
ar
X

iv
:1

30
7.

43
02

v1
 [

m
at

h.
O

C
]

 1
5

Ju
l 2

01
3

Lipschitz gradients for global optimization

in a one-point-based partitioning scheme∗

Dmitri E. Kvasov†and Yaroslav D. Sergeyev‡

DEIS – University of Calabria,
Via P. Bucci 42C, 87036 – Rende (CS), Italy,

and
Software Department, N.I. Lobachevsky,
State University, Nizhni Novgorod, Russia

Abstract

A global optimization problem is studied where the objective func-
tion f(x) is a multidimensional black-box function and its gradient
f ′(x) satisfies the Lipschitz condition over a hyperinterval with an un-
known Lipschitz constant K. Different methods for solving this prob-
lem by using an a priori given estimate ofK, its adaptive estimates, and
adaptive estimates of local Lipschitz constants are known in the litera-
ture. Recently, the authors have proposed a one-dimensional algorithm
working with multiple estimates of the Lipschitz constant for f ′(x) (the
existence of such an algorithm was a challenge for 15 years). In this
paper, a new multidimensional geometric method evolving the ideas
of this one-dimensional scheme and using an efficient one-point-based
partitioning strategy is proposed. Numerical experiments executed
on 800 multidimensional test functions demonstrate quite a promising
performance in comparison with popular DIRECT-based methods.

Key Words: Global optimization, Lipschitz gradients, set of Lipschitz con-
stants, geometric algorithms.

MSC classes: 65K05, 90C26, 90C56.

∗This work was supported by the grants 1960.2012.9 and MK-3473.2010.1 awarded
by the President of the Russian Federation for supporting the leading research groups
and young researchers, respectively, as well as by the grant 11-01-00682-a awarded by
the Russian Foundation for Fundamental Research. The authors thank also the Italian
Inter-University Consortium for the Application of Super-Computing for Universities and
Research (CASPUR), project “Advanced techniques for global optimization: Numerical
methods and applications” in the framework of the “HPC Grant 2011 on GPU cluster”.

†kvadim@si.deis.unical.it
‡Corresponding author, yaro@si.deis.unical.it

1

http://arxiv.org/abs/1307.4302v1

1 Introduction

Global optimization is an important part of numerical analysis (see, e.g.,
[33, 43, 44, 46]). It considers problems derived from complex industrial
applications where the objective function f(x) to be minimized is defined
over a hyperinterval D ⊂ RN , N ≥ 1, and can be black-box, multiextremal,
and requiring high computational resources for its evaluation (see, e.g., [1,
5, 27, 28, 33, 34, 41, 43, 46]). Solving efficiently this type of problems is a
great challenge, since they present a high number of local minimizers (only
a few of which can be global ones), often with extremely different values,
and do not present a simple mathematical description of the global optima.

One of the natural and powerful (from both the theoretical and the
applied points of view) assumptions on these problems is that the objective
function has bounded slopes, i.e.,

|f(x′)− f(x′′)| ≤ L‖x′ − x′′‖, x′, x′′ ∈ D, 0 < L < ∞, (1)

where ‖ · ‖ denotes, usually, the Euclidean norm (other norms can be also
used, see, e.g., [12, 30]) and L is the (unknown) Lipschitz constant. In
this case, Lipschitz global optimization methods can be applied (see, e.g.,
[6, 17, 18, 34, 41, 43, 46] and the references given therein). They can be dis-
tinguished, for example, by the way in which information about the Lipschitz
constant is obtained and by the strategy of exploration of the admissible re-
gion.

In the literature, there exist at least four approaches to specify the
Lipschitz constant L from (1): (i) it can be given a priori (see, e.g., [7,
6, 17]); (ii) its global estimate over the whole domain can be used (see,
e.g., [18, 22, 34, 43]); (iii) local Lipschitz constants can be estimated (see,
e.g., [21, 41, 35, 43]); (iv) several estimates of L can be chosen from a set
of possible values (see, e.g., [9, 10, 16, 19, 26, 40, 41]). In their work global
optimization methods using multiple estimates of the Lipschitz constants
have proved to be particularly attractive for studying applied problems (see,
e.g., [4, 15, 16, 29, 32], other references can be found, e.g., in [23, 40]).

In exploring the multidimensional search domain, various adaptive par-
titioning strategies can be applied. For example, one-point-based algorithms
subsequently subdivide the search region in smaller ones and evaluate the
objective function at one point within each subregion (see, e.g., [8, 6, 10,
19, 38]). Partitions of the search domain into hyperintervals, based on eval-
uating the objective function at the two vertices corresponding to the main
diagonal of hyperintervals called diagonal partitioning strategies, can also be
successfully used (see, e.g.,[14, 21, 22, 34, 40, 41]). More complex partitions,
based on simplices, auxiliary functions of various nature, and so on, have
also been proposed (see, e.g., [18, 25, 45, 46]; many other references can be
found in [42]).

2

The choice of the regions to be partitioned is based on an information
about the objective function obtained during the search. It can be either
of the probabilistic type (e.g., Bayesian approach applying the theory of
random functions to a mathematical representation of available (certain
or uncertain) a priori information on the objective function behavior, see,
e.g., [20, 24, 28, 43, 46]), or of the deterministic one (e.g., geometric approach
making a use of different auxiliary functions to estimate the behavior of f(x)
over the search region, see, e.g., [2, 17, 18, 34, 41, 35, 36, 43, 46]).

In this paper, a particular class of the Lipschitz global optimization
problems is considered, namely, the class of problems with differentiable
objective functions having the Lipschitz gradients f ′(x), i.e.,

f∗ = f(x∗) = min
x∈D

f(x), (2)

‖f ′(x′)− f ′(x′′)‖ ≤ K‖x′ − x′′‖, x′, x′′ ∈ D, 0 < K < ∞, (3)

where
D = [a, b] = {x ∈ RN : a(j) ≤ x(j) ≤ b(j)}. (4)

It is supposed in this formulation that the objective function f(x) can

be black-box, multiextremal, its gradient f ′(x) =
(

∂f(x)
∂x(1) ,

∂f(x)
∂x(2) , . . . ,

∂f(x)
∂x(N)

)T

(which could be itself a costly multiextremal black-box vector-function) can
be calculated during the search, and f ′(x) is Lipschitz-continuous with some
fixed, but unknown, constant K, 0 < K < ∞, over D. These problems
are often encountered in engineering applications (see, e.g., [34, 41, 43]),
particularly, in electrical engineering optimization problems (see, e.g., [39,
41, 43]).

