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Abstract

This paper analyzes a discrete form of 3D contact problentis tal orthotropic Coulomb
friction and codicients of friction which may depend on the solution itselfheTanalysis is
based on the fixed-point reformulation of the original peshl Conditions guaranteeing the
existence and unigueness of discrete solutions are estalili Finally, numerical results of a
model example are presented.
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1. Introduction

Contact mechanics is a special branch of solid mechanidgzing the behavior of loaded
deformable bodies which are in mutual contact. In additiurtilateral boundary conditions ex-
pressing non-penetration of the bodies in the structurehass to take into account also the influ-
ence of friction on the contact zones. There affedént models of friction, but local Coulomb’s
law is the most classical one. Although this model is seelpisignple, contrary is the case. The
mathematical model involving static Coulomb friction Iead an implicit variational inequality,
whose solution remained open for a long time. The existenagysis was done relatively not
long ago. For the mathematical analysis of static, quasiesand dynamic contact problems
with Coulomb friction we refer to [1] and the references #ier In what follows we confine our-
selves to static contact problems. Suppose first that thécieat of friction.# does not depend
on the solution. Then a typical existence result says thafwgtisn exists provided tha# is
suficiently small (with additional technical assumptions o tagularity of data). As far as the
structure of solutions is concerned, no general resultsnaaiable at present unless a solution
of this problem has some specific properties ([2, 3]). Theasion is completely dierent for
appropriate finite element discretizations of these probleUsing fixed-point arguments one
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can show that at least one solution exists for @iybelonging to a large class of diieients.
Moreover, this solution is unique i is small enough. Unfortunately, the bout#hax on %
ensuring unigueness of the solution is mesh-dependesstkitown (see [4]) that in the case of
isotropic Coulomb friction,%#max has to decay at least a¢h, whereh is the norm of a finite
element partition. The same result has been obtained iny[6Flng a penalty and regularization
of the frictional term. The previous analysis has been aladro the isotropic Coulomb friction
law in which the cofficient of friction.# depends on the solution itself. It was shown that the
uniqueness result depends not only%gax but also on the Lipschitz modullsof .%#. The goal
of the present paper is to generalize these results to tleeotasthotropic Coulomb friction in
which both coéicients of friction in the directions of the principal axesoothotropy depend on
the magnitudes of the tangential components of contacladisments.

The paper is organized as follows: in Section 2, continuetiing of the problem is pre-
sented. A weak solution to our problem is defined in twiiedent ways:a) as a solution to
an implicit variational inequalityb) as a fixed point of an auxiliary mapping acting on the
contact part of the boundary. The later is used for definimgdiscrete form of our problem.
This form is based on an appropriate discretizatio®ofSection 3 presents the existence and
unigueness analysis. We show that at least one discretiosodxists for any positive, bounded
and continuous cdicients of friction. Assuming that the cfiients are Lipschitz continuous
we prove that the discretization ¥fis Lipschitz continuous as well. The estimate of its modulus
of Lipschitz continuity will be derived in terms af .« L, the condition number of the friction
codficient matrix and the mesh norms of the respective finite efesgaces used to build the
discrete model. Iy andL are sificiently small (expressed in terms of the mesh norms), then
the modulus of Lipschitz continuity is less than one. Thesa &y-product we obtain the math-
ematical justification of the method of successive appratioms, one of possible approaches
for numerical realization of such problems. To illustrategerformance we present in Section 4
numerical results of a simple model example.

For other numerical methods for solving contact problemgefer to the following publi-
cations. The overview and the comparison of the most fretijyased strategies can be found
in [6]. To overcome the drawbacks of penalty and Lagrangdiptier techniques, augmented
Lagrangian methods have been developed. The applicatitvesé methods in contact mechan-
ics is described in [7]. The survey of algorithms of consteal optimization which are used in
contact computational mechanics can be also found in [8heSalgorithms are combined with
multigrid or domain decomposition techniques in order tréase their performance for solving
large scale problems of the real world; see, e.g., the pridual active set algorithm of Hlieber,
Stadler, and WohImuth [9], the non-smooth multiscale meéibfcKrause [10], or the augmented
Lagrangian based algorithm combined with the FETI methodastal et al. [11, 12]. Our im-
plementation of the method of successive approximaticsres to solve a sequence of contact
problems with Tresca friction that are represented by th@mikation of strictly quadratic ob-
jective functions subject to ellipsoidal constraints. $@eninima are computed by the active
set type algorithm of Kucera [13] that generalizes anotimer of Dostal and Schéberl originally
developed for simple bound constraints. Note that thisrélyo combined with the augmented
Lagrangians [14] is the heart of the Matsol library [15] fahdng 3D contact problems with
friction. Results of numerical experiments presented @ flper illustrate robustness of this
algorithm for solving the orthotropic Coulomb friction law

Throughout the paper we shall use the following notatiore Buclidean norm ifR" as
well as the matrix norm iR™" generated by the Euclidean vector norm are denotelfii|by
u - v stands for the scalar product of two vectors € R". The symbolW<P(G), G c R",

2



Figure 1. Geometry of the problem.

k > 0 integer,p € [1, +0], is used for the standard Sobolev space equipped with tha no
Illkpc (WOP(G) = LP(G)). The analogous spaces of functions with valueRthare denoted
by WKP(G; R™) (resp. LP(G; R™). If p = 2, we simply writeHX(G) andH¥(G; R™); |.|lkc and

(., )kc stands for the norm and the scalar product, respectively.

2. Setting of the problem

Let us consider a body made of a linear elastic material whefgrence configuration
is represented by a bounded dom&nc R3 with the Lipschitz boundargQ. Let T\, I'p
and T be three disjoint, (relatively) open subsetsast such thatdQ = T, U T, U I and
meas(I'y), meas(I'y) > 0. The body is fixed oy, surface tractions of density act onI'p
while a rigid foundatiorS unilaterally supports the body aloidg. For the sake of simplicity
of our presentation we shall assume tBat a half-space and there is no gap betwEgand
S, i.e. I'; is a part of a hyperplane. Théfect of friction betweerf2 andS is described by the
local orthotropic Coulomb friction law with cdicients of frictiondependingn the solution. In
addition, volume forces of densitfyare applied tq). Our aim is to find an equilibrium state of
the body.

By a solution to the pure elastostatic problem without confiee. withI'c = 0) we mean any
displacement vectar : Q — R? satisfyingthe equilibrium equationdinear Hooke’s lawand
thekinematicandstatic boundary conditionsnI'y andI',, respectively:

—divo(u) = f in Q,
o(u) =Ce(u) inQ, 2.1)
u=0 onTy,
oluv=p onTp.

