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Abstract

The study of high-dimensional differential equations is challenging and difficult due to the analyt-
ical and computational intractability. Here, we improve the speed of waveform relaxation (WR),
a method to simulate high-dimensional differential-algebraic equations. This new method termed
adaptive waveform relaxation (AWR) is tested on a communication network example. Further
we propose different heuristics for computing graph partitions tailored to adaptive waveform re-
laxation. We find that AWR coupled with appropriate graph partitioning methods provides a
speedup by a factor between 3 and 16.
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algorithms

1. Introduction

Over the past few years, several attempts have been made to study differential equations
of high dimensionality. These equations naturally occur in models for systems as diverse as
metabolic networks [1], communication networks [2], fluid turbulence [3], heart dynamics [4],
chemical systems [5] and electrical circuits [6] to name but a few. Traditional approaches ap-
proximate the full system by dynamical systems of lower dimension. These model reduction
techniques [7] include proper orthogonal decomposition (POD) along with Galerkin projections
[3], Krylov subspace methods [8], and balanced truncation or balanced POD (see e.g. [9]).

In this work, we accelerate a parallel algorithm, for the simulation of differential-algebraic
equations, called waveform relaxation [6, 10, 11]. In waveform relaxation, instead of approxi-
mating the original system by a lower-dimensional model, the methodology is to distribute the
computations for the entire system on multiple processors. Each processor solves only a part
of the problem. The solutions corresponding to subsystems on other processors are regarded as
inputs whose waveforms are given by the solution of the previous iteration. This step is one
iteration of the procedure. At the end of each iteration the solutions are distributed among the
processors. The procedure is repeated until convergence is achieved. The initial waveforms are
typically chosen to be constant.

This paper is organized as follows: Based on previously derived error bounds for waveform
relaxation (cf. [13, 14]), we propose and demonstrate a new algorithm to break the time interval
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for simulation [0,T ] into smaller subintervals. We call this method adaptive waveform relax-
ation. It is important to note that this method is different from windowing methods discussed
in [10]. Subsequently, we analyze and present time and memory complexity of waveform relax-
ation techniques and the dependence of the convergence behavior on the decomposition of the
system. Furthermore, we introduce different graph partitioning heuristics in order to efficiently
generate an appropriate splitting. We demonstrate that the combination of graph partitioning
along with adaptive waveform relaxation results in an improved performance over traditional
waveform relaxation and standard windowing techniques.

2. Error bounds

For an ordinary differential equation of the form ẋ = f (x), f : Rn 7→ Rn, the iteration method
described in the introduction can be written as

ẋk+1 = φ(xk+1, xk), (1)

with φ : Rn ×Rn 7→ Rn and φ(x, x) = f (x). The standard Picard–Lindelöf iteration, for example,
is given by φ(x, y) = f (y). Convergence is, by definition, achieved if ‖xk+1 − xk‖ < ε for a
predefined threshold ε. This procedure can be used to solve differential-algebraic equations as
well. For a more detailed overview on waveform relaxation we refer to [6, 10]. We assume that
the splitting φ is Lipschitz continuous, i.e. there exist constants µ ≥ 0 and η ≥ 0 such that

‖φ(x, y) − φ(x̃, ỹ)‖ ≤ µ‖x − x̃‖ + η‖y − ỹ‖. (2)

Let x̄ be the exact solution of the differential equation and define Ek to be the error of the k-th
iterate, that is

Ek = xk − x̄. (3)

It is well known that the iteration given by Eqn. 1 converges superlinearly (evident in Proposition
2.1) to the exact solution and that the error is bounded. Convergence results and error bounds
for waveform relaxation have previously been derived in [10, 11, 13, 14]. For the purpose of this
paper the following version of the convergence result will be useful.

Proposition 2.1. Assuming that the splitting φ satisfies the Lipschitz condition, the norm of the
error ‖Ek‖ on the interval [0,T ] is bounded as follows

‖Ek‖ ≤
CkηkT k

k!
‖E0‖, (4)

with C = eµT .

Remark 2.2. In Eqn. 4 it is important to note that k! will eventually dominate the numerator
such that convergence is guaranteed.

