch, there exists vM ∈ VM such that

(∇ · vM , q)M ≥ C |q|2M (3.9)

and

|vM |1,M ≤ |q|M . (3.10)

Since vM = 0 on ∂M , we can define an extension function veM ∈ Vh as

veM =
{
vM inM
0 inΩ \M.

Thus, from (3.9) we have that

(∇ · veM , q) = (∇ · vM , q)M ≥ C |q|
2
M (3.11)

and from (3.10) we get

|veM |1 = |vM |1,M ≤ |q|M . (3.12)

Let us now define

v =
∑
M∈Ch

veM .

Then, v ∈ Vh and from (3.11) we get

(∇ · v, q) =
∑
M∈Ch

(∇ · veM , q) ≥ C
∑
M∈Ch

|q|2M = C‖q‖
2
h. (3.13)

On the other hand, by using the Poincaré inequality and (3.12) we obtain that

‖v‖21 ≤ C |v|
2
1 = C

∑
M∈Ch

|veM |
2
1 ≤ C

∑
M∈Ch

|q|2M = C‖q‖
2
h. (3.14)

Therefore, the lemma follows from (3.13) and (3.14). �
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The following lemmas provide a relationship between stability in the mesh-dependent norm ‖ · ‖h and that in the L2
norm ‖ · ‖0. The proof of this result is essentially based on the so called Verfurth trick, which was originally used for the
proof of stability of Taylor–Hood elements (see [27] and Section 4.3 of [9], Finite elements for the Stokes problem). The proof
of the next lemma is, thus, skipped.

Lemma 3.2. There exist two constants C1 and C2 such that

sup
06=v∈Vh

(∇ · v, q)
‖v‖1

≥ C1‖q‖0 − C2‖q‖h ∀q ∈ Qh.

The next lemma is a consequence of Lemma 3.2. Its proof is essentially the same as that of Lemma 3 in [23], and it is
therefore omitted.

Lemma 3.3. If the stability in the mesh-dependent norm (3.8) is valid, then the stability condition (2.5) holds.

Therefore, the problem of proving that the inf–sup condition (2.5) holds is reduced to proving the local estimates (3.7).
In order to get sufficient conditions for these to hold, let us define the space

NM = {q ∈ QM | (∇q, v)M = 0,∀v ∈ VM}.

Since we are in the same conditions as in Lemma 4 of [23], using the same arguments as there, we can prove the following
result which gives the fundamental tool for proving the stability of the proposed finite element methods:

Lemma 3.4. If the space NM is one-dimensional, i.e., it consists only of functions which are constant on M, then the local stability
condition (3.7) holds.

Combining Lemmas 3.1, 3.3 and 3.4 we obtain the main result of this section:

Theorem 3.1. If the space NM is one-dimensional, i.e., it consists only of functions which are constant on M, then the inf–sup
condition (2.5) holds, problem (2.4) has a unique solution (uh, p) and there exists a constant C independent of the mesh size h
such that

‖u− uh‖1 + ‖p− ph‖0 ≤ C{ inf
v∈Vh
‖u− v‖1 + inf

q∈Qh
‖p− q‖0}.

Remark 3.1. We observe that, under the hypothesis of the previous theorem, if the continuous solution satisfies u ∈
(Hk+1(Ω)

⋂
H10 (Ω))

2 and p ∈ H l+1(Ω)
⋂
L20(Ω), using classical interpolation error estimates (see for example [28]) we

can conclude that ‖u− uh‖1 + ‖p− ph‖0 ≤ C{hk‖u‖k+1 + hl+1‖p‖l+1}.

4. Stability of cross-grid PkQl mixed finite elements

The aim of this section is to analyze the stability of cross-grid PkQl mixed finite elements for different values of k and l,
with k ≥ l and l ≥ 1, using the numerical analysis given in Section 3. According to Theorem 3.1, for such elements stability
holds if the condition dim(NM) = 1 is satisfied. Therefore, the following patch-test type condition should first be checked if
stability is to be expected:

dim VM ≥ dimQM − 1

for every macroelementM . Since in our caseM is a rectangle of the partition Ch, it is easy to see that for PkQl elements,

dim VM = 2 {1+ 4(k− 1)+ 2(k− 2)(k− 1)} = 4k2 − 4k+ 2
dimQM = (l+ 1)2

and therefore, PkQl elements satisfy the patch test if

4k2 − 4k+ 2 ≥ l2 + 2l.

Thus, for the PkQk (k ≥ 1) mixed interpolations this gives k > 1.58, so the lowest order P1Q1 element is suspected to be
unstable. For the PkQk−1 (k ≥ 2) methods, on the other hand, this condition holds for all values of k; the simplest case P2Q1
may thus be stable. In the following subsectionswe consider and analyze in detail the cases P1Q1 and P2Q1 (see Figs. 1 and 3).
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O  Pressure Nodes

 *  Velocity Nodes

Fig. 1. Velocity and pressure nodes of the cross-grid P1Q1 mixed finite element.

