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Abstract

This paper presents a new micromechanical model for a collection of co-
hesive zone models embedded between each mesh of a finite element-type
discretization. It aims to forth fully extend the previous linear results of [1]
to the calibration of damageable cohesive parameters (cohesive peak stress,
critical opening displacement, cohesive energy, etc). The main idea of the
approach consists in replacing the underlying cohesive-volumetric discretiza-
tion by an equivalent 'matrix-inclusions’ composite. The overall behav-
ior of this equivalent composite is estimated using homogenization schemes
(Hashin-Shtrikman estimate and the modified secant method) and is given in
a closed-form as function of both cohesive and bulk properties and the mesh
density. In the particular case of a bilinear cohesive law a micromechani-
cal damage model for quasi-brittle materials is derived. The corresponding
local-to-global relationships are obtained for any overall triaxiality loading
ratio.

Keywords: Micromechanics, Damage, Cohesive Zone Model, Homoge-
nization.

1. Introduction

The cohesive approaches had emerged as one of the most efficient method
in computational fracture mechanics. However these approaches exhibit
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strong mesh sensitivity [2, 3] and an accurate calibration of the cohesive
parameters to extract physically-based macroscopic properties is up to now
a cumbersome task [4].

Various (semi-) empirical criteria have been proposed in the ten past
years in order to avoid these difficulties (among others, see [5, 6]). To fix
the idea, a cohesive zone model can be seen as a traction-separation law
involving two main parameters: a peak stress Rﬁ?;‘x and a cohesive energy
G". Whatever the shape of the traction-separation law a characteristic
length is thus invoked, e.g. G<" /RS . The computational challenge is to
obtain rigorous criteria linking these characteristic length to the surround-
ing bulk properties and to the size and the type of the underlying spatial
discretization. Previous criteria developed in the literature are mainly lim-
ited to unidimensional loadings and no theoretical result is available at any
triaxiality loading ratio in three dimensions.

Following a micromechanical-based approach initially proposed by [7],
[8] have recently obtained such rigorous criteria for a linear elastic cohesive
zone model (no surface damage). We extend here these criteria to any dam-
ageable intrinsic cohesive zone model. The main idea is to consider each
face of a three dimensional mesh with embedded cohesive zone models as a
penny shaped damageable inclusion (Figure 1). A cohesive-volumetric finite
element (CVFE) scheme is thus replaced by a matrix-inclusion composite,
and the spatial distribution of inclusions corresponds to the mesh morphol-
ogy. Using a variational approach [9, 10] and a linear lower bound [11], a
rigorous theoretical estimate of the overall strain potential of this composite
is obtained.

Theoretical criteria on cohesive parameters are thus derived from this
estimate. The elastic criterion of [8] is recalled (Eq. (21)) and new damage-
able criteria are proposed. In particular, considering a bilinear cohesive law,
closed-form relationships (Eqgs. (25)-(30)) between the microscopic cohesive
parameters and the macroscopic fracture properties are exhibited through
an inverse analysis .

2. Embedding cohesive zone models in bulk media

The proposed micromechanical model is based on a cohesive-volumetric
finite element (CVFE) scheme. The overall behavior results in the coupling
of the volumetric behavior of bulk elements and the smeared out cohesive
surfaces incorporating all softening processes. We focus our attention to
elastic bulk behaviors and intrinsic cohesive zone models, i.e. cohesive law
with initial stiffness.



2.1. Bulk behavior

We consider the case of linear isotropic elastic media whose behavior is
characterized by the constitutive relationships:

o=C":e with CM=3MJ+ 2,MK, (1)

where o (resp. €) is the stress (resp. strain) field , CM is a fourth order
stiffness tensor, kM and pM are the bulk and the shear modulus respectively.
The symmetric tensors J and K define the generic basis of the fourth order
isotropic and symmetric tensors:

3J=41®%1 and K=1-—] with 250 = (iikijl + iilijk) (2)
where 2 is the second order identity tensor.

