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Abstract

For the last almost three decades, since the famous Buchberger-Möller(BM)
algorithm emerged, there has been wide interest in vanishing ideals of points
and associated interpolation polynomials. Our paradigm is based on the
theory of bivariate polynomial interpolation on cartesian point sets that gives
us related degree reducing interpolation monomial and Newton bases directly.
Since the bases are involved in the computation process as well as contained
in the final output of BM algorithm, our paradigm obviously simplifies the
computation and accelerates the BM process. The experiments show that
the paradigm is best suited for the computation over finite prime fields that
have many applications.
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1. Introduction

For an arbitrary field F, we let Fq a finite prime field of size q and Πd :=
F[x1, . . . , xd] the d-variate polynomial ring over F. Given a preassigned set of
distinct affine points Ξ ⊂ Fd, it is well-known that the set of all polynomials
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in Πd vanishing at Ξ constitutes a radical zero-dimensional ideal, denoted by
I(Ξ), which is called the vanishing ideal of Ξ.

Recent years, there has been considerable interest in vanishing ideals of
points in many branches of mathematics such as algebraic geometry[1], multi-
variate interpolation[2, 3], coding theory[4, 5], statistics[6], and even compu-
tational molecular biology[7, 8]. As is well known, the most significant mile-
stone of the computation of vanishing ideals is the algorithm presented in [9]
by Hans Michael Möller and Bruno Buchberger known as Buchberger-Möller
algorithm(BM algorithm for short). For any point set Ξ ⊂ Fd and fixed term
order ≺, BM algorithm yields the reduced Gröbner basis for I(Ξ) w.r.t. ≺
and a ≺-degree reducing interpolation Newton basis for d-variate Lagrange
interpolation on Ξ. The algorithm also produces the Gröbner éscalier of I(Ξ)
w.r.t. ≺ as a byproduct. Afterwards, in 1993, BM algorithm was applied in
[10] in order to solve the renowned FGLM-problem. In the same year, [11]
merged BM and FGLM algorithms into four variations that can solve more
general zero-dimensional ideals therefore related ideal interpolation problems
[3]. The algorithms are referred as MMM algorithms.

Although very important, BM algorithm (and MMM algorithms) has a
very poor complexity that limits its applications. In this decade, many au-
thors proposed new algorithms that can reduce the complexity but mostly
suitable for special cases. [12] presented a modular version of BM algorithm
that is best suited to the computation over Q. [13, 14, 15] presented algo-
rithms for obtaining, with relatively little effort, the Gröbner éscalier of a
vanishing ideal w.r.t. the (inverse) lexicographic order that can lead to an
interpolation Newton basis or the reduced Gröbner basis for the vanishing
ideal after solving a linear system.

For a fixed point set Ξ in Fd and a term order ≺, it is well known that
there are two factors that determine the Gröbner éscalier of I(Ξ) w.r.t. ≺
thereby the reduced Gröbner basis for I(Ξ) and related degree reducing in-
terpolation Newton bases (up to coefficients). One is apparently the cardinal
of Ξ. It is the unique determinate factor in univariate cases. Another one is
the geometry (the distribution of the points) of Ξ that is dominating in multi-
variate cases but not taken into consideration by BM and MMM algorithms.
Recent years, [16, 17, 18] studied multivariate Lagrange interpolation on a
special kind of point sets, cartesian point sets (aka lower point sets), and
constructed the associated Gröbner éscalier and degree reducing interpola-
tion Newton bases theoretically. We know from [9, 11] that, for a cartesian
subset of Ξ (it always exists!), certain associated degree reducing interpola-
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tion Newton basis forms part of the output of BM algorithm w.r.t. some
reordering of Ξ. Therefore, finding a large enough cartesian subset of Ξ with
little enough effort will reduce the complexity of BM algorithm.

Following this idea, the paper proposes a preprocessing paradigm for BM
algorithm with the organization as follows. The next section is devoted as a
preparation for the paper. And then, the main results of us are presented in
two sections. Section 3 will pursue the paradigm for two special term orders
while Section 4 will set forth our solution for other more general cases. In the
last section, Section 5, some implementation issues and experimental results
will be illustrated.

2. Preliminary

In this section, we will introduce some notation and recall some basic
facts for the reader’s convenience. For more details, we refer the reader to
[19, 20].

We let N0 denote the monoid of nonnegative integers. A polynomial f ∈
Π2 is of the form

f =
∑

α∈N2

0

fαX
α, #{α ∈ N2

0 : 0 6= fα ∈ F} < ∞,

where monomial Xα = xα1yα2 with α = (α1, α2). The set of bivariate
monomials in Π2 is denoted by T2.

Fix a term order ≺ on Π2 that may be lexicographical order ≺lex, in-
verse lexicographical order ≺inlex, or total degree inverse lexicographical order
≺tdinlex etc. For all f ∈ Π2, with f 6= 0, we may write

f = fγ1
Xγ1 + fγ2

Xγ2 + · · ·+ fγr
Xγr ,

where 0 6= fγi
∈ F,γi ∈ N2

0, i = 1, . . . , r, and Xγ1 ≻ Xγ2 ≻ · · · ≻ Xγr . We
shall call LT(f) := fγ1

Xγ1 the leading term and LM(f) := Xγ1 the leading

monomial of f . Furthermore, for a non-empty subset F ⊂ Π2, put

LT(F ) := {LT(f) : f ∈ F}.

As in [21], we define the ≺−degree of a polynomial f ∈ Π2 to be the leading
bidegree w.r.t. ≺

δ(f) := γ, Xγ = LM(f),
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with δ(0) undefined. Further, for any finite dimensional subset F ⊂ Π2,
define

δ(F ) := max
f∈F

δ(f).

Finally, for any f, g ∈ Π2, if δ(f) ≺ δ(g) then we say that f is of lower degree
than g and use the abbreviation

f ≺ g := δ(f) ≺ δ(g).

In addition, f � g is interpreted as the degree of f is lower than or equal to
that of g.

Let A be a finite subset of N2
0. A is called a lower set if, for any α =

(α1, α2) ∈ A, we always have

R(α) := {(α′

1, α
′

2) ∈ N2
0 : 0 ≤ α′

i ≤ αi, i = 1, 2} ⊂ A.