3. Adaptive waveform relaxation

By Eqn. 4 the error of standard waveform relaxation crucially depends on T . The longer the
time interval, the greater is the number of iterations needed to bound the error below a desired
tolerance. This fact is well known and in [10] it is suggested to subdivide the time interval
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[0,T ] into windows [0,T1], [T1,T2], . . . , [Tν−1,Tν]. The authors pick an initial interval of T
20

and then perform waveform relaxation on the small interval. If the solution has not converged
in 5 iterations, then the time window is halved. If the size of the interval is too large (based on
data storage requirements), the window length is reduced. If the current window satisfies the
above requirements, the same window length is used for the next interval. This approach does
not take into account the slope of the solution and the error made by the initial waveform. We
aim to adaptively determine the size of the next time interval based on the previously computed
solution and on Eqn. 4.

Let us be more precise. In our procedure, we too first perform waveform relaxation on a small
interval given by [0,T1]. Define ∆Ti = Ti − Ti−1. Upon convergence of waveform relaxation on
the interval [Ti−1,Ti], we estimate the length of the next time interval ∆Ti+1 as follows: Firstly, we
compute an interpolating polynomial of order l using l + 1 equally spaced points t j, j = 0, . . . , l.
In our implementation, a quadratic polynomial with t0 = Ti, t1 = Ti −

1
10 ∆Ti, and t2 = Ti −

2
10 ∆Ti

is used. This interpolating polynomial is also utilized as an initial guess for the waveform over
the next time interval. Using Eqn. 4, we then choose ∆Ti+1 such that

‖Êi+1,r‖ B

(
eµ∆Ti+1η∆Ti+1

)r

r!
‖Ei+1,0‖ < ε. (5)

In other words, given a desired number of iterations r, one can estimate the length of the next
time interval if ‖Ei+1,0‖, µ, and η are known. To estimate the error Ei+1,0(t), we compute the
difference between xk+1(t) and the interpolating polynomial. This can be accomplished using the
formula

Ẽi+1,0(t) =
φ(l)(xk+1(ξ), xk+1(ξ))

(l + 1)!
ω(t), (6)

where
ω(t) = (t − t0)(t − t1) . . . (t − tl) (7)

and φ(l) = dl

dtl φ is the l-th derivative of the splitting φ with respect to t (cf. [15]). Additionally,
we assume that φ(l) in the above equation exists. We estimate the magnitude of this term using
finite differences at the end of the time interval just computed. The Lipschitz constants µ and
η also need to be estimated in order to get a good guess for the interval length. For nonlinear
problems, the Lipschitz constants are in general not directly available. Below, we will focus on
linear ordinary differential equations so that the Lipschitz constants are given by the norms of
the matrix splitting, as we will show in Section 4.

With an estimate of all the variables in Eqn. 5 we can now compute the length of the next
window. Initially, we set ∆Ti+1 = 2∆Ti and compute Ẽi+1,0(Ti + ∆Ti+1). This gives an estimate
for the magnitude of ‖Ei+1,0‖ for the next time interval. If the resulting error ‖Êi+1,r‖ is larger than
the threshold ε, we repeat the process using an adapted interval length ∆Ti+1 as described in the
following algorithm.

Algorithm 3.1. To compute the length ∆Ti+1, execute the following steps:

1. Set ∆Ti+1 = 2∆Ti and δ = 1
20 ∆Ti.

2. Evaluate Ẽi+1,0(Ti + ∆Ti+1) using Eqn. 6 to estimate ‖Ei+1,0‖ and compute ‖Êi+1,r‖ with the
aid of Eqn. 5.

3. If ‖Êi+1,r‖ > ε and ∆Ti+1 >
1
2 ∆Ti, set ∆Ti+1 = ∆Ti+1 − δ and repeat step 2.
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We define the minimal window length to be ∆Ti+1 = 1
50 T . The above procedure gives a

sequence of time intervals [0,T1], [T1,T2], . . . , [Tν−1,Tν], where Tν = T , on which waveform
relaxation is performed with an initial “guess” waveform provided by an extrapolation of the
solution on the previous interval.

Intuitively, this procedure works by taking small steps in regions where the solution changes
rapidly (large derivative) and large steps in regions where the solution changes slowly (small
derivative).