2.2. Cohesive Zone Model

Without loss of generality, any intrinsic cohesive law can be given as a
three-dimensional traction-separation law linking the cohesive stress vector
R°" to the opening displacement vector [u] = ut — u~, where u® (resp.
u~) is the displacement of the upper (resp. lower) part of the cohesive
zone. In a local normal-tangent frame oriented by the normal vector n, the
opening displacement vector can be decomposed into a normal, uy, and a
tangential, uT, component: [u] = uyn+ut. A generic cohesive constitutive
relation reads:

ROM= K. [u] with K=3x(C\n@n+Cr(i—nomn)), (3)

where Cy (resp. C7) is the normal (resp. tangential) initial ’stiffness’ of the
cohesive law and 3 is a surface damage parameter (3 = 1 the cohesive zone
is undamaged, 0 < /3 < 1 cohesive zone is partially damaged and 3 = 0 the
cohesive zone is fully damaged). Following [3], we assume that the damage
parameter 3 introduced in (3) depends on the euclidian norm of the opening

displacement vector [u], i.e. 3 = B(||[u]|) with 8 a damage function.

3. Micromechanical model

3.1. The cohesive-volumetric finite element scheme as a matriz-inclusion
composite

In order to accurately estimate the overall behavior resulting from a
CVFE discretization, the procedure proposed in [8] is considered. The idea
consists in introducing a continuous equivalent matriz-inclusion composite
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Figure 1: Principle of the approach: from a cohesive-volumetric discretization to a 'matrix-
inclusions’ composite; (left) 2-D illustration, (right) 3-D illustration.

as a convenient representation of the underlying cohesive-volumetric dis-
cretization (Figure 1). The continuous matrix has the same behavior as the
bulk finite element behavior (Eq. (1)) whereas the inclusions behavior should
represent the cohesive zone model (Eq. (3)). Associating to the inclusions
a fictitious thickness e that should tend to zero, and with the help of the
strain definition across the cohesive zones:

E‘.coh lﬂuﬂ®n+n®[[u]]

9 e ’ (4)

a damageable fourth order stiffness tensor C" is defined for the cohesive
inclusions following [7, 8]:

ot = CN(|[ull) : = with € (Ifull) = cB(I[ull) (OnEL+Cri )
()

where 0" is the cohesive stress field and the tensors E; and K; are two
components of the fourth order symmetric and transversely isotropic tensors
generic frame:

E=nononeon, K =20[,075,+73:97)

where j, = n®;s and j;, = n®st with s and t being two orthogonal vectors
defining the transversal plane; (n,t,s) define the local orthogonal basis of
the cohesive inclusion. We underline that combining (5) and (4), the cohe-
sive stress vector R®" = g% . i satisfies the constitutive relationship (3).
The cohesive inclusions are distributed according to the spatial distribu-
tion of the underlying cohesive-volumetric mesh morphology. Their density,
denoted by Z, corresponds to the specific cohesive surface: Z = A/S where
A is the total edge length (resp. area) in 2-D (resp. in 3-D) and S is the total
area (resp. volume) of the 2-D (resp. 3-D) meshed body. For a discretiza-
tion characterized by a mesh size Lmesh, A i8 proportional to Lgn_eih and S is



proportional to quesh where ¢ is the considered dimension. The density Z
is thus inversely proportional to the mesh size and can be expressed as:

v
Lmesh ’

7 —

where the parameter v depends on the spatial distribution of the considered
mesh [1]. In particular, in the case of a statistical isotropic mesh, e.g. a
Delaunay-type mesh, the inclusions are randomly distributed in space and
in orientation.

Moreover we assume that the cohesive inclusions have a penny-shaped
form (Figure 1). This geometric assumption has no consequence for planar
meshes where the edges are replaced by zero thickness whiskers. For 3-D
meshes, we suppose that the polygonal edges are replaced by flat disks. We
admit that these situations are close to each other but are different in full
rigour.