Especially, 0 ∈ A. Moreover, we set mj = max(h,j)∈A h, 0 ≤ j ≤ ν, with ν =
max(0,k)∈A k. Clearly, A can be determined uniquely by the ordered (ν + 1)-
tuple (m0, m1, . . . , mν) hence represented as Lx(m0, m1, . . . , mν). Swapping
the roles of x and y, we can also represent A as Ly(n0, n1, . . . , nm0

) with
ni = max(i,k)∈A k, 0 ≤ i ≤ m0. It should be noticed that ν = n0.

Given a set Ξ = {ξ(1), . . . , ξ(µ)} ⊂ F2 of µ distinct points. For prescribed
values fi ∈ F, i = 1, . . . , µ, find all polynomials p ∈ Π2 satisfying

p(ξ(i)) = fi, i = 1, . . . , µ. (1)

We call it the problem of bivariate Lagrange interpolation. Note that in most
cases, especially from a numerical point of view, we are not interested in all
such p’s but a “degree reducing” one, as in the univariate cases.

Definition 1. [2] Fix term order ≺. We call a subspace P ⊂ Π2 a degree

reducing interpolation space w.r.t. ≺ for the bivariate Lagrange interpolation
(1) if

DR1. P is an interpolation space, i.e., for any fi ∈ F, i = 1, . . . , µ, there is a
unique p ∈ P such that p satisfies (1). In other words, the interpolation
problem is regular w.r.t. P.

DR2. P is ≺−reducing, i.e., when LP denotes the Lagrange projector with
range P, then the interpolation polynomial

LPq � q, ∀q ∈ Π2.

4



For interpolation problem (1), a given interpolation space P ⊂ Π2 will
give rise to an interpolation scheme that is referred as (Ξ,P), cf. [20]. Since
(1) is regular w.r.t. P, we can also say that (Ξ,P) is regular. Moreover, if P
is degree reducing w.r.t. ≺, a basis {p1, . . . , pµ} for P will be called a degree

reducing interpolation basis w.r.t. ≺ for (1). Assume that p1 ≺ p2 ≺ · · · ≺ pµ.
If

pj(ξ
(i)) = δij, 1 ≤ i ≤ j ≤ µ,

for some suitable reordering of Ξ, then we call {p1, . . . , pµ} a degree reducing

interpolation Newton basis(DRINB) w.r.t. ≺ for (1).
Let G≺ be the reduced Gröbner basis for the vanishing ideal I(Ξ) w.r.t.≺.

The set
N≺(I(Ξ)) := {xα ∈ T2 : LT(g) ∤ xα, ∀g ∈ G≺}

is called the Gröbner éscalier of I(Ξ) w.r.t. ≺. From [2, 21], the interpolation
space spanned by N≺(I(Ξ)), denoted by P≺(Ξ), is canonical since it is the
unique degree reducing interpolation space spanned by monomials w.r.t. ≺
for (1). Hence, we call N≺(I(Ξ)) the degree reducing interpolation monomial

basis(DRIMB) w.r.t. ≺ for (1), with #N≺(I(Ξ)) = µ. Let

N≺(Ξ) := {α : xα ∈ N≺(I(Ξ))} ⊂ N2
0.

We can deduce easily that N≺(Ξ) is a lower set and obviously has a one-to-one
correspondence with N≺(I(Ξ)). Therefore, interpolation scheme (Ξ,P≺(Ξ))
can be equivalently represented as (Ξ,N≺(Ξ)).

According to [17], we can construct two particular lower sets from Ξ,
denoted by Sx(Ξ), Sy(Ξ), which reflect the geometry of Ξ in certain sense.

Specifically, we cover the points in Ξ by lines lx0 , l
x
1 , . . . , l

x
ν parallel to the

x-axis and assume that, without loss of generality, there aremj+1 points, say
ux
0j, u

x
1j, . . . , u

x
mj ,j

, on lxj with m0 ≥ m1 ≥ · · · ≥ mν ≥ 0 hence the ordinates
of ux

ij and ux
i′j , i 6= i′, same. Now, we set

Sx(Ξ) := {(i, j) : 0 ≤ i ≤ mj , 0 ≤ j ≤ ν},

which apparently equals to Lx(m0, m1, . . . , mν). We can also cover the points
by lines ly0, l

y
1 , . . . , l

y
λ parallel to the y-axis and denote the points on line lyi by

uy
i0, u

y
i1, . . . , u

y
i,ni

with n0 ≥ n1 ≥ · · · ≥ nλ ≥ 0 hence the abscissae of uy
ij and

uy
ij′, j 6= j′, same. Similarly, we put

Sy(Ξ) := {(i, j) : 0 ≤ i ≤ λ, 0 ≤ j ≤ ni} = Ly(n0, n1, . . . , nλ).
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In addition, we can also define the sets of abscissae and ordinates

Hj(Ξ) :={x̄ : (x̄, ȳ) ∈ lxj ∩ Ξ}, 0 ≤ j ≤ ν,

Vi(Ξ) :={ȳ : (x̄, ȳ) ∈ lyi ∩ Ξ}, 0 ≤ i ≤ λ.
(2)

Definition 2. [17] We say that a set Ξ of distinct points in F2 is cartesian
if there exists a lower set A such that Ξ can be written as

Ξ = {(xi, yj) : (i, j) ∈ A},

where the xi’s are distinct numbers, and similarly the yj’s. We also say that
Ξ is A-cartesian.

To the best of our knowledge, there are two criteria for determining
whether a 2-dimensional point set is cartesian.

Theorem 1. [17] A set of distinct points Ξ ⊂ F2 is cartesian if and only if

Sx(Ξ) = Sy(Ξ).

Theorem 2. [18] A set of distinct points Ξ ⊂ F2 is cartesian if and only if

H0(Ξ) ⊇ H1(Ξ) ⊇ · · · ⊇ Hν(Ξ), V0(Ξ) ⊇ V1(Ξ) ⊇ · · · ⊇ Vλ(Ξ).

