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Abstract

A stationary subdivision scheme generates the full space of polynomi-
als of degree up to k if and only if its mask satisfies sum rules of order
k+1, or its symbol satisfies zero conditions of order k+1. This property
is often called the polynomial reproduction property of the subdivision
scheme. It is a well-known fact that this property is, in general, only nec-
essary for the associated refinable function to have approximation order
k + 1.
In this paper we study a different polynomial reproduction property of
multivariate scalar subdivision scheme with dilation matrix mI, |m| ≥ 2.
Namely, we are interested in capability of a subdivision scheme to repro-
duce in the limit exactly the same polynomials from which the data is
sampled. The motivation for this paper are the results in [7] that state
that such a reproduction property of degree k of the subdivision scheme
is sufficient for having approximation order k + 1.
Our main result yields simple algebraic conditions on the subdivision sym-
bol for computing the exact degree of such polynomial reproduction and
also for determining the associated parametrization. The parametriza-
tion determines the grid points to which the newly computed values are
attached at each subdivision iteration to ensure the higher degree of poly-
nomial reproduction. We illustrate our results with several examples.

Keyword: Subdivision schemes, polynomial reproduction, subdivision parametriza-
tion, approximation order

Introduction

Interest in subdivision schemes is motivated by their applications in computer
graphics, computer aided geometric design, animation, wavelet and frame con-
struction. Important properties of subdivision schemes such as convergence,
regularity, polynomial generation, approximation order, etc., have been stud-
ied by several authors, see surveys [3, 4, 8, 9, 14, 15] and references therein.
In this paper we would like to distinguish between the concepts of polynomial
generation and polynomial reproduction of subdivision schemes. The so-called
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polynomial generation of degree k is the capability of subdivision to generate
the full space of polynomials of degree up to k. This property is equivalent to
sum rules of order k + 1 on the subdivision mask, or, equivalently, to zero con-
ditions of order k+1 on the subdivision symbol, see e.g. [4, 12, 14]. Polynomial
generation of degree k also implies that the associated refinable function has
accuracy of order k [15], but is, in general, only necessary for the corresponding
shift-invariant space to have approximation order k + 1. This has been already
observed for B-splines and box splines [1]. The so-called polynomial reproduc-
tion is the capability of subdivision schemes to produce in the limit exactly the
same polynomials from which the data is sampled. The results in [7, Section
2.4] state that polynomial reproduction of degree k of convergent subdivision
is sufficient for the associated shift-invariant space to have approximation order
k + 1. This motivates our interest in polynomial reproduction of subdivision
schemes.

Our main goal is to derive simple algebraic conditions on subdivision symbol
that allow us to determine the degree of its polynomial reproduction. Note that
the concepts of polynomial reproduction and generation coincide in the case
k = 0, i.e. in the case of reproduction of constants. In the L2 setting, poly-
nomial generation of degree k is also sufficient for approximation order k + 1,
see e.g. [12]. For convergent interpolatory subdivision schemes, the concepts of
polynomial generation and reproduction are equivalent and, thus, characterize
the approximation power of the corresponding shift-invariant space, see [11].
We emphasize that there is a multitude of results on approximation order of a
refinable function. Those results however are mostly derived from the proper-
ties of the associated shift-invariant space and not from the properties of the
coefficients of the refinement equation - the subdivision mask, in the subdivision
context. There are also data pre-processing techniques for achieving the opti-
mal approximation order of a shift-invariant space associate with a convergent
subdivision scheme, [7, 9, 13]. The polynomial reproduction of order k makes
preprocessing unnecessary, which is undoubtedly an advantage.

In the univariate case, polynomial reproduction has been studied in [10] for
binary primal and dual subdivision schemes and extended in [6] to univariate
subdivision schemes of any a-rity. In [6] the authors provide unified algebraic
conditions on the subdivision symbol for polynomial reproduction with no re-
strictions on the associated parametrization - the grid points to which the newly
computed values are attached at each subdivision iteration. The results of our
paper extend [6] to the multivariate setting for scalar subdivision with dila-
tion matrix mI, |m| ≥ 2. To the best of our knowledge our results are the
first ones on multivariate polynomial reproduction of subdivision schemes. Our
interest in the case of dilation matrix mI is motivated, e.g., by the bivariate√
3−subdivision whose refinable function is also refinable with respect to dila-

tion −3I and iterated mask a(z1z
−2
2 , z21z

−1
2 ) · a(z1, z2). There are several other

expansive dilation matrices M which satisfy Mn = mI, and, thus such that our
results are applicable.