3.2. Owerall elastic stiffness

As a first step, the results obtained in [8] for the elastic behaviors are
briefly recalled. In this section, the cohesive inclusions behavior is assumed
to be linear, i.e. 5 = 1. The overall behavior of the matrix-inclusion com-
posite is estimated using the Hashin-Shtrikman scheme [11, 12] and a lower
bound of the overall elastic moduli is derived under the assumption of macro-
scopic isotropy, i.e. isotropic bulk behavior and isotropic distribution of
inclusions (e.g. Delaunay-type meshes). This bound is obtained by consid-
ering the inclusions as the reference medium, and the corresponding overall
stiffness tensor reads after the passage to limit e — 0 [8]:

(Chom — 3k,homJ + 2IuhomK’ (6)

where the overall bulk and shear moduli are respectively given by:

k,hom gk ) . Ch

oM T ooy Vith &=

Mk}:]om ¢ é:;t 1 2k 15 CN (7)
—_— = with &+ = X .

puM §H+1 4(1+3C\/Cr) = ZuM

The overall Young’s modulus and Poisson ratio associated to this bound
read:
Ehom gE
EM T 1y ¢E

E_ 5 CN
where ¢ = 1+ (4/3)(Cn/C1) x EM 7 (8)




vhem 150y M + (2Cn/Cr — 1)EMZ 0

M~ 15CaM + (4Cy /O + 3)EMZM ©)
It is worth noting that Eqgs. (7) and (8) show respectively that a cohesive-
volumetric formulation with vanishing tangential cohesive stiffness (Ct — 0)
leads to a macroscopic no shear ("™ — 0) and no tension (EM™ — 0)
material.

3.8. Owverall quasi-brittle damage

In this section, the case of non linear damageable cohesive zone models
is considered (0 < 8 < 1). The macroscopic stress ¥ associated to the
softening part is obtained via the constitutive law: X = Cho™ . E, where
the homogeneous stiffness tensor C"°™ is estimated using the modified se-
cant method [10], which is equivalent to the Ponte Castaneda variational
approach [13]. The non linear stiffness of the inclusions is approached by a
secant modulus:

czsr—cm( <||[[unu2>,), (10)

where (.); denotes the mean value over the cohesive inclusions. This se-
cant stiffness C replaces the cohesive tensor C®" in Hashin-Shtrikman
estimate.

With the help of definition (4), the opening displacement norm ||[u]||
can be linked to the fourth order tensor ¢ = (1/2)e ® € as:

([w]||* = 262(~J + 2K) :: e. (11)

Moreover, the generalized Hill lemma allows to derive the second moment
of the strain in the inclusion phase (¢); from the overall elastic energy [14]:

<> - 1 a(E.(Chom.E)
®1_2€Z 8CCOh :

sct

(12)

Hence, substituting (12) into (11), the mean square root of the opening
displacement norm reads:

e . hom .
VIR, = \/ cerro) s AEEE )

sct

Involving the hydrostatic part of the strain loading E,, = (1/3) tr(E) and
the equivalent part Eeq = \/ (2/3)Egey : Egey (with Eqge, being the deviatoric
strain tensor: Egqe, = E — Eih2), this last relation is rewritten as:

VATulI?), = /482 + BEZ, (14)

6



where A and B requires to calculate the derivatives O(E : C"°™ : E)/0CS.
Due to the specific form of the chosen homogenization scheme, these deriva-
tives can be here determined analytically. In more complicated cases, a
numerical derivation can be used as proposed in [15].