Hereo(u) is a stress tensag(u) = 1/2(Vu + V'u) is the linearized strain tensor associated with
u andc is the 4" order elasticity tensor. Furtherjs the unit outward normal vector @£2.

To formulate the contact and friction conditions, lgt:= u - v, o,(u) := (o (u)v) - v be the
normal component of a displacement veataand the stress vectar(u)y on I'¢, respectively.
Moreover, lett; andt, be principal axes of orthotropic friction on the tangentngldoI'c so
that the triplet{v(x), t1(x), t2(X)} forms a local orthonormal basis i&* for any x € I'.. By
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U = (U, Uy,), ot(u) = (o, (u), o1, (U)) we denote the tangential displacement and the tangential
contact stress, respectively, with := u- t;, oy, = (c(U)v) - t;, 1 < i < 2. Finally, let.%; and.%;
be codficients of friction in the directiony andt,, respectively, and set

F1 0
G =
F —(0 9\2)'

In what follows we shall suppose that bath and.%, may depend on the magnitudesugfand
U, onTyg, i.e. F = Zi(X |uy (X, lu,(X))), x € Te, 1 <i < 2. The respective matriZ will be
denoted byZ (X, [u, (X)I, [u,(X)]) or shortly. % (Juy|, |uy,]). The non-penetration conditicendthe
orthotropic Coulomb friction lavthen read as follows:

u <0, o,w=<0, uoc(uw=0 onlg,

w(x) =0 = [L.Z7(x 0,0)r(u)(N < -0, (U)(X), x €T,
F (%, U, (X)), lu, Nw(¥) ¢ (2.2)

I1-7 (X, [ue, (X1, Jue, (DX

X e Tk

w(X) £0 = F X, |y (X, lu, (o (U)(X) = o, (U)(X)

The classical formulatioof our problem is represented by (2.1) and (2.2). To give thakv
formulation we introduce the following spaces and sets:

V ={ve HY(Q;R?|v=0a.e. oy}, K={veV]|y, <0a.e. oy},
W= {ve HY(Q)|v=0a.e. oy}, X, = vy, [Ve V),

X+ = {p e X |g>0ae. o}, Xer = {(Veyy, | Ve, ) |V € V),
Y =W,

and endowX, with the norm:
llgllx, := inf [VllLq.
veV
Wi, =¢
By X! we shall denote the (topological) dual ¥f and(., .), will be used for the corresponding
duality pairing.
Furthermore, we shall assume tHag L2(Q; R®), p € L%('p; R%) andC = {cij }fj,k,lzl with
Cij € L*(Q), 1<, j,k, | < 3, satisfies the usual symmetry and ellipticity conditions:

Cijki = Cjiki = Ckiij @a.e. inQ, 1<, j, k<3, (2 3)
dep>0: Cé:&€2co(f:¢) a.e. inQ for every symmetri¢ € R¥, '

We shall also suppose that the fiagents of friction.#; and.%; are continuous and bounded:

FieC(TexR?), 1<i<2, 2.4)
jmmﬁ%(x,é:)segzmax VXEFCV§€RE,1SISZ, )
where 0< Fmin < %max are given, and
the mapping — (t1(X), t2(x)) belongs toN>(I'; R®). (2.5)
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The weak formulatioof (2.1) & (2.2) is given by the followingmplicit variational inequal-
ity:
Findu € K such that
a(u, v —u) — o (u), lIlZ (Iug, |, [ug, DV + (o (U), 17 (Ju |, U WD), > £(v = U) (2)
VveKk,

where
a(u,v) = f Ce(u) : g(v) dx, uvev,
Q

f(v):=ff-vdx+ p-vds, veV.
Q

p

Owing to (2.3) and Korn’s inequality is a symmetric bilinear form which ig-elliptic and
continuous oV x V:

Ja>0: aWvV) > eV, Vvev, (2.6)
AM>0: [au V) < MluliolMiie YuveV. (2.7)

Remark2.1 To make sense to the duality terms i#?}, one needs an additional smoothness of
uand.# (and of the mapping — (t1(X), t2(X)), x € I'c) ensuring thafl.Z (Ju, |, lu, vl € X, for
anyv € V (see [1]). To overcome this fliiculty, we shall assume that,(u) € L?(I'¢), in what
follows. Then the duality pairing, .), can be replaced by tHe*(I'.)-scalar product and (2.4) is
suficient.

Below we introduce a fixed-point formulation af{), on which the finite element discretiza-
tion will be based. To start with, we associate with apy, ¢,) € X, g € L2(I';) the following
auxiliary problem:

(2(¢1.92.9))

Findu := u(e1, ¢2,g) € K such that }
a(u,v—u) + j(p1, 02,9, V1) — j(p1, 2,9, ) 2 {(v—-U) VYVeK,

where

j(‘Pl, 2, g, Vt) = (g, ”y(‘{’l, QDZ)VIH)O,FC, (‘Pl, ‘102) € Xt+7 g € LE(FC)v Ve V

Problem (1, ¢2,Q)) is a weak formulation of a contact problem with orthotfiction
of Trescatype and thdixedmatrix of friction codficients.Z (1, ¢2). The existence of a unique
solution is guaranteed for any,¢2) € X, g € L2(T';), making use of its equivalence to
a convex minimization problem (see [16, Chapter II]). Thimleles us to define the mapping
Y X X L%(Fc) — Xy X X‘: by

‘{I(SD15 2, g) = (lut1|5 |Ut2|, _O—V(u))’ (()Ol’ SDZ) € Xt+5 g € LE(FC)’

whereu solves (Z(¢1, ¢2, 9)) ando, (u) is the corresponding normal contact stress. Comparing
problems ¢?) and (2 (¢1, ¢2,0)), it is readily seen that if(,|, |uy,|, —o,(U)) is a fixed point of
¥in X, x L2(Tc) thenuis a solution to {2).



Let (p1,¢2) € X andg € L2(I';) be fixed andA, be the cone of non-negative elements in
X/.

ye

Ay ={peX [ {ue)>0¥pe X,

To release the unilateral constraimte K, we introduce the followingnixedformulation of
(2(p1, 92, 9)):

Find (u, 4,) := (U(e1, 2, 9), 4,(p1, ¢2,9)) € V X A, such that

a(u,v—u) + j(e1, @2, 9, V) — j(@1, 2,9, Up) = £(v—U) = (1,,V, — U,),

% 9 k
Vvev. (A (91, ¢2,9))

</'tV -4,W,), <0 Yy, €A,

It is known that (# (¢1, ¢2, ) has a unique solution for any{, ¢;) € X, g € L?(Tc). More-
over,u solves (¢1, ¢2,0)) andA, = —o,(u), as follows from the Green formula ([17]). This
gives an equivalent expression for the mappihg

‘P(‘pl’ ©2, g) = (lut1|’ |ut2|’ /lV) A4 (‘701’ ‘102) € xt+ A4 ge LE(FC) (28)

with (u, 4,) being the solution to.# (¢1, ¢2, 9)).