The main result of our paper, Theorem 2.6, states that for a non-singular
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subdivision scheme with finitely supported mask a = {aα, α ∈ Zs} and symbol

a(z) =
∑

α∈Zs

aα zα the polynomial reproduction of order k is equivalent to

(
Dja

)
(1) = |m|s

s∏

i=1

ji−1∏

ℓi=0

(τi − ℓi) and
(
Dja

)
(ε) = 0 for ε ∈ Ξ′, |j| ≤ k ,

(0.1)
where Ξ′ is a finite set of certain multi-indices and τ = (τ1, · · · , τs) ∈ Rs

appears in the parametrization associated with the subdivision scheme. The
importance of condition (0.1) for k = 1 is that it allows us to identify the
correct parametrization that for any non-singular or for even only convergent
subdivision scheme guarantees at least the reproduction of linear polynomial.
The parametrization determines the grid points to which the newly computed
values are attached at each step of subdivision recursion to ensure the higher
degree of polynomial reproduction of a scheme.

This paper is organized as follows. The first section sets the notation, pro-
vides the background on multivariate subdivision schemes stressing the differ-
ence between polynomial reproduction and polynomial generation. We also
define sequence of parameter values associated with a subdivision scheme, i.e.,
the subdivision parametrization. In section 2, we first provide algebraic tools for
determining the correct parametrization needed to ensure reproduction of linear
polynomials. We also give the necessary and sufficient conditions on the symbol
of any non-singular subdivision scheme that guarantee polynomial reproduction
up to a certain degree. Effect of a shift of the mask on the degree of polynomial
reproduction is investigated in Section 3. There we also show that the concept
of polynomial reproduction and polynomial generation are equivalent for con-
vergent interpolatory schemes. Thus, reproducing the results in [11]. In section
3 we also provide the correct parametrization for box spline subdivision schemes
together with several examples. The effect of the shifts of the box splines on
the approximation order of the corresponding shift-invariant spaces has been
already observed e.g. in [1].

1 Background and notation

1.1 Subdivision scheme

A scalar s-variate subdivision scheme with a dilation matrix mI, |m| ≥ 2, is
given by a scalar finitely supported sequence a = {aα ∈ R, α ∈ Zs}, the so-
calledmask. The subdivision operator Sa acting on data sequences d = {dα, α ∈
Zs} ∈ ℓ(Zs) is defined by

(
Sad

)
α
=
∑

β∈Zs

aα−mβ dβ , α ∈ Z
s , (1.1)
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where ℓ(Zs) is the space of scalar sequences indexed by Zs. A subdivision scheme
is the recursive algorithm given by

d(r+1) = Sad
(r) =

∑

β∈Zs

aα−mβd
(r)
β , d(0) ∈ ℓ(Zs), r ∈ N0 , (1.2)

where N0 is the set of natural numbers including zero.
The symbol of a subdivision scheme is given by the Laurent polynomial

a(z) =
∑

α∈Zs

aα zα, z = (z1, . . . , zs) ∈ (C \ {0})s ,

where for α = (α1, . . . , αs) ∈ Zs we define zα = zα1

1 zα2

2 · . . . ·zαs
s . Denoting with

E = {0, . . . , |m| − 1}s , (1.3)

the set of representatives of Zs/mZs containing 0 = (0, 0, . . . , 0), the |m|s sub-
masks and their symbols ae(z) are defined by

{ae+mα, α ∈ Z
s} (1.4)

and
ae(z) =

∑

α∈Zs

ae+mα ze+mα , e ∈ E , (1.5)

respectively. Then, we get the following decomposition of the mask symbol

a(z) =
∑

e∈E

ae(z) . (1.6)

1.2 Sum rules and zero conditions

The sum rules of order 1 in terms of submasks read as follows

ae(1) =
∑

α∈Zs

ae+mα = 1 , e ∈ E . (1.7)

For ξ = (ξ1, . . . , ξs) ∈ Rs set zj = e−iπξj , j = 1, . . . , s, the set in (1.3) corre-
sponds to

Ξ = ΞE = {ε = e−i 2π
m

e : e ∈ E} , (1.8)

and contains 1 = (1, 1, . . . , 1). The sum rules of order 1 take an equivalent form

a(1) = |m|s and a(ε) = 0 for ε ∈ Ξ′ := Ξ \ {1} . (1.9)

Following the notation in [5], we call Ξ′ the zero set, and the conditions in
(1.9) the zero condition of order one (Condition Z1). In the literature, both
the conditions in (1.7) and their equivalent form in (1.9) are called the sum
rules of order one. We also make use of the higher order sum rules, see [12] and
references therein: The mask symbol a(z) is said to satisfy the zero condition
of order k (Condition Zk), if

a(1) = |m|s and
(
Dja

)
(ε) = 0 for ε ∈ Ξ′ and |j| < k . (1.10)

We denote by Dj the j-th directional directional derivative.
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1.3 Parametrization

Since most of the properties of a subdivision scheme, e.g. its convergence,
smoothness or its support size, do not depend on the choice of the associated

parameter values t
(r)
α , α ∈ Zs, to which the data d

(r)
α , α ∈ Zs, generated by the

r-th step of a subdivision recursion is attached, these are usually set to

t(r)α :=
α

mr
, α ∈ Z

s, r ≥ 0. (1.11)