In the literature, several methods for solving this problem have been
proposed. They can be also distinguished, for instance, with respect to
the way the Lipschitz constant K is estimated in their work. There exist
algorithms using an a priori given estimate of K (see, e.g., [2, 3, 36]), its
adaptive estimates (see, e.g., [14, 41, 36]), and adaptive estimates of local
Lipschitz constants (see, e.g., [41, 36]). Algorithms working with a number
of Lipschitz constants for f ′(x) chosen from a set of possible values varying
from zero to infinity were not known till 2009 when such an algorithm for
solving the one-dimensional problem (2)–(4) has been proposed in [23]. Its
extension to the multidimensional case is not a trivial task in contrast to
the DIRECT method (see [19]) proposed in 1993 for solving problems with
the Lipschitz objective function.

The present paper solves this more than 15-year open problem of con-
structing multidimensional global optimization methods working with mul-
tiple estimates of the Lipschitz constants for f ′(x). A new multidimen-
sional geometric method for finding solutions to the problem (2)–(4) is intro-
duced and studied here. It uses a new one-point-based partitioning strategy

3

(see [41, 38]) and works with a number of estimates of the Lipschitz constant
K for f ′(x). Such multiple (from zero to infinity) estimates of K from (3)
are used to calculate the lower bounds of the objective function over the
hyperintervals of a current partition of the search domain and to produce
new trial points (i.e., points at which both the objective function f(x) and
its gradient f ′(x) are evaluated). In the framework of geometric algorithms,
this kind of estimating the Lipschitz constant can be interpreted as exam-
ination of all admissible minorant functions during the current iteration of
the algorithm without constructing a specific one. A particular attention
in the new algorithm is given to the improvement of the current minimal
function value (the so-called record value) in order to provide a faster con-
vergence to a global minimizer. As demonstrated by extensive numerical
experiments executed on 800 test functions from the differentiable GKLS
test classes (see [13]), the usage of gradients allows one to obtain, as ex-
pected, an acceleration in comparison with the DIRECT-based methods.

The paper is organized as follows. In Section 2, a theoretical background
of the new algorithm is presented. Section 3 is dedicated to the description
of the algorithm and to its convergence analysis. Finally, Section 4 contains
results of numerical experiments executed on 800 test functions.

2 Theoretical background

In this section, the main theoretical results, necessary for introducing the
new algorithm, are obtained. First, a new partitioning strategy developed
in the framework of the one-point-based partition approach is described.
The second part presents a technique for estimating the lower bounds of the
objective function over hyperintervals. The third part is dedicated to the in-
troduction of a procedure for determining nondominated hyperintervals, i.e.,
hyperintervals having the smallest lower bound for some particular estimate
of the Lipschitz constant for f ′(x). They are candidates for partitioning at
each iteration of the new method.

2.1 One-point-based partitioning strategy

In this section, a new efficient one-point-based partitioning scheme proposed
in [38] (see also [41]) is considered which is based on a diagonal partitioning
strategy from [41, 37]. In this scheme, the function f(x) and its gradient
f ′(x) are evaluated only at one vertex (either ai or bi) of the main diagonal of
each hyperinterval Di = [ai, bi] of the current partition independently of the
problem dimension (recall that performing each trial is a time-consuming
operation).

Let us start the description of this scheme with a two-dimensional ex-
ample shown in Fig. 1. In this Figure, partitions of the admissible region D
produced by the algorithm at several initial iterations are presented starting

4

Figure 1: An example of subdivisions by a new one-point-based partitioning
strategy

from the first trial at the point a (it is supposed here that a single iteration
consists of the subdivision of only one hyperinterval). Black dots repre-
sent the trial points and the numbers around these dots indicate iterations
at which these trial points have been generated. The terms ‘interval’ and
‘subinterval’ will be used to denote two-dimensional rectangular domains.

In Fig. 1a, the situation after the first two iterations is presented. Par-
ticularly, at the second iteration, the interval D is partitioned into three
subintervals of equal area (equal volume in a general case). This subdivi-
sion is performed by two lines (hyperplanes) orthogonal to the longest edge
of D (see Fig. 1a). The trial (evaluation of the objective function and, as we
propose in this paper, of its gradient) is performed only at the point denoted
by number 2.

Let us suppose that the interval shown in light grey in Fig. 1a is cho-
sen for the further partitioning. Thus, at the third iteration, three smaller
subintervals are generated (see Fig. 1b). As one can see from Fig. 1c, the
trial point of the fourth iteration coincides with the point 3 at which the

5

trial has already been executed. Therefore, there is no need to perform a
new (costly) evaluation of f(x) and f ′(x) at this point, since the values ob-
tained at the previous iteration can be used. These values can be stored
in a specially designed vertex database and is simply retrieved on demand
without re-evaluations of the functions. For example, Fig. 1d illustrates the
situation after 12 iterations. It can be seen from this figure that 23 intervals
have been generated by only 9 trial points.

Now we can describe the general scheme of a hyperinterval partitioning
by assuming (without loss of generality) that the search hyperinterval D
in (4) is an N -dimensional hypercube and the first trial is performed at the
vertex a (the scheme starting from the vertex b is obtained analogously).
Let a hyperinterval Dt = [at, bt] of a current partition {Dk} of D = [a, b] be
chosen for partitioning at an iteration k ≥ 1 of the algorithm. The operation
of partitioning the selected hyperinterval Dt is performed as follows.

Step 1. Determine points u and v by the following formulae

u = (a(1), . . . , a(i − 1), a(i) +
2

3
(b(i) − a(i)), a(i + 1), . . . , a(N)), (5)

v = (b(1), . . . , b(i− 1), b(i) +
2

3
(a(i) − b(i)), b(i + 1), . . . , b(N)), (6)

where a(j) = at(j), b(j) = bt(j), 1 ≤ j ≤ N , and i is given by the
equation

i = argmin max
1≤j≤N

|b(j) − a(j)|. (7)

Get (evaluate or read from the vertex database) the values of the
objective function f(x) and its gradient f ′(x) only at the point u.

Step 2. Divide the hyperinterval Dt into three hyperintervals of equal vol-
ume by two parallel hyperplanes that are perpendicular to the longest
edge i of Dt and pass through the points u and v.

The hyperinterval Dt is so substituted by three new hyperintervals
with indices t′ = t, m+1, and m+2 (where m = m(k) is the number
of hyperintervals at the beginning of the iteration k) determined by
the vertices of their main diagonals

at′ = am+2 = u, bt′ = bm+1 = v, (8)

am+1 = at, bm+1 = v, (9)

am+2 = u, bm+2 = bt. (10)

Augment the current number of hyperintervals m by 2.

6

From the partitioning scheme described above it can be observed that,
contrary to many traditional partitioning strategies (see, e.g., [8, 14, 19, 21,
34]), the condition

ai(j) < bi(j) ∀j : j = 1, . . . , N,

does not have to be satisfied for all hyperintervals Di ⊂ D, and their main
diagonals determined by the vertices ai and bi can be oriented in different
ways. However, as theoretically shown in [41, 37], the hyperintervals orien-
tations are not arbitrary and a special linking of hyperintervals generated
at different iterations can be established with some efforts.