Moreover, incorporating an intermediate result of [8] linking the normal-

to-tangential cohesive stiffness ratio Cy/Ct to the Poisson ratio:

Oy 11+3M

N _ -7 1
Cr 21— 2™’ (15)
the coefficients A and B are reduced to:
24 M 3EM 2
A=2 2t V ° (16)
1—20M \ EMZ + 380N (1 — 20M)
5 23+ (634 82MpM 3EM 2 a7
- 10(1 + vM)2 EMZ +33CN(1 — 2uM)

Finally, the expression of the secant modulus is given by:

Cf = e x B x (CNE + CrKy),  with 8= B (y/AE + BEZ, ). (18)

The cohesive secant stiffness tensor CS is thus obtained solving the
non linear problem (18)-right in which A and B depend on the damage
parameter 3 (see Eqs (16) and (17)). For any damage function 3 — i.e. for
any shape of the cohesive law — the solution [ of this non linear problem
requires generally a numerical method as fixed point schemes. The overall
secant behavior is thus derived using the Hashin-Shtrikman bound (6) and

(7) and the equation (15):

S=Clm.E with CM™ = 3kM™(E)J + 2uM5™ (E)K, (19)
where
B g o O
B St B A (20)
[ 3(1—2v")  BCN

with gsct =

= X .

M gl 1 2(1+vM) — ZpM

This overall behavior defines a micromechanical damage model whatever the
triaxiality loading ratio and the cohesive law type. In section 4.2, the case
of a bilinear cohesive law is discussed: the non linear problem (18)-right can

be solved in a closed-form.



4. Inverse identification and practical criteria on cohesive param-
eters

4.1. Cohesive stiffness

Using cohesive zone models induces an inherent additional compliance
that should be controlled. This problem arrises naturally for cohesive laws
with initial stiffness (intrinsic models) but also for cohesive law with an ini-
tial infinite slope (extrinsic models) when dealing with unloading-reloading
behaviors. Moreover, the elastic cohesive stiffness is known to be mesh-
dependent as illustrated in [2, 3].

To overcome these difficulties, some semi-empirical criteria have been
proposed in the literature and can be summarized as follows: if Lesn denotes
the mesh size of a cohesive-volumetric discretization, the effective elastic
stiffness of an elastic medium with embedded cohesive zone model is not
significantly disturbed if the condition

CNLmesh
g =
is satisfied, where the real « has to be much more larger than 1, e.g. [5, 6, 3].

Recently, the rigorous micromechanical-based criterion proposed by [1,
8]:

OhLmesh R 1 Ct 1—2M

d 2L _g- 2V 21
EM =T1-R3—eM M oy T ‘11aM (21)

has shown the dependency of o on the bulk Poisson ratio vM, on the spatial

distribution of the underlying mesh (through +) and on the apparent stiffness
reduction tolerated by the user: R = E"°m/EM,

4.2. Cohesive peak stress and critical opening displacement

Focusing on the case of quasi-brittle elastic materials, we attempt in
what follows to derive micromechanical based criteria for the calibration of
softening cohesive parameters. For the sake of simplicity, and without any
loss of generality, the case of a bilinear cohesive law (Figure 2) and of overall
pure deviatoric loadings (J : E =0 and J : 3 = 0) are first considered. A
procedure is proposed to calibrate the cohesive parameters as a function of:
(1) the overall material properties (e.g. experimental data), (2) the shape
of the cohesive law, (3) the spatial cohesive-volumetric discretization (mesh
morphology and mesh size). These detailed results are then given for the
case of overall pure hydrostatic loadings on a crude form.



4.2.1. Owverall pure deviatoric loadings
For the case of a bilinear cohesive law, the damage function § reads:

B (ITull) = D (L) + B (L) 52 (1= ) (22

where Dy, 5 () is the door function equal to 1 if = € [a,b] and 0 otherwise,
04 1s the opening displacement at the peak cohesive stress for pure normal or
tangent loadings, i.e. Ry* = Cnd, and ||[RT*|| = C16,, and 6. is the critical
opening displacement where the complete local failure occurs (J|R<"|| = 0
when [|[u]|| = d.).

RN FaT
. iy

_ C CON
s\\ ﬁ CN ~ T E \\‘ ﬁ CT
LY LY
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< Cy

S M W
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Figure 2: A bilinear cohesive law: pure opening, ur = 0, (left) and pure shear separation,
un = 0, (right).

