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Abstract. This paper introduces a numerical scheme for time harmonic Maxwell’s equations by
using weak Galerkin (WG) finite element methods. The WG finite element method is based on two
operators: discrete weak curl and discrete weak gradient, with appropriately defined stabilizations
that enforce a weak continuity of the approximating functions. This WG method is highly flexible by
allowing the use of discontinuous approximating functions on arbitrary shape of polyhedra and, at
the same time, is parameter free. Optimal-order of convergence is established for the weak Galerkin
approximations in various discrete norms which are either H1-like or L2 and L2-like. An effective
implementation of the WG method is developed through variable reduction by following a Schur-
complement approach, yielding a system of linear equations involving unknowns associated with
element boundaries only. Numerical results are presented to confirm the theory of convergence.
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1. Introduction. In this paper, we are concerned with new developments of nu-
merical methods for the time-harmonic Maxwell equations in a heterogeneous medium
Ω ⊂ R3. The model problem seeks unknown functions u and p satisfying

∇× (µ∇× u)− ε∇p = f1 in Ω,(1.1)

∇ · (εu) = g1 in Ω,(1.2)

u× n = φ on ∂Ω,(1.3)

p = 0 on ∂Ω,(1.4)

where the coefficients µ > 0 and ε > 0 are the magnetic permeability and the electric
permittivity of the medium, respectively.

A weak formulation for (1.1)-(1.4) seeks (u, p) ∈ H(curl; Ω) × H1
0 (Ω) such that

u× n = φ on ∂Ω and

(ν∇× u, ∇× v)− (v,∇p) = (f , v), ∀v ∈ H0(curl; Ω)(1.5)

(u,∇q) = −(g, q), ∀q ∈ H1
0 (Ω),(1.6)

where ν = µ/ε, f = f1/ε and g = g1/ε.
The Maxwell equations have been studied extensively in literature by using various

numerical methodologies including H(curl; Ω)-conforming edge element approaches
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[1, 7, 8, 10, 11] and discontinuous Galerkin methods [2, 3, 4, 5, 12, 13]. Particularly in
[6], a mixed DG formulation for the problem (1.1)-(1.4) was introduced and analyzed.
In this DG formulation, both u and p are approximated by piecewise [Pk(T )]3 and
Pk(T ) functions if T is a tetrahedron and by piecewise [Qk(T )]3 and Qk(T ) if T is
a parallelepiped, where Pk(T ) denotes the set of polynomials of total degree k and
Qk(T ) the set of polynomials of degree k in each variable.

The weak Galerkin (WG) finite element method refers to a general finite element
technique for partial differential equations where differential operators are approxi-
mated as discrete distributions or discrete weak derivatives. The method was first
introduced in [15, 16] for second order elliptic equations, and was later extended to
other partial differential equations including the Stokes equations [17] and the bihar-
monic equation [9, 14]. The current research indicates that the concept of discrete
weak differential operators offers a new paradigm in numerical methods for partial
differential equations.

In this paper, we apply the idea of weak Galerkin to the problem (1.1)-(1.4).
In essence, this procedure shall introduce a discrete curl operator, which shall be
combined with the discrete weak gradient as introduced in [15] to yield a finite element
scheme for the Maxwell equations. In this WG method, two types of weak functions
are used: uh = {u0,ub} ∈ [Ps(T )]3 × [Pt(e)]

3 and ph = {p0, pb} ∈ P`(T ) × Pι(e),
with uh = u0 and ph = p0 inside of each element and uh = ub and ph = pb on the
boundary of the element. Error estimates of optimal order are established for the WG
approximations in appropriate norms for the case of s = t = k and ` = k − 1, ι = k
with k ≥ 1. For the case of s = t = k and ` = ι = k − 1, only numerical experiments
are conducted to illustrate the performance of the corresponding WG finite element
scheme; a theoretical study of this WG method is left to interested readers for an
investigation.

The use of weak functions and weak derivatives makes the WG method highly
flexible on the construction of finite element functions on partitions with arbitrary
polygons or polyhedrons. Compared with the DG method in [6], our WG methods
make use of additional variables ub and pb defined on the boundary of the elements.
However, the variables u0 and p0 defined on each element can be eliminated through
a local process/computation, yielding a system of linear equations involving only the
variables ub and pb. Consequently, the WG method has much less number of globally
coupled unknowns than DG methods. In addition, the weak Galerkin finite element
method is parameter independent in its stability and convergence.

The paper is organized as follows. In Section 2, we introduce some basic nota-
tions. In Section 3, we discuss some discrete weak differential operators, particularly
a discrete weak curl. Section 4 is devoted to a presentation of the weak Galerkin finite
element scheme for the problem (1.5)-(1.6). In Section 5, we derive an error equation
for the WG finite element approximation. In Section 6, we introduce two types of L2

projection operators and derive some estimates for them. Sections 7 and 8 are devoted
to an error analysis for the WG finite element approximations. In Section 9, we discuss
an efficient implementation method by using variable reductions/elimination. Finally
in Section 10, we present some numerical results that verify the theory established in
the previous sections.

2. Preliminaries and Notations. Let D be any open bounded domain with
Lipschitz continuous boundary in R3. We use the standard definition for the Sobolev
space Hs(D) and their associated inner products (·, ·)s,D, norms ‖ · ‖s,D, and semi-
norms | · |s,D for any s ≥ 0. For example, for any integer s ≥ 0, the seminorm | · |s,D
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is given by

|v|s,D =

∑
|α|=s

∫
D

|∂αv|2dD

 1
2

with the usual notation

α = (α1, . . . , αd), |α| = α1 + . . .+ αd, ∂α =

3∏
j=1

∂αj
xj
.

The Sobolev norm ‖ · ‖m,D is given by

‖v‖m,D =

 m∑
j=0

|v|2j,D

 1
2

.

The space H0(D) coincides with L2(D), for which the norm and the inner product
are denoted by ‖·‖D and (·, ·)D, respectively. WhenD = Ω, we shall drop the subscript
D in the norm and inner product notation.

The space H(curl;D) is defined as the set of vector-valued functions on D which,
together with their curl, are square integrable; i.e.,

H(curl;D) =
{
v : v ∈ [L2(D)]3,∇× v ∈ [L2(D)]3

}
.

3. Weak Derivatives. The two differential operators used in (1.5) and (1.6)
are curl and gradient operators. The goal of this section is to introduce an analogy of
the curl and gradient operator, called weak curl and weak gradient operators, when
the applied functions are discontinuous.

3.1. Weak gradient and discrete weak gradient. The concept of weak gra-
dient and its discrete analogue was introduced in [15]. This subsection is presented
for the sake of completeness of presentation.

Let K be any polyhedral domain with boundary ∂K. A weak function on the
region K refers to a function v = {v0, vb} such that v0 ∈ L2(K) and vb ∈ L2(∂K).
The first component v0 can be understood as the value of v in K, and the second
component vb represents v on the boundary of K. Note that vb may not necessarily
be related to the trace of v0 on ∂K should a trace be well-defined. Denote by W(K)
the space of weak functions on K; i.e.,

(3.1) W(K) := {v = {v0, vb} : v0 ∈ L2(K), vb ∈ L2(∂K)}.

The weak gradient operator is defined as follows.

