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On approximation of functions satisfying

defective renewal equations

C. Sangüesa

Abstract

Functions satisfying a defective renewal equation arise commonly in

applied probability models. Usually these functions don’t admit a explicit

expression. In this work we consider to approximate them by means of

a gamma-type operator given in terms of the Laplace transform of the

initial function. We investigate which conditions on the initial parameters

of the renewal equation give optimal order of uniform convergence in the

approximation. We apply our results to ruin probability in the classical

risk model, paying special attention to mixtures of gamma claim amounts.
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1 Introduction

For a given interval I ∈ IR, let C(I) be the class of continuous functions g :

I → IR. The aim of this paper is to study the approximation of a function

g ∈ C([0,∞)) in terms of its Laplace transform. To this end, we assume that

|g(u)| = O(eγu) as u→ ∞, for some γ ≥ 0. Then, the Laplace transform of g

g̃(t) :=

∫ ∞

0

e−tug(u)du , t > γ (1)

is well defined and infinitely differentiable. Moreover, we can approximate g in

terms of the derivatives of its Laplace transform. From now on, for a given func-

tion g, g(n) will denote its n-th derivative (g(0) := g). We define the following

operator

L∗
t g(u) =

(−t)[tu]+1

Γ([tu] + 1)
g̃([tu])(t) , u ≥ 0, t > γ (2)

where [u] indicates the largest integer less than or equal to u and Γ(· ) is the

gamma function. The approximation properties of (2), as t→ ∞, can be studied

taking into account that the previous formula admits the following representa-

tion (cf. [2, example (c), p. 92]). Let (S(t), t ≥ 0) be a collection of random

variables such that S(0) = 0 and, for each t > 0, S(t) is a gamma Γ(t, 1) random

variable. Recall that a gamma Γ(α, β) random variable has density given by

fα,β(u) :=
1

Γ(α)
βαuα−1e−βu, u ≥ 0 β > 0, α > 0. (3)

By differentiation under the integral sign in (1) it can be seen that

L∗
t g(u) = Eg

(
S([tu] + 1)

t

)
, u ≥ 0, t > γ (4)

A modification of the operator defined in (4) was used in [9] to approximate the

distribution function FX of a nonnegative random variable X by means of its

Laplace-Stieltjes transform, using that (4), when g = FX can be rewritten in

terms of a well-known inversion formula for this transform (in the beginning of
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Section 3.2. we explain this connection). By considering the inversion formula

(2) using the Laplace transform instead of the Laplace-Stieltjes transform, we

can therefore widen the class of functions under consideration, using, at the

same time the general convergence results given in [9]. The connection of both

inversion formulas through the same operator was considered also in [2]. Also,

it is interesting to point out that similar approximation formulas involving the

Laplace transform, have been used in the literature in order to obtain results

concerning characterizations of life distributions in reliability and shape prop-

erties of renewal functions (see [5] and the references therein). Moreover, in a

recent paper (cf. [6]), we can find interesting numerical comparisons for dif-

ferent inversion formulas involving the Laplace-Stieltjes transform of measures

concentrated on the positive semiaxis. It should be mentioned that (4), applied

to distribution functions, is the so-called Widder’s formula in [6] (in Section 3.2.

we give more details).

Remark 1.1 The well-known Post Widder’s inversion formula for Laplace trans-

forms, that is,

Wtg(u) =
(−1)t−1

(t− 1)!

(
t

u

)n

g̃(t−1)(t/u), u > 0, t ∈ N (5)

admits a similar probabilistic interpretation (cf. Feller [3, p.233]), as we have

Wtg(u) = Eg

(
uS(t)

t

)
u > 0, t ∈ N (6)

Observe the main differences of the inversion formula (2) with Post-Widder

inversion. In the first one, for t fixed, the order of differentiation increases with

u, whereas the point at which the Laplace transform is applied remains fixed. In

Post-Widder inversion, for t fixed, the order of differentiation is fixed, whereas

the point at which the Laplace transform is applied varies with u.

Our aim in this paper is to construct, as in [9] an accelerated approximation

to (2) and apply it to functions satisfying a defective renewal equation of the
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form:

m(u) = φ

∫ u

0

m(u− y)dF (y)dy + v(u), u ≥ 0, (7)

in which F is the distribution function of a nonnegative random variable with

F (0) = 0, φ is a parameter such that 0 < φ < 1 and v : [0,∞) → IR is a

locally bounded function. Many quantities of interest in applied probability

(ruin probability in insurance theory for instance) satisfy a defective renewal

equation. For specific references, along with the properties we are going to

mention below, see for instance [11, p.152]. It is known that there is a unique

locally bounded solution of (7). In fact, let F ∗n the n-th convolution of F with

itself (F 0 being the point mass at 0). Define G :=
∑∞

n=0(1 − φ)φnF ∗n. Then,

the above mentioned solution to (7) is given by

m(u) =
1

1− φ

∫

(0,u]

v(u− y)dG(y) + v(u), u ≥ 0. (8)

Only in very specific situations one can find an explicit solution to m using (8).

From now on, we will assume that F is absolutely continuous, having density

f , and therefore, (7) becomes

m(u) = φ

∫ u

0

m(u− y)f(y)dy + v(u), u ≥ 0, (9)

Note that in this case the Laplace transform of m can be written, using (9) as

m̃(t) =
ṽ(t)

1− φf̃(t)
(10)

and we can build the approximation L∗
tm defined in (2), in cases that m cannot

be computed in an explicit way.

The paper is organized as follows. In the next Section we introduce a modi-

fication of the operator defined in (2) improving the rate of approximation and

apply it to renewal functions, investigating conditions under which the rate of

uniform convergence is optimal. In Section 3 we consider a particular applica-

tion of or our results in the context of ruin theory in insurance risk models.
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2 The accelerated approximation. Application

to renewal functions

In order to improve the rate of approximation given by (2), we will consider,

in a similar way as in [9] the following accelerated approximation for a given

function g ∈ C([0,∞))

M
[2]
t g

(
k

t

)
=





g(0), if k = 0;

2L∗
2tg

(
2k − 1

2t

)
− L∗

t g

(
k − 1

t

)
if k = 1, 2, . . .