For this bilinear cohesive law, the non linear problem (18) can be solved
analytically for the case of pure deviatoric loadings (Ep, = 0). In particular,
an overall damage initiation strain qu can be defined when the cohesive
peak stress is reached:

V2(1 + M) (1 —20M)(1 + 30M) Reoh (23)
V(1= 20M £ 5(M)2) (23 + 63M + 82(VM)2) EMR’

0 _
Eeq =

maXx
macroscopic failure initiation depends on the matrix properties EM and
vM, on the maximal cohesive strength RSP and on the apparent stiffness
reduction R, but does not depend on the morphology ~ or the density Z of
the mesh. In the same way, the overall critical failure strain Eg, is reached

when the cohesive resistance vanishes (Z = 7/Lmesh):

where R = /(R1)2 + [RT¥]2 is the maximal cohesive strength. This

. VI0(1 4+ M) 76,
U 31/23+ 63M + 82(vM)2 Limesh

(24)




This critical failure strain does not depend on the Young’s modulus of the
matrix EM or on the apparent stiffness reduction R, but increases linearly
with respect to the critical opening displacement §. and decreases wit respect
to the mesh size Lmesh-

Based on these definitions, three main results can be derived. First, in
order to avoid that a complete failure can occur before the local surface
damage begins, i.e. to satisfy the condition Eg, > qu, the critical opening
displacement has to respect the condition

3 (1—20M) (14 30M) Lppesn RN (25)
‘T VB 1-2M150uM32 YR EM’

Hence, we assume in the sequel that the critical opening displacement is
linearly proportional to the right part of the inequality (25) through a mul-
tiplier coefficient larger than one. -

Second, the overall deviatoric strain, Eeq, leading to the overall deviatoric

peak stress i;, satisfies the equation:

: (26)

e Yeq = 2)X:K: X%
0 A= =0 with o (3/2)
OE¢q e Eeqq = V(2/3)E :K: E

which, once solved, leads to the cohesive-to-overall peak stress relationship:

Reoh B V2/(1 — 20M + 5(yM)2) (23 + 630M + 82(vM)2)

Seq 3(1—2vM) (1 4 3vM)

(27)

This last ratio can be understanded as a stress concentration factor that
tends to infinity when the Poisson ratio M of the matrix tends to 1/2.
For practical purpose, this stress concentration factor increases from about
2.7 to 5.4 for vM ranging between 0.2 and 0.35. These values have to be
compared to 3, corresponding to a circular void in an isotropic and infinite
elastic plate subjected to remote loadings. The proposed micromechanical
model has thus to be viewed as an effective brittle damage model rather
than a model dealing with a single crack propagation.

Third, the overall failure energy W, under pure deviatoric loading (the
area under the overall stress-strain curve Xeq —Eeq) is given after integrating

(19) from sound material (8 = 1) to fully damaged material (5 = 0):

WCZ/E:dE.

10



This gives a relationship between the critical opening §. and the overall
failure energy W.:

S §\/§\/23 +63M 4+ 82(M)2 W, (28)
Limesh B Y 5 1+ M i;

Based on these three main results and if we are in position to determine,
experimentally for example, the macroscopic maximal stress Yeq and the
overall energy failure W,, then the cohesive parameters R%! and d, can be

conveniently calibrated as:

Reoh _ V2/(1 —20M 4 5(yM)2) (23 + 630M + 82(1M)2) — (20)
max 3(1—2vM) (14 3uvM) e
and
5 3 \/? V23 4 63M + 82(M)2 W, Linesh (30)
¢ 5 1+ M fe\q v

It is clearly shown that the cohesive peak stress depends only on the
material Poisson ratio whereas the critical opening is given in terms both
of material properties and the mesh quantities Lyesn and . The criteria
resulting from equations (21), (29) and (30) define practical rules to suitably
calibrate the cohesive law parameters, namely: 1/ the cohesive stiffnesses Cy
and O, 2/ the maximal cohesive stress R©N and 3/ the critical separation
dc (equivalently the cohesive energy) as functions of the overall material
properties (EM oM ) for a given mesh size Lyesh and a user-defined elastic
reduction R = EM™/EM (Figure 3).