4.1. The cross-grid P1Q1 element

We first consider the cross-grid P1Q1 element, which is the simplest cross-grid element that one can consider among
those which use a continuous pressure interpolation. The velocity and pressure nodes of this element are shown in Fig. 1.
In this case, dim(VM) = 2 and dim(QM) = 4, so the space NM is at least two-dimensional. In fact, dim(NM) = 2 and NM
consists of functions which take the same value at opposite vertices of M . These local spurious pressure modes add up to
form a global spurious pressure mode. The next lemma shows the existence of such a pressure mode whenΩ is a rectangle
and a uniform mesh is considered. Thus, this element does not satisfy the inf–sup condition (2.5).

Lemma 4.1. Let Ω = (0, A) × (0, B) and let Ch be a uniform mesh consisting of N × M rectangles. Let us consider the P1Q1
mixed finite element approximation. Then, there exists a global spurious pressure mode q̂h ∈ Qh \ {0} such that

(∇ q̂h, vh) = 0 ∀vh ∈ Vh.

Proof. Let Ki,j = [(i − 1)hx, ihx] × [(j − 1)hy, jhy] be the rectangles of the uniform mesh Ch, with hx = A/N , hy = B/M ,
1 ≤ i ≤ N and 1 ≤ j ≤ M , and let ni,j = (ihx, jhy), 0 ≤ i ≤ N , 0 ≤ j ≤ M , be the nodes of the mesh Ch. We define q̂h ∈ Qh as

q̂h(ni,j) =
{
a if i+ j is even
−a if i+ j is odd

with a ∈ R, a 6= 0. In order to simplify the notation we define q̂i,j = q̂h(ni.j).
Let pi,j be the Lagrange basis of Qh, i.e. pi,j ∈ Qh, pi,j(ni,j) = 1 and it is zero at the rest of the nodes of the mesh Ch. Then,

if i+ j is even we have that

q̂h(x, y)|Ki,j = q̂i−1,j−1pi−1,j−1 + q̂i,j−1pi,j−1 + q̂i−1,jpi−1,j + q̂i,jpi,j

= a
(
pi−1,j−1 + pi,j − pi,j−1 − pi−1,j

)
= a

{(
ihx − x
hx

)(
jhy − y
hy

)
+

(
x− (i− 1)hx

hx

)(
y− (j− 1)hy

hy

)
−

(
x− (i− 1)hx

hx

)(
jhy − y
hy

)
−

(
ihx − x
hx

)(
y− (j− 1)hy

hy

)}
and so

∂ q̂h
∂x
(x, y)|Ki,j = a

(
y− jhy
hxhy

+
y− (j− 1)hy

hxhy
−
jhy − y
hxhy

−
(j− 1)hy − y

hxhy

)
.

Let Th be the corresponding triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. We
denote by ni−1/2,j−1/2 = ((i − 1/2)hx, (j − 1/2)hy), 1 ≤ i ≤ N , 1 ≤ j ≤ M , the internal node in each rectangle. Let βi,j be
the piecewise linear Lagrange basis of Vh, i.e., βi,j ∈ Vh such that βi,j(ni,j) = 1 and it is zero at the rest of the nodes of Th.
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Fig. 2. Support of the shape function βi,j for corner nodes ni,j .

Let us consider internal nodes ni−1/2,j−1/2 first; the support of βi−1/2,j−1/2 is Ki,j. Since
∂ q̂h
∂x (x, ·)|Ki,j is an odd function with

respect to the line y = (j− 1/2)hy and βi−1/2,j−1/2(x, ·) is an even function with respect to that line, we conclude that∫
Ω

∂ q̂h
∂x
(x, y)βi−1/2,j−1/2(x, y)dxdy =

∫
Ki,j

∂ q̂h
∂x
(x, y)βi−1/2,j−1/2(x, y)dxdy = 0.

Now we consider corner nodes ni,j and denote the support of βi,j by wi,j = ∪ni,j∈T T = ∪1≤l≤8 Tl (see Fig. 2). An easy
calculation shows that∫

Tl

∂ q̂h
∂x
(x, y)βi,j = −

∫
Tl+4

∂ q̂h
∂x
(x, y)βi,j 1 ≤ l ≤ 4

and thus,∫
Ω

∂ q̂h
∂x
(x, y)βi,j =

∫
wi,j

∂ q̂h
∂x
(x, y)βi,j = 0.

By using the same arguments, we can prove that∫
Ω

∂ q̂h
∂y
(x, y)βi−1/2,j−1/2(x, y)dxdy = 0

and ∫
Ω

∂ q̂h
∂y
(x, y)βi,j(x, y)dxdy = 0.