4. Partitioning and convergence

In this section, we analyze the time and memory complexity of waveform relaxation and the
influence of the splitting on the convergence. It is shown that the optimal splitting depends on
both the integration scheme and the step size. Since there exists no efficient method to compute
the optimal splitting directly, we introduce different heuristics in order to generate appropriate
decompositions. Here, we focus on linear systems of the form

ẋ(t) = Qx(t), (8)

with Q ∈ Rn×n, x ∈ Rn, t ∈ [0, τ], and the initial condition x(0) = x0. Linear equations arise in
models of various dynamical systems. We will consider in particular systems which are derived
from generalized stochastic Petri nets. In order to solve the initial value problem with the aid of
waveform relaxation or adaptive waveform relaxation, the system is split according to PQPT =

M + N and the partitioned system

ẋk+1(t) = Mxk+1(t) + Nxk(t) (9)

is solved iteratively. Here, P is a permutation matrix and M is a block diagonal matrix. Hence,
φ(xk+1, xk) = Mxk+1 + Nxk. Furthermore, the Lipschitz constants µ and η are the appropriate
matrix norms of M and N, respectively. The matrix splitting can be regarded as a graph parti-
tioning problem where each block of M represents a part or subsystem and N the connections
between different parts. Let p be the number of blocks where the i-th block is of size ni, that is
n =

∑p
i=1 ni. Then the i-th equation can be written as

ẋk+1
i (t) = Miixk+1

i (t) +
∑
j,i

Ni jxk
j(t), (10)

with Mii ∈ Rni×ni , xi ∈ Rni , Ni j ∈ Rni×n j , and x j ∈ Rn j for j = 1, . . . , p and j , i.
Let us begin with a remark on the time and memory complexity of waveform relaxation.

Our aim is to derive conditions under which one expects waveform relaxation (in a parallel
implementation) to give an answer faster than solving the entire system of equations (in a serial
implementation). For simplicity, we consider the explicit Euler method with a fixed step size h.
The same argument can be repeated for other integration schemes with the same result.

Elementary calculations show that for the full system (8) the cost of the numerical solution
on the interval [0, τ] amounts to

CE = (n2 + n)
τ

h
. (11)

We now compute the time complexity of waveform relaxation. The cost of a single Euler step
for the i-th subsystem (10) is CWRi = n2

i + ni(n − ni) + ni. Thus, to compute K iterations for all
4



blocks, the total cost would be

CWR = K(n2 + n)
τ

h
= KCE. (12)

Let us assume that there are p processors, and let the l-th block be the largest, then the time
complexity in the parallel case is given by

CWRp = K(nln + nl)
τ

h
. (13)

It follows that if nlK < n, then the waveform relaxation procedure is advantageous. Note that K,
or the number of iterations needed for convergence, strongly depends on the actual decomposi-
tion.

The memory complexity in the linear case is easy to classify. In general, one needs to store a
big matrix of size n2. On a single processor, waveform relaxation has the same memory require-
ments as the full system. For the parallel case, however, the maximum storage needed is nl × n.
This can be a major advantage if nl � n and the matrix can be stored in the processor cache. It
is also important to note that the above analysis does not take communication costs into account.

Remark 4.1. In a nutshell, standard waveform relaxation is of advantage if

i) nlK < n for time complexity,
ii) nl � n for memory complexity,

where nl is the size of the largest block of the decomposed system and K is the number of
iterations needed for convergence.

Let us now analyze the influence of the decomposition on the convergence. We discretize the
system (9) using a fixed step size h and an integration scheme of the form

xk+1
m+1 = C1xk+1

m + C2xk
m + C3xk

m+1, (14)

where C1, C2, and C3 are matrices which may depend on M, N, and h. Let s = τ
h be the number

of time steps and Xk = [xk
1 xk

2 . . . xk
s] the discretized waveform. Furthermore, define

X̂k =


xk

1
xk

2
...

xk
s

 . (15)

Proposition 4.2. For an integration scheme of the form (14) the discrete waveform relaxation
can be written as X̂k+1 = AX̂k + b, with

A =



C3
C1C3 + C2 C3

C2
1C3 + C1C2 C1C3 + C2 C3

...
. . .

. . .
. . .

C s−1
1 C3 + C s−2

1 C2 . . . C2
1C3 + C1C2 C1C3 + C2 C3


(16)
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and

b =



(C1 + C2) x0
C1(C1 + C2) x0
C2

1(C1 + C2) x0
...

C s−1
1 (C1 + C2) x0


. (17)

Proof. By Eqn. 14

X̂k+1 =


0

C1 0
. . .