3. Finite element discretization

This section deals with an approximation of problegd)( which will be based on a fixed-
point formulation for an appropriate discretization of thapping¥. To this end we use (2.8) and
a mixed finite element discretization of/{(¢1, 2, 9)). We shall establish the existence as well
as uniqueness of the solution to the resulting discretelnobin addition, we shall investigate,
how the uniqueness result depends on the size of the problem.

Let W", LM be the following Lagrange finite element spaces correspayimi the partitions
T and 7 of Q andT, respectively:

W= (V' e C(Q) |V}, e P(T)VT € 7 & V' = 0 onTy),
LH = " e L2(T) [, e PR YR e F1).

Herek > 1,1 > O are integers and, H stand for the norms of the partitior:@{‘ and %t'

respectively. Only what we shall suppose at this momenta&ﬂ?{‘ is compatible with the
decomposition 0bQ into I'y, I'y andT¢. In general,ﬂr'j is different from.Z" | but the case

Qlg,’
when they equal each other is not excluded. Further, set

VI = WM x W x W, Yh=Wh\rc,
YN = (" e YN " > 0 onl), AV =M e " u™ > 00nT).

Clearly, V" and A will serve as natural approximations ¥fandA,, respectively. In the
sequel, we shall suppose that the following condition isBad:

el & (M Vor,=0VVeV) = =0 (3.1)



This makes it possible to endow the spat&sand Y x Y" x LH with the following (mesh-
dependent) norms:

" vMor
lln = sup ==,
oanevn  [MllLo
11625, @5, 1) mern = IR @D, + el .
Remark3.1 Let us briefly mention two examples of the discretizationsiteal above.

(FE1) g1 = yglf =k LM =Yh

Then the condition (3.1) is always satisfied.

(FE2) k=1, =0.
In this case, (3.1) is fulfilled provided that the ratityh is suficiently large, i.e. the
partition %‘:‘ is coarserthac%h‘f (see [18]).

For (¢h, ¢, g") € Y x YI x Alf given, we introduce the following discrete form of problem
(A (p1, 2, 9)):
Find ", &) := (u"(¢h, 5, g"), 2 (@l &b, g™)) € V' x A such that
a(u, V" - u") + (e, ¢5. . ) — (el 5. 9™ )
> (W —u") = (A - WMo, YV e VN,
W' = Wor, <0 vl e AT

A 4

(‘ﬂhH (‘702_1, ‘102’ gH))

Reformulating (//th(cpT, gog, g")) as a saddle-point problem, the condition (3.1) ensuras th
(¢l €5, 9™) has a unique solutioruf, ') for any (!, ¢5, g") € YN x Y0 x A¥! (see [16,
Chapter VI]). Furthermore, its first componefitsolves:

Findu" := u"(¢!, ¢, g") € K" such that
a(u, V' —u" + (el 5, gt V) — (e, b, g uf) > e - u) (Pon(eh, 5, a™)
vV e KA,

where
KM= (v e V| (M, V)or, <0V €AY

Remark3.2 Notice thatk"™ is an external approximation &, i.e. K" ¢ K. On the other
hand,A!! is an internal approximation a¥, .

To define a discretization o, letr, : HY(I';) — Y" be a linear interpolation operator
preserving positivity:

(peHI) & p>0ae. 0l = rhpeY" (3.2)
and possessing the following approximation property:
A6 >0 g —rglor, < Ghrliglar, Yo e HYT)NY, (3.3)
wherehr, := ma&egghlfc diam(F). With suchry, at hand we introduce the mappiigy : Y! x
Y x A — Y0 x YD x AM by
Whn(el, €5, 0") = (raluf | rmiull, A1),

where (I, A1) solves (Zn(¢}. ¢3. g")).



Definition 3.1. Any couple (", 1) € V" x A"l is called a solution of the discrete contact
problem with orthotropic Coulomb friction and solutionpdmdent cofficients of friction if
(raluf |, rrlul], 2%) is a fixed point ofpy, i.e. ", AH) solves (Zu(ralull |, rulufl], 25)).

3.1. Existence result

The existence of a discrete solution will be done by usindieel-point arguments. First we
introduce two auxiliary results, the first one is a minor nfiedition of Lemma 3.3 in [19]. Recall
th_atti(x) = (ti’j(x))?:-l, 1<i < 2, are the principal axes of orthotropic friction apd= (¢t,, ¢t,)
with g, = -1, 1<i < 2.

Lemma 3.1. If ¢ € H(I'y) then|y| € HY{(T'¢) and
lelllire < llellar,-

Lemma 3.2. Let (2.5)be satisfied. Theg, € HY(I'; R?) for anye € H1(I'¢; R®) and there exists
a constant ¢> 0 such that

ledlir, < cllgllr, ¥ ¢ € HY(Ic; R3).

Proof. Sincel’. is supposed to be a flat part 8f, we may assume without loss of generality
thatI'. ¢ R? x {0} (otherwise, one can introduce an appropriate orthonomaasformation of
coordinates). The proof is then straightforward. O

With these results at our disposal we shall show by using tieenBer fixed-point theorem
that¥hy has at least one fixed point in the set

%(Re, Re) = {(¢, 03, 1) € YT > YR x AY[11(l, ¢D)llor, < Ru& [lllun < Re)
for appropriatdR;, R; > 0.