This smart linking will allow us to store information about vertices and
the corresponding values of f(x) and f ′(x) in a special database, thereby
avoiding redundant functions evaluations. The objective function and its
gradient will be calculated at a vertex only once, stored in the database, and
read when required. The new partitioning strategy generates trial points in
such a regular way that one vertex where the functions are evaluated can
belong to several (up to 2N) hyperintervals (see, for example, a trial point
at the 8-th iteration in Fig. 1d). Therefore, the time-consuming operation
of the functions evaluations is replaced by a significantly faster operation of
reading (up to 2N times) the functions values from the database. In this way,
the new partitioning strategy considerably speeds up the search, especially
when problems of high dimensions are considered (see [22, 37, 38]).

Note also that the possibility to choose the sequence of trial points among
either the points ai or the points bi (or among other 2N − 2 vertices) of
hyperintervals Di (see Step 1 of the scheme) offers an important tool for
accelerating the global search when some additional information about the
objective function is known (we will see an example of this situation in
Section 4). Note the center-sampling partitioning strategies (see, e.g., [8,
10, 19]) do not have this property.

2.2 Lower bounding

Let us consider an iteration k ≥ 1 of the new algorithm and a current
partition {Dk} of the search hyperinterval D = [a, b] into hyperintervals
Di = [ai, bi], 1 ≤ i ≤ m(k); over these hyperintervals the values of both the
function and its gradient are obtained (evaluated or read from the vertex
database) at trial points xj(k) = ai, j(k) ≥ 1. In order to choose some
hyperintervals for the further partition, the goodness (expressed by the so-
called characteristic, see, e.g., [34, 41, 42, 43]) of the hyperintervals with
respect to the global search is estimated by the algorithm. Better is the
characteristic of a hyperinterval (in some predetermined sense), higher is
the possibility to find the global minimizer within this hyperinterval. This
hyperinterval is, therefore, a good candidate for a subdivision at the next
iteration of the algorithm.

7

An estimate of the lower bound of f(x) over a hyperinterval is one of the
possible characteristics of this hyperinterval. The following result holds.

Theorem 1 Let K̃ be an estimate of the Lipschitz constant K for f ′(x)
from (3), K̃ ≥ K and Di = [ai, bi] be a hyperinterval of a current partition
{Dk} with a trial point ai. Then, a value Ri(K̃) of the characteristic of Di

can be found such that it is the lower bound of f(x) over Di, i.e., Ri(K̃) ≤
f(x), x ∈ Di.

Proof 1 Let us prove the theorem in a constructive way. It is known (see,
e.g., [8, 30, 31]) that for a differentiable function f(x) over a hyperinterval
Di = [ai, bi] the following inequality is satisfied:

f(x) ≥ Q(x, K̃), x ∈ Di, (11)

where the quadratic minorant function Q(x, K̃) is defined over Di as

Q(x, K̃) = f(ai) + 〈f ′(ai), (x − ai)〉 − 0.5K̃‖x− ai‖2, x ∈ Di. (12)

Here 〈·, ·〉 is the scalar product, ‖ · ‖ is the Euclidean norm in RN , and

g(x) = f(ai)− 〈f ′(ai), (x − ai)〉

is the linear approximation of f(x) over Di.
From inequality (11) the following estimates can be obtained:

f(x) ≥ f(ai) + 〈f ′(ai), (x − ai)〉 − 0.5K̃‖bi − ai‖2 ≥

≥ Fi − 0.5K̃‖bi − ai‖2, x ∈ Di,

where Fi is the minimum value of the linear approximation g(x) over Di,
i.e.,

Fi = f(ai) + min
x∈Di

〈f ′(ai), (x− ai)〉. (13)

Since the function g(x) is linear, its minimum (13) is obtained in the ver-
tex zi of the hyperinterval Di = [ai, bi] which coordinates zi(j), j = 1, . . . , N ,
can be calculated as follows:

zi(j) =























ai(j), if either bi(j) > ai(j) and ∂f(ai)
∂x(j) ≥ 0,

or bi(j) < ai(j) and ∂f(ai)
∂x(j) < 0;

bi(j), if either bi(j) > ai(j) and ∂f(ai)
∂x(j) < 0,

or bi(j) < ai(j) and ∂f(ai)
∂x(j) ≥ 0.

(14)

The corresponding value Fi from (13) is therefore equal to

Fi = f(ai) + 〈f ′(ai), (zi − ai)〉. (15)

8

Figure 2: A quadratic minorant function Q(x, K̃) for f(x) over a hyperin-
terval Di = [ai, bi]

It is clear now that the value

Ri = Ri(K̃) = Fi − 0.5K̃‖bi − ai‖2 (16)

satisfies the inequality
Ri ≤ f(x), x ∈ Di,

and, therefore, it can be taken as the characteristic value of Di that estimates
the lower bound of f(x) over Di. The theorem has been proved.

Note that analogous results can be obtained in the case of hyperinter-
vals Di with trial points bi rather than ai.

In Fig. 2, a quadratic minorant function Q(x, K̃) from (12) is illustrated
for f(x) over a hyperinterval Di. Here, the characteristic value Ri coincides
with the minimum value of Q(x, K̃) obtained at the point bi of the main
diagonal of Di. In general, as it can be seen from (12), the value Ri is
smaller than or equal to the minimum value of Q(x, K̃) over Di.

2.3 Nondominated hyperintervals and their graphical repre-

sentation

By using the obtained characteristics of hyperintervals, the relation of dom-
ination can be established between every two hyperintervals of a current
partition {Dk} of D and a set of nondominated hyperintervals can be iden-
tified for a possible subdivision at the current iteration of the new algorithm
(see [23, 40]).

9

Figure 3: Graphical representation of hyperintervals

Definition 1 Given an estimate K̃ > 0 of the Lipschitz constant K from (3),
a hyperinterval Di = [ai, bi] dominates a hyperinterval Dj = [aj , bj] with re-
spect to K̃ if

Ri(K̃) < Rj(K̃).

Definition 2 A hyperinterval Dt = [at, bt] is said to be nondominated with
respect to K̃ > 0 if for the chosen value K̃ there is no other hyperinterval
in {Dk} which dominates Dt.

Let us now generalize the approach proposed by the authors in [23] for the
one-dimensional prototype and show that both a multi-dimensional interval
Di = [ai, bi] of a current partition {Dk} and the respective characteristic Ri

using the gradient can be represented in a two-dimensional diagram similar
to those proposed in [19, 40] for derivative free methods. Difficulties in the
construction of such a diagram were among the main reasons that prevented
people to propose methods using several estimates of K in their work.

So, we take for the dot, corresponding to Di, the vertical coordinate Fi

from (13)–(15) and the horizontal coordinate di equal to half of the squared
length of the main diagonal of Di, i.e.,

di = 0.5‖bi − ai‖2.