. . .

C1 0

︸                 ︷︷                 ︸
U

X̂k+1 +


C3
C2 C3

. . .
. . .

C2 C3

︸                   ︷︷                   ︸
V

X̂k +


(C1 + C2) x0

0
...
0

︸           ︷︷           ︸
d

and thus X̂k+1 = (I − U)−1VX̂k + (I − U)−1d, where I is the identity matrix. Using the Neumann
series and the fact that U is nilpotent, we get

(I − U)−1 =

s−1∑
i=0

U i =



I
C1 I
C2

1 C1 I
...

. . .
. . .

. . .

C s−1
1 . . . C2

1 C1 I


.

Hence, A = (I − U)−1V and b = (I − U)−1d are of the aforementioned form.

Example 4.3. The following integration schemes are of the form (14):

i) Explicit Euler method: C1 = (I + hM), C2 = hN, and C3 = 0.
ii) Implicit Euler method: C1 = (I − hM)−1, C2 = 0, and C3 = (I − hM)−1hN.

iii) Trapezoidal rule: C1 = (I − h
2 M)−1(I + h

2 M) and C2 = C3 = (I − h
2 M)−1 h

2 N.

To begin with, we discretize the system using the explicit Euler method. Since C3 = 0, A is
a strictly lower-triangular block Toeplitz matrix. It follows that the spectral radius ρ(A) is 0 and
in particular As = 0. Therefore, waveform relaxation converges, independent of the partitioning,
after at most s + 1 iterations, i.e.

X̂s = AX̂s−1 + b = AsX̂0︸︷︷︸
0

+As−1b + · · · + Ab + b ,

X̂s+1 = AX̂s + b = Asb︸︷︷︸
0

+As−1b + · · · + Ab + b = X̂s.
(18)

If we replace the explicit Euler method by the implicit Euler method, then the spectral radius
of A is equal to the spectral radius of C3 = (I − hM)−1hN. To accelerate the convergence of
waveform relaxation, the matrix Q should be decomposed such that the spectral radius of C3 is
minimized. Observe that the optimal splitting depends on the step size h.

If we, on the other hand, use the trapezoidal rule, then the block diagonal of the iteration
matrix A is given by C3 = (I − h

2 M)−1 h
2 N. That is, the system should be partitioned in a way that
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the spectral radius of the new matrix C3 is minimized. Thus, the optimal splitting depends also
on the integration scheme.

Since the iteration matrices A of the implicit Euler or the trapezoidal rule based waveform
relaxation are highly nonnormal, their spectral properties do not predict the convergence behavior
appropriately. For such matrices and operators the pseudospectrum is a more useful tool [16].

Definition 4.4. Given a matrix A and ε > 0, λ ∈ C is defined to be an ε-pseudoeigenvalue of A
if λ is an eigenvalue of A + E for a matrix E with ‖E‖ < ε.

There are several different equivalent definitions of pseudo-eigenvalues (cf. [17]). The set
Λε(A) of all ε-pseudoeigenvalues is called the ε-pseudospectrum and ρε(A) = max{‖z‖ | z ∈
Λε(A)} is called the ε-pseudospectral radius. While the ε-pseudospectrum of a normal matrix is
the union of ε-balls around the eigenvalues, the pseudospectrum of a nonnormal matrix can be
sensitive to small perturbations [18].

In Section 5, the matrix splittings with the best spectral and pseudospectral properties are
used for comparison. However, there exists no efficient method to minimize the spectral radius
or the pseudospectral radius directly. We propose different heuristics to find a decomposition
which is close to the optimal splitting. The partitioning of a directed graph with respect to a
given cost function is still an open problem, in particular there are no sophisticated spectral clus-
tering methods for directed graphs (cf. [19]). Therefore, we combine different graph clustering
and partitioning methods, namely horizontal-vertical decomposition, spectral clustering, and the
graph partitioning library PARTY, to generate appropriate splittings.

Horizontal-vertical decomposition as described in [20] identifies the subsystem hierarchy
of dynamical systems. The decomposition is equivalent to the computation of the strongly
connected components of the graph G(Q), where G(Q) = (V,E) with V = {v1, . . . , vn} and
E = {(vi, v j) | qi j , 0}. The strongly connected components can be computed efficiently using
the depth-first search.