We refer to the choice in (1.11) as standard parametrization. We show in section
2 that the capability of subdivision to reproduce polynomials does depend on
the choice of the associated parameter values and the standard parametrization
is not always the optimal one. As in [6] for the univariate case, the choice

t(r)α := t
(r)
0 +

α

mr
, t

(r)
0 = t

(r−1)
0 − τ

mr
, t

(0)
0 = 0, α ∈ Z

s, r ≥ 0, (1.12)

with a suitable τ ∈ Rs turns out to be a better selection.
We call the sequence {t(r), k ≥ 0}, with t(r) = {t(r)α , α ∈ Zs} the sequence of
parameter values associated with the subdivision scheme.

1.4 Convergence and non-singularity of subdivision

Following [10], our definition of convergence depends on the parameter values
associated with a given subdivision scheme. Since the subdivision process gener-
ates denser and denser sequences of data d(r), r ≥ 0, a notion of convergence can
be established by using a sequence {F (r), r ≥ 0} of continuous functions F (r)

that interpolate the data d(r) at the parameter values {t(r), k ≥ 0} associated
to the subdivision scheme, namely

F (r)(t(r)α ) = d(r)α , α ∈ Z
s, r ≥ 0. (1.13)

Definition 1.1. If the sequence of continuous functions {F (r), r ≥ 0} satisfying
(1.13) converges, then we denote its limit by

gd := lim
r→∞

F (r),

and say that gd is the limit function of the associated subdivision scheme (1.2)

for the initial data d(0) = {d(0)α , α ∈ Z
s} ∈ ℓ(Zs). The limit function φ := gδ

with the initial data

δα =

{
1, α = 0,
0, otherwise

, α ∈ Z
s,

is called the basic limit function of this scheme, it is compactly supported and
satisfies the refinement equation

φ =
∑

α∈Zs

aαφ(m · −α) (1.14)

with refinement coefficients given by the mask a.
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Definition 1.2. A subdivision scheme is called non-singular, if it is convergent,
and gd = 0 if and only if d is the zero sequence, i.e. dα = 0 for all α ∈ Zs.

Next we show that the notion of non-singular subdivision scheme is equiva-
lent to the notion of linear independence of the integer shifts of its basic limit
function.

Proposition 1.3. A convergent subdivision scheme Sa is non-singular if and
only if the integer translates of the solution φ of refinement equation (1.14) with
coefficients satisfying ae(1) = 1, e ∈ E, are linearly independent and form a
partition of unity.

Proof:

”=⇒:“ Assume that Sa is convergent, then the basic limit function φ = S∞
a δ

satisfies the refinement equation (1.14) and its integer shifts form a partition
of unity. If the convergent subdivision scheme Sa is non-singular, then for any
starting sequence d ∈ ℓ(Zs) we have

S∞
a d =

∑

α∈Zs

dαφ(· −α) = 0

if and only if d is the zero sequence.
”⇐=:“ Assume that the integer translates of the solution φ of refinement equa-
tion (1.14) are linearly independent and form a partition of unity. This implies
that the subdivision scheme Sa associated with the symbol a(z) is convergent,
see [8, Lemma 2.3]. It is also then non-singular, otherwise one easily gets a
contradiction to the assumption on linear independence of the translates of φ.

1.5 Polynomial generation versus polynomial reproduc-

tion

We denote by Πk the space of multivariate polynomial of total degree k ∈ N0.

Definition 1.4 (Polynomial generation). A convergent stationary subdivision
scheme Sa generates polynomials up to degree dG (is ΠdG

-generating) if for
any polynomial π ∈ ΠdG

there exists some initial data q(0) ∈ ℓ∞(Zs) such
that S∞

a q(0) = π. Moreover, the initial data q(0) is sampled from a polynomial
π̃ ∈ ΠdG

with the same leading coefficients as π ∈ ΠdG
.

Note that the assumptions on the properties of π̃ in the above Definition
are justified by [7, Lemma 2.1]. Note also that polynomial generation is also
studied in [4].

We continue with a slightly different notion, the notion of polynomial repro-
duction which requires a specific choice of starting sequences of a polynomial
limit. The concepts of polynomial reproduction and generation coincide for
dG = dR = 0.
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Definition 1.5 (Polynomial reproduction). A convergent subdivision scheme
Sa with parameter values {t(r), r ≥ 0} is reproducing polynomials up to degree
dR (is ΠdR

-reproducing) if for any polynomial π ∈ ΠdR
and for the initial data

p(0) = {π(t(0)α ), α ∈ Zs} the limit of the subdivision satisfies S∞
a p(0) = π.