(11)

and for u > 0 such that u 6= k/t, k = 1, 2, . . . ,

M
[2]
t g(u) = (tu− [tu])M

[2]
t g

(
[tu] + 1

t

)
+ ([tu] + 1− tu)M

[2]
t g

(
[tu]

t

)
. (12)

M
[2]
t g improves the initial order of convergence of L∗

t g (at most 1/t) to 1/t2, for

suitable functions. In particular, in [9] a class of functions was studied under

which this order of convergence holds uniformly. We now introduce this class

of functions.

From now on we will denote by Cn([0,∞)) the subclass of functions in

C([0,∞)) having continuous n-th derivative on (0,∞). Also, for a given function

g : I → IR, ‖g‖ will denote its uniform norm, that is

‖g‖ := sup
u∈I

|g(u)|.

For a given subset A ⊂ I, we will use the notation ‖g‖A := supu∈A |g(u)|. We

introduce the following class of functions:

D1 := {g ∈ C4([0,∞)) : ‖g′′(u)‖ <∞ and ‖u2giv(u)‖ <∞}. (13)

Remark 2.2 For g ∈ D1 we have that ‖ug′′′(u)‖ ≤ ‖u2giv(u)‖ < ∞ (cf. [9,

p.571]). The quantity ‖ug′′′(u)‖ will also appear in our error bounds.
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The following result will play an important role from now on.

Theorem 2.1 ([9], p.571) Let g ∈ D1, with D1 as defined in (13) and let

M
[2]
t g, t > 0 be as defined in (11)-(12). We have

‖M
[2]
t g − g‖ ≤

1

8t2
‖g′′(u)‖+

1

6t2
‖ug′′′(u)‖+

9

16t2
‖u2giv(u)‖ <∞.

Remark 2.3 It would be interesting to compare the accelerated inversion for-

mula M
[2]
t g with a similar procedure for the Post-Widder inversion formula (5),

given by

G
[2]
t g(u) := 2W2tg(u)−Wtg(u).

Previous expression is the classical Stehfest enhancement of order two for the

PostWidder formula. A numerical comparison example between both accelerated

inversion formulas was given in [9, Example 2.1. p. 564]. The test function

considered was g(u) = 1 − (1 − p)e−pu, u ≥ 0, and the parameters taken were

p = 0.1 and t = 5. The advantage of this function is that both approximations

can be easily computed. The numerical performance of each method for different

values of u can be seen in [9, Table 2, p. 567], being M
[2]
t g more accurate,

specially for big values of u. Roughly speaking, the better accuracy of M
[2]
t g(u)

can be explained by the fact that the variability of the underlying random variable

defining L∗
t g(u) (recall (4)) has, for fixed t and u→ ∞, less variability than the

one defining the Post-Widder operator (recall (6)). On the other hand, the use

of M
[2]
t g instead of L∗

t g, improves substantially the numerical performance of

the approximation for values u close to the origin (as noticed in [6], Widder’s

formula has less precision for values u close to the origin). See [9, Example 2.1.

p. 564] for a more detailed discussion.

Our aim is to consider the renewal function given in (9) in order to obtain

conditions on F and v such that m ∈ D1 , with D1 as defined (13). In this case,
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by Theorem 2.1, M
[2]
t m, as defined in (11)-(12) has order of convergence 1/t2.

To this end, we need suitable expressions for the derivatives of m. From now

on, we will denote by Cn
0 ([0,∞)) to the subclass of functions in Cn([0,∞)) such

that lim
t↓0

g(k)(t) exists for all k = 0, 1, . . . n and is finite.

First of all we state a technical lemma in order to justify differentiation under

the integral sign in expressions similar to (9). This result will be systematically

used along the paper.

Lemma 2.1 Let c : (0,∞) → IR be a function satisfying

c(u) =

∫ u

0

a(u− z)b(z)dz, u > 0,

in which a ∈ C1
0 ([0,∞)) and b ∈ C((0,∞)) is such that

∫ u

0
|b(z)|dz <∞ for all

u > 0. Then c is differentiable for all u > 0 and verifies

c′(u) =

∫ u

0

a′(u− z)b(z)dz + a(0)b(u)

Proof. Consider u > 0, let 0 < δ < u and let 0 < |h| ≤ δ. To show the assertion

we will check that

lim
h→0

1

h

(∫ u+h

0

a(u+ h− z)b(z)dz −

∫ u

0

a(u− z)b(z)dz

)
=

∫ u

0

a′(u−z)b(z)dz+a(0)b(u)

Define a(u) = a′(0)u + a(0) if −δ ≤ u < 0 (in this way a(u) is continuously

differentiable on [−δ,∞)). Observe firstly that we can write

1

h

(∫ u+h

0

a(u+ h− z)b(z)dz −

∫ u

0

a(u− z)b(z)dz

)

=

∫ u

0

1

h
(a(u+ h− z)− a(u− z)) b(z)dz +

1

h

∫ u+h

u

a(u+ h− z)b(z)dz (14)

To deal with the first term, note that when h < 0 and z varies between 0 and

u, then u + h − z varies between h and u + h, thus taking negative values.

That is why we defined a on [−δ,∞). Notwithstanding, as a is differentiable on
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this interval, and −δ < h, we have always |h−1(a(u + h− z)− a(u− z))b(z)| ≤

‖a′‖[−δ,u+δ]|b(z)|. As the right-hand side is an integrable function, we can apply

dominated convergence theorem to write

lim
h→0

∫ u

0

1

h
(a(u+ h− z)− a(u − z)) b(z)dz =

∫ u

0

a′(u − z)b(z)dz (15)

As for the second term in (14), we can write

1

h

∫ u+h

u

a(u+h−z)b(z)dz =
1

h

∫ u+h

u

(a(u+h−z)−a(u−z))b(z)dz+
1

h

∫ u+h

u

a(u−z)b(z)dz

To deal with the first term we see that |h−1(a(u + h − z) − a(u − z))b(z)| ≤

‖a′‖[−δ,δ]‖b‖[u−δ,u+δ], so that the the first term converges to 0 as h → 0. As

clearly the second term converges to a(0)b(u), we conclude that

lim
h→0

1

h

∫ u+h

u

a(u+ h− z)b(z)dz = a(0)b(u) (16)

Therefore, (14)-(16) show our result. �

Remark 2.4 The integrability condition for b in Lemma 2.1 is authomatically

satisfied if b ∈ C([0,∞))

Next result gives conditions under whichm is differentiable, along with useful

expressions for its derivatives.