Spectral Clustering is a popular partitioning heuristic for undirected graphs, based on spectral
or algebraic graph theory. Spectral clustering utilizes the information obtained from eigenvalues
and eigenvectors of graph-related matrices such as the graph Laplacian for partitioning. For a
detailed description we refer to [21]. Recently, an efficient distributed spectral clustering algo-
rithm that overcomes the drawbacks associated with random walk based approaches has been
proposed by one of the authors in [22].

PARTY is a graph partitioning library that provides several different multilevel graph parti-
tioning strategies combining local and global heuristics for undirected graphs [23]. The idea of
the multilevel approach is to coarsen the initial graph by collapsing matching vertices so that
global partitioning heuristics can be applied efficiently. Subsequently, combined vertices are
split during the refinement process and local methods like the Kernighan–Lin heuristic or the
Helpful-Set algorithm are applied to further improve the partition.

If the matrix Q is reducible, then the system is decomposed first using the horizontal-vertical
decomposition in order to exploit the directionality of the graph on a coarse level. Then, de-
pending on the application, either the spectral clustering method or PARTY is applied to the in-
dividual strongly connected components. Since both methods are confined to undirected graphs,
the strongly connected components have to be regularized first by omitting the orientation of the
edges. If it is important to generate a balanced partition of the graph, then PARTY is, in general,
better suited. If, on the other hand, the network is quite inhomogeneous and the spectral method
computes an unbalanced splitting while PARTY is forced to generate a balanced splitting, then
spectral partitioning is advantageous.

7



For large networks with several strongly connected components, the horizontal-vertical de-
composition is crucial for the quality of the decomposition. If the partitioning methods are di-
rectly applied to the graph G(Q+QT ), all information on the directed signal flow and the different
subsystems is lost. In the next section we will demonstrate the impact of the horizontal-vertical
decomposition on the convergence of waveform relaxation.

5. Applications and results

To illustrate the adaptive waveform relaxation procedure and the spectral and pseudospec-
tral properties of the iteration matrices, we analyze a linear ordinary differential equation that
is used for the transient analysis of a continuous-time Markov chain (CTMC). The continuous-
time Markov chain is derived from a generalized stochastic Petri net (GSPN) [24]. GSPN is
a popular model for performance analysis of complex concurrent systems. It has been used to
model and analyze communication protocols [25], parallel programs [26], multiprocessor archi-
tectures [27], and manufacturing systems [28]. The reachability graph of a GSPN with an initial
marking (state) consists of vertices corresponding to its reachable markings and directed edges
corresponding to transitions. It has been proved that there exists a one-to-one mapping between
the reachability graph of a GSPN and the CTMC [29].

P12

T8

T9

T7

T6

T10

T3

T12

T2

T5

T11

T4

T1

P9

P8

P7

P6

P5

P3

P2

P11

P10

P4P1

Figure 1: A GSPN model of a client-server system.

Let πi(t) be the probability that the CTMC is in state i at time t. Let ri j, i , j, be the transition
rate from state i to state j and rii = −

∑
j,i ri j. Given the transition rate matrix R = [ri j] of

a CTMC, the state probability distribution at time t denoted by π(t) = [π1(t), π2(t), . . . , πn(t)]
satisfies

π̇(t) = π(t)R. (19)
8



We apply the waveform relaxation techniques to solve the above equation. Due to state space
explosion, the number of differential equations becomes extremely large even for a GSPN of
moderate size [30]. This makes them an ideal application to demonstrate the waveform relaxation
procedure. Figure 1 shows the GSPN that we used for experiment. It models a server shared by
three clients. The corresponding CTMC of the GSPN has 24 states and the resulting transition
rate matrix R is sparse.

For simplicity, we rewrite Eqn. 19 as ẋ(t) = Qx(t). In order to demonstrate the adaptive wave-
form relaxation procedure and to compare it to standard waveform relaxation, we decompose the
GSPN into two subsystems of the same size.

Firstly, we compute the solution of the system using standard waveform relaxation and a fixed
step size h = 10−3. The initial waveform is assumed to be constant over [0,T ], i.e. x0(t) = x0,
where T = 1. We iterate until the difference between two successive iterations falls below
the predefined tolerance ε = 10−4. The solution is shown in Figure 2a. As one can see, the
state probability distributions approach constants, i.e. equilibria are eventually reached. Standard
waveform relaxation takes (averaged over 10 simulations) 0.622 sec.