Lemma 3.3. Let.Z satisfy(2.4). Then there exist RR, > 0 such that¥,y maps Y x Y! x A"
into %(Rl, Rg)

Proof. Let (¢, ¢, g") € YIx Y!x A¥! be given andy", 2') be the solution to.¢Znn (¢!, &5, g7)).
Insertingv" := 0, 2u" € K" into (Znn(¢h, €5, g™)) we get

a(u", u") + j(¢l. 3. g u) = (), (3.4)
which together with the non-negativenesg ahply that

al.
W < ! l". (3.5)

Here|.||. o stands for the norm in the dual kb'(Q; R®) anda is the constant from (2.6). Invoking
(3.3), Lemma 3.1 and 3.2,

h h h h h h hy b
lI(rnlug |, ralug Dllo.r, < Nl(ralug | = ug |, ralugl = [ug Dllor, + [1(ugs lugDllo.r,

@3 hy h h h
< Grhrll(ug | lug Dl + Iugllor, < chr lludller, + lullor,

h h 1,0 h
< e lUlar, + Ulor, < (€9 ¢ + 1)Iulor,

nv
< @0+ 1iulso, (3.6)
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wherec? is the norm of the trace mapping froki'(Q; R3) into L%(0Q; R%) and c*? is the
constant from the inverse inequality between B¢l '¢; R®) andL?(I'c; R3)-norms for functions
belonging to the finite-dimensional spagex Y" x Y

(1.0)

Ilr, < :—Fvﬂl//h”o,rc Yyl e YN x YN x Yh, 3.7

c

In view of (3.5) and (3.6), the radiug, is of the form

A(c0¢ ¢ + 1
R 1= RICE, 6. 6@, G ) = T GO D)
a

v ll€1l..q-
Furthermore, introducing the subspace
V= (V" e VM|V = 0 onTg),
one can see from#hn(¢h, ¢5, g)) and (3.4) that
a(U", V) + j(e ¢b, g W) = 60 - (A W)or, YV e VI

Thus
a(u, v = ¢ - (A V)or, YV e VD,
from which, (2.7) and (3.5),

(A Vor,  £(") — a(u, V")
Mo Ve

M
<(1+ =)ltlha YV eVE. (3.8)
07

To complete the proof, we may assume without loss of gemgthltI’. ¢ R? x {0} (otherwise,
one can introduce an orthonormal transforma#onR® — R3 such thatA(I'e) ¢ R? x {0} and
proceed withAV"). Let

V= (V= (VB V) e VIV =V = 0in Q) c V.
Then one has

H (A Wor, (4. v3or, (A Wor, (A Wor,
Il = sup "2t < sup ot = LBl o gyp vl
oavevn  IMllLa " oren IMlie  osnevy, Ml T gapey  IMlLa

From this and (3.8), we see that one can take
M
Ry = Ry(M,a,¢) = (1+ —)||£||*,Q.
07

O

Remark3.3. Let us notice that at this moment the partitioffg' and .7 are fixed and the

constants, and ci(rf'o) in (3.3) and (3.7), respectively, may dependton Later on we shall
considerﬁé‘ and 9& as elements of systen{lS@{‘}, {<7r':}* h,H — 0+, and we shall formulate
conditions on these systems under which the constants diepend orh.
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Lemma 3.4. The mappingPy is continuous in ¥ x Y? x A" provided that(2.4)is satisfied.
Proof. Let (¢}, ¢, g™%), (¥, ¥, o) € YN x YN x A, k € N, be such that

(@1 05, 0™ = (2] €5,9™) In Y x Y5 LM, Kk — +oo,
and (", 25 be the respective solutions e (¢}, g%, g™4)):

a(UM™ V= UM + j(er b gt ) - J(er e gt )

> £V — UMy — (AT VD — Yo vVh eV,
(/1VH - /lVH‘k, Ut‘k)o,rC <0 V/JVH € A:,".

As we know, both sequencés™} and{1"*} are bounded. Thus one can fiad<} c {uMkj,
(A5 (A andu € VN, Y e AM such that

uk S uhin vt A S A i Y | 5 4.

Letv' € VM andu!! € A" be arbitrarily chosen. Taking into account the equivalerafeall
norms in the finite-dimensional spaces involved, one caityeasify that

a(u v — UMy — o — UMY+ (VD — U)o
2 A v ) — o0 — )+ (P - WDor,
J(hH, gk, g V) — (i g g Ry T h o gt vy - (el o o, U,
A T (L W L B Y T

which shows thatu(", }') solves (Zhn(¢}. ¥5. g)). Since this problem admits a unique solution,
the original sequencda™}, {15} tend tou" and .

Furthermore, from the positivity preserving assumptior2&nd the linearity ofy, it is
readily seen that

Irn(u™| = Ul < raluf* —ufl] onTe, 1<i<2 keN.
Therefore, arguing as in (3.6) one gets

hk hk
ICrnluy ), Pl ) = (ol reluDllor, < ICFRlUE* = Ul raluf = g Do,
< (¢ ¢+ DU~ uMle, keN,  (3.9)
and the limit passage— +co completes the proof. O
We have arrived at the following existence result.

Theorem 3.1. If (2.4)is fulfilled then the discrete problem given by Definit{8rl) has at least
one solution.
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3.2. Uniqueness result

Applying the Banach fixed-point theorem, even uniquenesh®fiscrete solution can be
ensured. Nevertheless, to establish the Lipschitz coityiofl ¥4, we shall need an additional
assumption o, namely:

AL>0: [FAXE - Fi(x O <LIE-&] Yxel VEEeR?, 1<i<2 (3.10)
We start with a useful technical result.
Lemma 3.5. If 7 satisfie2.4) and (3.10)then it holds for any & u" € V" and any(¢!, ¢b),
(@0, &) € YD x YN that

17 (&, UM = 117 (., Ul = (17 (@, & - 17 (&1, @B)uf)|
< L2+ k(Z))(e, ¢5) — (@, @Il — Tfll onTe, (3.11)

where max.Z1(x, £), F(x, £)}
_ . 1 _ 1(X, &), F2(X,
K(F) = feurtjv(x,f)llllf (&l = feur? min{.Z1(X, &), Zo(x, &)}
£eR? ¢eR?

Proof. Forx e T, uM,u" e VM and ¢4, ¢f). (&, &h) € Y! x Y! given, set

u = U9, U= U(),

¢ = (61, 62) = (£1(X). £5(X)), ¢ = (61, 92) = (£7(X). £5(X))
and define the functioh:=GoFoH :R > RwithH: R >R F:RZ2-5R2 G:RZ5 R
introduced as follows:

HD=¢+r1(@-¢). reR.

(F1(X &1, £2), FoX, &1, &2)) (f €1,62 >0,
(F1(x, £1,0), Fo(x,£1,0))  ifé>0> &,

(Z1(x,0,&2), #2(%,0,£))  if&>0> ¢,
(ﬁl(x, 0’ O), fg.Z(X’ O’ 0)) if 0 > é:l, é:Z,

G(é1,£2) = |IDiaglén, &)Ul - [IDiagiér, &ull, (61, £2) € R2

Obviously,h is Lipschitz continuous iR and the left-hand side of (3.11) at the poin¢quals
|h(1) — h(0)|. From the Lebourg mean-value theorem it follows that theister € (0, 1) such
that

F(é1,£2) := (F1(é1,é2), Fa(é1,£2) =

h(1) - h(0) € oh(r),

whereoh denotes the Clarke sulftéirential ofh (see [20]). So it sfiices to estimat®| for any
6 € oh(r) and anyr € (0, 1) fixed.