Definition 3.1. (Weak Gradient) The dual of L2(K) can be identified with itself
by using the standard L2 inner product as the action of linear functionals. With a
similar interpretation, for any v ∈ W(K), the weak gradient of v is defined as a linear
functional ∇wv in the dual space of [H1(K)]3 whose action on each q ∈ [H1(K)]3 is
given by

(3.2) (∇wv, q)K := −(v0,∇ · q)K + 〈vb, q · n〉∂K ,
3



where n is the outward normal direction to ∂K, (v0,∇ · q)K =
∫
K
v0(∇ · q)dK is the

L2 inner product of v0 and ∇ · q, and 〈vb, q ·n〉∂K is the L2 inner product of q ·n and
vb in L2(∂K).

The Sobolev space H1(K) can be embedded into the spaceW(K) by an inclusion
map iW : H1(K)→W(K) defined as follows

iW(φ) = {φ|K , φ|∂K}, φ ∈ H1(K).

With the help of the inclusion map iW , the Sobolev space H1(K) can be viewed as a
subspace of W(K) by identifying each φ ∈ H1(K) with iW(φ).

Let Pr(K) be the set of polynomials on K with degree no more than r.
Definition 3.2. (Discrete Weak Gradient) The discrete weak gradient opera-

tor, denoted by ∇w,r,K , is defined as the unique polynomial (∇w,r,Kv) ∈ [Pr(K)]3

satisfying the following equation

(3.3) (∇w,r,Kv, q)K = −(v0,∇ · q)K + 〈vb, q · n〉∂K , ∀q ∈ [Pr(K)]d.

3.2. Weak curl and discrete weak curl. To define weak curl, we require weak
functions v = {v0,vb} such that v0 ∈ [L2(K)]3 and vb × n ∈ [L2(∂K)]3. The first
component v0 can be understood as the value of v in K. The second component vb
represents the value of v on the boundary of K.

Denote by V(K) the space of vector-valued weak functions on K; i.e.,

(3.4) V(K) = {v = {v0,vb} : v0 ∈ [L2(K)]3, vb × n ∈ [L2(∂K)]3}.

Then, we define a weak curl operator as follows.

Definition 3.3. (Weak Curl) The dual of [L2(K)]3 can be identified with itself
by using the standard L2 inner product as the action of linear functionals. With a
similar interpretation, for any v ∈ V(K), the weak curl of v is defined as a linear
functional ∇w × v in the dual space of [H1(K)]3 whose action on each ϕ ∈ [H1(K)]3

is given by

(3.5) (∇w × v, ϕ)K := (v0,∇× ϕ)K + 〈vb × n, ϕ〉∂K ,

where n is the outward normal direction to ∂K, (v0,∇ × ϕ)K =
∫
K

v0 · ∇ × ϕdK
is the L2 inner product of v0 and ∇ × ϕ, and 〈vb × n, ϕ〉∂K is the inner product in
L2(∂K).

The Sobolev space [H1(K)]3 can be embedded into the space V(K) by an inclusion
map iV : [H1(K)]3 → V(K) defined as follows

iV(φ) = {φ|K , φ|∂K}, φ ∈ [H1(K)]3.

Let K be any polyhedral domain with boundary ∂K. For each face e ∈ ∂K, let t1 and
t2 be two assigned unit vectors on the face e such that t1, t2 and n are orthogonal
each other. Thus, we have vb|e = v1t1 + v2t2 + vnn. Define v̄b = v1t1 + v2t2.
Obviously,v̄b × n = vb × n. Since the quantity of interest is not vb but vb × n, we
will let vb = v̄b in order to reduce the number of the unknowns.

Definition 3.4. (Discrete Weak Curl) For a given K, a discrete weak curl
operator, denoted by ∇w,r,K×, is defined as the unique polynomial (∇w,r.K × v) ∈
[Pr(K)]3 that satisfies the following equation

(3.6) (∇w,r,K × v, ϕ)K := (v0,∇× ϕ)K + 〈vb × n, ϕ〉∂K , ∀ϕ ∈ [Pr(K)]3.
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4. Numerical Algorithms. Let Th be a partition of the domain Ω with mesh
size h that consists of polyhedra of arbitrary shape. Assume that the partition Th is
shape regular in the sense as defined in [16]; i.e. Th satisfies a set of conditions given
in [16]. Denote by Eh the set of all faces in Th, and let E0

h = Eh\∂Ω be the set of all
interior faces.

Let e ∈ E0
h be shared by two elements T1 and T2. Let t1 and t2 be two tangential

unit vectors on face e ∈ Eh. For k ≥ 1, define a weak Galerkin finite element spaces
associated with Th as

Vh =
{

v = {v0,vb = v1t1 + v2t2} : v0|T ∈ [Pk(T )]3,(4.1)

v1, v2 ∈ Pk(e), e ⊂ ∂T
}
,

and

Wh =
{
w = {w0, wb} : {w0, wb}|T ∈ Pk−1(T )× Pk(e), e ⊂ ∂T ,(4.2)

wb = 0 on ∂Ω
}
.

We also introduce the following subspace of Vh,

Vh,0 = {v = {v0,vb} ∈ Vh, vb × n|e = 0, e ⊂ ∂Ω} .

The discrete weak gradient ∇w,k−1 and the discrete weak curl ∇w,k× on the finite
element spaces Wh and Vh can be computed by using (3.3) and (3.6) on each element
T respectively; i.e.,

(∇w,kv)|T = ∇w,k,T (v|T ), ∀v ∈Wh

(∇w,k−1 × v)|T = ∇w,k−1,T × (v|T ), ∀v ∈ Vh.

For simplicity of notation, from now on we shall drop the subscript k in ∇w,k and
k − 1 in ∇w,k−1× for the discrete weak gradient and the discrete weak curl.

Corresponding to the bilinear forms in (1.5)-(1.6), we introduce the following
bilinear forms:

(ν∇w × v, ∇w ×w)h =
∑
T∈Th

(ν∇w × v, ∇w ×w)T

(v, ∇wq)h =
∑
T∈Th

(∇wq, v)T .

Furthermore, we stabilize the first one by adding an appropriate stabilization term as
follows:

a(v, w) = (ν∇w × v, ∇w ×w)h + s1(v,w),(4.3)

where

s1(v, w) =
∑
T∈Th

h−1〈(v0 − vb)× n, (w0 −wb)× n〉∂T .(4.4)

For simplicity of notation, we introduce the following notation

b(v, q) = (v0,∇wq)h(4.5)
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and a second stabilization term

s2(p, q) =
∑
T∈Th

h〈p0 − pb, q0 − qb〉∂T .(4.6)

Weak Galerkin Algorithm 1. Find uh = {u0,ub} ∈ Vh and ph = {p0, pb} ∈
Wh satisfying ub × n = Qbφ on ∂Ω and

a(uh, v)− b(v, ph) = (f , v0), ∀ v = {v0, vb} ∈ Vh,0,(4.7)

b(uh, q) + s2(ph, q) = −(g, q0), ∀ q = {q0, qb} ∈Wh,(4.8)

where Qbφ is an approximation of the boundary value in the polynomial space [Pk(∂T∩
∂Ω)]3. For simplicity, one may take Qbφ as the standard L2 projection of the boundary
value φ on each boundary segment.