10

Figure 4: The two-dimensional diagram representing dominated (white dots)
and nondominated (black dots) hyperintervals of a current partition of the
search domain

For example, in Fig. 3, a partition of the search domain D consisting
of three hyperintervals is represented by the dots D1, D2, and D3. Let us
suppose that the Lipschitz constant K for the gradient f ′(x) is estimated
by K̃, K̃ ≥ K. The characteristic Ri of a hyperinterval Di, i = 1, 2, 3,
can be graphically obtained as the vertical coordinate of the intersection
point of the line passed through the point Di with the slope K̃ and the
vertical coordinate axis (see Fig. 3). It is easy to see, that with respect to
the estimate K̃ the hyperinterval D2 dominates both hyperintervals D1 and
D3 and the hyperinterval D3 dominates D1.

If a higher estimate K̄ > K̃ of the Lipschitz constantK is considered (see
Fig. 3), the hyperinterval D2 still dominates D1 with respect to K̄, because
R2(K̄) < R1(K̄). But D2 in its turn is dominated by the hyperinterval D3

with respect to K̄, because R2(K̄) > R3(K̄) (see Fig. 3).
Since the exact Lipschitz constant K for f ′(x) (or its valid overestimate)

is unknown in the stated problem, the following definition can be useful.

Definition 3 A hyperinterval Dt ∈ {Dk} is called nondominated if there
exists an estimate 0 < K̃ < ∞ of the Lipschitz constant K such that Dt is
nondominated with respect to K̃.

This means that nondominated hyperintervals are those with the small-
est characteristics (16) for some particular estimate of the Lipschitz constant
for the gradient f ′(x). For example, in Fig. 3 the hyperintervals D2 and D3

are nondominated.
It can be demonstrated following the reasoning used in [23, 40] that

nondominated hyperintervals (in the sense of Def. 3) are located on the

11

lower-right convex hull of the set of dots representing the hyperintervals of
the current partition of D and can be efficiently found by applying algorithm
for identifying the convex hull of the dots (see, e.g., [16, 19, 41]). In Fig. 4,
the hyperintervals represented by the dots D1 (the largest hyperinterval),
D3, D4, and D5 are nondominated hyperintervals.

It has been shown in [40] that the hyperintervals of a current partition
of D form several groups characterized by the length of their main diagonals.
The hyperintervals from a group are represented graphically by dots with
the same horizontal coordinate. For example, in Fig. 4 there are seven
different groups of hyperintervals with the horizontal coordinates equal to di,
i = 1, . . . , 7, and one empty group (with the horizontal coordinate between
d7 and d6 in Fig. 4). Empty groups correspond to hyperintervals which are
not present in the current partition but can be generated (or were generated)
at the successive (previous) iterations of the method.

As demonstrated in [40, 37], a correspondence between the length of
the main diagonal of a hyperinterval Di and a non-negative integer number
can be established, which indicates the number of subdivisions of the ini-
tial domain D necessary to obtain the hyperinterval Di. At each iteration
k ≥ 1 this number can be considered as an index s(k) of a group of equal
hyperintervals where

0 ≤ q∞(k) ≤ s(k) ≤ q0(k) < +∞ (17)

and q∞(k) and q0(k) are indices corresponding to the groups of the largest
and smallest hyperintervals of the current partition of D, respectively (for
example, in Fig. 4, q0(k) = q∞(k) + 7). During partitioning, diagonals of
hyperintervals become smaller, while the corresponding group indices grow
up consecutively starting from q∞(1) = 0 (see [40] for details).

Once a nondominated hyperinterval Dt = [at, bt] is determined (with re-
spect to some estimate K̃ of the Lipschitz constant K), it can be subdivided
at the next iteration of the algorithm if the following condition is satisfied:

Rt(K̃) ≤ fmin(k)− ξ, (18)

where Rt is calculated by (16), fmin(k) is the record value, i.e., the current
minimal function value (attained at the record point xmin(k)), and ξ is the
parameter of the algorithm, ξ ≥ 0 (it can be set in different ways, see
Section 4). Notice that both the record value and the record point can
be changed after performing some better trial during partitioning, but the
record value remains always greater than or equal to the vertical coordinate
of the lowest dot (dot D5 in Fig. 4).

Condition (18) prevents the algorithm from subdividing already well-
explored small hyperintervals. For example, among nondominated hyper-
intervals in Fig. 4 (black dots), the hyperinterval D5 does not satisfy this

12

condition and therefore is excluded from being partitioned at the next iter-
ation of the method.

It should be mentioned in this occasion that, together with nondomi-
nated hyperintervals, a hyperinterval Dmin(k) = [amin, bmin] containing the
record point (called hereafter the record hyperinterval) is also considered for
a possible partition during the work of the algorithm as it will be explained
in the next Section. Among different hyperintervals the record point xmin(k)
can belong to (up to 2N), the record hyperinterval is that with the smallest
characteristic and can be changed during subdivisions. In Fig. 4, the record
hyperinterval is represented by the dot Dmin (note that this dot can be not
the lowest one, as in Fig. 4). Hereafter, the index of the group the hyper-
interval Dmin(k) belongs to will be indicated as p(k) (during the work of
the algorithm the satisfaction of inequalities (17) is ensured for this index
which can be eventually updated together with q0(k) and q∞(k); see [40] for
details). In Fig. 4, p(k) = q0(k) and, therefore, the hyperinterval Dmin(k) is
among the smallest hyperintervals of the illustrated partition of D.

3 New Algorithm

In this Section, the new algorithm for solving problem (2)–(4) is described.
First, the new method is presented and its computational scheme is given,
then its convergence properties are analyzed.

The new algorithm consists of the following explicitly defined phases:
(1) an exploration phase, at which an examination of large hyperintervals
(possibly located far away from the record point) is performed in order to
capture new subregions with better function values; (2) a record improve-
ment phase, at which the algorithm tries to better inspect the subregion
around the record point. Several subdivisions of different hyperintervals
can be performed at a single iteration of the new method (this more gen-
eral notion of an iteration with respect to that of Section 2.1 is often used
in the Lipschitz global optimization algorithms with multiple estimates of
Lipschitz constants, see, e.g., [10, 19, 23, 40]).

The exploration phase consists of several iterations (namely, N+1 where
N is the problem dimension), each serves for determining nondominated hy-
perintervals and partitioning them. Since each subdivision of a hyperinterval
by the scheme (5)–(10) is performed perpendicularly to only one side of the
hyperinterval (to the longest side from (7)), the number of iterations within
a phase of the algorithm should be correlated with the hyperintervals di-
mension.

This phase is interrupted after finishing an iteration if an improvement
on at least 1% of the minimal function value is reached, i.e., if

fmin(k) ≤ fprec
min − 0.01|fprec

min |, (19)

13

where fprec
min is the record value memorized at the start of the exploration

phase.
Condition (19) is verified after each iteration of the exploration phase

and is used to switch the algorithm to the record improvement phase. This
local phase is also launched when the exploration phase finishes without hav-
ing improved the record value, but only if the record hyperinterval Dmin(k)
is not the smallest one within the current partition of hyperintervals (for
example, in Fig. 4, the record hyperinterval is among the smallest hyper-
intervals). Otherwise, the algorithm re-initiates another global exploration
phase without forcing the local one.