Proposition 2.1 Let m be the locally bounded solution of (9) with f the den-

sity function of an absolutely continuous nonnegative random variable Z with

distribution function F . Assume that F and v are in C2
0 ([0,∞)) We have that

m ∈ C2
0 ([0,∞)) and for all u > 0

m′(u) = φ

(∫ u

0

m(u− y)f ′(y)dy +m(u)f(0)

)
+ v′(u), (17)

m′′(u) = φ

(∫ u

0

m′(u− y)f ′(y)dy +m(0)f ′(u) +m′(u)f(0)

)
+ v′′(u). (18)

Moreover,

m(0) = v(0), m′(0) = φv(0)f(0) + v′(0), and (19)

m′′(0) = φ(v(0)f ′(0) +m′(0)f(0)) + v′′(0) (20)
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In addition, if we define the functions

w1(u) := φm(0)f(u) + v′(u) (21)

w2(u) := φm′(0)f(u) + w′
1(u). (22)

We have

m′(u) = φ

∫ u

0

m′(u− y)f(y)dy + w1(u), (23)

m′′(u) = φ

∫ u

0

m′′(u− y)f(y)dy + w2(u). (24)

Proof. First of all, from (9), the fact thatm is locally bounded and the continuity

of v we deduce that m is continuous on [0,∞). Also, the first equality in (19)

follows by (8. Secondly, making the change of variable z = u− y in the integral

contained in (9) we can write

m(u) = φ

∫ u

0

m(z)f(u− z)dz + v(u), u > 0,

Differentiating the previous expression (recall Lemma 2.1 and Remark 2.4), we

obtain

m′(u) = φ

(∫ u

0

m(z)f ′(u − z)dz +m(u)f(0)

)
+ v′(u), u > 0,

this shows that m is continuoslly differentiable on (0,∞). If we make now the

change of variable y = u − z in the previous expression we obtain (17). Also,

taking limits in this expression as u ↓ 0, we obtain

lim
u↓0

m′(u) = φm(0)f(0) + v′(0) = φv(0)f(0) + v′(0),

thus showing that m ∈ C1
0 ([0,∞)) and the second equality in (19). Now, (18)

follows by differentiation in (17), and (20) follows taking limits in (18) as u ↓ 0

Finally once it is shown that m ∈ C2
0 ([0,∞)), Lemma 2.1 and Remark 2.4

allow us to make a straightforward differentiation in (9) to obtain (23) and (24).

�
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In order to obtain bounds of the derivatives of m, the following technical

result will be useful.

Proposition 2.2 Let m2 be a function satisfying

m2(u) = φ

∫ u

0

m1(u− y)f1(y)dy + v1(u), u > 0, (25)

in which 0 < φ < 1, m1 and v1 are continuous functions on [0,∞) and f1 is a

continuous function on (0,∞). Let

Ii(f1) :=

∫ ∞

0

yi|f1|(y)dy, i = 0, 1, 2, . . . (26)

(a) If I0(f1) <∞, then

‖m2‖[0,x] ≤ φI0(f1)‖m1‖[0,x] + ‖v1‖, x > 0, (27)

(b) If Ii(f1) <∞, i = 0, 1 we have, for all x > 0

‖um2(u)‖[0,x] ≤ φ
(
I0(f1)‖um1(u)‖[0,x] + I1(f1)‖m1(u)‖[0,x]

)
+ ‖uv1(u)‖. (28)

(c) If Ii(f1) <∞, i = 0, 1, 2 then, for all x > 0

‖u2m2(u)‖[0,x] ≤ φ
(
I0(f1)‖u

2m1(u)‖[0,x] + 2I1(f1)‖um1(u)‖[0,x]

+I2(f1)‖m1‖[0,x]
)
+ ‖u2v1(u)‖. (29)

Proof. Part (a) is straightforward taking norms in (25). To prove (b) and

(c) we use that un = (u − y + y)n =
∑n

i=0

(
n
i

)
yi(u − y)n−i. Therefore, using

(25), we can write

unm2(u) = φ

n∑

i=0

(
n

i

)∫ u

0

(u− y)n−im1(u− y)yif1(y)dy + unv1(u)

from which we deduce easily

‖unm(u)‖[0,x] ≤ φ
n∑

i=0

(
n

i

)
‖un−im1(u)‖[0,x]

∫ ∞

0

yi|f1|(y)dy + ‖unv1(u)‖

9



Then, (b) and (c) follow easily from the previous expression applied to n = 1

and n = 2, respectively. �

Taking into account the previous result and using the expressions (23) and

(24), next result gives bounds for the weighted derivatives of m. Later on (in

Proposition 2.4) we will give sufficient conditions in order to ensure the finiteness

of these bounds.

Proposition 2.3 Let m be the locally bounded solution to (9) with f the density

function of an absolutely continuous nonnegative random variable Z, with distri-

bution function F and finite variance. Assume that F and v are in C2
0 ([0,∞)).

We have the following

(a) Let w1 be as defined in (21). We have

‖m′‖ ≤
‖w1‖

1− φ
(30)

‖um′(u)‖ ≤
φEZ‖m′‖+ ‖uw1(u)‖

1− φ
(31)

‖u2m′(u)‖ ≤
φ(2EZ‖um′(u)‖+ EZ2‖m′‖) + ‖u2w1(u)‖

1− φ
(32)

(b) Let w2 be as defined in (22). We have

‖m′′‖ ≤
‖w2‖

1− φ
(33)

‖um′′(u)‖ ≤
φEZ‖m′′‖+ ‖uw2(u)‖

1− φ
(34)

‖u2m′′(u)‖ ≤
φ(2EZ‖um′′(u)‖+ EZ2‖m′′‖+ ‖u2w2(u)‖

1− φ
(35)

Proof. To show the bounds in (a), we use (23) and apply Proposition 2.2, with

m2 = m1 = m′, v1 = w1 and f1 = f being a density function. Thus, I1(f) = 1

and using (27), we can write

‖m′‖[0,x] ≤ φ‖m′‖[0,x] + ‖w1‖, 0 < x <∞,

10



As by Proposition 2.1m′ is a continuous function on [0,∞), then ‖m′‖[0,x] <∞,

from which we deduce

(1 − φ)‖m′‖[0,x] ≤ ‖w1‖, 0 < x <∞,

Taking limits as x → ∞ in the previous expression, (30) holds true. (31) and

(32) are shown in a similar way, using (28) and (29), respectively, and taking

into account that Ii(f) = EZi, i = 1, 2. The proof of part (b) is similar, taking

into account (24) and applying Proposition 2.2, with m2 = m1 = m′′, v1 = w2

and f1 = f �

Our next task is to give conditions for m in order to ensure that m ∈ D1.