Lemma 4.1. The weak Galerkin finite element algorithm (4.7)-(4.8) has a unique
solution.

Proof. It suffices to show that zero is the only solution of (4.7)-(4.8) if f = 0, φ = 0,
and g = 0. To this end, assume that the homogeneous conditions are given. Take
v = uh and q = ph in (4.7)-(4.8). By adding the two resulting equations, we obtain

(ν∇w×uh, ∇w×uh)h +
∑
T∈Th

h−1〈(u0 − ub)× n, (u0 − ub)× n〉∂T

+
∑
T∈Th

h〈p0 − pb, p0 − pb〉∂T = 0,

which implies ∇w×uh = 0 on each T , u0×n = ub×n and p0 = pb on ∂T . Note that
the boundary condition implies ub × n = 0 on each e ⊂ ∂Ω. Then, it follows from
(3.6) and the integration by parts that for any v ∈ [Pk−1(T )]3

0 = (∇w×uh,v)T

= (u0, ∇×v)T + 〈ub × n, v〉∂T
= (∇×u0, v)T + 〈(ub − u0)× n, v〉∂T
= (∇×u0, v)T ,

which gives ∇×u0 = 0 on each T ∈ Th. Using (4.8), (3.3) and the integration by
parts, we have

0 =
∑
T∈Th

(u0,∇wq)T = −
∑
T∈Th

(∇ · u0, q0)T +
∑
T∈Th

〈u0 · n, qb〉∂T .

Letting q0 = ∇·u0 and qb = 0 in the above equation yield ∇·u0 = 0 on each T ∈ Th.
Next, by letting q0 = 0 and qb be the jump of u0 ·n on each interior face e, we conclude
that u0 is continuous across each interior face e in the normal direction.

Note that ∇ × u0 = 0. Thus, there exists a potential function φ such that
u0 = ∇φ on Ω. It follows from ∇ · u0 = 0 and the fact that u0 · n is continuous
that ∆φ = 0 is strongly satisfied in Ω. The boundary condition of (1.3) implies that
u0×n = ∇φ×n = 0 on ∂Ω. Therefore, φ must be a constant on ∂Ω. The uniqueness
of the solution of the Laplace equation implies that φ = const is the only solution
of ∆φ = 0 if Ω is simply connected. Then we must have u0 = ∇φ = 0. Since
ub × n = u0 × n = 0, we have ub = 0.

6



Since uh = 0, we then have b(v, ph) = 0 for any v ∈ Vh,0. It follows from the
definition of b(·, ·) and ∇w that

0 = b(v, ph) = (v0,∇wph)h(4.9)

= −
∑
T∈Th

(∇ · v0, p0)T +
∑
T∈Th

〈v0 · n, pb〉∂T

=
∑
T∈Th

(v0,∇p0)T ,

where we have used the fact that p0 = pb on ∂T . Letting v = {v0,vb} = {∇p0, 0} in
(4.9) gives ∇p0 = 0 on each T ∈ Th, i.e. p0 is a constant on T ∈ Th. Using the facts
p0 = pb and pb = 0 on ∂Ω, we obtain ph = 0.

5. Error Equations. For each element T ∈ Th, denote by Q0 and Q0 the L2

projections onto [Pk(T )]3 and Pk−1(T ) respectively. Let Qb be the L2 projection onto
Pk(e). Then we can define two projections onto the finite element space Vh and Wh

such that on each element T ,

Qhv = {Q0v, Qbv = Qb(v1)t1 +Qb(v2)t2}, Qhq = {Q0q,Qbq}.

In addition, denote by Qh the local L2 projection onto [Pk−1(T )]3. The projection
operators Qh, Qh and Qh have some useful properties as stated in the following
Lemma.

Lemma 5.1. Let Qh = {Q0, Qb} and Qh = {Q0, Qb} be the projection operators
onto the finite element spaces Vh and Wh respectively. Then, we have

(5.1) ∇w×(Qhu) = Qh(∇×u) ∀u ∈ H(curl; Ω)

and

(5.2) ∇w(Qhq) = Q0(∇q) ∀q ∈ H1(Ω).

Proof. Using (3.6), the integration by parts, and the definition of Qh and Qh, we
have

(∇w×(Qhu), w)T = (Q0u, ∇×w)T + 〈(Qbu)× n, w〉∂T
= (u, ∇×w)T + 〈u× n, w〉∂T
= (∇×u, w)T = (Qh(∇×u), w)T

for any w ∈ [Pk−1(T )]3. This implies that (5.1) holds true.
As to (5.2), we use the definition of Qh and the discrete gradient operator ∇w to

obtain

(∇w(Qhp), v)T = −(Q0p, ∇ · v)T + 〈Qbp, v · n〉∂T
= −(p, ∇ · v)T + 〈p, v · n〉∂T
= (∇p, v)T = (Q0(∇p), v)T

for all v ∈ [Pk(T )]3, which verifies the desired relation (5.2).

Define two error functions as follows

eh = {e0, eb} = {Q0u− u0, Qbu− ub},(5.3)

εh = {ε0, εb} = {Q0p− p0, Qbp− pb}.(5.4)
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The rest of this section is to derive some equations that the above error functions
must satisfy. For simplicity of analysis, we assume that the coefficient ν in (1.5) is a
piecewise constant function with respect to the finite element partition Th.

Lemma 5.2. Let (uh; ph) be the WG finite element solution arising from (4.7)
and (4.8), and (eh; εh) be the error between the WG finite element solution and the L2

projection of the exact solution as defined in (5.3)-(5.4). Then, the following equations
are satisfied

a(eh, v)− b(v, εh) = ϕu(v) ∀v ∈ Vh,0,(5.5)

b(eh, q) + s2(εh, q) = φu,p(q) ∀q ∈Wh,(5.6)

where

ϕu(v) = s1(Qhu, v)− l1(u, v),(5.7)

φu,p(q) = s2(Qhp, q) + l2(u, q),(5.8)

and

l1(u, v) =
∑
T∈Th

〈(I −Qh)∇×u, ν(vb − v0)× n〉∂T(5.9)

l2(u, q) =
∑
T∈Th

〈q0 − qb, (u−Q0u) · n〉∂T .(5.10)

Proof. Using (5.1), (3.6), and the integration by parts we have

(ν∇w×(Qhu), ∇w×v)T(5.11)

= (νQh(∇×u), ∇w×v)T

= (νv0, ∇×Qh(∇×u))T + 〈νvb × n, Qh(∇×u)〉∂T
= (ν∇×v0, Qh(∇×u))T + 〈ν(vb − v0)× n, Qh(∇×u)〉∂T
= (ν∇×u, ∇×v0)T + 〈Qh(∇×u), ν(vb − v0)× n〉∂T .

It follows from (5.2) that

(∇w(Qhp),v0)T = (Q0∇p,v0)T = (∇p,v0)T .(5.12)

Next, using the definition of ∇w and Q0, we obtain

(Q0u, ∇wq)T = −(q0,∇ · (Q0u))T + 〈qb, Q0u · n〉∂T(5.13)

= (∇q0, u)T − 〈q0 − qb, Q0u · n〉∂T .