Another important property of subdivision is the so-called step-wise poly-
nomial reproduction, we make use of it in Section 2.

Definition 1.6 (Step-wise polynomial reproduction). A convergent subdivision
scheme Sa with parameter values {t(r), r ≥ 0} is step-wise polynomial repro-
ducing up to degree k (is step-wise Πk-reproducing) if for any polynomial π ∈ Πk

and for the data d(r) = {π(t(r)α ), α ∈ Zs}

d(r+1) = Sad
(r) or, equivalently, π(t(r+1)

α ) =
∑

β∈Zs

aα−mβ π(t
(r)
β ), α ∈ Z

s .

(1.15)

The next proposition shows that for a non-singular subdivision scheme the
concepts of polynomial reproduction and step-wise polynomial reproduction are
equivalent.

Proposition 1.7. A non-singular, subdivision scheme Sa is step-wise polyno-
mial reproducing up to degree k if and only if it is polynomial reproducing up
to degree k.

Proof: ”=⇒:“ For any polynomial π ∈ Πk, let d(0) := {π(t(0)α ), α ∈ Zs}.
If the subdivision scheme Sa is step-wise Πk-reproducing, then the sequence

{F (r), r ≥ 0} of continuous functions F (r) satisfying (1.13) with d
(r)
α = π

(
t
(r)
α

)
,

α ∈ Zs, converges uniformly to π as r → ∞, since the distance between the grid
points m−rZs goes to zero.

”⇐=:“ Let us assume next that the subdivision scheme Sa is Πk-reproducing.
Let r ≥ 0. On the one hand, applying the subdivision scheme to the data

d(r) = {π(t(r)α ), α ∈ Zs} we obtain,

S∞
a d(r) = S∞

a d(r+1) = π, d(r+1) = Sad
(r).

On the other hand, for the sequence p(r+1) := {π(t(r+1)
α ), α ∈ Zs} we also have

S∞
a p(r+1) = π .

Therefore, by the linearity of the operator Sa it follows

S∞
a

(
d(r+1) − p(r+1)

)
= 0

and, thus, p(r+1) = d(r+1) = Sad
(r) due to the assumption of non-singularity.

Thus, the claim follows.
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2 Algebraic condition for polynomial generation

and reproduction

In this section, for a non-singular subdivision scheme, we determine the value of
τ ∈ Rs in (1.12) that guarantees the polynomial reproduction of linear polyno-
mials, see Proposition 2.3. In Theorem 2.6, we then provide algebraic conditions
on a(z) for checking the reproduction of polynomials of higher degree. These
algebraic conditions depend on the previously obtained value of τ . In the case
of only convergent schemes see Corollaries 2.4 and 2.7. We start by defining the
tensor product polynomial of degree |j|, j ∈ Ns

0, given by

q0(z) := 1, qj(z1, . . . , zs) :=

s∏

i=1

ji−1∏

ℓi=0

(zi − ℓi), j = (j1, . . . , js). (2.1)

The following auxiliary proposition states known results on polynomial genera-
tion that we make use of in this section.

Proposition 2.1. Let Sa be a convergent subdivision scheme.

(i) The subdivision scheme Sa reproduces constant sequences or, equivalently,
its symbol a(z) satisfies (1.7), if and only if a(z) satisfies (1.9).

(ii) Let k ∈ N. The symbol a(z) satisfies condition Zk if and only if
(
Djae

)
(1) = |m|−sDja(1), for e ∈ E, j ∈ N

s
0, |j| < k.

(iii) Let k ∈ N. The symbol a(z) satisfies Condition Zk if and only if
∑

β∈Z2

qj(α−mβ)aα−mβ = |m|−sDja(1), α ∈ Z
s, j ∈ N

s
0, |j| < k.

(2.2)

Proof: The proof of (i) for dilation matrix 2I follows from the definition of the
operator Sa and [4, Section 6] and in the case of dilation matrix mI, |m| > 2,
is in [13, Lemma 3.3 ]. The proof of (ii): Let j ∈ Ns

0, |j| < k. Since ae(z) =∑

α∈Zs

ae−mαz
e−mα, its j-th derivative satisfies

(
Djae

)
(z) =

∑

α∈Zs

qj(e−mα)ae−mαz
e−mα−j, z ∈ (C \ {0})s. (2.3)

Next, due to a(z) =
∑

e∈E

ae(z), we have

(
Dja

)
(ε) =

∑

e∈E

(
Djae

)
(ε) =

∑

e∈E

∑

α∈Zs

qj(e−mα)ae−mαε
e−mα−j

=
∑

e∈E

εe−j
∑

α∈Zs

qj(e−mα)ae−mα =
∑

e∈E

εe−j
(
Djae

)
(1)
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for ε ∈ Ξ. The rows of the matrix of this linear system are given by (εe−j)e∈E.
This matrix is invertible and Condition Zk, due to

∑

e∈E

εe−j =

{
|m|s, ε = 1,
0, otherwise,

is equivalent to
∑

e∈E

Djae(1) = Dja(1), Djae(1) = Djaẽ(1), e, ẽ ∈ E, e 6= ẽ.