The solution is now computed using adaptive waveform relaxation. We use the same toler-
ance of ε = 10−4 and an initial window of [0, T

50 ]. The solution and the intervals computed by
adaptive waveform relaxation are shown in Figure 2b. Averaging again over 10 simulations, we
find that adaptive waveform relaxation takes approximately 0.103 sec to compute the solution,
i.e. over 6 times faster than standard waveform relaxation.

a) waveform relaxation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

t

π

b) adaptive waveform relaxation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

t

π

Figure 2: Comparison of solutions obtained from waveform relaxation and adaptive waveform relaxation.

In the following, we analyze different partitions of the GSPN to illustrate the influence of the
matrix splitting on the convergence of waveform relaxation. The best balanced bipartition of the
GSPN for the implicit Euler based waveform relaxation and h = 10−1 is given by

P1 = [1 2 5 7 10 11 13 16 18 19 22 24 | 3 4 6 8 9 12 14 15 17 20 21 23] , (20)

meaning that the first 12 states belong to the first and the remaining 12 states to the second part,
whereas for h = 10−2 the bipartition with the lowest spectral radius is

P2 = [1 2 3 4 5 6 7 10 13 16 19 22 | 8 9 11 12 14 15 17 18 20 21 23 24] . (21)

The splittings P1 and P2 are shown in Figure 3a and 3b, respectively. If we use the trapezoidal
rule, then for h = 10−1 and h = 10−2 the optimal splittings are again given by P1 and P2.
Nevertheless, for h = 5 · 10−2, for instance, P1 is better suited for the implicit Euler based
waveform relaxation while P2 is better suited for the trapezoidal rule based waveform relaxation.
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This example illustrates that the optimal splitting depends on the step size and on the integration
scheme. To compute these optimal partitions, we compared all balanced decompositions of the
network. For high-dimensional systems this is clearly not feasible.

a) h = 10−1, ρ = 0.23632
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b) h = 10−2, ρ = 0.00505
1

7

19

2

13

22

3

9

4

5

6

15

108

14

23

11

20

24

12 17

16

18

21

Figure 3: Optimal splittings P1 and P2.

From now on, we denote the waveform relaxation operator of the implicit Euler based method
as A1 and the operator of the trapezoidal rule based method as A2. Although the spectral radius
of A2 is only half as large as the spectral radius of A1 for small step sizes h, both methods require
approximately the same number of iterations for convergence. Figure 4 shows the dependence of
the pseudospectral radii on the number of time steps for splitting P1. If the number of time steps
is large, then the pseudospectral radii of the iteration matrices are almost equal. The pseudospec-
tral radii were computed using Higham’s Matrix Computation Toolbox [31]. Here, the parameter
ε for the computation of the ε-pseudoeigenvalues was set to 10−3.

Below, we compare P1 and P2 to the splittings generated by the heuristics described in
Section 4. The GSPN is irreducible and the spectral partitioning yields

P3 = [1 2 3 4 5 6 8 9 10 11 12 15 16 17 18 21 | 7 13 14 19 20 22 23 24] , (22)

while PARTY generates a balanced splitting

P4 = [1 2 3 4 5 6 9 10 11 15 16 18 | 7 8 12 13 14 17 19 20 21 22 23 24] . (23)

In Figure 5 the optimal splittings P1 and P2 are compared to the heuristic splittings P3 and
P4. To illustrate the impact of this approach, two random splittings P5 and P6 are evaluated.
Figure 5a shows the spectral and the pseudospectral radii of the waveform relaxation operators
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Figure 4: Dependence of the pseudospectral radii on the number of time steps.

using the implicit Euler method. The number of time steps was set to s = 50. Figure 5b shows
the number of iterations k required for convergence of standard waveform relaxation. Although
the sizes of the parts of P3 and P4 are different, the results are virtually equivalent. Furthermore,
the results are close to the results of the optimal splittings P1 and P2.
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Figure 5: Comparison of different splittings. a) Spectral radius (solid line) and pseudospectral radius (dashed line). b)
Number of iterations required for convergence.