Testing (1.1) by v0 with v = {v0, vb} ∈ Vh,0 gives

(5.14) (∇×(ν∇×u), v0)− (∇p, v0) = (f , v0).

It follows from the integration by parts that

(∇×(ν∇×u), v0) =
∑
T∈Th

(ν∇×u, ∇×v0)T +
∑
T∈Th

〈ν(vb − v0)× n, ∇×u〉∂T ,

where we use the fact that
∑
T∈Th〈vb × n, ν∇×u〉∂T = 0. Using (5.11) and the

equation above, we have

(∇×(ν∇×u), v0) = (ν∇w×(Qhu), ∇w×v)h(5.15)

+
∑
T∈Th

〈(I −Qh)∇×u, ν(vb − v0)× n〉∂T .
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Substituting (5.12) and (5.15) into (5.14) yields

(ν∇w×(Qhu), ∇w×v)h − (∇wQhp,v0)h = (f , v0)− l1(v, u).

Adding s1(Qhu, v) to both sides of the equation above gives

(5.16) a(Qhu, v)− b(v, Qhp) = (f , v0) + ϕu(v).

To derive a second equation, we test equation (1.2) by q0 with q = {q0, qb} ∈Wh

and then use the integration by parts to obtain

(5.17) −
∑
T∈Th

(u, ∇q0)T +
∑
T∈Th

〈u · n, q0 − qb〉∂T = (g, q0),

where we have used the fact
∑
T∈Th〈u · n, qb〉∂T = 0. Combining (5.13) with (5.17)

gives ∑
T∈Th

(Q0u, ∇wq)T = −(g, q0) + l2(u, q).

Adding s2(Qhp, q) to both sides of the equation above gives

(5.18) b(Qhu, q) + s2(Qhp, q) = −(g, q0) + φu,p(q).

Finally, the differences of (5.16) and (4.7), (5.18) and (4.8) yield the error equations
(5.5) and (5.6), respectively.

6. Preparation for Error Estimates. For v = {v0,vb} ∈ Vh,0, define |||v||| as
follows

(6.1) |||v|||2 = a(v, v) =
∑
T∈Th

ν‖∇w×v‖2T +
∑
T∈Th

h−1‖(v0 − vb)× n‖2∂T .

It is clear that ||| · ||| defines merely a semi-norm for the linear space Vh,0. A norm can
be derived from the semi-norm |||v||| by adding two more terms given as follows

(6.2) |||v|||1 = |||v|||+

(∑
T∈Th

‖∇ · v0‖2T

) 1
2

+

∑
e∈E0h

h−1‖[[v0 · n[]‖2e

 1
2

,

where [[v0 · n[] is the jump of the function v0 at each edge/face in the normal direction.
The proof of Lemma 4.1 can be employed to verify that ||| · |||1 is indeed a norm in
Vh,0. For convenience, we also use the following notation:

(6.3) |v|1,h :=

(∑
T∈Th

h−1‖(v0 − vb)× n‖2∂T

)1/2

.

The linear space Wh can be equipped with the following norm

|||q|||0 = |q|0,h + h‖∇q‖0,h,

where

|q|20,h =
∑
T∈Th

h‖q0 − qb‖2∂T

9



and

(6.4) ‖∇q‖0,h =

(∑
T∈Th

‖∇q0‖2T

) 1
2

for any q ∈Wh.

The following Lemma provides some approximation estimates for the projections
Qh, Qh, and Qh.

Lemma 6.1. Let Th be a WG shape regular partition of Ω, w ∈ [Ht+1(Ω)]3,
ρ ∈ Ht(Ω), and 0 ≤ t ≤ k. Then, for 0 ≤ s ≤ 1, we have∑

T∈Th

h2s
T ‖w −Q0w‖2s,T ≤ Ch2(t+1)‖w‖2t+1,(6.5)

∑
T∈Th

h2s
T ‖∇×w −Qh(∇×w)‖2s,T ≤ Ch2t‖w‖2t+1,(6.6)

∑
T∈Th

h2s
T ‖ρ−Q0ρ‖2s,T ≤ Ch2t‖ρ‖2t .(6.7)

Since the mesh Th is assumed to be very general, the proof of Lemma 6.1 is rather
technical and can be found in [16].

Let K be an element with e as a face. For any function g ∈ H1(K), the following
trace inequality has been proved for arbitrary polyhedra K in [16].

(6.8) ‖g‖2e ≤ C
(
h−1
K ‖g‖

2
K + hK‖∇g‖2K

)
.

In particular, if ξ is a polynomial on K, then the standard inverse inequality can be
applied to yield

(6.9) ‖ξ‖2e ≤ Ch−1
K ‖ξ‖

2
K .

Using (6.8) and Lemma 6.1, we can prove the following result.
Lemma 6.2. Let w ∈ [Ht+1(Ω)]3 and p ∈ Ht(Ω) and v ∈ Vh with 1

2 < t ≤ k.
Then

|s1(Qhw, v)|+ |l1(w, v)| ≤ Cht‖w‖t+1|v|1,h,(6.10)

|s2(Qhp, q)|+ |l2(w, q)| ≤ Cht(‖w‖t+1 + ‖p‖t) |q|0,h,(6.11)

where l1(w,v) and l2(w, q) are defined in (5.9) and (5.10).
Proof. Using the definition of Qb, (6.8) and (6.5), we have

|s1(Qhw, v)| =

∣∣∣∣∣ ∑
T∈Th

h−1〈(Q0w −Qbw)× n, (v0 − vb)× n〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

h−1〈(Q0w −w)× n, (v0 − vb)× n〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

(h−2‖Q0w −w‖2T + ‖∇(Q0w −w)‖2T )

)1/2

|v|1,h

≤ Cht‖w‖t+1|v|1,h.
10



Similarly, we have from (6.8) and (6.6) that

|l1(v, w)| ≡

∣∣∣∣∣ ∑
T∈Th

〈(I −Qh)∇×w, ν(vb − v0)× n〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

h‖(I −Qh)∇×w‖2∂T

)1/2

|v|1,h

≤ Cht‖w‖t+1|v|1,h.

This completes the proof of (6.10).
As to (6.11), note that

|s2(Qhp, q)| =

∣∣∣∣∣ ∑
T∈Th

h〈Q0p−Qbp, q0 − qb〉∂T

∣∣∣∣∣
≤
∑
T∈Th

h|〈Q0p− p, q0 − qb〉∂T |

≤ Cht‖p‖t |q|0,h.

It follows from (6.8) and (6.7) that

|l2(w, q)| =

∣∣∣∣∣ ∑
T∈Th

〈q0 − qb, (w −Q0w) · n〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

h−1‖w −Q0w‖2∂T

)1/2(∑
T∈Th

h‖q0 − qb‖2∂T

)1/2

≤ Cht‖w‖t+1 |q|0,h.

Combining the above two estimates leads to the inequality (6.11). This completes the
proof of the lemma.

7. Error Estimates. The objective of this section is to establish some optimal
order error estimates for uh and ph in certain discrete norms. We start with a modified
inf-sup condition commonly used for analyzing saddle point problem.