Due to the continuous fierentiability ofH atr andG at F(H(r)), Chain Rule Il for the
Clarke subdfterentialoh and the chain rule fo8(G o F) viewed as the generalized Jacobian
imply that

Ah(r) c (VH(r))"a(G o F)(H(r)),
(G o F)(H(r) = (OF (H(r)))TVG(F(H(r)))
11



so thaty € oh(r) is of the form
0 = (VH(r))"Z"VG(F (H(r)))

for somezZ = (3 22) € OF(H(r)).
Suppose first that, u # 0. If it is so then

_((@1- 91711 + (62 — ¢2)212
(VH)'2" = ((¢1 - ¢1)Z21+ (¢2 - ¢2)222)’

Diag{é1, &2)u - Diagi¢, {o}u Diaglés, &2)u - Diagida, {2)u
IDiagié1, &4ull IDiagiéy, &3ull

(41, 02)VG(£1, &) =

and consequently, _
_Fu-Su Fu-Su

IFUl— [IFull
with
F:= Diag{Fl(gZ-r_r(q) - (;)), Fz(_¢7+ r(¢ - f;))_} B
S := Diag{(¢1 — ¢1)Z11 + (92 — $2)Z12, (P1 — $1)Z21 + (2 — ¢2)Z22).
Clearly,

|0|<‘FJ-S(J—U) FU-Su FU-Su ‘F(J—u)-Su

bl ¥ > =S+ S+ S
lIFull (IFull IFull lIFull ‘

In virtue of the inequalityjul| < |[F~2||l|Full and the fact that botR andS are diagonal matrices,
one has

IF T IS - W] _
<= V< u—ul,
e 1SI1T = ull
(Fa- Su)(IFull - [IFGI)| _ IFGIISIulIFu — FayjiF-Y _
9= ] ol < i < (Z) Sl — @l
EET QI (7)
S(u-u)- Fu‘ _
%= ‘7 < ISI11T - ull.
IFul

Furthermore, letz denote the-th row vector ofZ. Then| z|| < L because; € dFi(H(r)) and
the Lipschitz modulus of; is less or equal th by (3.10). Thus,

ISl = maxi(é1 — ¢1)21 + (62 = $2)Zal) < maA|zillig - 4l < Liig - gl
Combining the previous estimates we get:
161 < L2 + <(F))llgp - @llllu — 0l (3.12)
To complete the assertion, let= 0 # U. In this case,
Fu-Su _ e
= |——=—| < u-0l<Lj¢- u-ul,
0= || < 15T 0 < Lig - T ui

i.e. (3.12) holds as well and so it is far="0. O
12



Proposition 3.1. Let(2.4)and(3.10)be satisfied. For any RR, > 0, Wy is Lipschitz continu-
ous in%(Ry, Ry):

AC1,Co> 0 [Phu(eh, €5, g) — Phr(@l, @5, G )llynseynserr
ma)({<g\maxC , I—(2+K(§))

VA 7 JheH

CoRo (Y, 5. 9) — (@1, 2B, G lIvmenst

¥ (1, 05,97, (@1, ¢5.9") € € (R Ro).  (3.13)
Proof. For (¥, ¢}, a"), (&), @3, ") € €(Ri,Ry) denote by ¢", A1), (", ') the solutions to
(///hH(goE,dz‘, g™) and (Zhn(eh, €h. ™)), respectively. Inserting” := u" € K" andv" :=
uM e K" into (Zhn(ell, 5. g)) and (Znu(¢h, ¢b, g™)), respectively, we have:
a(u”, @ — u") + j(el. 5. g™ U) — (e, 5. g uf) > £(@ - uM),
a(t", u" - ") + (&1, 5. " uf) — j(el. ©5. ™. ) > e(u" - M.
Summing both inequalities and using (2.6) we arrive at

afu - "z,
<au"-u" u"-u"

< j(eh 5. 000 - (el b o u) + (@l . 0 u) - (e . gL )

= (0" 117 (1, DU = 17 (@, )l r, — @, 117 (R, TN = 177 (1, @),

(@ - g N7 (L D)W - 17 (L. D)o,

+ @ 17 (@ DT - 17 (&l U~ (17 (@ ZD T~ 17 (@ @DUID)or,

=5 +S. (3.14)

The first term can be estimated as follows:

17 (2, T — Z (2 DU, = 16" = 8 llor 1.7 (¢}, 5@ — WDllor

g"

st < llg" = gllor,

Z, _
< ZMX0-12c@)gH _ gH|l, plla" - WMo, (3.15)

- \/ﬁ nv

wherec!? is the norm of the trace mapping froHt(Q; R3) into L2(9Q; R3) andci(r?\’/‘l/z) is the
constant from the equivalence of the corresponding norrissifinite-dimensional spadé':

H ~H —h h
< Fmadlg” — 0 llor U™ = ulor,

(0-1/2)

o, < "‘Vﬁnu”u*,h vt et (3.16)

Further, from the previous lemma,
s2 < L2+ k(PNIG M o[ 11661 ¢5) = @1 el = Tl o,
< L2+ k(PNIGM lor U = Tlocor (], ©3) — (@0, &Dllor.-

Due to the equivalence of norms¥# x Y x Y, namely:

(c0)
C'
¥ Mowor, € — |l Mloar, Yy e YPx YN x ¥ (3.17)

hr,
vhr. 13




with an appropriate:i(:f,) > 0, and the continuity of the trace mapping fra#t(Q; R®) into
L4(4Q; R3), whose norm is denoted Iz, one obtains:

U = WMo, < Muu“ - Wl
hr,
Using (3.16) once again, we get:
(0.-1/2) c0-1/2)
Ig™llor, < '”“Wué”n*,h < m Re,
making use of the definition &' (R, Ry). Therefore
< BTN 012 Ry 6 ) - @ Elor I - Plao. (3.18)

hr H inv inv

c

The inequality (3.14) together with (3.15) and (3.18) imitigt
d@max

L(2 + k(%))

JhrH

Fmaxx L2+ «k(F))

h_h < oH _ o
U = Ul < Callg” = g llen +

CaRall(¢, ¢5) — (@1, @D)lor,

< max e = CoRo (Y, 5. 9) = (@1, &5, G lIvmernser
with
(0.-1/2)(2)
~ ~ C
Gy 1= Ci( V2, ), a) =

(0,-1/2) (=0) ~(4)
Cinv Cinv Cir

o= e 2. ) i

inv ?