First of all, we state a technical lemma in order to simplify our hypothesis.

Lemma 2.2 We have

(a) Let v1 ∈ C([0,∞)). If ‖u2v1(u)‖ <∞, then ‖v1‖ <∞ and ‖uv1(u)‖ <∞.

(b) Let f1 ∈ C((0,∞)). Let Ii(f1) be as defined in (26). If Ii(f1) <∞, i = 0, 2,

then I1(f1) <∞.

Proof. To show part (a), let v1 ∈ C([0,∞). The continuity implies ‖v1‖[0,1] <

∞ and the result is immediate using the the following bound

‖uiv1(u)‖ ≤ ‖v1‖[0,1] + ‖u2v1(u)‖(1,∞) <∞ i = 0, 1

Part (b) is due to Cauchy-Schwartz’s inequality, as using that u|f1|(u) =

u|f1|
1/2(u)· |f1|

1/2(u)

I1(f1) =

∫ ∞

0

u|f1|(u)du ≤

(∫ ∞

0

u2|f1|(u)du

)1/2(∫ ∞

0

|f1|(u)du

)1/2

= (I2(f1)I0(f1))
1/2

�

Now we enunciate the main result of this section.
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Proposition 2.4 Let m be the locally bounded solution to (9) with f the den-

sity function of an absolutely continuous nonnegative random variable Z with

distribution function F . Assume that

1. Z has finite variance.

2. F and v are in C2
0 ([0,∞)).

3. f ′ and v′′ are in C2([0,∞)).

4. Ii(f
′′

) <∞, i = 0, 2, where Ii(· ) is defined in (26).

5. ‖u2wi(u)‖ < ∞, i = 1, 2, where w1, w2, are defined in (21) and (22),

respectively.

6. ‖u2w′′
i (u)‖ <∞, i = 1, 2.

Then we have:

If Condition 2 is satisfied and in addition ‖w2‖ <∞, then,

‖m′′‖ ≤
‖w2‖

1− φ
<∞ (36)

If Conditions 1-6 are satisfied, we have

‖u2m′′′(u)‖ ≤ φ
(
(I0(f

′′) + |f ′(0)|)‖u2m′(u)‖+ 2I1(f
′′)‖um′(u)‖+ I2(f

′′)‖m′‖
)

+ φf(0)‖u2m′′(u)‖+ ‖u2w′′
1 (u)‖ <∞ (37)

‖u2miv(u)‖ ≤ φ
(
(I0(f

′′) + |f ′(0)|)‖u2m′′(u)‖+ 2I1(f
′′)‖um′′(u)‖+ I2(f

′′)‖m′′‖
)

+ φf(0)‖u2m′′′(u)‖+ ‖u2w′′
2 (u)‖ <∞ (38)

Proof. Note firstly that (36) is obvious by Condition 2 and Proposition 2.3

(b). Secondly, note that Condition 2 allow us to apply Proposition 2.1. Our

starting point to prove (37)-(38) will be the expression for m′′ given in (18).

12



Moreover, as by condition 3 f ′ is differentiable, the integral appearing in this

expression can be rewritten, by means of an integration by parts as

∫ u

0

m′(u− y)f ′(y)dy =

∫ u

0

m(u− y)f ′′(y)dy −m(0)f ′(u) +m(u)f ′(0) (39)

Inserting (39) in (18) , we obtain

m′′(u) = φ

(∫ u

0

m(u− y)f ′′(y)dy +m(u)f ′(0) +m′(u)f(0)

)
+ v′′(u). (40)

We differentiate the previous expression (note that by Proposition 2.1 m ∈

C2
0 ([0,∞) and, by Conditions 3 and 4, b = f ′′ satisfies conditions of Lemma

2.1). Thus, we obtain for all u > 0

m′′′(u) = φ

(∫ u

0

m′(u − y)f ′′(y)dy +m(0)f ′′(u) +

2∑

i=1

m(i)(u)f (2−i)(0)

)
+ v′′′(u)

= φ

(∫ u

0

m′(u − y)f ′′(y)dy +

2∑

i=1

m(i)(u)f (2−i)(0)

)
+ w′′

1 (u), (41)

where w1 is defined in (21). Thus (41) verifies (30) in Proposition 2.2, with

m2 = m′′′, m1 = m′, f1 = f ′′ and v1 = φ

2∑

i=1

m(i)(u)f (2−i)(0) + w′′
1 (u),

so that we deduce from Proposition 2.2 (c)

‖u2m′′′(u)‖ ≤ φ
(
I0(f

′′)‖u2m′(u)‖+ 2I1(f
′′)‖um′(u)‖+ I2(f

′′)‖m′‖
)

+ φ

2∑

i=1

|f (2−i)(0)|‖u2m(i)(u)‖+ ‖u2w′′
1 (u)‖

and the first inequality in (37) follows easily from the previous bound. To show

(38) we use Lemma 2.1 to differentiate (41), thus obtaining

miv(u) = φ

(∫ u

0

m′′(u− y)f ′′(y)dy +m′(0)f ′′(u) +

2∑

i=1

m(i+1)(u)f (2−i)(0)

)
+ w′′′

1 (u)

= φ

(∫ u

0

m′′(u− y)f ′′(y)dy +

2∑

i=1

m(i+1)(u)f (2−i)(0)

)
+ w′′

2 (u), (42)

where w2 is defined in (22). Then, as (42) verifies (30) in Proposition 2.2, with

m2 = miv, m1 = m′′, f1 = f ′′ and v1 = φ
2∑

i=1

m(i+1)(u)f (2−i)(0) + w′′
2 (u),
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we obtain from Proposition 2.2 (c)

‖u2miv(u)‖ ≤ φ
(
I0(f

′′)‖u2m′′(u)‖+ 2I1(f
′′)‖um′′(u)‖ + I2(f

′′)‖m′′‖
)

+ φ

2∑

i=1

|f (2−i)(0)|‖u2m(i+1)(u)‖+ ‖u2w′′
2 (u)‖,

thus showing the first inequality in (38) To show the finiteness of (37) and (38),

we will prove that

Conditions 1,2 and 5 ⇒ ‖ujwi(u)‖ <∞, i = 1, 2, j = 0, 1, 2

⇒ ‖ujm(i)(u)‖ <∞, i = 1, 2, j = 0, 1, 2. (43)

To show (43), let i = 1, 2 be fixed. Condition 2 implies that wi ∈ C[0,∞).