Lemma 7.1. For any q = {q0, qb} ∈ Wh, there exist a vq = h2{∇q0, 0} ∈ Vh,0
such that

(7.1) b(vq, q) ≥ h2‖∇q‖20,h − C|q|20,h
and

(7.2) |||vq||| ≤ Ch‖∇q‖0,h,

where C is a constant independent of h.
Proof. For a given q = {q0, qb} ∈Wh and v = {v0,vb} ∈ Vh,0, from the definition

of the discrete weak gradient we obtain

b(v, q) =
∑
T∈Th

(v0,∇wq)T

=
∑
T∈Th

(〈v0 · n, qb〉∂T − (∇ · v0, q0)T )

=
∑
T∈Th

((v0,∇q0)T + 〈v0 · n, qb − q0〉∂T ) ,

11



where we have used the usual integration by parts in the last equation. By choosing
v0 = 2h2∇q0 and vb = 0 we arrive at

b(v, q) = 2h2
∑
T∈Th

(∇q0,∇q0)T + 2h2
∑
T∈Th

〈∇q0 · n, qb − q0〉∂T .

Now by the Cauchy-Schwarz inequality and the trace inequality (6.9) we obtain

b(v, q) ≥ 2h2
∑
T∈Th

(∇q0,∇q0)T − 2h2
∑
T∈Th

‖∇q0 · n‖∂T ‖qb − q0‖∂T

≥ 2h2
∑
T∈Th

(∇q0,∇q0)T − Ch1.5
∑
T∈Th

‖∇q0‖T ‖qb − q0‖∂T

≥ h2
∑
T∈Th

(∇q0,∇q0)T − Ch
∑
T∈Th

‖qb − q0‖2∂T ,

which gives rise to the inequality (7.1). The boundedness estimate (7.2) can be obtain
by computing the triple bar norm of vq directly. This completes the proof of the
lemma.

The following is an error estimate for the WG finite element solutions.

Theorem 7.2. Let (u; p) ∈ [Ht+1(Ω)]3 × [H1
0 (Ω)∩Hmax{1,t}(Ω)] with 1

2 < t ≤ k
and (uh; ph) ∈ Vh × Wh be the solution of (1.1)-(1.4) and (4.7)-(4.8) respectively.
Then

|||eh|||+ |εh|0,h ≤ Cht(‖u‖t+1 + ‖p‖t),(7.3)

h‖∇εh‖0,h ≤ Cht(‖u‖t+1 + ‖p‖t).(7.4)

Proof. By letting v = eh in (5.5) and q = εh in (5.6) and adding the two resulting
equations, we have

|||eh|||2 + |εh|20,h = ϕu(eh) + φu,p(εh).(7.5)

The right-hand side of (7.5) can be handled by using Lemma 6.2 as follows. Using
(6.10) with w and v replaced by u and eh we obtain

(7.6) |ϕu(eh)| ≤ Cht‖u‖t+1|||eh|||.

Similarly, using (6.11) with w and q replaced by u and εh we obtain

(7.7) |φu,p(εh)| ≤ Cht(‖u‖t+1 + ‖p‖t) |εh|0,h.

Substituting (7.6) and (7.7) into (7.5) yields

(7.8) |||eh|||2 + |εh|20,h ≤ Cht(‖u‖t+1 + ‖p‖t)(|||eh|||+ |εh|0,h),

which implies the error estimate (7.3).

Next we will bound ‖∇εh‖0,h. It follows from (5.5) that

b(v, εh) = a(eh, v)− ϕu(v) ∀v ∈ Vh,0.
12



From Lemma 7.1, by choosing v = vεh = h2{∇εh, 0} we come up with

h2‖∇εh‖20,h ≤ |b(vεh , εh)|+ C|εh|20,h
≤ |a(eh, vεh)|+ |ϕu(vεh)|+ C|εh|20,h
≤ |||eh||| |||vεh |||+ Cht‖u‖t+1|||vεh |||+ C|εh|20,h
≤ C(|||eh|||+ Cht‖u‖t+1)h‖∇εh‖0,h + C|εh|20,h,

(7.9)

where we have used the estimate (7.2) in the last inequality. It follows from (7.9) and
(7.3) that (7.4) holds true. This completes the proof of the theorem.

Recall that |||v||| is merely a semi-norm in the finite element space Vh,0. Thus,
the error estimate (7.3) only provides a partial answer to the convergence of the WG
finite element method, particularly for the vector component uh. The norm ||| · |||1, as
defined by (6.2), involves two additional terms. The following theorem shall provide
some estimates with respect to those additional terms.

Theorem 7.3. Let (u; p) ∈ [Ht+1(Ω)]3× (H1
0 (Ω)∩Hmax{1,t}(Ω)) with 1

2 < t ≤ k
and (uh; ph) ∈ Vh × Wh be the solution of (1.1)-(1.4) and (4.7)-(4.8) respectively.
Then, we have ∑

e∈E0h

h−1‖[[e0 · n[]‖2e

 1
2

≤ Cht(‖u‖t+1 + ‖p‖t),(7.10)

(∑
T∈Th

‖∇ · e0‖2T

) 1
2

≤ Cht(‖u‖t+1 + ‖p‖t).(7.11)

Proof. Using the error equation (5.6) we have

(7.12) b(eh, q) = φu,p(q)− s2(εh, q).

The definition of the weak gradient implies that

b(eh, q) = (e0,∇wq) =
∑
T∈Th

(〈e0 · n, qb〉∂T − (∇ · e0, q0)T ) .(7.13)

By letting q = qeh
= {0, h−1[[e0 · n[]} on the interior edges, we obtain

b(eh, qeh
) =

∑
e∈E0h

h−1‖[[e0 · n[]‖2e.

Thus, ∑
e∈E0h

h−1‖[[e0 · n[]‖2e = φu,p(qeh
)− s2(εh, qeh

).

It follows from (7.3) that

(7.14) |s2(εh, qeh
)| ≤ |εh|0,h |qeh

|0,h ≤ Cht(‖u‖t+1 + ‖p‖t) |qeh
|0,h,

and from (6.11)

(7.15) |φu,p(qeh
)| ≤ Cht(‖u‖t+1 + ‖p‖t) |qeh

|0,h.
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Also, it is easy to see that

|qeh
|20,h =

∑
T∈Th

h‖q0 − qb‖2∂T∩Ω

=
∑
T∈Th

h−1‖[[e0 · n[]‖2∂T∩Ω

≤ C
∑
e∈E0h

h−1‖[[e0 · n[]‖2e.

Combining the above four inequalities yields

(7.16)

∑
e∈E0h

h−1‖[[e0 · n[]‖2e

 1
2

≤ Cht(‖u‖t+1 + ‖p‖t),

which verifies the estimate (7.10).
To derive (7.11), we set q = qeh

= {−∇ · e0, 0} ∈Wh in (7.13) so that

(7.17) b(eh, qeh
) =

∑
T∈Th

‖∇ · e0‖2T .

Thus, it follows from (7.12) that

(7.18)
∑
T∈Th

‖∇ · e0‖2T = φu,p(qeh
)− s2(εh, qeh

).

Substituting (7.14) and (7.15) into (7.18) implies

(7.19)
∑
T∈Th

‖∇ · e0‖2T ≤ Cht(‖u‖t+1 + ‖p‖t) |qeh
|0,h.