Now we combine both methods, the graph partitioning heuristics and adaptive waveform
relaxation, and compare it to standard waveform relaxation. In addition, we subdivide the time
interval [0,T ] into 20, 25, and 30 windows of the same size and use standard waveform relaxation
for each subinterval. We refer to these methods as FWR1, FWR2, and FWR3, respectively. We
set again T = 1 and ε = 10−4. Adaptive waveform relaxation generates—depending on the
partitioning—between 24 and 27 windows. The runtime results are shown in Table 1. Note that
the influence of the splitting on the convergence of adaptive waveform relaxation is much smaller
than the influence on the standard waveform relaxation procedure.

For this example, waveform relaxation using a fixed window size performs only slightly
worse than adaptive waveform relaxation since the state probability distribution quickly con-
verges to the equilibrium so that the extrapolation of the solution has almost no effect. However,
the appropriate size of the windows is in general unknown prior to the simulation. Using adaptive
waveform relaxation, the window sizes are generated and adjusted automatically.
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Table 1: Runtime results for the GSPN in seconds.
P1 P2 P3 P4 P5 P6

AWR 0.104 0.103 0.103 0.104 0.105 0.106
FWR1 0.133 0.134 0.133 0.133 0.136 0.137
FWR2 0.121 0.126 0.125 0.125 0.130 0.132
FWR3 0.118 0.119 0.119 0.122 0.126 0.125
WR 0.619 0.622 0.621 0.622 0.869 1.071

To demonstrate the impact of the extrapolation and the adaptive windowing technique, we
simulate 10 higher-dimensional networks Qi with standard and adaptive waveform relaxation.
For comparison, we subdivide the time interval into the same number of equally sized windows
and use again standard waveform relaxation for each subinterval (FWR). The results are shown
in Table 2. We decompose each system into p = 2 nscc blocks, with nscc being the number of
strongly connected components. The default partition is defined to be the balanced decomposi-
tion where the variables are assigned to the blocks without a previous permutation of the matrix.

Table 2: Runtime results for further examples in seconds.
HVD+PARTY Default partition

n nscc AWR FWR WR AWR FWR WR
Q1 100 1 0.45 0.88 5.89 0.53 0.95 8.14
Q2 100 10 0.54 0.92 6.61 0.58 1.01 10.11
Q3 200 1 0.98 2.01 12.01 1.04 3.01 18.81
Q4 200 10 1.05 2.28 24.74 1.18 2.68 42.28
Q5 400 1 8.77 20.16 204.25 9.42 21.02 251.74
Q6 400 10 6.93 14.07 84.25 9.16 19.98 219.85
Q7 800 1 27.13 69.18 346.62 36.21 74.27 589.85
Q8 800 10 17.97 43.41 326.05 18.32 44.87 604.26
Q9 1600 1 78.31 152.02 948.33 96.01 210.11 1550.62
Q10 1600 10 67.80 172.89 1434.59 73.06 203.06 2722.87

If the network consists of several strongly connected components,then the horizontal-vertical
decomposition is of big importance for the convergence of waveform relaxation. To illustrate
the influence of the horizontal-vertical decomposition, we simulate a 400 dimensional example
which consists of 20 strongly connected components. If we apply PARTY directly to decompose
the system into 40 subsystems, then standard waveform relaxation takes approximately 110.93
sec and adaptive waveform relaxation 6.77 sec. If we, on the other hand, decompose the system
first using the horizontal-vertical decomposition and apply PARTY to the individual strongly
connected components, then the simulation takes only 68.46 sec or 4.41 sec, respectively.

In summary, the combination of the horizontal-vertical decomposition and the different par-
titioning methods for undirected graphs enables a reliable and efficient splitting of the system for
the subsequent standard or adaptive waveform relaxation.

6. Conclusions

The performance of waveform relaxation depends on many different influencing factors. One
important criterion is the proper subdivision of the integration interval into smaller time windows.
In this work, we proposed an adaptive waveform relaxation method which, depending on the
previous time interval, generates appropriately sized time windows. In regions where the solution
changes rapidly, small windows are computed and in regions where the solution changes slowly,
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large windows are computed. Decomposition of the system is also of great importance for the
convergence of waveform relaxation. We analyzed the spectra and pseudospectra of the resulting
waveform relaxation operators and introduced different graph partitioning heuristics in order to
speed up the simulation. It was shown that it is possible to speed up the computation of high-
dimensional differential equations using adaptive waveform relaxation along with appropriate
partitioning heuristics.
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