The record improvement phase reflects the already well-established fact
in global optimization affirming the benefits of the record improvement dur-
ing the global search (see, e.g., the references given in [17, 23, 24, 41]). At a
single iteration, it performs several subdivisions (namely, N) of the record
hyperinterval trying to improve the record value. During this process a new
record value can appear. In this case, a new record hyperinterval can be
considered for remaining subdivisions.

The record hyperinterval subdivisions are performed by means of the one-
point-based strategy described in Section 2.1. Of course, other possible local
improvement techniques can be used for this scope (see, e.g., [11, 30, 31])
but in this case the resulting trial points can not be managed within the
vertex database mentioned in Section 2.1.

It is important that the available gradient information allows us to ter-
minate automatically the record improvement phase. In fact, the record
hyperinterval is not further subdivided when the gradient projection on the
directions parallel to the record hyperinterval sides becomes non-negative,
i.e., when the following condition is satisfied:

∂f(amin)

∂x(j)
(bmin(j) − amin(j)) ≥ 0 ∀j : j = 1, . . . , N. (20)

Either in this case or when the prefixed number N of subdivisions are
normally performed (without meeting conditions (20)), the algorithm is
switched again to the global exploration phase and continues its work.

The algorithm stops when the number of generated trial points reaches
the maximal allowed number Pmax. The satisfaction of this termination
criterion is verified after every subdivision of a hyperinterval. The current
record value fmin and the current record point xmin can be taken as ap-
proximations of the global minimum value f∗ and the global minimizer x∗

from (2), respectively.

A formal description of the new algorithm follows below (we assume
without loss of generality that the admissible region D = [a, b] in (4) is an
N -dimensional hypercube).

14

Step 0 (Initialization). Set the iteration counter k := 1. Let the first
evaluation of f(x) and f ′(x) be performed at the vertex a of the initial
hyperinterval D = [a, b], i.e., x1 := a. Set the current partition of the
search interval as D1 := {[a1, b1]}, where a1 = a, b1 = b, and the
current number of hyperintervals m(1) := 1. Set fmin(1) := f(x1),
xmin(1) := a, and Dmin(1) := [a1, b1]. Set group indices q∞(1) :=
q0(1) := p(1) := 0.

Suppose now that k ≥ 1 iterations of the algorithm have already been
executed. The next iterations of the algorithm consist of the following steps.

Step 1 (Exploration Phase). Memorize the current record fprec
min := fmin(k),

set the counter of iterations during the exploration phase kg := 1 and
perform the following steps:

Step 1.1. Identify the set of nondominated hyperintervals consider-
ing only groups of large hyperintervals (namely, those with the
current indices from q∞(k) up to ⌈(q∞(k)+ p(k))/2⌉). Subdivide
those nondominated hyperintervals which satisfy inequality (18)
and produce new trial points (or read the existing ones from the
vertex database) according to Section 2.1. Set k := k + 1 and
update hyperintervals indices if necessary (see [40] for details).

Step 1.2. If condition (19) is satisfied, then go to Step 2 and execute
the record improvement phase. Otherwise, go to Step 1.3.

Step 1.3. Increase the counter kg := kg + 1: check whether kg ≤ N .
If this is the case, then go to Step 1.1 (continue the exploration
of large hyperintervals). Otherwise, go to Step 1.4 (perform the
final iteration of the exploration phase by considering more hy-
perintervals groups).

Step 1.4. Identify the set of nondominated hyperintervals consider-
ing the current groups of hyperintervals from q∞(k) up to p(k).
Subdivide those nondominated hyperintervals which satisfy in-
equality (18) and produce new trial points (or read the existing
ones from the vertex database) according to Section 2.1. Set
k := k + 1, update all necessary indices.

Step 1.5. If the record hyperinterval is not the smallest one, i.e., if
p(k) < q0(k), then then go to Step 2 and execute the record
improvement phase. Otherwise, go to Step 1 and repeat the ex-
ploration phase updating the value fprec

min .

Step 2 (Record Improvement Phase). Set k := k + 1. Set the counter of
iterations during the record improvement phase kl := 1 and perform
the following steps:

15

Step 2.1. Subdivide the record hyperinterval Dmin(k) and produce a
new trial point (or read the existing one from the vertex database)
according to Section 2.1. Update hyperintervals indices and the
record hyperinterval index if necessary.

Step 2.2. Increase the counter kl := kl + 1: check whether kl ≤ N .
If this is the case, then go to Step 1 (perform a new exploration
of large hyperintervals). Otherwise, go to Step 2.1 (continue the
local exploration of the subregion near to the record point).

Let us now study convergence properties of the new method during min-
imization of the function f(x) from (2)–(4) when the maximal allowed num-
ber of generated trial points Pmax is equal to infinity. In this case, the
algorithm does not stop (the number of iterations k goes to infinity) and an
infinite sequence of trial points {xj(k)} is generated.

Definition 4 The convergence of an infinite sequence of trial points {xj(k)}
generated by a global optimization method is called everywhere dense if for
any point x ∈ D and any δ > 0 there exist an iteration number k(δ) ≥ 1
and a point x′ ∈ {xj(k)}, k > k(δ), such that ‖x− x′‖ < δ.

Theorem 2 The new algorithm manifests the everywhere dense conver-
gence.

Proof 2 Every subdivision of a hyperinterval by the partitioning scheme
from Section 2.1 produces three new hyperintervals with the same volume
equal to the third part of the volume of the subdivided hyperinterval and
smaller main diagonals. Trial points generated by the new algorithm are
at one of the vertices of each generated hyperinterval. Therefore, fixed a
positive value of δ, it is sufficient to demonstrate that after a finite number
of iterations k(δ), the largest hyperinterval of the current partition of the
search domain D will have the length of its main diagonal smaller than δ.
In this case, in δ-neighborhood of any point of D there will exist at least one
trial point generated by the algorithm.

Let us fix an iteration k′ of the method and consider the group q∞(k′)
of the largest hyperintervals of the partition {Dk′} on its two-dimensional
graphic representation. This group is always taken into account when non-
dominated hyperintervals are looked for at the exploration phase of the algo-
rithm. As it follows from Def. 3, a hyperinterval Dt ∈ {Dk′} from this group
with the corresponding smallest value Ft from (13)–(15), must be partitioned
and substituted by three smaller hyperintervals at the current iteration of the
algorithm because it is a nondominated hyperinterval and condition (18) is
satisfied for it.

Since each group consists of a finite number of hyperintervals, after
a sufficiently large number of iterations k > k′ all hyperintervals of the

16

group q∞(k) of the largest hyperintervals will be subdivided. The group in-
dex q∞(k) will increase and the same procedure will be repeated with a new
group of the largest hyperintervals, thus making the largest hyperintervals
smaller and smaller.