It follows from the definition of |q|0,h and the trace inequality (6.9) that

|qeh
|0,h ≤

(∑
T∈Th

h‖∇ · e0‖2∂T

) 1
2

≤ C

(∑
T∈Th

‖∇ · e0‖2T

) 1
2

,

which, together with (7.19), leads to the following estimate(∑
T∈Th

‖∇ · e0‖2T

) 1
2

≤ Cht(‖u‖t+1 + ‖p‖t).

This completes the proof.

To summarize, we have obtained the following error estimate for the WG finite
element solution arising from (4.7)-(4.8).

Theorem 7.4. Under the assumptions of Theorem 7.2, we have the following
error estimate for the WG finite element approximations:

|||eh|||1 + |||εh|||0 ≤ Ch
t(‖u‖t+1 + ‖p‖t).(7.20)
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8. An Error Estimate in L2. To derive an L2-error estimate for the WG
approximation of the vector component, we consider an auxiliary problem that seeks
(ψ; ξ) satisfying

∇×(ν∇×ψ)−∇ξ = e0 in Ω,

∇ · ψ = 0 in Ω,

ψ × n = 0 on ∂Ω,

ξ = 0 on ∂Ω.

(8.1)

Assume that the problem (8.1) has the [H1+s(Ω)]3 × Hs(Ω)-regularity property in
the sense that the solution (ψ; ξ) ∈ (H1+s(Ω))3 × Hs(Ω) and the following a priori
estimate holds true:

(8.2) ‖ψ‖1+s + ‖ξ‖s ≤ C‖e0‖,

where 0 < s ≤ 1.

Theorem 8.1. Let (u; p) ∈ [Hr+1(Ω)]3× [H1
0 (Ω)∩Hmax{1,r}(Ω)] and (uh; ph) ∈

Vh ×Wh be the solutions of (1.1)-(1.4) and (4.7)-(4.8) respectively. Let 1
2 < r ≤ k

and 0 < s ≤ 1. Then,

(8.3) ‖Q0u− u0‖ ≤ Chr+s(‖u‖r+1 + ‖p‖r).

Proof. Testing the first equation of (8.1) by e0 gives

‖Q0u− u0‖2 = (e0, e0) = (∇×(ν∇×ψ), e0)− (∇ξ, e0).

Using (5.12) and (5.15) (with ψ, ξ, eh in the place of u, p,v respectively), the above
equation becomes

‖Q0u− u0‖2 = (ν∇w×Qhψ, ∇w×eh)h − (e0, ∇w(Qhξ))h + l1(ψ, eh).

Adding and subtracting s1(Qhψ, eh) to the equation above yields

‖Q0u− u0‖2 = a(Qhψ, eh)− b(eh, Qhξ)− ϕψ(eh).

The error equation (5.6) implies

b(eh, Qhξ) = −s2(εh, Qhξ) + φu,p(Qhξ).

It now follows from the definition of Q0, ∇w and the second equation of (8.1) that

b(Qhψ, εh) = (Q0ψ,∇wεh)h =
∑
T∈Th

(〈εb, Q0ψ · n〉∂T − (ε0, ∇ · (Q0ψ))T )

=
∑
T∈Th

(〈εb − ε0, Q0ψ · n〉∂T + (∇ε0, ψ)T )

=
∑
T∈Th

(〈εb − ε0, Q0ψ · n〉∂T − 〈εb − ε0, ψ · n〉∂T )

= l2(ψ, εh),
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where we have used the fact that
∑
T∈Th 〈εb, ψ ·n〉∂T = 0. Using the equations above,

we have

‖Q0u− u0‖2 = a(Qhψ, eh)− b(Qhψ, εh)− φu,p(Qhξ)− ϕψ(eh) + φψ,ξ(εh).

Using (5.5) and the equation above, we have

‖Q0u− u0‖2 = ϕu(Qhψ)− φu,p(Qhξ)− ϕψ(eh) + φψ,ξ(εh).(8.4)

The four terms on the right-hand side of (8.4) can be handled by the estimates
presented in Lemma 6.2. To this end, we use (6.10) and (6.11) with t = r to obtain

(8.5) |ϕu(Qhψ)− φu,p(Qhξ)| ≤ Chr(‖u‖r+1 + ‖p‖r) (|Qhψ|1,h + |Qhξ|0,h) .

Using the definition (6.3) we have

|Qhψ|21,h =
∑
T∈Th

h−1‖(Q0ψ −Qbψ)× n‖2∂T

≤
∑
T∈Th

h−1‖(Q0ψ − ψ)× n‖2∂T

≤Ch2s‖ψ‖2s+1.

(8.6)

Similarly, we have from the definition of Qb, (6.8) and (6.7)

|Qhξ|20,h =
∑
T∈Th

h‖Q0ξ −Qbξ‖2∂T

≤
∑
T∈Th

h‖Q0ξ − ξ‖2∂T

≤ Ch2s‖ξ‖2s.

(8.7)

Substituting (8.6) and (8.7) into (8.5) gives

|ϕu(Qhψ)− φu,p(Qhξ)| ≤ Chr+s(‖u‖r+1 + ‖p‖r) (‖ψ‖1+s + ‖ξ‖s)
≤ Chr+s(‖u‖r+1 + ‖p‖r)‖e0‖,

(8.8)

where the regularity estimate (8.2) was used in the second equation.
Analogously, we have from (6.10) and (6.11) with t = s that

|ϕψ(eh)− φψ,ξ(εh)| ≤ Chs(‖ψ‖s+1 + ‖ξ‖s) (|eh|1,h + |εh|0,h)

≤ Chs (|||eh|||+ |εh|0,h) ‖e0‖
≤ Chr+s(‖u‖r+1 + ‖p‖r)‖e0‖,

(8.9)

where we have used the error estimate (7.3) and the regularity inequality (8.2). Fi-
nally, substituting (8.8) and (8.9) into (8.4) yields the desired error estimate (8.3).
This completes the proof of the theorem.

9. An Effective Implementation through Variable Reduction. The de-
gree of freedoms for the WG formulation (4.7)-(4.8) is associated with uh = {u0,ub}
and ph = {p0, pb}. In this section, we will demonstrate how u0 and p0 can be elim-
inated from the system in order to obtain a global system that depends only on ub
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and pb. With such a variable reduction, the number of unknowns of the WG method
is reduced significantly for an efficient practical implementation.

Let uh = {u0,ub} ∈ Vh and ph = {p0, pb} ∈ Wh be the solution of the WG
method (4.7)-(4.8). Recall that (uh; ph) satisfies ub×n = Qbφ on ∂Ω and the following
equations:

a(uh, v)− b(v, ph) = (f , v0), ∀ v = {v0, 0} ∈ Vh,0,(9.1)

b(uh, q) + s2(ph, q) = −(g, q0), ∀ q = {q0, 0} ∈Wh,(9.2)

and

a(uh, v) = 0, ∀ v = {0, vb} ∈ Vh,0,(9.3)

b(uh, q) + s2(ph, q) = 0, ∀ q = {0, qb} ∈Wh.(9.4)

Denote by Vk(T ) and Wk(T ) the restrictions of Vh and Wh on T :

Vk(T ) = {v = {v0,vb = v1t1 + v2t2} : v0|T ∈ [Pk(T )]3, v1, v2 ∈ Pk(e), e ⊂ ∂T}.

and

Wk(T ) = {q = {q0, qb}, q0 ∈ Pk−1(T ), qb ∈ Pk(e), e ⊂ ∂T}.