Following the steps in (3.9) one can see that

h h —h =h 2 1,0 h —h
QR PRl ) = (ralTR L rla? Dllor, < ¢2(c2cre + DU - Wly0.

Finally, the Lagrange multipliers are treated similarlyrathe proof of Lemma 3.3. The relations

a(u, V") = (") — (A Vor, YV e VD,
a(@, V") = ") - (A, V)or, YV e VY

give
A = Wor, = a@ - " V) vV e VD,
AR H A QH
”/l,':l _ /?V-l”*h = sup ( v v V)O,Fc < ( v v V)O,Fc
O#vhevh IVl OVIEV) V10
a(aM — un, v

h _ —h
= Sup — o < Miju” — ULq.
O;tvhevg || ||1,Q

14



Thus, setting

C1 = Cu(cy 2, 0, 6, 6, 0, M, @) 1= (G (e crce + 1) + M)C,

inv
. 0,-1/2 1,0 & 2 4 . 2 1,0 R
Cy = Co(c% 2, 2, . ., P, o, ¢, M, ) 1= (cP(herci + 1) + M)C,

nv nv

we have:

||‘PhH(QD?_, ‘Pg, gH) —Phu (‘752’ ‘1;'21’ gH)”YhXYhXLH

= (rhlul L, rlul 1) = (nlTR ], ralT Do, + 145 — AL
< (P, + 1) + MU - Tl
VH hr,H

CZRZ}“(QD?_, ‘10'21’ gH) - (‘;2, ‘;2’ gH)”YhXYhXLH .

Choosingr; andR; from Lemma 3.3, we obtain the following uniqueness result.

Theorem 3.2. Let (2.4)and (3.10) be satisfied and#max and L be sgficiently small. Then the
solution of our problem in the sense of Definition 3.1 is urigtn addition, it is the limit of the
sequence generated the method of successive approximations

Let (¢} ¢h g% € YN x Y x A!! be given;

fork=0,1,... set
hkil hkel Hkely ._ hk  hk ~Hky.
(()01 " > Po " ’gH k+1) = ‘{IhH((pl > ¥o ’gH k)'
for any choice of¢°, 1%, g"0) € YN x Y x AH.

Proof. ConsiderR; and R, given by Lemma 3.3. In view of (3.13h4 is contractive in
€ (R, R) for #max andL suficiently small. The assertion now follows from the Banachdixe
point theorem. O

So far, we have assumed that the partitié@%and %‘:‘ are fixed and the constarcq%’l/ 2,

O ) andg, may eventually depend dmandH. In what follows, we present fficient

inv ’ ~inv
conditions under which these constants do not depend onélsh morms. To this end we shall

consider systems of partitior{lsgh} and{ﬂr':} for h, H — 0+. We shall suppose that:

Q) {Z{‘l_ } and{ﬁr':}, h,H — 0+, are regular systems of partitionsflac which satisfy the
so-called inverse assumption ([21, (3.2.28)]);

(i) the Babuska-Brezzi condition is satisfied fof'(LH):

H
A>0: sup " Wor,

e s B, Ve e L"Vh H - 0+,
oenevn IVl

where||.||..r, is the dual norm inX/ (recall that the duality pairing betweey and X/ is
realized by the?(I';)-scalar product in our case):

"™, ©)or,

I lr, = sup ———=
oex,  lellx,
15
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(iii) the interpolation operatoy, is such that; in (3.3) does not depend dn..
From (i) it is readily seen that
Bl < el < lr, Y € LTVHH — 0+,

which means that the mesh-dependent nitin, can be replaced by the dual noiffi..r, in

all the previous estimates. In addition, takinpifito account, the constants from the inverse
inequalities (3.7), (3.16) and (3.17) are independemhi-giH (see [21]). For this reason, neither
Ri, Ry from Lemma 3.3, no€4, C, from Proposition 3.1 depend dn, H.

Remark3.4. Let (i)—(iii ) hold andk(.#) be bounded. To guarantee the uniqueness of the discrete
solutions forh, H — 0+, the parameters/nax andL have to decay at least as fast g8l and
+/hr H, respectively.

Notice that if.#; coincides with%;, i.e. k(%) = 1, orthotropic friction reduces to isotropic
one. The latter model has been studied already in [22], wsteonger condition on the decay
of L was derived, namell ~ hr, VH. On the other hand i does not depend am i.e. L = 0,
the classical result from [4] is recovered.

Let us briefly comment on the satisfaction of the BabuSkezBircondition in {f). It is shown
in [23] that it is satisfied for (FE1) ik = | = 1. In the case of (FE2)ii] is satisfied provided that
the ratioH/h is suficiently large and the auxiliary linear elasticity problem:

Findw, €V such that
aw,,V) = {u, V), YveV
is regular in the following sense: there exists 0 such that for every € X, N H=Y/2*4(T";), the
solutionw, € V belongs taH*¢(Q; R®) and
W, [l1+e0 < C(E)lull-1/2+6.r,

holds with a constart(e) depending solely on (see [18]).

Finally, let us refer to an example of the interpolation @perr;, satisfying (3.2) and (3.3)
with the constant; independent ohr,. To this end, lef; be polygonal and. N T, be either
empty or a union of non-degenerate segments, i.e. congaimnisolated points. Moreover,
let {,?Qh‘F }, h = 0+, be a regular system of triangulationsIaf such that any two triangles

from 99*‘# are either disjoint, or have a vertex or a whole side in comnibwe still suppose
T'c

that{ﬂgh} is compatible with the decomposition 8€ into I'y, I', andI'c then we can take the
following Cléement interpolation operator [24] (with= 1)*:

Let {X'}ie1, be the set of all contact nodes &', i.e. the nodes o7 lying on T \ T, and
{¢iticl, be the corresponding Courant basisv8f For each ¢ I, denote the support @f by Al
and definer; : L2(A1) — Po(A') by

(mip)(X) = #@(Ai) fAi eds, xeAl, gel?QA). (3.19)

Thenry, is defined as follows:
e = ) (o) (X)gi, ¢ € LT,

iele

1n fact, the approximation property (3.3) is shown in [243@wing that eitheFe N Ty = 0 or the whole relative
boundary of’¢ belongs td",. However, the same argumentation is valid also for the cassidered here.
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4. Numerical experiments

In our numerical experiments we shall consider an elastatyopic and homogeneous ma-
terial characterized by Young’'s modullis = 21.19e10 [Pa] and Poisson’s ratio = 0.277
(steel). The initial configuration is represented®y= (0, 3) x (0, 1) x (0, 1) (in [m]) with 'y, =
{0}x(0,1)x(0,1),T'c = (0,3)x(0,1)x{0}, andl'y = [ UT'5 UL, wherel'y = {3}x(0,1)x(0, 1),

I3 = (0,3)x (0,1) x {1} andT = (0,3) x {0,1} x (0,1). The density of surface tractions is
prescribed as follows:

p=(pL0,pl) only, p=(0,0p3 onl2, p=(0,00) onl3,

wherepl = 1e7 [Pa],p! = 2e7 [Pa] angy? = —3e7 [Pa] (see Figure 2).