About the bivariate Lagrange interpolation on a cartesian set, [17] proved
the succeeding theorem.

Theorem 3. [17] Given a cartesian set Ξ ⊂ F2, there exists a unique lower

set A ∈ N2
0 such that Ξ is A-cartesian and the Lagrange interpolation scheme

(Ξ,A) is regular.

Finally, we will redescribe the classical BM algorithm with the notation
established above.

Algorithm 1. (BM Algorithm)
Input: A set of distinct points Ξ = {ξ(i) : i = 1, . . . , µ} ⊂ Fd and a fixed

term order ≺.
Output: The 3-tuple (G,N,Q), where G is the reduced Gröbner basis

for I(Ξ) w.r.t. ≺, N is the Gröbner éscalier of I(Ξ) (the DRIMB for (1)
also) w.r.t. ≺, and Q is a DRINB w.r.t. ≺ for (1).

BM1. Start with lists G = [ ], N = [ ], Q = [ ], L = [1], and a matrix
B = (bij) over F with µ columns and zero rows initially.
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BM2. If L = [ ], return (G,N,Q) and stop. Otherwise, choose the
monomial t = min≺L, and delete t from L.

BM3. Compute the evaluation vector (t(ξ(1)), . . . , t(ξ(µ))), and reduce it
against the rows of B to obtain

(v1, . . . , vµ) = (t(ξ(1)), . . . , t(ξ(µ)))−
∑

i

ai(bi1, . . . , biµ), ai ∈ F.

BM4.. If (v1, . . . , vµ) = (0, . . . , 0), then append the polynomial t−
∑

i aiqi
to the list G, where qi is the ith element ofQ. Remove from L all the multiples
of t. Continue with BM2.

BM5. Otherwise (v1, . . . , vµ) 6= (0, . . . , 0), add (v1, . . . , vµ) as a new row
to B and t−

∑

i aiqi as a new element to Q. Append the monomial t to N ,
and add to L those elements of {x1t, . . . , xdt} that are neither multiples of
an element of L nor of LT(G). Continue with BM2.

3. Special cases

In this section, we will focus on ≺lex and ≺inlex that may be the most
talked about term orders. For these special cases, our preprocessing paradigm
will first provide exact N,Q of the 3-tuple output (G,N,Q) to BM algorithm
directly and effortlessly. And then, G can be obtained by BM algorithm
easily. Note that we will continue with all the notation that we established
for Sx(Ξ) and Sy(Ξ) in the previous section.

Proposition 4. Let Ξ be a set of µ distinct points ux
mn = (xmn, ymn) ∈

F2, (m,n) ∈ Sx(Ξ). The points give rise to polynomials

φx
ij = ϕx

ij

j−1
∏

t=0

(y − y0t)
i−1
∏

s=0

(x− xsj), (i, j) ∈ Sx(Ξ), (3)

where ϕx
ij = 1/

∏j−1
t=0(y0j − y0t)

∏i−1
s=0(xij − xsj) ∈ F, and the empty products

are taken as 1. Then we have

φx
ij(u

x
mn) = δ(i,j),(m,n), (i, j) �inlex (m,n).

Proof. Fix (i, j) ∈ Sx(Ξ). Recalling the definition of ux
ij, we have y0j = yij .

If (i, j) = (m,n), by y00 6= y01 6= · · · 6= y0j and x0j 6= x1j 6= · · · 6= xij , we have

φx
ij(u

x
ij) = ϕx

ij

j−1
∏

t=0

(yij − y0t)
i−1
∏

s=0

(xij − xsj) = ϕx
ij

j−1
∏

t=0

(y0j − y0t)
i−1
∏

s=0

(xij − xsj),
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which implies φx
ij(u

x
ij) = 1.

Otherwise, if (i, j) ≻inlex (m,n), we have j > n, or j = n, i > m. When
j > n, we have

φx
ij(u

x
mn) = ϕx

ij(ymn − y00) · · · (ymn − y0n) · · · (ymn − y0,j−1)
i−1
∏

s=0

(xmn − xsj)

= ϕx
ij(y0n − y00) · · · (y0n − y0n) · · · (y0n − y0,j−1)

i−1
∏

s=0

(xmn − xsj)

= 0,

and when j = n, i > m,

φx
ij(u

x
mn) = ϕx

ij

j−1
∏

t=0

(ymn − y0t)(xmn − x0j) · · · (xmn − xmj) · · · (xmn − xi−1,j)

= ϕx
ij

n−1
∏

t=0

(ymn − y0t)(xmn − x0n) · · · (xmn − xmn) · · · (xmn − xi−1,n)

= 0,

which leads to
φx
ij(u

x
mn) = 0, (i, j) ≻inlex (m,n).

Similarly, we can prove the following proposition:

Proposition 5. Let Ξ be a set of µ distinct points uy
mn = (xmn, ymn) ∈

F2, (m,n) ∈ Sy(Ξ). We define the polynomials

φy
ij = ϕy

ij

i−1
∏

s=0

(x− xs0)

j−1
∏

t=0

(y − yit), (i, j) ∈ Sy(Ξ), (4)

where ϕy
ij = 1/

∏i−1
s=0(xi0 − xs0)

∏j−1
t=0(yij − yit) ∈ F. The empty products are

taken as 1. Then,

φy
ij(u

y
mn) = δ(i,j),(m,n), (i, j) �lex (m,n).
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In 2004, [17] proved that the Lagrange interpolation schemes (Ξ, Sx(Ξ))
and (Ξ, Sy(Ξ)) are both regular. Here we reprove the regularities in another
way for the purpose of presenting the degree reducing interpolation bases
theoretically .

Theorem 6. Resume the notation in Proposition 4 and 5. Then the La-

grange interpolation schemes (Ξ, Sx(Ξ)) and (Ξ, Sy(Ξ)) are regular. Further-

more,

(i) the set Nx := {xiyj : (i, j) ∈ Sx(Ξ)} is the DRIMB as well as Qx := {φx
ij :

(i, j) ∈ Sx(Ξ)} is a DRINB w.r.t. ≺lex for the interpolation problem (1).
(ii) the set Ny := {xiyj : (i, j) ∈ Sy(Ξ)} is the DRIMB as well as Qy :=
{φy

ij : (i, j) ∈ Sy(Ξ)} is a DRINB w.r.t. ≺inlex for (1).