Proof of (iii): For any α ∈ Zs there exists e ∈ E and β ∈ Zs such that
α = e+mβ. Thus,

Djae(1) =
∑

β∈Zs

qj(α−mβ)aα−mβ, e ∈ E .

The claim follows by (ii).

Remark 2.2. Note that the proof of (ii) is also implied, for example, by [2,
Theorem 3.7].

The next result provides a simple algebraic conditions for determining τ ∈
Rs, which appears in (1.12) and guarantees the reproduction of linear polyno-
mials.

Proposition 2.3. Let Sa be a non-singular subdivision scheme that generates
linear polynomials, i.e. its symbol satisfies Condition Z1. Then Sa reproduces
linear polynomials if and only if its parameter values are given by (1.12) with
τ = |m|−s (Dǫ1a(1), . . . , Dǫsa(1)).

Proof: According to Proposition 1.7 for non-singular subdivision schemes, poly-
nomial reproduction is equivalent to step-wise polynomial reproduction. More-
over, any convergent subdivision scheme reproduces the constants, hence it is
sufficient to prove the claim for polynomials of the form π(x1, . . . , xs) = xj ,

j = 1, . . . , s. Let r ∈ N0 and set d
(r)
α = π(t

(r)
α ), α ∈ Zs, with π(x) = xj . Then

for any α ∈ Zs and e = (e1, . . . , es) we get

d
(r+1)
mα+e =

∑

β∈Zs

am(α−β)+ed
(r)
β =

∑

β∈Zs

amβ+ed
(r)
α−β =

∑

β∈Zs

amβ+e

(
t
(r)
0,j +

αj − βj

mr

)

=
∑

β∈Zs

amβ+e

︸ ︷︷ ︸
ae(1)

(
t
(r)
0,j +

mαj + ej
mr+1

)
−
∑

β∈Zs

amβ+e

mβj + ej
mr+1

=

(
t
(r)
0,j +

mαj + ej
mr+1

)
− Dǫjae(1)

mr+1

=

(
t
(r)
0,j +

mαj + ej
mr+1

)
− Dǫja(1)

|m|s ·mr+1
,

9



where the last equality is due to Proposition 2.1 part (ii) for j = ǫj . Thus,

d
(r+1)
mα+e is equal to

π(t
(r+1)
mα+e) = t

(r+1)
0,j +

mαj + ej
mr+1

= t
(r)
0,j +

mαj − τj + ej
mr+1

, α ∈ Z
s,

if and only if τj = |m|−sDǫja(1).

Note that not all convergent subdivision schemes are non-singular, e.g. the
subdivision scheme based on the four directional box spline symbol is not. For
such schemes one can still determine a parametrization that ensures its poly-
nomial generation property. The following result is a direct consequence of
Proposition 2.3.

Corollary 2.4. Let Sa be a convergent subdivision scheme that generates linear
polynomials, i.e. its symbol satisfies Condition Z1. Then Sa reproduces linear
polynomials if its parameter values are given by (1.12) with

τ = |m|−s (Dǫ1a(1), . . . , Dǫsa(1)) .

The following result is crucial for the proof of the main result, Theorem 2.6
of this section. It allows us to express the polynomial generation of Sa in terms
of the properties of its symbol.

Proposition 2.5. Let k ∈ N, τ ∈ Rs and qj as in (2.1). A subdivision symbol
a(z) satisfies

(
Dja

)
(1) = |m|sqj(τ ),

(
Dja

)
(ε) = 0 ε ∈ Ξ′, j ∈ N

s
0, |j| ≤ k, (2.4)

if and only if

∑

β∈Zs

aα−mββ
j =

(
α− τ

m

)j

, α ∈ Z
s, j ∈ N

s
0, |j| ≤ k . (2.5)

Proof: First, note that due to Proposition 2.1 the conditions in (2.4) are equiv-
alent to

qj(τ ) =
∑

β∈Zs

qj(α−mβ)aα−mβ, j ∈ N
s
0, |j| ≤ k . (2.6)

Using this equivalent formulation, we prove the proposition by induction on k.
For k = 0 the claim is true since for any τ ∈ Rs we get

q0(τ ) =
∑

β∈Zs

aα−mβ =

(
α− τ

m

)0

= 1.