Although these results exhibit a mesh dependence of the local cohesive
parameters (except RS as shown in Figure 3-left), the proposed approach
leads to a mesh-independent overall behavior since the macroscopic behav-
ior remains invariant regardless of the mesh size (Figure 3-right). Indeed,
taking into account the previous relationships, the evolution of the macro-
scopic secant moduli k29™ and pf9™ is given as function only of the material

properties and the applied macroscopic strain E (cf Egs. (6), (8), (21) and
here E, = 0):

J:hom (B hom (g RSeq — W,
;cN(' ):“tw(l ):Az = <ze —2E—>. (31)
H Yeq — 6RW M eq

Another key point when dealing with cohesive zone models, is the so-
called internal cohesive length %M. Following [16], this characteristic length

11



[°M can be defined as the ratio between the toughness of the material G
(the area under the cohesive stress-opening curve) and the cohesive peak

coh
stress, R,

lcoh _ Gcoh

~ Rcoh °
Rmax

(32)

It should be noticed that this characteristic length has not to be confused
with the cohesive length scale over which the cohesive bonds act at the crack
tip (process zone), but corresponds to an internal length for the cohesive zone
model. For sake of simplicity, defining G" for mixed modes as:

1 1
G = G 4 G with  GPN = 5CNdade and G = 5CT0abe,  (33)

our approach leads to (see equations (21), (29), (30) and (33)):

lcoh _ .M 2 M 2 M)2 A
3 3-v \/3+631/ + 82(M)2 W, ”

Limesh  5v2y 1+ vM 1—2vM 4 5(vM)2 ie\q'

It is worth noting that the characteristic cohesive length does not only de-
pend on physical properties, but also on the mesh morphology, on the mesh
size and on the loading rate.

4.2.2. Owerall pure hydrostatic loadings

For the case of pure hydrostatic loadings (Eeq = 0), the same procedure
gives after some algebra a set of relationships for the calibration of cohesive
parameters:

V10 2+ M) (1 —20M 4 5(pM)2) ~
1+ 3v 1-—2v
and
2 MW, L
5. = 6v/2 +”Mﬁ mesh (36)
1=20"% v

The combination of (6), (35) and (36) leads to the following equations for
the evolution of the macroscopic secant moduli &f9™ and p2S™ with no mesh-

dependency:

KS™(E) _ phe(B) _ RSm (o
kM - M —~2
H Ym — 6RW.EM

e WC
t m— 2E—> : (37)

m

12



This last relationship is similar to the previous one obtained for pure devi-
atoric loadings (see equation (31)).

Moreover, using equations (33), (21), (35) and (36), the cohesive length
reads:

lcoh

e 3v2
Lmesh \/g’}’

Again, a same form is obtained as in the deviatoric case (see equation (34))
but with a different pre factor depending on the material Poisson ratio. For
practical purpose, the cohesive length is about two times larger for pure
hydrostatic loadings than for pure deviatoric one.

2+ M W,

(1—20M) (1 —2vM 4+ 5(vM)2) 5

(3 —ovM) (38)

m

EM(MPa) M Seq(MPa) W.(MPa)
100 1/7 200 100
Mesh Cn = CT(GPa) Rﬁﬁ’;‘x (MPa) Oc (mm)
(a) 2.6 342.54 1.62
(b) 5.2 342.54 0.81

Table 1: Mechanical parameters used in Figure 3. Top: material properties. Bottom:
cohesive parameters calibrated using criteria (21), (29) and (30).