T3
T2 L Te S

Ty

Figure 2: Geometry.

The volume forces are neglected. The diagonal ma#isepresenting the cdigcients of friction
is independent of the spatial variabl&(x, &) 1= F (&), & = (£1,£2). We consider the following
form of its diagonal element&, .%>:

3‘\1(5) = ¢par1(§l) and 92(5) = ¢par2(§2)a

where
03 if £ <10°5;
0.1par; .
boar () = 103- 2 _10%) if £ e (105, 105+ p%n) :
0.2 if £ > 105+ 2

par;

for j = 1,2, i.e., each cdicient depends only on one component of the tangential dispiant.
We will consider two diferent values ofpar;, namely 2e4 and 6e4 (see Figure 3). Finally,
the principal axes of orthotropic friction andt, in (2.2) aret; = (1,0,0) andt; = (0, 1,0),
respectively.

The partitiorrfg is constructed in two steps: Firs@, is cut into Jgiy X Ngiv X Ngiv cubesngiy
even. Secondly, each of these cubes is divided into fivehetia. With suclﬁ'g we associate
the dual partitiorV}': as shown in Figure 4(a). The fine lines and the black dots septehe tri-

angulatiorn7 th— and its nodes, respectively, while the "chessboard” withghnesR comprised
I'c
of eight triangles belonging 1‘6&_ constitutes the dual partiticﬁrH. The finite element spaces
Tc ¢

VN, LM consist of piecewise linear (vector) functions ‘ﬁ“g and piecewise constant functions
overT, rHC respectively.
17



—par; = 2e4
——pary = 6ed
03 ¢pari (4) ]
0.25F q
02} \
0.15 ‘1 >

Figure 3: Coéicients of friction.

(a) Partition‘Tlfi. (b) Numbering of nodes.

Figure 4:
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Our computations are based on the method of successivexappatmons mentioned in The-
orem 3.2. To evaluate the mappign at !, 5, g") € Y" x Y x Al one has to solve
problem (///hH(go*l‘, <p2, g™). This is a non-smooth problem due to the presence of the non
differentiable frictional ternj. To regularize it, we introduce another Lagrange multiplie-
stead of (///hH(gv*l‘, 902, g™)) we shall use in our computations the following three-filgldnula-
tion:

Find ", 2", 1) € VP x AT x AP (¢}, ¢, gM') such that
a(u, V") = 6 - (A, VDo, — (A, Vo, YV e VP, (4.1)
(' = A Wor, + G’ = A wor, <OV (il ') € AT X AT (6. 3. 97)

with
1 .
He h o h AHY _ [ H H\2 -1¢.h hy, H H H
AP 05, 0") = fu e (L) 'Himeas(R‘) fRif (¢ Dt dsl < g VR € Z),

where.ZY(¢h, o)) stands for the inverse of (¢!, ¢). For the approximation of the integrals
in the definition ofA}! (cp?, 902, g") we use the quadrature formula which is exact for continuous
piecewise-linear functions ovéfglw (for numbering of nodes see Figure 4(b)):

_ meas(R _ - - S . . -
fw T o ds = %(45%‘ A B + ) FHEAK), B0 ()
=2
' (4.2)
foranyR e 7.
Denoten = dimV", m = dimL" andp = the number of the contact nodes'bg. Then the
algebraic counterpart of (4.1) reads as follows:

Find (U, 4,, &) € R® x R™ x A¢(¢1, @5, g) such that
Au=1-NT2,-T7A, (4.3)
(1, = A, NU)m + (it — A, TU)om < 0V (i, p1y) € RT X As(py, 92, 9),

wheregp,, ¢, € R?, g€ R are given and

Adpy1, @2, 9) = (1 € RPMIF @1, 02) (ezio1, e 2) 1P < @2, i = 1,...,m) (4.4)

with Ti_l denoting a (X 2)-diagonal matrix whose elements can be computed usinguhera-
ture formula (4.2) oR. Further (, )4 stands for the inner product 9, A € R¥>" s the sym-
metric, positive definite siness matrix] € R3 is the load vector, antll € R™3" T ¢ R2™3n
are the matrix representations of the linear mappifigs> VI, V' = V', V' € V", couplingu
with the dual variableg,, A;, respectively. Eliminatingi from (4.3), we obtain the so-called
reciprocal variational formulatiorof the problem:

(A, &) = argminS(u,. pr) St. (. ) € RT X Aep1, 02, 9), (4.5)

where 1
Sy m) = 5 MTAD IS (TR TAD RIS (TAI TAD 1)
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andS = BA'BT, h = BA™l, B := (N7, T")". We arrive at the following implementation of
the method of successive approximations:

ALGORITHM 4.1 Let<p(10), <p(20) e R?, g©® e RT ande > 0 be given. Sek := 0.

; k: . ; K 3
(i) Solve @D, a%Y) := argminS(u,. p) s.t. @, i) € RT x Ao, 0¥, o).
(i) Solve Aut+D = | — NTAk+D _ 7T kD),
(i) Seterr® := (A%, 44D) — (AW, AL, D) 1F err® < g, returnu 1= ukD),
A, = AN g = D,
(iv) Setk:=k+1, assemblelg‘), ug‘) € RP (the contact tangential displacements in the direc-
tions oft; andty), p{ = U], e = Y], gk := AW, where the absolute values are
understood componentwisely, and go to step (i).

Let us mention thaty, is chosen to be the Lagrange interpolation operator for l&iihphere.
Nevertheless, it can be also seen as the Clément operatmnilii at the end of the previous
section when the integrals in (3.19) are approximated bypanagriate quadrature formula.