Next, we assume that the claim is true for all |j| ≤ k− 1 and prove it for j ∈ N
s
0

with |j| = k. To this purpose, we write the polynomial qj in x of (total) degree
|j| = k as

qj(α−mx) =
∑

ℓ∈Ns
0
, |ℓ|≤k

cj,α,ℓx
ℓ, x ∈ R

s, cj,α,j 6= 0 . (2.7)
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Therefore, using the induction assumption and by (2.6) and (2.7) we have

qj(τ ) =
∑

β∈Zs

∑

ℓ∈Ns
0
, |ℓ|≤k

cj,α,ℓaα−mββ
ℓ

=
∑

ℓ∈Ns
0
, |ℓ|=k

cj,α,ℓ

∑

β∈Zs

aα−mββ
ℓ +

∑

ℓ∈Ns
0
, |ℓ|≤k−1

cj,α,ℓ

∑

β∈Zs

aα−mββ
ℓ

=
∑

ℓ∈Ns
0
, |ℓ|=k

cj,α,ℓ

∑

β∈Zs

aα−mββ
ℓ +

∑

ℓ∈Ns
0
, |ℓ|≤k−1

cj,α,ℓ

(
α− τ

m

)ℓ

=
∑

ℓ∈Ns
0
, |ℓ|=k

cj,α,ℓ




∑

β∈Zs

aα−mββ
ℓ −

(
α− τ

m

)ℓ



+ qj(τ ) .

The last equality is due to the fact that

qj(τ ) = qj

(
α−m · α− τ

m

)
=

∑

ℓ∈Ns
0
, |ℓ|≤k

cj,α,ℓ

(
α− τ

m

)ℓ

.

Hence, due to cj,α,j 6= 0, the above identity holds if and only if

∑

β∈Zs

aα−mββ
j −
(
α− τ

m

)j

= 0, for j ∈ N
s
0, |j| = k,

and the claim follows.

We are now ready to prove the main results of this paper.

Theorem 2.6. Let k ∈ N0. A non-singular subdivision scheme with symbol
a(z) and associated parametrization in (1.12) with some τ ∈ Rs reproduces
polynomials of degree up to k if and only if

(
Dja

)
(1) = |m|sqj(τ ) and

(
Dja

)
(ε) = 0 for ε ∈ Ξ′, |j| ≤ k .

Proof: The proof is by induction on k. In the case k = 0 the claim follows by
part (i) of Proposition 2.1. By Proposition 1.7 it suffices to prove the result for
the stepwise polynomial reproduction.

”⇐=:“ We write any polynomial π of degree k as π(x) =
∑

ℓ∈Ns
0
,|ℓ|=k

cℓx
ℓ + π̃(x)

with π̃ ∈ Πk−1. Let r ≥ 0. We show that the sequence

d(r) =



π(t(r)α ) =

∑

ℓ∈Ns
0
,|ℓ|=k

cℓ

(
t(r)α

)ℓ
+ π̃(t(r)α ), α ∈ Z

s
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satisfies d(r+1) = Sad
(r) = {π(t(r+1)

α ), α ∈ Zs}. In fact, due to the induction
assumption, by (1.12) and Proposition 2.5, we have

d
(r+1)
α =

∑

β∈Zs

aα−mβd
(r)
β =

∑

β∈Zs

aα−mβ

∑

ℓ∈Ns
0
,|ℓ|=k

cℓ

(
t
(r)
0 +

β

mr

)ℓ

+ π̃(t(r+1)
α )

=
∑

β∈Zs

aα−mβ

∑

ℓ∈Ns
0
,|ℓ|=k

cℓ
∑

h≤ℓ

(
ℓ

h

)(
β

mr

)h (
t
(r)
0

)h−ℓ

+ π̃(t(r+1)
α )

=
∑

ℓ∈Ns
0
,|ℓ|=k

cℓ
∑

h≤ℓ

(
ℓ

h

)(
t
(r)
0

)h−ℓ
(

1

mr

)h ∑

β∈Zs

βhaα−mβ + π̃(t(r+1)
α )

=
∑

ℓ∈Ns
0
,|ℓ|=k

cℓ
∑

h≤ℓ

(
ℓ

h

)(
t
(r)
0

)h−ℓ
(
α− τ

mr+1

)h

+ π̃(t(r+1)
α )

=
∑

ℓ∈Ns
0
,|ℓ|=k

cℓ

(
t(r+1)
α

)ℓ
+ π̃(t(r+1)

α ) = π(t(r+1)
α ), α ∈ Z

s.

The one but last equality is due to

t
(r)
0 +

α− τ

mr+1
= t

(r+1)
0 +

α

mr+1
= t(r+1)

α .

”=⇒:“ Let j ∈ Ns
0 be such that |j| = k with ji = k for some i = 1, . . . , s. Let

the polynomial π(x) = xj and the sequence d(r) = {π(t(r)α ), α ∈ Zs}. On the
one hand, by similar arguments as above, we get

d(r+1)
α =

∑

h≤j

(
j

h

)(
t
(r)
0

)h−j
(

1

mr

)h ∑

β∈Zs

βhaα−mβ.