Thus, by condition 5 and Lemma 2.2 (a) we have the first implication in (43).

For the second implication we use condition 1 and apply Proposition 2.3 (a) for

i = 1, whereas for i = 2 we apply Proposition 2.3 (b).

Now, note that

Condition 4 ⇒ Ii(f
′′) <∞, i = 1, 2, 3 (44)

which is immediate by Lemma 2.2 (b). Thus, using (43), (44) and Condition

6 we show the finiteness of (37). Similarly, the finiteness of the bound in (38)

follows using (43), (44), (37) and Condition 6. This completes the proof of

Proposition 2.4 �

As an immediate consequence of Proposition 2.4 and Theorem 2.1 we have

the following.

Corollary 2.1 Let m be the locally bounded solution to (9) with f the den-

sity function of an absolutely continuous nonnegative random variable Z with

distribution function F . If conditions 1-6 in Proposition 2.4 are satisfied then

m ∈ D1, with D1 as defined in (13). Therefore, the approximation M
[2]
t m, t > 0,

14



as defined in (11)-(12) verifies

‖M
[2]
t m−m‖ ≤

1

8t2
‖m′′(u)‖+

1

6t2
‖um′′′(u)‖+

9

16t2
‖u2miv(u)‖ <∞.

3 Application: Approximations for ruin proba-

bilities

In this section we will apply the results given in the previous one to ruin proba-

bilities in the classical risk model, which are a well-known example for functions

satisfying a defective renewal equation. First of all we recall how the classical

risk model is defined (see [4, Ch. 4] or [7, Ch.5.3], for instance). We con-

sider an insurance company in which insurance claims follow a Poisson process

(N(t), t ≥ 0) with intensity λ > 0. On the other hand, the individual claim

amounts (Xi)i∈N∗ are identically distributed and positive random variables with

finite mean, independent on (N(t), t ≥ 0) . Suppose that the initial capital of

the insurance company is U(0) := u ≥ 0 and it receives premiums at a constant

rate c. In this setting, the probability of eventual ruin ψ(u) is the probability

that the wealth of the company is ever negative, i.e.

ψ(u) = P


inf

t≥0


u+ ct−

N(t)∑

i=0

Xi


 < 0


 , u ≥ 0, (45)

Call µ := EX1, and assume that µ > 0. The condition for no sure ruin is

φ :=
λµ

c
< 1 (46)

We will assume this condition from now on. Usually the ruin function cannot be

evaluated in an explicit way. However, it is well-known that the ruin function

satisfies a defective renewal equation (cf. [4, p. 105], for instance). In fact, let

FX be the distribution function of the claim amounts, and F̄X := 1 − FX . We

15



have

ψ(u) = φ

(∫ u

0

ψ(u − y)
F̄X(y)

µ
dy +

∫ ∞

u

F̄X(y)

µ
dy

)
, u ≥ 0. (47)

and therefore (9) holds true for the ruin probability, with

F ′(u) = f(u) =
F̄X(u)

µ
and v(u) := φ

∫ ∞

u

f(y)dy = φ(1 − F (u)) (48)

Note that f is a well-defined density corresponding to the so-called equilibrium

distribution of X (cf. [11, p. 14]). The rest of the section is divided in two

parts. In the first one we will check that if the claim amounts are mixtures

of gamma random variables with shape parameter α ≥ 1 (and arbitrary scale

parameter), then Ψ ∈ D1, so that Corollary 2.1 holds true. In the second part,

we will give a method to compute M
[2]
t Ψ, paying special attention to mixtures

of gamma claim amounts.

3.1 Conditions for optimal order of convergence in the ap-

proximated ruin probability. Applications to mixtures

of gamma claim amounts

Our first result gives sufficient conditions in order that Ψ ∈ D1. As an immediate

consequence we will obtain sufficient conditions for mixtures of gamma claim

amounts.

Proposition 3.5 Consider the classical risk model, where the claim amounts

X have distribution FX . Assume that FX ∈ C3[0,∞) and

a) X has finite third moment

b) F ′
X verifies that lim

u↓0
F ′
X(u) exists and is finite.

c) Ii(F
′′
X) =

∫∞

0
ui|F ′′

X(u)|du <∞, i = 0, 2

d) ‖u2F̄X(u)‖ <∞, and ‖u2F
(i)
X (u)‖ <∞, i = 1, 2, 3

16



Then, the associated functions F and v for the ruin probability Ψ, as given in

(48) satisfy conditions 1-6 in Proposition 2.4

Proof. We will consider the renewal equation for the ruin function as given

in (47) and (48) and check all the conditions in Proposition 2.4.

Condition 1. Let Z be the random variable whose distribution is F , as given

in (48). To show that Z has finite variance, we note that an integration by

parts shows us that EZ2 = EX3/(3EX) (cf [11, p.15]) so, that if a) is satisfied,

Condition 1 holds true.

To check the rest of conditions, taking into account (48), the functions for

the renewal equation and their respective derivatives are

F ′(u) = f(u) =
F̄X(u)

µ
, and F ′′(u) = f ′(u) =

−F ′
X(u)

µ

v(u) = φ(1− F (u)), v′(u) = φ
−F̄X(u)

µ
and v′′(u) = φ

F ′
X(u)

µ
(49)

Condition 2. Taking into account (49) it is immediate that if b) holds true, then

F and v are in C2
0 ([0,∞)).

Condition 3. Taking into account (49), both F ′′ and v′′ are in C2[0,∞), as

F ′
X ∈ C2[0,∞).

Condition 4. We need to chack that Ii(f
′′) <∞, i = 0, 2. This follows from c),

as f ′′ = −F ′′
X/µ.