Since the testing functions v = {v0, 0} and q = {q0, 0} are locally supported on each
element, then the system of equations (9.1)-(9.2) is equivalent to the following system
of equations defined locally on each element T :

a(uh, v)− b(v, ph) = (f , v0), ∀ v = {v0, 0} ∈ Vk(T ),(9.5)

b(uh, q) + s2(ph, q) = −(g, q0), ∀ q = {q0, 0} ∈Wk(T ).(9.6)

If the exact solution of ub and pb were known on ∂T , then the corresponding u0 and
p0 can be obtained by solving (9.5) and (9.6) locally on each element. Therefore, the
key is to derive a system of equations that shall determine ub and pb.

For any given ub and pb on ∂T , let us solve (9.5) and (9.6) to obtain u0 and p0

on each element T . For simplicity, we introduce the following notation

u0 : = D(ub, pb, f , g),(9.7)

p0 : = E(ub, pb, f, g).(9.8)

Then the solution uh and ph of (4.7)-(4.8) can be written as uh = {u0,ub} =
{D(ub, pb, f , g),ub} and ph = {p0, pb} = {E(ub, pb, f , g), pb}.

Let D1(ub, pb) = D(ub, pb, 0, 0) and D2(f , g) = D(0, 0, f , g). Similarly let
E1(ub, pb) = E(ub, pb, 0, 0) and E2(f , g) = E(0, 0, f , g). Since a(·, ·), b(·, ·) and s2(·, ·)
are bilinear, then superposition implies

(uh; ph) = ({u0,ub}; {p0, pb})
= ({D(ub, pb, f , g),ub}; {E(ub, pb, f , g), pb})
= ({D(ub, pb, 0, 0),ub}; {E(ub, pb, 0, 0), pb})

+ ({D(0, 0, f , g), 0}; {E(0, 0, f , g), 0})
= ({D1(ub, pb),ub}; {E1(ub, pb), pb}) + ({D2(f , g), 0}; {E2(f , g), 0}).
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Substituting uh = {D(ub, pb, f , g),ub} and ph = {E(ub, pb, f , g), pb} into the sys-
tem (9.3)-(9.4) yields

a({D1(ub, pb),ub}, v) = ζ1(v),(9.9)

b({D1(ub, pb),ub}, q) + s2({E1(ub, pb), pb}, q) = ζ2(q),(9.10)

for all v = {0, vb} ∈ Vh,0 and q = {0, qb} ∈Wh. Here

ζ1(v) = −a({D2(f , g), 0},v)

ζ2(q) = −b({D2(f , g), 0}, q)− s2({E2(f , g), 0}, q).

Note that the system (9.9)-(9.10) is a square matrix problem with ub and pb as
unknowns, and this is the system of equations that ub and pb have to satisfy.

To summarize, our WG scheme (4.7)-(4.8) can be implemented as follows:
Step 1. Find ub and pb with ub ×n = Qbφ and pb = 0 on ∂Ω satisfying (9.9)-(9.10).
Step 2. Recover u0 and p0 by u0 = D(ub, pb, f , g) and p0 = E(ub, pb, f , g) by solving

(9.5) and (9.6) locally on each element.

The system of equations (9.9)-(9.10) is known as a Schur complement of the
original WG finite element scheme (4.7)-(4.8).

10. Numerical Results. Our numerical tests are conducted for the Maxwell
equations (1.1)–(1.4) on the unit cube Ω = (0, 1)3. The first level grid consists of one
cube. Each grid is refined by subdividing a cube into eight half-sized cubes, to define
the next level grid. We apply the first order weak Galerkin finite element method; i.e.,
Vh and Wh are defined in (4.1) and (4.2) with k = 1, respectively. Thus, the vector
component u is approximated by using piecewise linear functions on each cube and
its faces; the scalar component p is approximated by using constants on each cube
and linear function on its faces.

We compute four sets of solutions of (1.1)–(1.4), which are

u =

 y − z
z − x

3z − 2y

 , p = 1.(10.1)

u =

 yz
zx

3z − 2yx

 , p = xz.(10.2)

u =

 eyz

z/(x+ 1)
exy

 , p = e−xyz.(10.3)

u =

cos(πx) sin(πy) sin(πz)
sin(πx) cos(πy) sin(πz)
sin(πx) sin(πy) cos(πz)

 , p = sin(2πx) sin(2πy) sin(2πz).(10.4)

Observe that the solution p in the first three test cases does not satisfy the homo-
geneous boundary condition (1.4). The corresponding WG scheme (4.7)-(4.8) needs to
be modified so that pb assumes the given non-homogeneous boundary value; namely,
the L2 projection of the value of p on the boundary.

The first numerical test is used to check the correctness of the code, where the
exact solutions (10.1) are linear and constant, respectively. As expected, the weak
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( 1, 1,  0.74011)

( 0, 0,  1.00039)

( 1, 1,  0.00011)

( 0, 0,  0.00203)

( 1, 1, -0.00041)

( 0, 0,  0.00875)

Fig. 10.1. The solution p in (10.3), and the errors (p− p0) and (p− pb) on level 4, at z = 0.3.

Table 10.1
The errors, eh = Qhu − uh in H1-like norm ||| · |||1, εh = Qhp − ph in L2-like norm ||| · |||0,

e0 = Q0u − u0 in L2 norm, and ε0 = Q0p − p0 in L2 norm, for (10.1) by k = 1 finite elements
(4.1)–(4.2).

grid |||eh|||1 hr |||εh|||0 hr ‖ε0‖L2 hr ‖e0‖L2 hr

1 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0
2 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0
3 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0
4 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0

Galerkin finite element solutions are exact, up to computer accuracy. As shown in
Table 10.1, all errors are zero.

In the second test (10.2), we choose some bilinear functions as the exact solution.
The numerical results are reported in Table 10.2. It can be seen that the numerical
solution for the unknown function p is numerically the same as the exact solution.
Moreover, the order of convergence for u is half-order higher than what was proved
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Table 10.2
The errors, eh = Qhu − uh in H1-like norm |||eh|||1, e0 = Q0u − u0 in L2 norm ‖e0‖,

εh = Qhp − ph in L2-like norm |||εh|||0, and ε0 = Q0p − p0 in L2 norm ‖ε0‖, for (10.2) by k = 1
finite elements (4.1)–(4.2). And the order r as in O(hr) of convergence.

grid |||eh|||1 hr ‖e0‖L2 hr |||εh|||0 hr ‖ε0‖L2 hr

1 2.26e-08 - 7.76e-09 - 0.0000 - 0.0000 -
2 5.15e-02 - 9.46e-03 - 0.0000 - 0.0000 -
3 2.28e-02 1.1 2.14e-03 2.1 0.0000 - 0.0000 -
4 8.77e-03 1.4 4.15e-04 2.4 0.0000 - 0.0000 -
5 3.03e-03 1.5 7.66e-05 2.4 0.0000 - 0.0000 -

in the theory. This superconvergence is probably caused by the special format of the
exact solution.