It can be also noted that the record hyperinterval Dmin is itself repre-
sented by a dot in the two-dimensional diagram of the current partition. It
can be subdivided either separately during the record improvement phase, or
as a nondominated hyperinterval during the exploration phase at which the
satisfaction of condition (20) is not taken in consideration.

Thus, there exists a finite number k(δ) such that after executing k(δ)
iterations of the algorithm the largest hyperinterval of the current partition
{Dk(δ)} will have the main diagonal smaller than δ.

To conclude the theoretical study of the new algorithm we would like to
highlight that the usage of all possible estimates of the Lipschitz constant
in its work leads to the convergence of the everywhere dense type. If the
Lipschitz constant L (or its valid estimate) of the objective function f(x)
or the Lipschitz constant K (or its valid estimate) of the gradient f ′(x) can
be used by a global optimization method, other types of convergence can be
established for such an algorithm (see, e.g., methods from [18, 34, 41, 42,
43]).

4 Numerical results

In this Section, we present numerical results performed to compare the new
algorithm with two methods belonging to the same class of the one-point-
base partitioning methods: the DIRECT algorithm from [19] and its locally-
biased modification DIRECTl from [10]. Both of them use the center-
sampling partitioning strategy and work with a set of Lipschitz constants for
the objective function f(x) from (2). The implementation of these two meth-
ods (downloadable from http://www4.ncsu.edu/~ctk/SOFTWARE/DIRECTv204.tar.gz)
has been used in all the experiments following the way of the multicriteria
comparison proposed in [40].

In order to make easier the numerical comparison with the DIRECT-
based algorithms, the value ξ from (18) was set as in the DIRECTmethod, i.e.,

ξ = ǫ|fmin(k)|, ǫ ≥ 0. (21)

The recommended value of ǫ = 10−4 (see [19, 40]) was used in (21).
In accordance with [40], the global minimizer x∗ ∈ D was considered to

be found when a method generated a trial point x′ inside a hyperinterval
with a vertex x∗ and the volume smaller than the volume of the initial
hyperinterval D = [a, b] multiplied by an accuracy coefficient ∆, 0 < ∆ ≤ 1,
i.e.,

|x′(i) − x∗(i)| ≤ N
√
∆(b(i) − a(i)), 1 ≤ i ≤ N, (22)

17

http://www4.ncsu.edu/~ctk/SOFTWARE/DIRECTv204.tar.gz

where N is from (4). The algorithm was stopped either when the maximal
number of trials Pmax equal to 1 000 000 was reached, or when condition (22)
was satisfied (see [40] for a discussion about different stopping criteria in
global optimization methods).

In our numerical experiments we used the same test classes, each of
100 continuously differentiable functions, produced by the GKLS-generator
(see [13]) as in [40]. Particularly, eight GKLS D-type classes of dimensions
N = 2, 3, 4, and 5 have been considered. For each particular problem dimen-
sion N a ‘simple’ and a ‘hard’ classes have been taken for the comparison
(see [40] for a detailed description of the classes).

For the convenience of the reader, we report here the four criteria in-
troduced in [40, 41] that were used to compare the methods. The following
designations are required:

Ps – the number of trials performed by the method under consideration
to solve the problem number s, 1 ≤ s ≤ 100, of a fixed test class.

ms – the number of hyperintervals generated to solve the problem s.

Criterion C1. Number of trials Ps∗ required for a method to satisfy
condition (22) for all 100 functions of a particular test class, i.e.,

Ps∗ = max
1≤s≤100

Ps, s∗ = arg max
1≤s≤100

Ps. (23)

Criterion C2. The corresponding number of hyperintervals, ms∗, gen-
erated by the method, where s∗ is from (23).

Criterion C3. Average number of trials Pavg performed by the method
during minimization of all 100 functions from a particular test class, i.e.,

Pavg =
1

100

100
∑

s=1

Ps. (24)

Criterion C4. Number p (number q) of functions from a class for which
DIRECT or DIRECTl executed less (more) function evaluations than the
new algorithm. If Ps is the number of trials performed by the new algorithm
and P ′

s is the corresponding number of trials performed by a competing
method, p and q are evaluated as follows

p =

100
∑

s=1

σ′
s, σ′

s =

{

1, P ′
s < Ps,

0, otherwise.
(25)

q =

100
∑

s=1

σs, σs =

{

1, Ps < P ′
s,

0, otherwise.
(26)

Results based on Criteria C1 and C2 are mainly influenced by minimiza-
tion of the most difficult functions of a class. Criteria C3 and C4 deal with

18

average data of a class. The number of generated hyperintervals (Crite-
rion C2) provides an important characteristic of any partition algorithm for
solving the problem (2)–(4). In some way, it corresponds to the qualitative
examination of the search domain D during the work of the method. The
greater is this number, the more information about the behavior of the ob-
jective function is available and, therefore, the smaller is the risk to miss
its global minimizer. Of course, algorithms should not generate many re-
dundant hyperintervals since this slows down the search and is therefore a
disadvantage of the method (see [40] for more details).

Results of numerical comparison of the methods with respect to Crite-
ria C1 and C2 with eight GKLS test classes are shown in Tables 1–3. The
accuracy coefficient ∆ from (22) is given in the second column of the tables.
Table 1 reports the maximal number of trials required for satisfying condi-
tion (22) for half of the functions of a particular class (columns “50%”) and
for all 100 function of the class (columns “100%”). The notation ‘> 1 000 000
(j)’ in Tables 1 and 3 means that after 1 000 000 function evaluations the
method under consideration was not able to solve j problems. Table 2
represents the ratio between the maximal number of trials performed by
DIRECT and DIRECTl with respect to the corresponding number of trials
performed by the new algorithm. The numbers of generated hyperintervals
(Criterion C2) are indicated in Table 3.

According to Tables 1 and 3, the new multidimensional algorithm re-
quires much fewer trials than the other two methods to ensure a thorough
examination of the search domain. Moreover, the advantage of the new
method becomes even more pronounced as the problem dimension grows or
the problem complexity increases.

In fact, on half of the test functions from each class (which were the
most simple for each method with respect to the other functions of the
class) the new algorithm already manifested a very good performance with
respect to DIRECT and DIRECTl in terms of the number of generated
trial points (see columns “50%” in Table 1). When all the functions were
taken in consideration (and, consequently, difficult functions of the class were
considered too), the number of trials produced by the new algorithm was
much fewer in comparison with two other methods (see columns “100%”
in Table 1), ensuring at the same time a substantial examination of the
admissible domain (see Table 3).

Note also that maximal number of trials equal to 88459 (see Table 1) re-
quired by the new method to solve all problems of the hard five-dimensional
class is obtained on the function 5 of this class. If we use the new method
with the one-point-based strategy starting from the point b rather than from
the point a (see Section 2.1), the number of trials required by the new algo-
rithm to solve this particular problem becomes equal to 15238. Thus, some
a priori knowledge on the objective function behavior can allow us to better
select the vertex of the initial hyperinterval D in which the first trial will be

19

Table 1: Number of trial points for GKLS test functions (Criterion C1).