To show Conditions 5-6 we recall (21) and use (49) and (19) to write

w1(u) = φv(0)f(u) + v′(u) = −φ(1 − φ)
F̄X(u)

µ
(50)

Now we recall (22) and use (49) and (50) to write

w2(u) = φψ′(0)f(u) + w′
1(u) = φψ′(0)

F̄X(u)

µ
+ φ(1− φ)

F ′
X(u)

µ
(51)

Recalling (19) and using (49) we have that

ψ′(0) = φf(0)v(0) + v′(0) = −
φ(1− φ)F̄X(0)

µ

17



and using the previous equality, (51) and (50) we can write

w2(u) =
φF̄X(0)

µ
w1(u) + φ(1− φ)

F ′
X (u)

µ
. (52)

Condition 5. We need to show that ‖u2wi(u)‖ < ∞, i = 1, 2. Taking into

account d), we have that ‖u2F̄X(u)‖ < ∞, which implies, recalling (50), that

‖u2w1(u)‖ < ∞. Using the previous bound, (52) and the fact that, by d),

‖u2F ′
X(u)‖ <∞, we have that ‖u2w2(u)‖ <∞

Condition 6. We need to show that ‖u2w′′
i (u)‖ < ∞, i = 1, 2. This follows

easily by (50), (52) and d), as

‖u2w′′
1 (u)‖ =

φ(1 − φ)

µ
‖u2F ′′

X(u)‖ <∞

‖u2w′′
2 (u)‖ ≤

φF̄X(0)

µ
‖u2w′′

1 (u)‖+
φ(1− φ)

µ
‖u2F ′′′

X (u)‖ <∞

This completes the proof of Proposition 2.4 �

Corollary 3.2 Assume that, in the classical risk model, the claim amounts are

mixtures of gamma random variables Γ(αi, βi), with mixing weights (pi)
n
i=1, that

is

FX(u) =

n∑

i=1

piFαi,βi
(u), (53)

where Fαi,βi
are distributions having density fαi,βi

as defined in (3), pi > 0 and

p1+· · ·+pn = 1. Assume that αi ≥ 1, i = 1, . . . , n. Then, the ruin probability ψ

satisfies that ψ ∈ D1, with D1 as defined in (13). Therefore, the approximation

M
[2]
t ψ, t > 0, as defined in (11)-(12) has uniform order of convergence 1/t2,

that is

‖M
[2]
t ψ − ψ‖ ≤

1

8t2
‖ψ′′(u)‖+

1

6t2
‖uψ′′′(u)‖+

9

16t2
‖u2ψiv(u)‖ <∞.

Proof. To prove the result we will show that FX satisfies the conditions

of Proposition 3.5. Condition a) is obviously satified. To check the rest of
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conditions, we will use the following simplification. Denote by Fα := Fα,1, a

gamma distribution Γ(α, β = 1). Recall that a gamma distribution Γ(α, β), has

distribution function Fα,β(u) = Fα(βu). Therefore, we can write (53) as

FX(u) =
n∑

i=1

piFαi
(βiu), and F̄X(u) =

n∑

i=1

piF̄αi
(βiu)

and it is clear that if Fα, α ≥ 1 satisfies conditions b)-d) in Proposition 3.5, then

FX will also do. Then, we will check conditions b)-d) for Fα, with α ≥ 1. Note

firstly that Fα is infinitely differentiable on (0,∞). In particular, its density

F ′
α(u) =

1

Γ(α)
e−uuα−1, u ≥ 0. (54)

satisfies condition b) in Proposition 3.5, whenever α ≥ 1. For the rest of condi-

tions, note that

F ′′
α (u) =

1

Γ(α)
e−uuα−2(α− 1− u), u > 0, (55)

F ′′′
α (u) =

1

Γ(α)
e−uuα−3((α− 1)(α− 2)− 2(α− 1)u+ u2), u > 0. (56)

Observe that the previous equalities follow by differentiation in (54) for α > 1,

and are still valid for α = 1. To show condition c) in Proposition 3.5, note that

Ii(F
′′
α ) =

∫ ∞

0

ui|F ′′
α |(u)du ≤

(α− 1)

Γ(α)

∫ ∞

0

uie−uuα−2 +
1

Γ(α)

∫ ∞

0

uie−uuα−1

=
(α − 1)Γ(α− 1 + i)

Γ(α)
+

Γ(α+ i)

Γ(α)
<∞, i = 0, 2, α ≥ 1.

To show Condition d), note that it is clear from (54)-(56) that

lim
u→∞

u2F (i)
α (u) = 0, i = 1, 2, 3 (57)

and using L’Hopital’rule applied to u2F̄α(u), we can write

lim
u→∞

u2F̄α(u) = lim
u→∞

2u3F ′
α(u) = 0 (58)

From (57), (58) and the fact that F̄α and F ′
α are continuous and bounded at

the origin we obtain that ‖u2F̄α(u)‖ < ∞ and ‖u2F ′
α(u)‖ < ∞. To show that
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‖u2F
(i)
α (u)‖ <∞, i = 2, 3, we take into account (57) and note that

lim
u→0

u2F ′′
α (u) = 0, α ≥ 1,

lim
u→0

u2F ′′′
α (u), =

(α− 1)(α− 2)

Γ(α)
lim
u→0

uα−1 = 0, α ≥ 1.

Note that the last equality follows as, for α = 1, α− 1 = 0, whereas for α > 1,

limu→0 u
α−1 = 0. Thus conditions a)-d) in Proposition 2.4 are verified, and the

conclusion follows by Corollary 2.1 �

3.2 Numerical computation of the approximated ruin prob-

ability. Applications to mixtures of gamma claim amounts

In this Section we will give a method to compute the approximated ruin proba-

bility, using that non-ruin probability is the distribution function of a geometric

sum. Our approach is based on the following representation of L∗
t g, as defined

in (1), when g := FX is the distribution function of a nonnegative random vari-

able X . In this case, the approximation L∗
tFX can be rewritten in the following

terms (cf. [1]). Let φX(· ) be the Laplace-Stieltjes transform of X , that is

ΦX(t) := Ee−tX =

∫

[0,∞)

e−tudFX(u), t > 0.