The proof concludes by observing that the case i+ j odd is completely analogous and so (∇ q̂h, vh) = 0, ∀vh ∈ Vh. �

Remark 4.1. Due to the alternate nature of the spurious pressure mode q̂h, which resembles the well-known checkerboard
mode of the elemental pressures in the Q1P0 element, we call this pressure distribution a nodal checkerboard mode.

4.2. The cross-grid P2Q1 element

We now consider the cross-grid P2Q1 element (see Fig. 3). In this case, dim(VM) = 10 and dim(QM) = 4. The following
lemma shows that for the P2Q1 element the space NM is one-dimensional and therefore, from Theorem 3.1, we conclude
that this element is stable and optimally convergent.

Lemma 4.2. The space NM for the cross-grid P2Q1 element is one-dimensional.

Proof. Let q ∈ NM be, i.e., q ∈ QM such that (∇q, v)M = 0 ∀v ∈ VM . We denote by nj, 1 ≤ j ≤ 13, the nodes of the
triangulation lying onM and by Ti, 1 ≤ i ≤ 4, the triangles inM , as shown in Fig. 4. Let βj, 1 ≤ j ≤ 13, be such that βj|T ∈ P2
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O  Pressure Nodes

 *  Velocity Nodes

Fig. 3. Velocity and pressure nodes of the cross-grid P2Q1 mixed finite element.

Fig. 4. Local numbering of nodes and triangular elements in the P2Q1 case.

and βj(ni) = δi,j, i.e. the corresponding P2-Lagrange basis function of node j. Finally, let pj, 1 ≤ j ≤ 4, be such that pj ∈ QM
and pj(ni) = δi,j. Then, any q ∈ QM can be written as

q(x, y) =
4∑
j=1

q(nj)pj(x, y).

We compute explicitly the products (∇q, v) for selected velocity fields v. We first notice that these products can be com-
puted on the reference macroelement M̂ = [0, 1] × [0, 1]. Indeed, for any macroelement M ∈ Ch, we have that β̂j =
βj ◦ FM , 1 ≤ j ≤ 13, and p̂i = pi ◦ FM , 1 ≤ i ≤ 4, constitute the corresponding Lagrange basis in M̂ , and from a simple change
of variables we get∫

M

∂pj
∂x
(x, y)βj(x, y)dxdy =

∫
M̂

1
hx

∂ p̂j
∂ x̂
(x̂, ŷ) β̂j(x̂, ŷ)hxhy dx̂dŷ

= hy

∫
M̂

∂ p̂j
∂ x̂
(x̂, ŷ)β̂j(x̂, ŷ)dx̂dŷ,∫

M

∂pj
∂y
(x, y)βj(x, y)dxdy =

∫
M̂

1
hy

∂ p̂j
∂ ŷ
(x̂, ŷ) β̂j(x̂, ŷ)hxhy dx̂dŷ

= hx

∫
M̂

∂ p̂j
∂ ŷ
(x̂, ŷ)β̂j(x̂, ŷ)dx̂dŷ

where hx and hy denote the lengths of the edges ofM .

Please cite this article in press as: M.G. Armentano, J. Blasco, Stable and unstable cross-grid PkQl mixed finite elements for the Stokes problem, Journal
of Computational and Applied Mathematics (2010), doi:10.1016/j.cam.2010.02.016
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Fig. 5. Cavity flow, P1Q1 element: Velocity vectors.

Let us first take v = (β10, 0); by the simple calculation of the corresponding integrals we have that condition (∇q, v)M =
0 leads to

−
7
60
q(n1)+

7
60
q(n2)+

1
20
q(n3)−

1
20
q(n4) = 0, (4.15)

and taking now v = (0, β10) yields

−
7
60
q(n1)−

1
20
q(n2)+

1
20
q(n3)+

7
60
q(n4) = 0. (4.16)

Finally, taking v = (0, β12)we obtain

−
1
20
q(n1)−

7
60
q(n2)+

7
60
q(n3)+

1
20
q(n4) = 0. (4.17)

Subtracting (4.16) from (4.15) we get q(n2) = q(n4) and adding up (4.15) and (4.17) we get q(n1) = q(n3). Substituting
these in (4.15) we get q(n1) = q(n2), and the proof concludes. �

Remark 4.2. Let us notice that for cross-grid meshes this P2Q1 element has the same optimal order of convergence as the
well-known P2P1 Taylor–Hood element, with the advantage that it requires one less pressure node in each rectangle.

5. Numerical results

We present in this section some numerical results obtained with the P1Q1 and the P2Q1 cross-grid mixed finite elements
on two test cases of the Stokes problem.