N ∆ Class 50% 100%
DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 simple 111 152 59 1159 2318 335
2 10−4 hard 1062 1328 182 3201 3414 1075
3 10−6 simple 386 591 362 12507 13309 2043
3 10−6 hard 1749 1967 416 >1000000 (4) 29233 2352
4 10−6 simple 4805 7194 2574 >1000000 (4) 118744 16976
4 10−6 hard 16114 33147 3773 >1000000 (7) 287857 20866
5 10−7 simple 1660 9246 1757 >1000000 (1) 178217 16300
5 10−7 hard 55092 126304 13662 >1000000 (16) >1000000 (4) 88459

Table 2: Improvement obtained by the new algorithm in terms of Criterion
C1.

N ∆ Class DIRECT/New DIRECTl/New
2 10−4 simple 3.46 6.92
2 10−4 hard 2.98 3.18
3 10−6 simple 6.12 6.51
3 10−6 hard >425.17 12.43
4 10−6 simple >58.91 6.99
4 10−6 hard >47.92 13.80
5 10−7 simple >61.35 10.93
5 10−7 hard >11.30 >11.30

executed and, therefore, to accelerate the search even more.
Table 4 reports the average number of trials performed during minimiza-

tion of all 100 functions from the same GKLS classes (Criterion C3). The
“Improvement” columns in these tables represent the ratios between the av-
erage numbers of trials performed by DIRECT and DIRECTl with respect
to the corresponding numbers of trials performed by the new algorithm.
The symbol ‘>’ reflects the situation when not all functions of a class were
successfully minimized by the method under consideration in the sense of
condition (22). This means that the method stopped when Pmax trials had
been executed during minimization of several functions of this particular
test class. In these cases, the value of Pmax equal to 1 000 000 was used in
calculations of the average value in (24), providing in such a way a lower
estimate of the average. As can be seen from Table 4, the new method
outperforms DIRECT and DIRECTl also on Criterion C3.

Finally, results of comparison between the new algorithm and its two
competitors in terms of Criterion C4 are reported in Table 5. This table
shows how often the new algorithm was able to minimize each of 100 func-
tions of a class with a smaller number of trials with respect to DIRECT or
DIRECTl. The notation ‘p : q’ means that among 100 functions of a partic-

20

Table 3: Number of hyperintervals for GKLS test functions (Criterion C2).

N ∆ Class 50% 100%
DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 simple 111 152 185 1159 2318 1137
2 10−4 hard 1062 1328 607 3201 3414 3993
3 10−6 simple 386 591 1867 12507 13309 12149
3 10−6 hard 1749 1967 2061 >1000000 (4) 29233 14357
4 10−6 simple 4805 7194 21635 >1000000 (4) 118744 186295
4 10−6 hard 16114 33147 33173 >1000000 (7) 287857 223263
5 10−7 simple 1660 9246 19823 >1000000 (1) 178217 255059
5 10−7 hard 55092 126304 169413 >1000000 (16) >1000000 (4) 1592969

Table 4: Average number of trial points for GKLS test functions (Criterion
C3).

N ∆ Class DIRECT DIRECTl New Improvement
DIRECT/New DIRECTl/New

2 10−4 simple 198.89 292.79 97.22 2.06 3.01
2 10−4 hard 1063.78 1267.07 192.00 5.54 6.60
3 10−6 simple 1117.70 1785.73 491.28 2.28 3.63
3 10−6 hard >42322.65 4858.93 618.32 >68.45 7.86
4 10−6 simple >47282.89 18983.55 3675.84 >12.87 5.16
4 10−6 hard >95708.25 68754.02 5524.77 >17.32 12.44
5 10−7 simple >16057.46 16758.44 3759.05 >4.27 4.46
5 10−7 hard >217215.58 >269064.35 22189.47 >9.79 >12.13

ular test class there are p functions for which DIRECT (or DIRECTl) spent
fewer function trials than the new algorithm and q functions for which the
new algorithm generated fewer trial points with respect to DIRECT (or DI-
RECTl) (p and q are from (25) and (26), respectively). As a rule, the more
hard objective functions are presented in a test class, the more pronounced
becomes the advantage of the new algorithm on Criterion C4, as well.

As demonstrated by the results of the extensive numerical experiments
performed, the usage of the gradient information together with the efficient
partitioning strategy allows one to obtain a serious acceleration in compari-
son with the DIRECT-based methods on the studied classes of test problems.

References

[1] C. Audet, P. Hansen, and G. Savard (eds.), Essays and surveys in global
optimization, GERAD 25th Anniversary, Springer–Verlag, New York,
2005.

21

Table 5: Comparison between the new algorithm and DIRECT and DI-
RECTl in terms of Criterion C4.

N ∆ Class DIRECT :New DIRECTl : New
2 10−4 simple 28 : 72 21 : 79
2 10−4 hard 15 : 85 16 : 84
3 10−6 simple 36 : 64 30 : 70
3 10−6 hard 19 : 81 17 : 83
4 10−6 simple 39 : 61 25 : 75
4 10−6 hard 14 : 86 16 : 84
5 10−7 simple 55 : 45 17 : 83
5 10−7 hard 26 : 74 20 : 80

[2] W. Baritompa, Customizing methods for global optimization – A geo-
metric viewpoint, J. Global Optim. 3 (1993), no. 2, 193–212.

[3] L. Breiman and A. Cutler, A deterministic algorithm for global opti-
mization, Math. Program. 58 (1993), no. 1–3, 179–199.

[4] D. Di Serafino, G. Liuzzi, V. Piccialli, F. Riccio, and G. Toraldo, A
modified DIviding RECTangles algorithm for a problem in astrophysics,
J. Optim. Theory Appl. 151 (2011), no. 1, 175–190.

[5] L. Dumas, B. Druez, and N. Lecerf, A fully adaptive hybrid optimization
of aircraft engine blades, J. Comput. Appl. Math. 232 (2009), no. 1,
54–60.

[6] Yu. G. Evtushenko, Numerical optimization techniques, Translations
Series in Mathematics and Engineering, Springer–Verlag, Berlin, 1985.

[7] Yu. G. Evtushenko, V. U. Malkova, and A. A. Stanevichyus, Parallel
global optimization of functions of several variables, Comput. Math.
Math. Phys. 49 (2009), no. 2, 246–260.

[8] Yu. G. Evtushenko and M. A. Posypkin, An application of the nonuni-
form covering method to global optimization of mixed integer nonlinear
problems, Comput. Math. Math. Phys. 51 (2011), no. 8, 1286–1298.

[9] D. E. Finkel and C. T. Kelley, Additive scaling and the DIRECT algo-
rithm, J. Global Optim. 36 (2006), no. 4, 597–608.