Proof. We only give the proof for Sx(Ξ). The statements about Sy(Ξ) can
be proved likewise.

First, we will show the regularity of the interpolation scheme (Ξ, Sx(Ξ)).
Let Px := SpanFNx ⊂ Π2 with dimPx = #Ξ = µ. Obviously, Nx is the
monomial basis for it. By (3), we can check easily that

SpanFQx ⊆ Px.

Construct a square matrix Bµ×µ whose (h, k) entry is φx
h(u

x
k) where φx

h, u
x
k

are hth and kth elements of Qx and Ξ = {ux
mn : (m,n) ∈ Sx(Ξ)} w.r.t. the

increasing ≺inlex on (i, j) and (m,n) respectively. From Proposition 4, Bµ×µ

is upper unitriangular which implies that SpanFQx = Px and Qx forms a
Newton basis for Px. It follows that Px is an interpolation space for Lagrange
interpolation (1) therefore the scheme (Ξ,Px) is regular. Since (Ξ, Sx(Ξ)) =
(Ξ,Px), according to Section 2, (Ξ, Sx(Ξ)) is regular.

Next, we shall verify that the statements in (i), which is equivalent to the
statement that Px is a degree reducing interpolation space w.r.t. ≺lex for (1)
that coincides with P≺lex

(Ξ). Since the arguments above have proved that
Px satisfies the DR1 condition in Definition 1, what is left for us is to check
the DR2 condition. From [21], we only need to check it for monomials.

Take a monomial xi0yj0 ∈ T2. We shall prove that

LPx
xi0yj0 �lex x

i0yj0. (5)

Since Px satisfiesDR1, LPx
xi0yj0 is the unique polynomial in Px that matches

xi0yj0 on Ξ. Therefore, when xi0yj0 ∈ Nx, we have LPx
xi0yj0 = xi0yj0 ,
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namely (5) is true for this case. Assume that

Sx(Ξ) = Lx(m0, . . . , mn0
) = Ly(n0, . . . , nm0

).

It is easy to see that δ(Px) = (m0, nm0
). If xm0ynm0 ≺lex xi0yj0 then

δ(LPx
xi0yj0) �lex δ(Px) = (m0, nm0

) ≺lex (i0, j0) = δ(xi0yj0) that leads to
(5) for the case.

Thus, what remains for us is to check (5) for xi0yj0 /∈ Nx with (i0, j0) ≺lex

(m0, nm0
) that implies 0 ≤ i0 < m0, j0 > ni0 . For this, we only need to verify

that

LPx
xi0yj0 ∈ SpanF{x

iyj : (i, j) ∈ Fi0}, (6)

where Fi0 = {(i, j) ∈ Sx(Ξ) : (i, j) ≺lex (i0, j0)} ⊂ Sx(Ξ). If x
i0yj0 ∈ I(Ξ),

then LPx
xi0yj0 = 0 ≺lex xi0yj0. The statement (6) becomes trivial in this

case. Otherwise, if we can find a polynomial p ∈ Π2 such that

p = xi0yj0 −
∑

(i,j)∈Fi0

aijx
iyj ∈ I(Ξ), (7)

where aij ∈ F are not all zero, then (6) follows.
According to Section 2, our point set Ξ = {ux

ij = (xij , yij) : (i, j) ∈
Sx(Ξ)}. Let Ξ′ = {ux

mn ∈ Ξ : (m,n) ∈ Fi0} ⊂ Ξ. Now, we claim that there
exists a unique polynomial p of the form (7) such that p ∈ I(Ξ′), which is
equivalent to the statement that the linear system

∑

(i,j)∈Fi0

aijx
i
mny

j
mn = xi0

mny
j0
mn, ux

mn ∈ Ξ′, (8)

has a unique solution.
Note that SpanF{x

iyj : (i, j) ∈ Fi0} = SpanF{φ
x
ij : (i, j) ∈ Fi0}. We can

conclude that the rank of the coefficient matrix of (8) is equal of that of the
matrix B′

#Fi0
×#Fi0

, which is a submatrix of B whose (h, k) entry is φx
h(u

x
k)

where φx
h, u

x
k are hth and kth elements of {φx

ij : (i, j) ∈ Fi0} and Ξ′ = {ux
mn}

w.r.t. the increasing ≺inlex on (i, j) and (m,n) respectively. By (3), we see
easily that B′ is upper unitriangular which implies that the coefficient matrix
of (8) is of full rank. Accordingly, there is a unique polynomial p ∈ I(Ξ′)
that has the form (7).
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Now we shall verify that p(ux
ij) = 0, ux

ij ∈ Ξ \ Ξ′. By the definition of Ξ′,
we know that i > i0 here. Let

q(x) := p(x, yij) =

i0
∑

s=0

bsx
s ∈ Π1, bs ∈ F.

Since y0j = y1j = · · · = yi0,j = yij and ux
0j, u

x
1j, . . . , u

x
i0,j

∈ Ξ′, it follows that

q(xsj) = p(xsj, yij) = p(xsj , ysj) = p(ux
sj) = 0, s = 0, . . . , i0,

namely q(x) has i0 + 1 zero points that clearly implies q(x) ≡ 0. Since
p(ux

ij) = q(xij) = 0, we have p ∈ I(Ξ). By (6), (5) is true in this case. As a
result, for any f ∈ Π2, we have

LPx
f �lex f,

that is to say Px satisfies DR2.
Consequently, by Definition 1, Px is a degree reducing interpolation space

w.r.t. ≺lex for Lagrange interpolation (1). Hence Nx is the DRIMB and Qx

is a Newton basis w.r.t. ≺lex for (1).

Note that P≺lex
(Ξ) is the unique degree reducing interpolation space

spanned by monomials w.r.t. ≺lex, thus we have Px = P≺lex
(Ξ). Therefore,

Nx = N≺lex
(I(Ξ)) holds, which means that Nx is also the Gröbner éscalier of

I(Ξ) w.r.t. ≺lex.