On the other hand, the definition of t
(r+1)
0 yields

π(t(r+1)
α ) =

∑

h≤j

(
j

h

)(
t
(r)
0

)h−j
(
α− τ

mr+1

)h

.

The polynomial reproduction, i.e. d(r+1) = Sad
(r), implies that

∑

h≤j

(
j

h

)(
t
(r)
0

)h−j
(

1

mr

)h



∑

β∈Zs

β
haα−mβ −

(
α− τ

m

)h


 = 0.

Thus, by induction for h = j we have

∑

β∈Zs

βjaα−mβ −
(
α− τ

m

)j

= 0, α ∈ Z
s.
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The claim follows from Proposition 2.5.

For convergent schemes we readily get the following result, which is due
to the fact that for convergent schemes the step-wise polynomial reproduction
implies polynomial reproduction.

Corollary 2.7. Let k ∈ N0. A convergent subdivision scheme with symbol
a(z) and associated parametrization in (1.12) with some τ ∈ Rs reproduces
polynomials of degree up to k if

(
Dja

)
(1) = |m|sqj(τ ) and

(
Dja

)
(ε) = 0 for ε ∈ Ξ′, |j| ≤ k .

3 Applications and examples

It is natural to expect that any shift of the subdivision mask does not effect
the polynomial reproduction properties of the corresponding scheme, which is
confirmed by the next result.

Lemma 3.1. A convergent subdivision scheme Sa with the symbol a(z) repro-
duces polynomials up to degree k if and only if so does the shifted scheme Sã

with the symbol ã(z) = zαa(z), α ∈ Zs.

Proof: By Proposition 2.3 and due to a(1) = ms, we get the following identity
for the suitable τ of Sa and τ̃ of Sã

τ̃ = τ +α.

By Leibnitz differentiation formula and due to the fact that Dℓzα, ℓ ∈ Ns
0,

evaluated at 1 is equal to qℓ(α) in (2.1) we have

Djã(1) =
∑

ℓ∈Ns
0
,ℓ≤j

(
j

ℓ

)
qℓ(α)Dj−ℓa(1).

Thus, by Corollary 2.7, to prove the claim we need to show that

qj(τ +α) =
∑

ℓ∈Ns
0
,ℓ≤j

(
j

ℓ

)
qℓ(α)qj−ℓ(τ ).

By definition of qj it is a tensor product polynomial, thus, it suffices to show
that the following two univariate polynomials in τ ∈ R are equal

j−1∏

n=0

(τ + α− n) =
∑

0≤ℓ≤j

(
j
ℓ

) ℓ−1∏

i=0

(τ − i)

j−ℓ−1∏

t=0

(α− t).

The claim follows by the one dimensional result [6, Corollary 5.1].
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3.1 Box splines

An s−variate box spline is given by its symbol

aΘ(z) = 2s
∏

θ∈Θ

1 + zθ

2
, (3.1)

where θ runs through all the columns of the s × n, rank s matrix Θ ∈ Zs×n

with n ≥ s. It is well-known that the subdivision schemes associated with the
symbols aΘ(z) are convergent, if the matrix Θ is such that removing any column
from Θ does not change its rank, see [1, p. 127]. Next results gives the correct
parametrization for box spline subdivision schemes.

Lemma 3.2. A subdivision scheme with the symbol aΘ(z) in (3.1) reproduces
linear polynomials if its associated parameter values are as in (1.12) with

τ =
1

2

(
∑

θ∈Θ

θ1, . . . ,
∑

θ∈Θ

θs

)
, θ = (θ1, . . . , θs).

Proof: The result follows from Corollary 2.4 and the simple fact that

DǫjaΘ(z) = 2s · 1
2
·
∑

θ∈Θ

θjz
θ−ǫj

∏

θ̃∈Θ

θ̃ 6=θ

1 + zθ̃

2
, z ∈ (C \ {0})s.

Remark 3.3. In case Θ is unimodular, i.e. each s × s submatrix of Θ has
determinant 1 or −1, the integer shifts of the corresponding box splines are
linear independent and therefore the subdivision scheme associated with aΘ(z),
if convergent, is non-singular due to Proposition 1.3. Hence, the results of
Proposition 2.3 and of Theorem 2.6 hold.

We consider an example of the 3−directional box splines with

Θ =




1 . . . 1
0 . . . 0
︸ ︷︷ ︸

k times

0 . . . 0
1 . . . 1
︸ ︷︷ ︸

ℓ times

1 . . . 1
1 . . . 1
︸ ︷︷ ︸

n times




and the corresponding symbols aΘ(z) are denoted by

Bk,ℓ,n(z1, z2) = 4 ·
(
1 + z1

2

)k (
1 + z2

2

)ℓ(
1 + z1z2

2

)n

, k, ℓ, n ∈ N0 .