The total dficiency of our numerical approach depends on the algoritted irsstep (i). As
(4.5) is a strictly convex problem with the quadratic obijeetS subject to separable constraints
(simple bounds and quadratic inequality constraints), aresolve it by the KPRGP-algorithm
proposed and analyzed in [13, 14]. Note that this algorithia direct generalization of the one
in [25] for simple bound constraints. Its idea is based onlmioing conjugate gradient iterations
with gradient projections in an active set strategy. Untikehe isotropic case investigated in
[22] one has to compute projections onto the feasibléR§ex A«(ep;, ¢,, ). Due to the sepa-
rable structure of this set, each projection splits intejpehdent projections onf®! and onto
ellipses inR?. The second case requires to solve non-linear equationthéodewton method,
e.g.). As the projected point on the ellipse is uniquely deteed by its angle coordinate in the
polar representation, the respective equation contaisstiordinate as the only unknown [26].
Consequently, the increase of computational costs duetblégivton method is negligible.

Remark4.1 To increase thef@ciency of Algorithm 4.1, we initialize the KPRGP-algorithm
in the k-th iteration by the result of step (i) obtained in the prexgdteration (and by the zero
vectors, ifk = 0). Moreover, we choose the terminating toleraace= eﬁk) of the KPRGP-
algorithm suficiently accurate in order to achieve the terminating tolees for the method
of successive approximations. We use two strategies: €ajixled precision contro&ﬁk) =
(ror X €)|lh]] with 0 < ryg) < 1; (b) the adaptive precision contré'f) = min(r) X err &), crae x
eﬁk’l))||h|| With 0 < gy < 1, 0 < Craet < 1, err) = 1 andeg’l) = I'ol/Cract. While (a) makes
it possible to obtain the solution in a small number of outeedipoint iterations, (b) leads to
a considerably moreflcient procedure with a small number of matrix-vector miitgtions.
Note that the KPRGP-algorithm is terminated, if the redugeatiient [13, 14] of the current
(inner) iterate is less or equal tﬁ).

The tables below show how our algorithm behaves féedent meshes andftérent coéi-
cients of friction. Table 1 summarizes experiments with and.%, given by parl = 6e4 and
par2 = 2e4, i.e.,.%1 = ¢eesa aNd.F, = ¢Poeq, respectively. In Table 2 the role oF; and.%,
is interchanged, i.e.#1 = ¢oeqand. %, = ¢ees Recall that B, 3m stands for the total number
of the primal and the dual variables, respectively. Furtteerdenotes the total number of the
fixed-point iterations and, stands for the number of actions &f* (via the backward substi-
tutions based on the pre-computed Cholesky factor). Simisestep is the most expensive part
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of the KPRGP-algorithmna expresses the total cost of computations. The first integéra
iter andna columns characterizes the fixed precision control (wigh= 0.1) while the second
integer characterizes the adaptive one (with= 0.1 andciact = 0.99). The initial approxima-
tion and the terminating tolerance for the method of sud¢eesgpproximations were chosen to
bee{) = ¢ = g = 0ands = 1e-4, respectively.

Table 1:.%1 = ¢gesand.F2 = ¢oea Table 2:.%1 = ¢oeaand.F2 = ¢ges
[Nav | 3n [ 3m [ iter | Na | [Nav | 3n [ 3m [ iter | N |
4 900 36| 6|11 779 66 4 900 36 7119 720 | 413
6 2646 81| 8| 18 | 1091 | 319 6 2646 81 8|21 849 | 366
8 5832 | 144 | 8 | 24 | 1131 | 477 8 5832 | 144 81| 23 860 | 429
10 | 10890 225 | 8 | 20 | 1134 | 323 10 | 10890 | 225 8 | 27 911 | 479
12 | 18252 | 324 | 8 | 25 | 1127 | 629 12 | 18252 | 324 8| 23 974 | 575
14 | 28350 | 441 | 9 | 24 | 1077 | 461 14 | 28350 | 441 8| 18 977 | 293
16 | 41616 | 576 | 9 | 29 | 1088 | 672 16 | 41616 | 576 | 10 | 20 | 1044 | 332

From the tables one can conclude that the total complexityedisas the behavior of Algo-
rithm 4.1 depend on the way how the (inner) KPRGP-algorithtetiminated. If the inner termi-
nating toIerancegk) is fixed and proportional to the final precisiern all fixed-point iterations
(strategy (a) of Remark 4.1) then the numhiégs andn, are similar for allng,. On the other
hand, the inexact solving of the inner subproblems (styafby of Remark 4.1) exhibits some
oscillations in the values dfer andn, with respect tag;y. In this cases/({k) is adaptive and pro-
portional only to the current precisiamr &b or, if the progress is not $licient, to the improved
inner toIerancegk’l) from the previous step. This strategy ensures that the KR&Edtithm
performs as few steps as possible, but the number of outel-figet iterations increases. A
heuristic explanation for this increase is simple. One caégrpret several (usually three) outer
iterations of the strategy (b) as one iteration of the sgiate).

The results of our computations fagy, = 16 with %1 = ¢eeq and.F2 = ¢oeq are seen in
Figure 5. The distribution of the normal contact stresg() ~ —1'') and the weighted norm of
the tangential contact stregsX ~(|uy |, [u, o (Wl ~ 17,2 |, whereZ;t = .Z-2(ul], |ul)))
are depicted in Figure 5(a) and 5(b), respectively. All ashtind friction phenomena appear
onT¢ in our model problem, i.e., the slipping and sticking cohtames as well as the zone of
non-contact. Figure 5(c) shows the deformed body while feéidgi{d) enables us to check the
satisfaction of the friction conditions (2.2). The lengtifthe semi-axes of the ellipses in this
figure are determined by the values®f and.#; at the solution. The small lines inside represent
the tangential contact stress. Finally, Figure 5(e) angd€pict the distribution of#; and.#,
onTy, respectively.

5. Conclusions and comments

The first, theoretical part is the main contribution of thippr. It is devoted to the existence
and uniqueness analysis of solutions to discrete contatilgms with orthotropic friction and
codficients of friction depending on the magnitude of the tanigénbntact displacements. So-
lutions are defined as fixed points of a mapping acting on tiéact parts of the boundary. It
was shown that at least one solution exists for thefaments of friction represented by positive,
bounded and continuous functions. If, in addition, thesefions are Lipschitz continuous and
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Figure 5: (a) normal contact stress; (b) weighted norm otdhgential contact stresses; (c) deformed body; (d) contac
zonel'c; (e) distribution of.#1; (f) distribution of 7.
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suficiently small together with the respective modulus of Lipccontinuity then the solution
is unique. The mesh dependent bounds guaranteeing thisnpy@e derived. Such results are
important not only from the theoretical but also from thegbieal point of view. As a conse-
guence we obtain the justification of the method of successpproximations in which each
iterative step is given by a contact problem with orthotcopiesca friction. In the last section
we used this approach for numerical solving of a model prable
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