Corollary 7. If Ξ ⊂ F2 is an A-cartesian set, then A = Sx(Ξ) = Sy(Ξ).

Proof. Since Ξ is cartesian, by Theorem 1 and 6, we have Sx(Ξ) = Sy(Ξ)
hence (Ξ, Sx(Ξ)) = (Ξ, Sy(Ξ)) are both regular. But from Theorem 3, only
A can make (Ξ,A) regular, therefore A = Sx(Ξ) = Sy(Ξ).

From Algorithm 1 we know that G,N,Q are essential elements of BM
algorithm and compose its output. For ≺lex and ≺inlex cases, Theorem 6
presents us N and Q theoretically hence we can obtain them with little
effort. According to [11], the leading terms of G are contained in the border
set of N . Therefore, we can get G faster than compute G directly with BM
algorithm. Now is our algorithm.
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Algorithm 2. (SPBM)
Input: A set of distinct affine points Ξ ⊂ F2 and fixed ≺lex or ≺inlex.
Output: The 3-tuple (G,N,Q), where G is the reduced Gröbner basis of

I(Ξ), N is the Gröbner éscalier N(I(Ξ)), and Q is a DRINB for the Lagrange
interpolation on Ξ.

SPBM1. Construct lower set Sx(Ξ) or Sy(Ξ) according to Section 2.
SPBM2. Compute the sets N and Q by Theorem 6.
SPBM3. Construct the border set L := {x·t : t ∈ N}

⋃

{y ·t : t ∈ N}\N
and the matrix B that is same to the Bµ×µ in the proof of Theorem 6.

SPBM4. Goto BM2 of BM algorithm for the reduced Gröbner basis G.

Example 1. Let

Ξ = {(0, 1), (0, 3), (1, 0), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1)} ⊂ Q2.

First, we choose lines x = 1, x = 0, x = 2, x = 3 as ly0, l
y
1 , l

y
2, l

y
3 respectively

(Shown in (a) of Figure 1), therefore we have

Sy = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0)},

which is illutrated in (b) of Figure 1.

x

y

0 l
y

1
l
y

0
l
y

2
l
y

3

u
y

10

u
y

11

u
y

00

u
y

01

u
y

02

u
y

03

u
y

20

u
y

21

u
y

30

(a) Ξ

m

n

0

(2,1)

(b) Sy

Figure 1: The point set and related Sy of Example 1.
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Thus, by Theorem 6, we have

N = {1, y, y2, y3, x, xy, x2, x2y, x3};

Q = {1,
1

2
y,

1

3
y2 −

2

3
y,

1

8
y3 −

5

8
y2 +

3

4
y,−x+ 1,−

1

2
xy +

1

2
y +

1

2
x−

1

2
,

1

2
x2 −

1

2
x,

1

2
x2y −

1

2
xy −

1

2
x2 +

1

2
x,

1

6
x3 −

1

2
x2 +

1

3
x}.

Next, from SPBM3, the border set L = {y4, xy2, xy3, x2y2, x3y, x4} and the
matrix

B =











1 1 1 · · ·
0 1 3/2 · · ·
0 0 1 · · ·
...

...
...

. . .











.

Finally, turn to BM2 with these N,Q, L,B, we can get the reduced Gröbner
basis

G = {x4 − 6x3 + 11x2 − 6x, x3y − 3x2y + 2xy − x3 + 3x2 − 2x,

xy2 − y2 +
1

2
x2y −

9

2
xy + 4y −

1

2
x2 +

7

2
x− 3,

y4 − 9y3 + 26y2 −
9

2
x2y +

15

2
xy − 27y − 3x3 +

39

2
x2 −

51

2
x+ 9}.

for I(Ξ) w.r.t. ≺inlex.

Example 2. Given a bivariate point set

Ξ = {(0, 0), (0, 2), (0, 3), (1, 1), (
5

2
, 0), (

5

2
, 1), (

5

2
, 2), (4, 0), (4, 2)} ⊂ Q2.

We choose lines y = 0, y = 2, y = 1, y = 3 as lx0 , l
x
1 , l

x
2 , l

x
3 respectively (Illus-

trated in (a) of Figure 2), which follows that

Sx = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (0, 3)}.
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x

y

0
lx
0

lx
2

lx
1

lx
3

ux

00

ux

01

ux

03

ux

02

ux

20

ux

12

ux

21

ux

10

ux

11

(a) Ξ

m

n

0

(2,1)

(b) Sx

Figure 2: Illustrations for Example 2.

Thus, with SPBM algorithm, we have

N = {1, x, x2, y, xy, x2y, y2, xy2, y3},

Q = {1,
1

4
x,−

4

15
x2 +

16

15
x,

1

2
y,

1

8
xy,−

2

15
x2y +

8

15
xy,−y2 + 2y,

−
2

3
xy2 +

2

3
y2 +

4

3
xy −

4

3
y,

1

6
y3 −

1

2
y2 +

1

3
y},

G = {y4 − 6y3 + 11y2 − 6y, xy3 − 3xy2 + 2xy, x2y2 − 2x2y −
7

2
xy2

+ 7xy −
5

4
y3 +

25

4
y2 −

15

2
y, x3 −

13

2
x2 − 3xy2 + 6xy

+ 10x−
15

4
y3 +

75

4
y2 −

45

2
y}.

4. General cases

Next, we will discuss how to accelerate BM algorithm with respect to
term orders other than ≺lex or ≺inlex. In [17], the author proposed that if
the set of points Ξ is cartesian, then we can obtain the interpolation basis
without any difficulty, see Theorem 3. But in general Ξ may not be cartesian.
However, we have the following proposition.

Proposition 8. There must exist at least one cartesian subset for any non-

empty set of points in F2.
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Proof. Let Ξ be a non-empty set of points. Hence, there exists at least one
point ξ ∈ Ξ. But ξ itself can construct a cartesian subset {ξ} ⊂ Ξ.