5.1. The lid-driven cavity flow problem

In this first example we solved the classical lid-driven cavity flow problem. The fluid domain is the unit square Ω =
[0, 1] × [0, 1] and the flow is driven by the top lid {y = 1 , 0 < x < 1}, which moves with constant velocity u = (1, 0);
in the rest of the boundary, homogeneous Dirichlet conditions are imposed. Moreover, in this flow problem f = 0, and we
took ν = 0.1. In the Stokes case that we consider, the solution to this problem is known to be symmetric about the cavity
centerline x = 0.5, with a unique primary vortex centered on that line. The pressure is singular at the top corners.
We solved this problemwith both the P1Q1 and the P2Q1mixed finite elements. In the first case, a uniformmesh of 20×20

rectangular elements was used for the pressure approximation, from which a uniform cross-grid mesh of 1600 triangular
elements was generated for the velocity approximation. In the second case, the pressure mesh was courser and consisted
only of 10×10 rectangular elements, fromwhich 400 quadratic triangular elements were generated for the velocity. In this
way, the number of velocity nodes is the same in the two cases, and equal to 841.
Both elements produced correct velocity solutions, which are plotted in Figs. 5 and 6. As can be observed, both solutions

reproduce the main features of the flow such as symmetry and a unique primary vortex.
The pressure solution obtained with the two elements is shown in Figs. 7 and 8 in the form of pressure contours. A clear

nodal checkerboard mode phenomenon can be seen in the solution of the P1Q1 element, just as predicted by Lemma 4.1.
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Fig. 6. Cavity flow, P2Q1 element: Velocity vectors.

Fig. 7. Cavity flow, P1Q1 element: Pressure contours.

Fig. 8. Cavity flow, P2Q1 element: Pressure contours.

The P2Q1 element, on the other hand, gave correct pressure results. It has to be said that the hydrostatic (constant) pressure
mode was avoided by setting to zero the value of the pressure at the top right corner of the cavity.
Figs. 9 and 10 plot three-dimensional views of the two pressure solutions. The nodal nature of the spurious pressure

mode in the P1Q1 case can be clearly observed there. In the P2Q1 case, on the other hand, the pressure singularity at the top
corners is clearly captured.
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Fig. 9. Cavity flow, P1Q1 element: 3D view of the pressure solution.
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Fig. 10. Cavity flow, P2Q1 element: 3D view of the pressure solution.

5.2. The trapezoidal domain

Although our cross-grid mixed finite elements have been defined only in the case of meshes of rectangular elements,
the methods that we have developed can also be appropriately defined for meshes of regular quadrilateral elements. This
second example is intended to test the performance of the P1Q1 and the P2Q1 elements in such cases.
The problem consists of a fully developed plane Poiseuille flowon a trapezoidal domain of vertices (0,−1), (5,−1), (2, 1)

and (3, 1). A parabolic velocity profile is prescribed both at the inlet (left boundary) and at the outlet (right boundary), with
a maximum inflow velocity of 1, and a no slip boundary condition is imposed at the top and bottom. The solution of this
simple flow problem can introduce some inconsistent boundary conditions on the pressure in some stabilized residual-
based formulations (such as GLS) if linear elements are used, which forces the numerical pressure contours to be normal to
the boundary (see [29]).
The quadrilateral meshes employed for the pressure approximation in this problem are constructed from 10 (resp. 5)

equally spaced subdivisions of each boundary for the P1Q1 element (resp. the P2Q1 element); the resulting cross-grid
triangular meshes can be seen in Fig. 11 for the P1Q1 and 12 for the P2Q1 element.
The velocity solutions obtained reproduce accurately the analytical solution u = (1 − y2, 0) in both cases, and are not

plotted. The pressure solutions obtained are shown in Figs. 13 and 14. A nodal checkerboard mode was obtained again with
the P1Q1 element, so the presence of this spurious model is not removed bymesh distortion. The P2Q1 element, on the other

Please cite this article in press as: M.G. Armentano, J. Blasco, Stable and unstable cross-grid PkQl mixed finite elements for the Stokes problem, Journal
of Computational and Applied Mathematics (2010), doi:10.1016/j.cam.2010.02.016



ARTICLE  IN  PRESS
12 M.G. Armentano, J. Blasco / Journal of Computational and Applied Mathematics ( ) –

Fig. 11. Trapezoidal domain, P1Q1 element: Velocity mesh.

Fig. 12. Trapezoidal domain, P2Q1 element: Velocity mesh.

Fig. 13. Trapezoidal domain, P1Q1 element: Pressure contours.

Fig. 14. Trapezoidal domain, P2Q1 element: Pressure contours.

hand, gave a correct pressure solution with a linear variation in the x variable, as can be seen in Fig. 14. With this mixed
formulation, the pressure is not affected by inconsistent boundary conditions.
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