We define a random variable X•t taking values on k/t, k ∈ N, and such that

P (X•t = k/t) =
(−t)k

k!
Φ

(k)
X (t), k ∈ N, (59)

Let (S(t), t ≥ 0) be a collection of gamma random variables Γ(t, 1), as consid-

ered in the Introduction. The following equality holds true (see [1]),

P (X•t ≤ u) =

[tu]∑

k=0

(−t)k

k!
φ
(k)
X (t) = EFX

(
S([tu] + 1)

t

)
, u ≥ 0, (60)

As mentioned in the Introduction, the first equality is the so-called Widder’s

formula in [6]. Let L∗
tFX be the approximation defined in (2). Recalling (4) we

see therefore that

L∗
tFX(u) =

(−t)[tu]+1

Γ([tu] + 1)
F̃X

([tu])
(t) = P (X•t ≤ u) (61)
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Thus, L∗
tF can be obtained either by straightforward differentiation using the

first equality or by computing the probability mass function of X•t (second

equality). Now, we will see the computational advantages of using the second

method to approximate ψ, the ruin probability in the classical risk model, as

defined in Section 3.1. To this end, denote by ψ̄ the non-ruin probability, that

is ψ̄ = 1− ψ. It is well-known (cf. [4, p.104], for instance) that

ψ̄(u) = P (

M∑

i=1

Li ≤ u) (62)

in whichM is a geometric random variable, with probability of ’succes’ p = 1−φ,

where φ is as in (46). That is, P (M = n) = p(1−p)n = (1−φ)φn, n = 0, 1, . . . ,

and (Li)i∈N∗ is a sequence of i.i.d. random variables, having density f as defined

in (48), and independent of M . Applying (61) to non-ruin probability and

taking into account that

(
M∑

i=1

Li

)•t

has the same distribution as
∑M

i=1 L
•t
i (see

[8, Proposition 2.1.]) we can write

L∗
t ψ̄(u) = P



(

M∑

i=1

Li

)•t

≤ u


 = P

(
M∑

i=1

L•t
i ≤ u

)
, u ≥ 0 (63)

and using the accelerated approximation M
[2]
t ψ̄ as defined in (11) we can write

M
[2]
t ψ̄

(
k

t

)
= 2P

(
M∑

i=1

L•2t
i ≤

2k − 1

2t

)
− P

(
M∑

i=1

L•t
i ≤

k − 1

t

)
, k = 1, 2, . . .

Therefore, we can approximate the ruin probability by evaluating the distribu-

tion function of a discrete compound geometric distribution. This allows us to

use well-known evaluating techniques for compound discrete distributions (Pan-

jer’s recursion, for instance, see [4, p.50])). Approximations for ruin probabilities

by means of the discretization of the summands in (62) have been proposed in

the literature (cf. [4, p.110]). Perhaps the most natural way to discretize a

random variable is to round it from below or from above. However, rounding

methods are difficult to apply when the distribution function of a random vari-

able cannot be given in an explicit way (consider a gamma random variable
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with a shape parameter being not a natural number, or its equilibrium distribu-

tion, for instance). The computational advantage of our method is that we can

evaluate the probability mass function of L•t
i , whenever the Laplace-Stieltjes

transform of the claim amounts is known. The expression for the discretized

record lows and their behaviour when dealing with mixtures, are collected in

the following.

Proposition 3.6 Consider a non-negative random variable X with distribution

function FX and Laplace-Stieltjes transform ΦX . Assume that X has finite

mean µ. Let L be a random variable having the equilibrium distribution of X,

that is whose density is given as

fL(u) =
F̄X(u)

µ
, u ≥ 0 (64)

We have the following.

(a) Let L•t the discretization given in (59). We have

P (L•t =
k

t
) =

1

tµ


1−

k∑

j=0

(−1)jtj

j!
Φ

(j)
X (t)




(b) Assume that FX is a mixure of random variables

FX = p1F1 + · · ·+ pnFn

where the mixing distribution functions (Fi)
n
i=1, have finite mean (µi)

n
i=1

and (pi)
n
i=1 are the mixing probabilities.

Let (Li)
n
i=1 be random variables having the equilibrium distribution of (Fi)

n
i=1.

Then L•t as given in (59) verifies

P (L•t =
k

t
) =

p1µ1

µ
P (L•t

1 =
k

t
) + · · ·+

pnµn

µ
P (L•t

n =
k

t
) (65)
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Proof. To show (a), we use an integration by parts to write

ΦL(t) =

∫

[0,∞)

e−tu F̄X(u)

µ
du =

1

tµ
(1− ΦX(t))

and therefore, applying Leibnitz’s differentiation rule, we can write

Φ
(k)
L (t) =

1

µ


(−1)kk!

tk+1
−

k∑

j=0

(
k

j

)
(−1)k−j(k − j)!

tk−j+1
Φ

(j)
X (t)




Thus, using (59), we can write

P (L•t =
k

t
) =

(−t)k

k!
Φ

(k)
L (t) =

1

tµ


1−

k∑

j=0

(−1)jtj

j!
Φ

(j)
X (t)




thus proving (a). To show (b), note that we can write

F̄X

µ
=
p1µ1

µ

F̄1

µ1
+ · · ·+

p1µ1

µ

F̄n

µn

and, taking into account the previous expression we have

ΦL(t) =

∫

[0,∞)

e−tu F̄X(u)

µ
du =

p1µ1

µ
ΦL1

(t) + · · ·+
pnµn

µ
ΦLn

(t)

Thus,

P (L•t =
k

t
) =

(−t)k

k!
Φ

(k)
L (t) =

(−t)k

k!

(
p1µ1

µ
Φ

(k)
L1

(t) + · · ·+
pnµn

µ
Φ

(k)
Ln

(t)

)

=
p1µ1

µ
P (L•t

1 =
k

t
) + · · ·+

pnµn

µ
P (L•t

n =
k

t
)

thus showing part (b) �

As an immediate application of the previous result, to mixtures of gamma

random variables, we have the following.

Corollary 3.3 Consider X a nonnegative random variable, let L be its equilib-

rium distribution as given in (64) and consider its discretization L•t as given in

(59). We have the following

(a) Assume that X is a gamma random variable Γ(α, β), that is, having density

as given in (3). Consider the cumulative distribution of a negative binomial
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random variable with α > 0 ’successes’ and probability of ’success’ ρ, that is

CDF.NB(k;α, ρ) =

k∑

j=0

(
α+ j − 1

j

)
(1− ρ)jρα, k = 0, 1, . . .