Definition 3. Let Ξ be a set of points in F2 and Ξ′ be a cartesian subset of
Ξ. We say that Ξ′ is a maximal cartesian subset of Ξ if any cartesian proper
subset Ξ′′ of Ξ containing Ξ′ is such that Ξ′′ = Ξ′. In addition, a maximal

row subset of Ξ is a non-empty subset that equals the intersection of Ξ and
a horizontal line.

From Proposition 8 we know that, for a set of given points, we can surely
find a maximal cartesian subset of it. Is it unique? Unfortunately, the answer
is often false.

Example 3. Recall Example 2, let

Ξ′

1 = {(0, 0), (0, 2), (
5

2
, 0), (

5

2
, 1), (

5

2
, 2), (4, 0), (4, 2)},

Ξ′

2 = {(0, 0), (0, 2), (0, 3), (
5

2
, 0), (

5

2
, 2), (4, 0), (4, 2)},

Ξ′

3 = {(1, 1), (
5

2
, 0), (

5

2
, 1), (

5

2
, 2)}.

We can check easily that Ξ′
1,Ξ

′
2,Ξ

′
3 are all maximal cartesian subsets of Ξ

(Illustrated in Figure 3).

Lemma 9. Let Ξ be a set of distinct points in F2 and ≺ a fixed term order.

If Ξ′ is an A′-cartesian subset of Ξ, then

A′ = N≺(Ξ
′) ⊂ N≺(Ξ),

or equivalently,

{xiyj : (i, j) ∈ A′} = N≺(I(Ξ
′)) ⊂ N≺(I(Ξ)).

Proof. From Section 2, the Gröbner éscalier N≺(I(Ξ
′)) is the DRIMB w.r.t.

≺ for the bivariate Lagrange interpolation on Ξ′ hence the interpolation
scheme (Ξ′,N≺(Ξ

′)) is regular. Since A′ ⊂ N2
0 is lower and Ξ′ is A′-cartesian,

according to Theorem 3, A′ is the unique lower set making the bivariate
Lagrange interpolation on Ξ′ regular. This gives

A′ = N≺(Ξ
′).
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(a) Ξ′

1
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y

0

(b) Ξ′

2

x

y

0

(c) Ξ′

3

Figure 3: Maximal cartesian subsets of Ξ, where • denotes the points in Ξ′

i, i = 1, 2, 3,
while ◦ denotes the points in Ξ\Ξ′

i.
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Since Ξ′ ⊂ Ξ, from [19], we know that the vanishing ideals satisfy I(Ξ′) ⊃
I(Ξ). Denote by G′, G the reduced Gröbner bases for I(Ξ′) and I(Ξ) w.r.t. ≺
respectively. We will prove N≺(I(Ξ

′)) ⊂ N≺(I(Ξ)) by contradiction. For any
xiyj ∈ N≺(I(Ξ

′)), we suppose there were some g ∈ G such that LT(g)|xiyj.
By [19],

〈LT(G′)〉 = 〈LT(I(Ξ′)〉 ⊃ LT(I(Ξ)) ⊃ LT(G).

Therefore, LT(g) ∈ LT(G) ⊂ 〈LT(G′)〉 implies that there exists some g′ ∈ G′

such that LT(g′)|LT(g). Since LT(g)|xiyj, we have LT(g′)|xiyj that contra-
dicts our assumption on xiyj, which proves that N≺(I(Ξ

′)) ⊂ N≺(I(Ξ)) due
to the definition of N≺(I(Ξ)). Finally, N≺(Ξ

′) ∼= N≺(I(Ξ
′)) and N≺(Ξ) ∼=

N≺(I(Ξ)) complete the proof.

Remark 1. For any A-cartesian set Ξ, by Corollary 7, we have A = Sx(Ξ) =
Sy(Ξ) that obviously leads to A = Sx(Ξ) = Sy(Ξ) = N≺(Ξ), according to the
Lemma above, where term order ≺ is arbitrary.

Now comes an algorithm for constructing a maximal cartesian subset of
a given point set in F2.

Algorithm 3. (Maximal Cartesian Subset Construction Algorithm)

Input: A set of distinct points Ξ = {ξ(i) : i = 1, . . . , µ} ⊂ F2.
Output: A maximal cartesian subset Ξ′ of Ξ.
MCS1. Start with an empty list Ξ′ = [ ].
MCS2. If Ξ = [ ], return the set Ξ′ and stop. Otherwise, compute lower

sets Sx(Ξ) and Sy(Ξ).
MCS3. If Sx(Ξ) = Sy(Ξ), then replace Ξ′ by Ξ′ ∪ Ξ, return the set Ξ′

and stop.
MCS4. Otherwise, we first choose a maximal row subset of Ξ with

maximal cardinal number, denoted by A. Next, delete from Ξ the points
either in A or have different abscissae from the points in A. Finally, replace
Ξ′ by Ξ′ ∪A and continue with MCS2.

The following theorem ensure that this algorithm will terminate in finite
steps with a maximal cartesian subset as its output.

Theorem 10. The algorithm described above will stop in a finite number

of loops. Furthermore, the set Ξ′ returned by the algorithm is a maximal

cartesian subset.
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Proof. As input data of Algorithm 3, point set Ξ is finite. Observing that
#Ξ decreases actually in every loop, the algorithm will terminate in a finite
number, say M , of loops for sure. We assume that M > 1 since M = 1 is
trivial.