1.0F55 1.0¢ s
Py
0.8 0.8/ N
/‘ \
%Z 0.6 ag 0.67 2Lme$h H’” “‘ 1
304 Fo4 P LI
ad Lmesh _,>’. “
0.2 0-2’ /’ ‘\ ]
/‘ ‘\
0.0 0.0ke” ‘ ‘ ‘ ‘ \]
. 1.0 0.0 0.2 0.4 0.6 0.8 1.0
un/6c Eeq/Eo

Figure 3: Cohesive zone model with no mesh sensitivity. Right: the overall material
behavior (Eq.(19)) obtained using the bilinear cohesive law (Eq. (22)). Left: The proposed
criteria (Egs. (21)-(30)) for the selection of the cohesive parameters (Table 1): the case
of a shear loading for a mesh set of parameters and a user tolerated elastic loss of 5%, i.e.
R = 0.95 (the material properties are given in Table 1)

13



5. Numerical Validation

The accuracy of the proposed criteria is illustrated on a numerical anal-
ysis. In particular, these criteria concern the cohesive parameters but are a
priori related to the bilinear shape of the cohesive law. The proposed nu-
merical simulations aim to extend the validity of these criteria to an other
shape for the cohesive law. Following [17], a specific form of the cohesive
law proposed by [18] is used in this section:

S — |[[w]]]

BTl = Doy (NTll) + D o (Nell) 57

w 1 1
e = 3\/9 — 4in4 (C_N * C_T>

where w being a reference surface fracture energy and In the natural loga-
rithm (Figure 4-(b)).

The simulations concern the case of a unit square cell under a pure
shearing loading and considering 2-D plane-strain conditions. The cell is
meshed using triangular elements arranged in a “crossed-triangle” quadri-
lateral pattern (Figure 4-(a)). The bulk behavior is supposed to be elastic
brittle (EM =1 MPa, vM = 1/7, ie\q = 6 x 10® Pa). The software Xper [19]
is used for the cohesive-volumetric finite element simulations.

As shown in Figure 4, the numerical results confirm that, even if, the
local cohesive parameters are mesh-dependent, the overall fracture proper-
ties are mesh-independent: the difference between the critical separation of
the cohesive law for the two meshes is about 15%; Figure 4-(b)), while the
difference between the critical overall strain and failure energy for the two
meshes is about 0%; Figure 4-(c-d). This mesh-independency is obtained
since:

(39)

with

1. the finite element calculus convergence is reached,
2. the cohesive parameters are suitably calibrated for the given mesh type
and size.

These results are consistent with previous remarks obtained in the literature
(Tijssens et al. [20] for instance).

6. Conclusion

Practical criteria for the calibration of cohesive zone parameters are ob-
tained through a new micromechanical model. This model is based on the

14



L mesh

15000}
g 10000|
z
2]
5000 -
ot L L L | =
0000 0005 0010 0015 0020 0025
Exy [_]
(c)
28} . p g
= 26] s p g
o e
Q 24l - 16
- M\. 5
LI) 220 - 13
| P =
- ©
® 20l P 1o
I e 3
18] L 1.
[ ]
1.6 I I I I I I
35 0 45 50 55 60 65 70

1/Lmesh (m™)

(d)

Figure 4: Illustration of the mesh-independency of the overall behavior: (a) the unit
cell with ’‘crossed-triangle quadrilateral” meshes, (b) the cohesive law (39) calibrated
with respect to the obtained micromechanical criteria for two given mesh sizes, (c) the
overall deviatoric behavior X.y vs Ey and (d) the overall mesh-independent failure energy
corresponding to the mesh-dependent local cohesive law.

15



study of the overall constitutive behavior of an equivalent 'matrix-inclusions’
composite introduced as a representation of a cohesive-volumetric finite el-
ement scheme. The approach can be applied whatever the macroscopic
triaxiality loading rate and the shape of the cohesive law, extending thus
previous partial results from the literature. The case of a bilinear cohesive
zone model leads to an overall damage model for quasi-brittle materials.
This closed-form model allows to link, through an inverse analysis, all local
cohesive parameters to the overall material properties at any given mesh
size. The accuracy of the proposed approach and its wide ability to deal
with various cohesive laws have been illustrated on a numerical analysis.
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