Then,

P (L•t =
k

t
) =

β

tα

(
1− CDF.NB

(
k;α, ρ =

β

t+ β

))
(66)

(b) Assume that X is a mixture of n gamma random variables, with mixing

weights (pi)
n
i=1, that is

FX = p1F1 + · · ·+ pnFn

in which each Fi has distribution Γ(αi, βi). Then,

P (L•t =
k

t
) =

n∑

i=1

pi

(
1− CDF.NB

(
k;αi,

βi
t+ βi

))

t

(
p1α1

β1
+ · · ·+

pnαn

βn

) (67)

Proof. To show (a) note that the Laplace-Stieltjes transform of a Γ(α, β)

random variable is

ΦX(t) =

(
β

t+ β

)α

and therefore,

Φ
(j)
X (t) = (−1)j

Γ(α + j)

Γ(α)

βα

(t+ β)α+j
= (−1)jj!

(
α+ j − 1

j

)
βα

(t+ β)α+j

Recalling that µ = α/β and applying Proposition 3.6 (a), we have

P (L•t =
k

t
) =

β

tα


1−

k∑

j=0

(
α+ j − 1

j

)(
t

t+ β

)j(
β

t+ β

)α

 , (68)

which shows (a). Part (b) is immediate by part (a) and Proposition 3.6 (b),

taking into account that µi = αi/βi. �

Remark 3.5 As shown in [1], when X is a gamma random variable Γ(α, β),

the weights of X•t, as defined in (59) correspond to the ones of a negative
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binomial random variable. From Corollary 3.3 (a) we deduce that the discretized

equilibrium distribution of a gamma Γ(α, β) random variable is constructed by

cumulative sum of the afore-mentioned weights.

Example 3.1. Approximation of ruin probabilities when the claim

amounts are mixtures of gamma distributions In this example we show

some numerical approximations of the ruin probabilites with the method de-

scribed above, by considering mixtures of gamma claim amounts. First of all

we describe the steps needed to build the approximation

1. Computation of P (L•t = k
t ) by the mixture formula given in (67). For fixed

t and fixed values of (pi)
n
i=1, (αi)

n
i=1 and (βi)

n
i=1, we need the probability

distribution of the corresponding negative binomials. In our case, we used

MATLAB to generate these values, for k = 0, 1, 2, . . .

2. Computation of L∗
t ψ̄, using (63). Note that this can be done using Panjer’s

recursion, a popular method for evaluating compound distributions. Panjer’s

recursion applied to the geometric sum given in (63) provides the following

recursive formula for evaluating the probability mass function of

M∑

i=1

L•t
i (cf.

[4, p. 50])

P

(
M∑

i=1

L•t
i =

k

t

)
=





1− φ

1− φP (L•t
i = 0)

, if k = 0;

φ




k∑

j=1

P

(
L•t =

j

t

)
P

(
M∑

i=1

L•t
i =

k − j

t

)


1− φP (L•t = 0)
, if k = 1, 2, . . . .

In our case we used an EXCEL worksheet to generate, for fixed t, and

the computations given in the previous step, the corresponding values of

L∗
t ψ̄(k/t).
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3. The final approximation for the non-ruin probability is

M
[2]
t ψ̄

(
k

t

)
= 2P

(
M∑

i=1

L•2t
i ≤

2k − 1

2t

)
− P

(
M∑

i=1

L•t
i ≤

k − 1

t

)

Note that this implies to repeat steps 1 and 2 for t (second term above) and

2t (first term above)

If the shape parameters (αi)
n
i=1 of the initial mixture of claim amounts are

chosen to be αi ≥ 1, i = 1, . . . , n, Corollary 3.2 ensures us a uniform order of

convergence of 1/t2 .

We give three numerical computational examples. For them we use φ = 0.9

and t = 5. Results are shown in Table 1

• First column provides us the approximation of non-ruin probability for

exponential claim amounts, having mean 1 that is, Γ(α = 1, β = 1). This

example can be used as a test, as exact non-ruin probabilities can be

computed in an exact way by the formula (cf. [4, p.93])

ψ̄(u) = 1− (1− p)e−pu, u ≥ 0,

where p = 1−φ, as above. Note that this function was the used in [9, Ex-

ample 2.1] for numerical computations (recall Remark 2.3), and provides,

with the given parameters, exact values up to four decimal places. With

respect to Column 1 in Table 1 the approximation is recalculated using

the Panjer’s recursion method described above, whereas in [9] the explicit

expression for M
[2]
5 ψ̄ was used.

• Second column provides us non-ruin probability for Gamma distributed

claim amounts Γ(α =
3

2
, 1). The interest of using the approximation

in this case is that, when α 6∈ N, there is no explicit expression for the

ruin probability. However, alternative approximate expressions can be

obtained by series expansions (see [10]).
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• Third column provides us non-ruin probability for claim amounts being

a mixture of the previous cases, with weights p1 = p2 = 1/2. We have

chosen the same scale parameter in both terms, to easen comparability,

but note that there is no computational problem in choosing different scale

parameters.

u =
k

5
Exponential claims Gamma α = 3/2 claims Mixture

1=
5

5
M

[2]
5 ψ̄(1) = 0.1856 M

[2]
5 ψ̄(1) = 0.1648 M

[2]
5 ψ̄(1) = 0.1726

5=
25

5
M

[2]
5 ψ̄(5) = 0.4538 M

[2]
5 ψ̄(5) = 0.3940 M

[2]
5 ψ̄(5) = 0.4159

10=
50

5
M

[2]
5 ψ̄(10) = 0.6677 M

[2]
5 ψ̄(10) = 0.5949 M

[2]
5 ψ̄(10) = 0.6225

15=
75

5
M

[2]
5 ψ̄(15) = 0.7975 M

[2]
5 ψ̄(15) = 0.7248 M

[2]
5 ψ̄(15) = 0.7560

20=
100

5
M

[2]
5 ψ̄(20) = 0.8766 M

[2]
5 ψ̄(20) = 0.8190 M

[2]
5 ψ̄(20) = 0.8423

30=
150

5
M

[2]
5 ψ̄(30) = 0.9553 M

[2]
5 ψ̄(30) = 0.9191 M

[2]
5 ψ̄(30) = 0.9341

40=
200

5
M

[2]
5 ψ̄(40) = 0.9854 M

[2]
5 ψ̄(40) = 0.9639 M

[2]
5 ψ̄(40) = 0.9725

Table 1: Approximation of non-ruin probability for different claim amounts
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