Ξ′
in and Ξ′

out signify the input and output Ξ′ of MCS4 in some loop
respectively. Next, we will prove by induction on 1 ≤ r ≤ M − 1 that in the
rth loop Ξ′

out is a cartesian set. The case r = 1 is obvious since Ξ′
in = [ ] and

Ξ′
out is clearly cartesian as a maximal row subset of Ξ. Assume the statement

is true for r = l < M − 1. When r = l + 1, by the induction hypothesis, Ξ′
in

is cartesian. Therefore, by Corollary 7, we assume that

Ξ′

in = {(xi, yj) : (i, j) ∈ Sx(Ξ
′

in)},

where Sx(Ξ
′
in) = Lx(m0, . . . , mn0

) = Ly(n0, . . . , nm0
). Observing the con-

struction process of Ξ′ in the algorithm, we see easily that n0 = n1 =
· · · = nmn0

. Let the maximal row subset of Ξ we choose at this moment

be A = {(x(0), y), (x(1), y), . . . , (x(k), y)}. Due to the nature of A, we have
k ≤ mn0

and y 6= yj, j = 0, . . . , n0.
We claim that the set Ξ′

in ∪ A is cartesian. In fact, we will focus on the
horizontal parallel lines lxj : y = yj, j = 0, . . . , n0, and lxn0+1 : y = y. Resume
the notation in (2). Hj(Ξ

′
in∪A) = Hj(Ξ

′
in) = {xi : 0 ≤ i ≤ mj}, j = 0, . . . , n0,

and Hn0+1(Ξ
′
in ∪ A) = {x(i) : 0 ≤ i ≤ k}. Since Ξ′

in is Sx(Ξ
′
in)-cartesian, by

Theorem 2, the relation H0(Ξ
′
in ∪ A) ⊇ H1(Ξ

′
in ∪ A) ⊇ · · · ⊇ Hn0

(Ξ′
in ∪ A)

holds. From the description of MCS4, we can deduce that Hn0
(Ξ′

in ∪ A) ⊇
Hn0+1(Ξ

′
in ∪ A), which leads to

H0(Ξ
′

in ∪ A) ⊇ H1(Ξ
′

in ∪A) ⊇ · · · ⊇ Hn0+1(Ξ
′

in ∪ A). (9)

Note that for any x(i), 0 ≤ i ≤ k, there exists hi ∈ {0, 1, . . . , mn0
} such

that x(i) = xhi
. Therefore, we could find a permutation σ of {0, 1, . . . , m0}

satisfying σ(i) = hi, i = 0, . . . , k, and σ(i) = i, i = mn0
+ 1, . . . , m0. Choose

lines lyi : x = xσ(i), i = 0, . . . , m0, that give rise to Vi(Ξ
′
in) = {yj : 0 ≤ j ≤

nσ(i)}, i = 0, . . . , m0. Since n0 = n1 = · · · = nmn0
, the relation V0(Ξ

′
in) =

V1(Ξ
′
in) = · · · = Vmn0

(Ξ′
in) ⊇ Vmn0

+1(Ξ
′
in) ⊇ · · · ⊇ Vm0

(Ξ′
in) holds. Observing

that Vi(Ξ
′
in ∪ A) = Vi(Ξ

′
in) ∪ {y}, i = 0, . . . , k, and Vi(Ξ

′
in ∪ A) = Vi(Ξ

′
in), i =

k + 1, . . . , m0, it is easy to get

V0(Ξ
′
in ∪A) = · · · = Vk(Ξ

′
in ∪A) ⊇ Vk+1(Ξ

′
in ∪A) ⊇ · · · ⊇ Vm0

(Ξ′
in ∪ A).
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Thus together with (9), Ξ′
out = Ξ′

in ∪A is cartesian due to Theorem 2, hence
our statement is true.

For the Mth loop, if Ξ = [ ], then Ξ′ here equals to the Ξ′
out of the MCS4

of the (M−1)th loop that is cartesian due to the statement above. Otherwise,
since the algorithm stops in MCS3 of this loop, Ξ is a non-empty cartesian
set. Similar to the arguments above, we can prove that Ξ′ = Ξ′

out ∪ Ξ is also
cartesian.

Finally, we should verify that the output Ξ′ of the algorithm is maximal.
Otherwise, there must exist a maximal Sx(Ξ

′′)-cartesian subset Ξ′′ of Ξ sat-
isfying Ξ′′ % Ξ′. Take a point ξ0 = (xi0 , yj0) with (i0, j0) = min≺inlex

{(i, j) ∈
Sx(Ξ

′′) : (xi, yj) ∈ Ξ′′ \Ξ′}. Suppose there exists a point in Ξ′ sharing the or-
dinate with ξ0. If it is chosen as a point in the maximal row subset in MCS4

of some loop, by the definition of ξ0, we know that ξ0 is surely contained
in the set Ξ of that step, which contradicts the definition of the maximal
row subset. Otherwise, it must appear in the cartesian set Ξ in MCS3 in
the final loop. Then, by the definition of ξ0, it should be contained in Ξ
hence the output set Ξ′, which introduces a contradiction. If there does not
exist a point in Ξ′ sharing the ordinate with ξ0, since Ξ′′ is also cartesian,
by Theorem 2, it is easily to see that ξ0 must remain in Ξ in every loop,
which contradicts the termination condition. As a result, the output of the
Algorithm 3 is a maximal cartesian subset.

Let us continue with the setup and notation in Algorithm 3, and assume
that the final output of it is Ξ′ who is Sx(Ξ

′)-cartesian . We now discuss how
to preprocess the BM algorithm with the help of Ξ′.

Define an order ≺Ξ on the set Ξ. Let ξ(1), ξ(2) ∈ Ξ. We say that ξ(1) ≺Ξ

ξ(2) if one of the following conditions holds:

(1) ξ(1) ∈ Ξ′, and ξ(2) ∈ Ξ\Ξ′.

(2) ξ(1) = (xi1 , yj1), ξ
(2) = (xi2 , yj2) ∈ Ξ′ and (i1, j1) ≺inlex (i2, j2) with

(ik, jk) ∈ Sx(Ξ
′), k = 1, 2.

It should be noticed that the order is not total. For the points in Ξ\Ξ′, any
order of them can be interpreted as increasing. Hereafter, we will suppose
that the points in Ξ = {ξ(1), . . . , ξ(#Ξ)} have been ordered increasingly w.r.t.
≺Ξ, namely ξ(i) ≺Ξ ξ(j), 0 ≤ i < j ≤ #Ξ. By the definition of ≺Ξ, we have
Ξ′ = {ξ(1), . . . , ξ(#Ξ′)}.
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According to Lemma 9, N ′ = {xiyj : (i, j) ∈ Sx(Ξ
′)} ⊂ N , with N as a

member of the 3-tuple output of BM algorithm. Thus the other monomials
of N are obviously contained in T2\N ′. Notice that the generators of T2\N ′

are located in the border of N ′, denoted by L, we can continue to spot the
elements in L by BM algorithm to complete N .