[10] J. M. Gablonsky and C. T. Kelley, A locally-biased form of the DIRECT
algorithm, J. Global Optim. 21 (2001), no. 1, 27–37.

[11] M. Gaviano and D. Lera, A complexity analysis of local search algo-
rithms in global optimization, Optim. Methods Softw. 17 (2002), no. 1,
113–127.

22

[12] , A global minimization algorithm for Lipschitz functions, Op-
tim. Lett. 2 (2008), no. 1, 1–13.

[13] M. Gaviano, D. Lera, D. E. Kvasov, and Ya. D. Sergeyev, Algorithm
829: Software for generation of classes of test functions with known
local and global minima for global optimization, ACM Trans. Math.
Software 29 (2003), no. 4, 469–480.

[14] V. P. Gergel, A global optimization algorithm for multivariate function
with Lipschitzian first derivatives, J. Global Optim. 10 (1997), no. 3,
257–281.

[15] P. A. Graf, K. Kim, W. B. Jones, and L.-W. Wang, Surface passivation
optimization using DIRECT, J. Comput. Phys. 224 (2007), no. 2, 824–
835.

[16] J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, A. Verstak,
J. Jiang, K. Bae, and W. H. Tranter, Dynamic data structures for a
direct search algorithm, Comput. Optim. Appl. 23 (2002), no. 1, 5–25.

[17] R. Horst and P. M. Pardalos (eds.), Handbook of global optimization,
vol. 1, Kluwer Academic Publishers, Dordrecht, 1995.

[18] R. Horst and H. Tuy, Global optimization – deterministic approaches,
Springer–Verlag, Berlin, 1996.

[19] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, Lipschitzian op-
timization without the Lipschitz constant, J. Optim. Theory Appl. 79
(1993), no. 1, 157–181.

[20] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimiza-
tion of expensive black-box functions, J. Global Optim. 13 (1998), no. 4,
455–492.

[21] D. E. Kvasov, C. Pizzuti, and Ya. D. Sergeyev, Local tuning and par-
tition strategies for diagonal GO methods, Numer. Math. 94 (2003),
no. 1, 93–106.

[22] D. E. Kvasov and Ya. D. Sergeyev, Multidimensional global optimization
algorithm based on adaptive diagonal curves, Comput. Math. Math.
Phys. 43 (2003), no. 1, 42–59.

[23] , A univariate global search working with a set of Lipschitz con-
stants for the first derivative, Optim. Lett. 3 (2009), no. 2, 303–318.

[24] D. Lera and Ya. D. Sergeyev, An information global minimization al-
gorithm using the local improvement technique, J. Global Optim. 48
(2010), no. 1, 99–112.

23

[25] , Lipschitz and Hölder global optimization using space-filling
curves, Appl. Numer. Math. 60 (2010), no. 1–2, 115–129.

[26] G. Liuzzi, S. Lucidi, and V. Piccialli, A partition-based global optimiza-
tion algorithm, J. Global Optim. 48 (2010), no. 1, 113–128.

[27] C. Luo, S.-L. Zhang, C. Wang, and Z. Jiang, A metamodel-assisted
evolutionary algorithm for expensive optimization, J. Comput. Appl.
Math. 236 (2011), no. 5, 759–764.

[28] J. Mockus, A set of examples of global and discrete optimization: Ap-
plications of bayesian heuristic approach, Kluwer Academic Publishers,
Dordrecht, 2000.

[29] C. G. Moles, P. Mendes, and J. R. Banga, Parameter estimation in
biochemical pathways: A comparison of global optimization methods,
Genome Res. 13 (2003), no. 11, 2467–2474.

[30] Yu. Nesterov, Introductory lectures on convex optimization: A Basic
course, Kluwer Academic Publishers, Dordrecht, 2004.

[31] J. Nocedal and S. J. Wright, Numerical optimization, Springer–Verlag,
Dordrecht, 1999.

[32] T. D. Panning, L. T. Watson, N. A. Allen, K. C. Chen, C. A. Shaffer,
and J. J. Tyson, Deterministic parallel global parameter estimation for
a model of the budding yeast cell cycle, J. Global Optim. 40 (2008),
no. 4, 719–738.

[33] P. M. Pardalos, H. E. Romeijn, and H. Tuy, Recent developments and
trends in global optimization, J. Comput. Appl. Math. 124 (2000),
no. 1-2, 209–228.

[34] J. Pintér, Global optimization in action (continuous and lipschitz opti-
mization: Algorithms, implementations and applications), Kluwer Aca-
demic Publishers, Dordrecht, 1996.

[35] Ya. D. Sergeyev, An information global optimization algorithm with
local tuning, SIAM J. Optim. 5 (1995), no. 4, 858–870.

[36] , Global one-dimensional optimization using smooth auxiliary
functions, Math. Program. 81 (1998), no. 1, 127–146.

[37] , An efficient strategy for adaptive partition of N -dimensional
intervals in the framework of diagonal algorithms, J. Optim. Theory
Appl. 107 (2000), no. 1, 145–168.

24

[38] , Efficient partition of N -dimensional intervals in the frame-
work of one-point-based algorithms, J. Optim. Theory Appl. 124 (2005),
no. 2, 503–510.

[39] Ya. D. Sergeyev, P. Daponte, D. Grimaldi, and A. Molinaro, Two
methods for solving optimization problems arising in electronic mea-
surements and electrical engineering, SIAM J. Optim. 10 (1999), no. 1,
1–21.

[40] Ya. D. Sergeyev and D. E. Kvasov, Global search based on efficient
diagonal partitions and a set of Lipschitz constants, SIAM J. Optim.
16 (2006), no. 3, 910–937.

[41] , Diagonal global optimization methods, FizMatLit, Moscow,
2008, In Russian.

[42] Ya. D. Sergeyev and D. E. Kvasov, Lipschitz global optimization, Wiley
Encyclopedia of Operations Research and Management Science (J. J.
Cochran, ed.), vol. 4, Wiley, New York, 2011, pp. 2812–2828.

[43] R. G. Strongin and Ya. D. Sergeyev, Global optimization with non-
convex constraints: Sequential and parallel algorithms, Kluwer Aca-
demic Publishers, Dordrecht, 2000.

[44] D. Trigiante (ed.), Recent trends in numerical analysis, Nova Science
Publishers, Inc., New York, 2000.

[45] Y. Wu, L. Ozdamar, and A. Kumar, TRIOPT: A triangulation-based
partitioning algorithm for global optimization, J. Comput. Appl. Math.
177 (2005), no. 1, 35–53.

[46] A. A. Zhigljavsky and A. Žilinskas, Stochastic global optimization,
Springer, NewYork, 2008.

25

	1 Introduction
	2 Theoretical background
	2.1 One-point-based partitioning strategy
	2.2 Lower bounding
	2.3 Nondominated hyperintervals and their graphical representation

	3 New Algorithm
	4 Numerical results