In the case k = ℓ = n = 2, results in [5] imply that the degree of polynomial
generation is k = 4. Now, to check the degree of polynomial reproduction we
first use Lemma 3.2 to compute τ that guarantees the reproduction of linear
polynomials, i.e. τ = 1

2 (k + n, ℓ + n) = (2, 2). Using Theorem 2.6 with this τ

we see that the scheme does not reproduce polynomials of degree k = 2, since
q1,1(τ ) = τ 1 · τ 2 = 4, but D(1,1)B2,2,2(1) = 18.
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3.2 Three dimensional example

Three dimensional examples can also be considered. For example, it is easy to
show that the subdivision scheme with the mask symbol

a(z1, z2, z3) = 23
[
6z1z2z3

(
1 + z1

2

)2(
1 + z2

2

)2(
1 + z3

2

)2(
1 + z1z2z3

2

)2

−

5

4
z1

(
1 + z1

2

)(
1 + z2

2

)3(
1 + z3

2

)3(
1 + z1z2z3

2

)3

−

5

4
z2

(
1 + z1

2

)3(
1 + z2

2

)(
1 + z3

2

)3(
1 + z1z2z3

2

)3

−

5

4
z3

(
1 + z1

2

)3(
1 + z2

2

)3(
1 + z3

2

)(
1 + z1z2z3

2

)3

−

5

4
z1z2z3

(
1 + z1

2

)3(
1 + z2

2

)3(
1 + z3

2

)3(
1 + z1z2z3

2

)]
.

is convergent. Moreover, using Theorem 2.6 we get that for τ = (3, 3, 3), thus,
the scheme also reproduces linear polynomials. Since D(2,0,0)a(1) = 46 6= 8 ·
q2,0,0(τ ) = 48, the scheme is not reproducing polynomials of degree 2.

3.3 Interpolatory schemes

Exactly the same argument for interpolatory schemes as in [6, Corollary 5.3]
extends to the multivariate case. Interpolatory schemes are such whose mask
satisfies

a0 = 1, amα = 0, α ∈ Z
s ,

and therefore, when convergent, with a limit function interpolating the initial
data as well as all the data generated through the recursions.

Let us assume that an interpolatory scheme generates polynomials up to degree
k. Due to the special structure of the symbol of interpolatory schemes

a(z) = 1 +
∑

e∈E\{0}

ae(z)

we get Dja(1) = 0 for all j ∈ N
s
0 with |j| ≤ k. Then, by Proposition 2.3,

the suitable choice of τ in (1.12) for reproduction of linear polynomials is τ =
0. Corollary 2.7 and the definition of qj in (2.1) imply that the scheme also
reproduces polynomials up to degree k with this τ . Thus, the following result
holds and confirms that our results reproduce results in [11].

Proposition 3.4. A convergent interpolatory scheme Sa reproduces polynomials
up to degree k if and only if it generates polynomials of degree up to k.

For the butterfly scheme with the symbol

a(z1, z2) = 4 · z−3
1 z−3

2 [7z1z2B2,2,2 − 2z1B1,3,3 − 2z2B3,1,3 − 2z1z2B3,3,1]
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we have τ = (0, 0), as expected. Since a(z1, z2) satisfies sum rules of order
4 (see, again [5]), the subdivision scheme generates cubic polynomials, it also
reproduces cubic polynomials by Corollary 2.7.

3.4
√
3−subdivision

The approximating
√
3−subdivision scheme from [16] with the mask symbol

a(z) =
1

6

(
z1z2 + z−1

1 z−1
2 + z−1

1 z22 + z−2
1 z2 + z1z

−2
2 + z21z

−1
2

)

+
1

3

(
z−1
1 + z2 + z1z

−1
2

)
+

1

3

(
z−1
2 + z1 + z−1

1 z2
)

satisfies sum rules at most of order 2. The associated dilation matrix M =[
1 2

−2 −1

]
satisfiesM2 = −3I and the corresponding refinable function is also

refinable with respect to the iterated mask a(z1z
−2
2 , z21z

−1
2 ) · a(z). By Corollary

2.4, the corresponding scheme reproduces linear polynomials, if τ = (0, 0).
Thus, associated refinable function has approximation order 2.

4 Conclusions

In this paper we give algebraic conditions on the symbol of a multivariate subdi-
vision scheme with dilation matrix mI, |m| ≥ 2, that allow us to determine the
degree of polynomial reproduction of the scheme. These conditions also yield
the correct parametrization for any convergent subdivision scheme to guaran-
tee polynomial reproduction of degree at least 1. This is true in particular for
subdivision schemes associated with box splines. The restriction of a dilation
matrix of type mI and tensor product structure of the polynomial in (2.1) let us
extend the univariate results in [6] easily to the multivariate setting. We believe
that this paper is an important first step towards the investigation of polynomial
reproduction of multivariate subdivision schemes with general dilation matrix,
which is currently under investigation.
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