Next, we will pay attention to the computation of the Newton basis. Since
Ξ′ is cartesian, recalling Proposition 4, we can construct the polynomials φx

ij

w.r.t. Sx(Ξ
′). Order φx

ij, (i, j) ∈ Sx(Ξ
′), increasingly w.r.t. (i, j) under ≺inlex,

and denote them as q1, q2, . . . , q#Ξ′. Set the matrix

B =











q1(ξ
(1)) q1(ξ

(2)) · · · q1(ξ
(#Ξ′))

q2(ξ
(1)) q2(ξ

(2)) · · · q2(ξ
(#Ξ′))

...
...

...
q#Ξ′(ξ(1)) q#Ξ′(ξ(2)) · · · q#Ξ′(ξ(#Ξ′))











. (10)

By Proposition 4, B is obviously upper unitriangular which implies that the
polynomials q1, q2, . . . , q#Ξ′ constitute a Newton basis for P≺(Ξ

′) = SpanFN
′.

All in all, with the notation above, we get our preprocessing procedure
for BM algorithm.

Algorithm 4. (GPBM)
Input: A set of distinct points Ξ ⊂ F2 and a term order ≺.
Output: The 3-tuple (G,N,Q).

GPBM1: Get a maximal cartesian subset Ξ′ of Ξ by Algorithm 3;
GPBM2: Compute the lower set Sx(Ξ

′) w.r.t. Ξ′, the set N := {xiyj :
(i, j) ∈ Sx(Ξ

′)}, and the set Q := {q1, q2, . . . , q#Ξ′} where the qi’s are as in
(10).

GPBM3: Construct L := {x · t : t ∈ N}
⋃

{y · t : t ∈ N} \ N and the
matrix B that is same to (10).

GPBM4: Goto BM2 of the BM algorithm to complete the computation
and get the whole output.

5. Implementation and Timings

From the above section, we can see easily that our preprocessing paradigm
is more suitable to the cases where the constructed maximal cartesian subset
Ξ′ forms a relatively large proposition in Ξ. Especially, when the field F is
finite, our preprocessing will play a more important role in consideration of
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the nature of finite fields. In this section, we will present some experimental
results to compare the effectiveness of our paradigm with the classical BM.
First see an example with point set of small size.

Example 4. We choose the field F7, and let

Ξ = {(0, 0), (0, 1), (0, 4), (0, 5), (1, 0),

(1, 1), (1, 4), (1, 6), (2, 1), (2, 2),

(2, 6), (3, 2), (4, 2), (4, 5), (4, 6),

(5, 1), (5, 5), (5, 6), (6, 0), (6, 2)}.

By Algorithm 3, we can construct the maximal cartesian subset

Ξ′ = {(0, 1), (1, 1), (2, 1), (5, 1), (1, 6), (2, 6), (5, 6), (1, 0), (1, 4)}

hence get

N ={1, x, x2, x3, y, xy, x2y, y2},

Q ={1, x, 4x2 + 3x, 2x3 + x2 + 4x, 3y + 4, 3xy + 4x+ 4y + 3,

2x2y + 5x2 + xy + 6x+ 4y + 3, 6y2 + 1, 2y3 + 5y},

L ={y4, xy2, xy3, x2y2, x3y, x4},

B =











1 1 1 · · ·
0 1 2 · · ·
0 0 1 · · ·
...

...
...

. . .











.

Put these N,Q, L,B into BM algorithm, we can get the final output

N ={1, x, x2, x3, y, xy, x2y, y2, y3, xy2, y4, xy3, x2y2, x3y, x4, y5, xy4, x2y3,

x3y2, x4y},

Q ={1, x, 4x2 + 3x, 2x3 + x2 + 4x, 3y + 4, 3xy + 4x+ 4y + 3,

2x2y + 5x2 + xy + 6x+ 4y + 3, 6y2 + 1, 2y3 + 5y, xy2 + 6y2 + 6x+ 1,

y4 + 3y3 + 6y2 + 4y, 5xy3 + 5y4 + 3y3 + 2xy + 2y2 + 4y,

6x2y2 + xy2 + x2 + 6x, . . .},
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G ={y6 + 3y5 + 2y4 + 6y3 + 4y2 + 5y,

xy5 + x4y + 6x3y2 + x2y3 + 5xy4 + 6y5 + 6x4 + 2x3y + 6x2y2 + 3xy3+

3y4 + 6x3 + 6x2y + 2xy2 + 6y3 + x2 + 2xy + 6y2 + x,

x2y4 + x4y + 3x2y3 + 3xy4 + 5y5 + x4 + 6x3y + 3x2y2 + 2xy3 + 4y4+

6x3 + 4y3 + 6x2 + 2xy + 3y2 + x+ 5y, . . .}.

In the following, several tables show the timings for the computations of
BM-problems on sets of distinct random points w.r.t. the term order ≺lex or
≺tdinlex. The algorithms presented in the paper were implemented on Maple
12 installed on a laptop with 2 Gb RAM and 1.8 GHz CPU.

Take the field F23, we have

#Ξ 200 300 400 500

BM 4.968 s 15.359 s 34.609 s 61.172 s
SPBM 1.438 s 3.766 s 7.141 s 7.969 s

For F37, we have

#Ξ 300 600 900 1200

BM 16.265 s 121.766 s 420.219 s 1060.203 s
SPBM 4.172 s 25.125 s 82.000 s 132.719 s

For F17, we have

#Ξ 100 150 200 250

BM 0.875 s 2.421 s 4.953 s 8.188 s
GPBM 0.797 s 2.125 s 4.250 s 5.641 s

Preprocessing 0.015 s 0.094 s 0.172 s 0.391 s
#Ξ′/#Ξ 0.310 0.393 0.430 0.616

Take the field F29, we have

#Ξ 200 400 600 800

BM 5.672 s 38.063 s 112.156 s 235.813 s
GPBM 5.562 s 36.906 s 105.828 s 135.609 s

Preprocessing 0.046 s 0.313 s 1.671 s 8.125 s
#Ξ′/#Ξ 0.125 0.178 0.328 0.711
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