Table 10.3
The errors, eh = Qhu − uh in H1-like norm |||eh|||1, e0 = Q0u − u0 in L2 norm ‖e0‖,

εh = Qhp− ph in L2-like norm |||εh|||0, |||εh|||0,h, and ε0 = Q0p− p0 in L2 norm ‖ε0‖, for (10.3) by

k = 1 finite elements (4.1)–(4.2). And the order r as in O(hr) of convergence.

grid |||eh|||1 hr ‖e0‖L2 hr |||εh|||0 hr |||εh|||0,h hr ‖ε0‖L2 hr

1 7.02e-1 - 3.32e-1 - 6.56e-3 - 6.56e-3 - 2.68e-3 -
2 3.69e-1 0.9 8.71e-2 1.9 7.34e-2 - 4.73e-3 0.5 2.33e-3 0.2
3 1.91e-1 0.9 2.10e-2 2.1 5.11e-2 0.5 1.09e-3 2.1 4.73e-4 2.3
4 1.02e-1 0.9 5.10e-3 2.0 2.91e-2 0.8 2.67e-4 2.0 1.18e-4 2.0
5 5.05e-2 1.0 1.26e-3 2.0 1.55e-2 0.9 6.59e-5 2.0 2.95e-5 2.0
6 2.52e-2 1.0 3.16e-4 2.0 7.73e-3 1.0 1.65e-5 2.0 7.39e-6 2.0

In the third test (10.3), the exact solution is chosen as a general function. The
numerical results for this test case is presented in Table 10.3, confirming the theoretical
convergence estimates as derived in Theorems 7.4 and 8.1.

Table 10.3 contains additional information for the scalar approximation ph; the
fourth column is the error for the scalar approximation measured at the center of
each face in a discrete L2 fashion. More precisely, for each qh = {q0, qb} ∈ Wh, the
semi-norm |||qh|||0,h is defined as follows:

|||qh|||20,h =
∑
T∈Th

h‖q0 −Πqb‖2∂T ,

where Π is the average operator on each face. It can be seen that the convergence in
this discrete L2 norm is of order O(h2), which is higher than the theoretical predic-
tion. For this purpose, we graph the solutions and errors in Figures 10.1 and 10.2.
We believe that some superconvergence is playing a role in the weak Galerkin finite
element method. This is left to interested readers for an investigation.

The forth test (10.4) was conducted on another solution with general structure.
The goal of this test is to re-confirm the convergence results developed in earlier Sec-
tions. The numerical results are presented in Table 10.4. The numerical performance
of the weak Galerkin finite element method is similar to the test case three.

In the rest of our numerical experiments, we considered a version of the finite
element scheme (4.7)-(4.8) for which no convergence theory was developed in the
present paper. More precisely, the WG method makes use of piecewise linear functions
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( 1, 1,  0.99584)

( 0, 0,  2.71828)

( 1, 1, -0.00434)

( 0, 0,  0.00863)

( 1, 1, -0.01454)

( 0, 0,  0.02018)

( 1, 1, -0.01454)

( 0, 0,  0.02018)

Fig. 10.2. The solution (u)3 (the third component) in (10.3), and the errors (u − u0)3, (u −
ub)3,t1 and (u−ub)3,t2 (the two tangential component of the third component) on level 4, at z = 0.3.

for the vector component Vh, but the scalar component is modified as follows:

Wh = {w = {w0, wb} : {w0, wb}|T ∈ P0(T )× P0(e), e ⊂ ∂T,wb = 0 on ∂Ω}.

In other words, the scalar variable is approximated by using piecewise constants on
both the interior and the boundary of each element. Again, it is not known if the
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Table 10.4
The errors, eh = Qhu − uh in H1-like norm |||eh|||1, e0 = Q0u − u0 in L2 norm ‖e0‖,

εh = Qhp− ph in L2-like norm |||εh|||0, |||εh|||0,h, and ε0 = Q0p− p0 in L2 norm ‖ε0‖, for (10.4) by

k = 1 finite elements (4.1)–(4.2). And the order r as in O(hr) of convergence.

grid |||eh|||1 hr ‖e0‖L2 hr |||εh|||0 hr |||εh|||0,h hr ‖ε0‖L2 hr

1 8.54e0 - 1.35e0 - 3.60e-1 - 3.60e-1 - 1.47e-1 -
2 2.27e0 1.8 4.77e-1 1.5 2.10e0 - 2.08e0 - 8.65e-1 -
3 9.86e-1 1.2 1.47e-1 1.7 5.17e-1 2.0 2.50e-1 3.1 1.78e-1 2.3
4 4.32e-1 1.1 3.86e-2 1.9 3.09e-1 0.8 4.53e-2 2.5 4.10e-2 2.1
5 1.97e-1 1.1 9.21e-3 2.0 1.71e-1 0.9 1.08e-2 2.0 1.06e-2 1.9
6 9.85e-2 1.0 2.26e-3 2.0 8.75e-2 1.0 2.69e-3 2.0 2.71e-3 2.0

current theoretical result can be extended to this simple WG element, though the
numerical results show an excellent approximation to the exact solution. Table 10.5
contains the numerical results for the test case (10.3), and Table 10.6 is for the test
case (10.4).

Table 10.5
The errors, eh = Qhu− uh in H1-like norm, e0 = Q0u− u0 in L2 norm, εh = Qhp− ph in

L2-like norm, and ε0 = Q0p − p0 in L2 norm, for (10.4) by lower order WG finite elements. And
the order r as in O(hr) of convergence.

grid |||eh|||1 hr ‖e0‖L2 hr |||εh|||0 hr ‖ε0‖L2 hr

1 6.72e-1 - 3.24e-1 - 0.00e0 - 2.68e-3 -
2 3.66e-1 0.9 8.62e-2 1.9 5.73e-3 - 2.92e-3 -
3 1.94e-1 0.9 2.09e-2 2.0 1.03e-3 2.5 6.16e-4 2.2
4 1.02e-2 0.9 5.07e-3 2.0 1.89e-4 2.5 1.12e-4 2.4
5 5.05e-2 1.0 1.26e-3 2.0 9.44e-5 2.0 2.71e-5 2.1
6 2.52e-2 1.0 3.14e-4 2.0 4.72e-5 2.0 6.78e-6 2.0

Table 10.6
The errors, eh = Qhu− uh in H1-like norm, e0 = Q0u− u0 in L2 norm, εh = Qhp− ph in

L2-like norm, and ε0 = Q0p − p0 in L2 norm, for (10.4) by lower order WG finite elements. And
the order r as in O(hr) of convergence.

grid |||eh|||1 hr ‖e0‖L2 hr |||εh|||0 hr ‖ε0‖L2 hr

1 8.54e0 - 1.35e0 - 3.60e-1 - 1.47e-1 -
2 2.21e0 1.9 4.27e-1 1.7 2.08e0 - 8.57e-1 -
3 1.07e0 1.1 1.63e-1 1.4 1.99e-1 3.4 1.23e-1 2.8
4 4.35e-1 1.2 3.88e-2 2.1 4.49e-2 2.1 2.71e-2 2.2
5 1.96e-2 1.1 9.19e-3 2.1 1.07e-2 2.1 7.23e-3 1.9
6 9.82e-2 1.0 2.26e-3 2.0 2.61e-3 2.0 1.85e-3 2.0
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