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Abstract

We present a methodology for numerically integrating ordinary
differential equations containing rapidly oscillatory terms. This chal-
lenge is distinct from that for differential equations which have rapidly
oscillatory solutions: here the differential equation itself has the oscil-
latory terms. Our method generalises Filon quadrature for integrals,
and is analogous to integral techniques designed to solve stochastic
differential equations and, as such, is applicable to a wide variety of
ordinary differential equations with rapidly oscillating factors. The
proposed method flexibly achieves varying levels of accuracy depend-
ing upon the truncation of the expansion of certain integrals. Users
will choose the level of truncation to suit the parameter regime of in-
terest in their numerical integration.
keywords: highly oscillatory problems, ordinary differential equations.

1 Introduction

Ordinary differential equations (odes) containing rapidly oscillatory terms
are a challenge for numerical computation. A separate much researched chal-
lenge are odes where the equations are not themselves rapidly oscillatory,
but do have rapidly oscillatory solutions. Here we focus on the case where
the ode contains both terms which rapidly oscillate on a microscale time and
terms which vary smoothly over macroscale times of interest. The microscale
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oscillating terms combined with the slow macroscale terms in the ode pro-
duce solutions with multiscale structure. Typically, solutions are smoothly
varying over the macroscale, but with superimposed microscale detail (e.g.,
Figure 1). Such microscale detail interacts via nonlinearity to modify the
apparent macroscale behaviour.

We consider the class of odes for some function u(t) ∈ Rm of the form

du

dt
= a(t, u) + b(t, u)v(t), u(tn) = utn , (1)

for smoothly varying coefficient functions a, b : R × Rm → Rm, and where
the ‘vacillating’ v(t) is some given rapidly oscillating periodic scalar function
of time t with zero mean, and constant oscillation frequency $ (that is,
period 2π$−1). The rapidly oscillating v(t) may be functions such as sin$t
or ei$t. Suppose we are interested in sampling the solution over a relatively
long macroscale time, say over time steps of size h. We assume the microscale
oscillation is rapid with respect to the macroscale time scale h so that $−1 �
h . For definiteness, we also assume time t and unknown u have been scaled
so that the coefficient functions a and b vary on a scale of one in both t
and u. Figure 1 plots solutions from the example ode (27), discussed in
Section 3, that are in the class (1) of the odes considered here. In these
examples the multiscale structure of the solution is clearly visible. Over the
macroscale time interval [0, 1] the general trend of the solution is revealed,
but over microscale time intervals of the order $−1 = 0.01 the solution
is highly oscillatory. Such differential equations arise in a wide variety of
systems, including molecular dynamics [9], circuit simulations [5], chemical
reactions [21], and weather systems [18].

Established numerical techniques, such as Runge–Kutta or Gear’s method,
work well for odes without rapidly oscillating terms. But these techniques
become computationally expensive when oscillations with microscale peri-
ods $−1 are present, particularly when there is a significant difference be-
tween the two relevant time scales, $−1 � h. For example, Matlab’s stiff
ode solver ode15s takes 15 time steps per microscale oscillation to repro-
duce the ode solutions shown in Figure 1. For this reason, several numerical
methods have recently been developed specifically for accurately and effi-
ciently evaluating odes containing rapidly oscillating terms [13, 12, 10, 17]
including a method by Condon, Deaño and Iserles [4, 6, 7] which is discussed
in Section 3.2 as a comparison. The aim herein is to develop efficient and
flexible computational schemes where each time step spans many microscale
oscillation periods.

Our novel method for numerically solving odes with rapidly oscillating
terms is based upon iterating integrals. Section 2 derives a multivariable
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Figure 1: Example solutions, using microscale time steps, of the ode (27) for
oscillations of strength µ = 10 and frequency $ = 100, and initial condition
u(0) = 1: (a) γ = 0, α(t) = t, v(t) = cos$t; (b) real part for γ = 2, α(t) = 2i,
v(t) = ei$t; and (c) imaginary part for γ = 2, α(t) = 2i, v(t) = ei$t.
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Taylor series expansion for the solution at time tn+1, based about the solu-
tion at time tn in powers of the typical microscale period of oscillation $−1

and the macroscale time step h = (tn+1 − tn) [14]. The integral approach
empowers us to quantify the remainder term in the Taylor expansion, and
hence empowers users to potentially bound the errors in any application of
the approximation scheme. In these systems, the macroscale time step h is
much longer than a typical microscale period of oscillation $−1, so h$ � 1.
Validity of the Taylor expansion requires small enough $−1 and h. The
method is analogous to a Taylor expansion scheme, originally developed for
Ito stochastic differential equations (sdes) governed by a Wiener process,
which is achieved by an iterative application of the Ito formula [14, 15].

A typical Ito sde,

du = a(t, u)dt+ b(t, u)dWt , (2)

where Wt is a stochastic Wiener process, closely resembles the ode (1).
However, in contrast to the deterministic periodic function v(t) in ode (1),
the Wiener process oscillates over all time scales and is nondeterministic.
Section 5 relates our iterated integral method of odes (1) to previously
developed integral methods of sdes (2).

For conciseness we adopt notation analogous to that used for sdes. Let
subscripts t to refer to evaluation at time t, and similarly for subscripts in
other time-like quantities such as s, h and 0. For example, ut is u at time t
and, for some function f(t, u), ft denotes evaluation at t and ut. Define
dVt := vt dt so that the integral of the oscillations∫ tn+1

tn

vt dt =

∫ Vtn+1

Vtn

dVt = Vtn+1 − Vtn . (3)

Without loss of generality, we assume that v(t) and V (t) have zero mean so
that (Vtn+1 − Vtn) ∼ $−1 1 (unless we also scale the strength of the oscilla-
tions vt with the frequency$). For cases where the mean 〈v〉 6= 0, for example
v(t) = ecos$t, we define ṽ(t) := v(t) − 〈v〉 and ã(t, u) := a(t, u) + 〈v〉b(t, u)
and use the tilde functions in the ode (1) so it retains the correct form but
now has oscillations ṽ(t) with zero mean. The integral function Vt is anal-
ogous to the Wiener process in stochastic calculus (in such an analogy, the
‘vacillating’ vt would be analogous to the formal ‘white noise’).

Herein we focus on the case when the ode (1) contains just one rapidly
oscillating factor. We expect the case when there are multiple rapidly oscil-
lating factors to be similar, but more complicated to express, and leave the

1This follows from equation (13) with fs = 1.
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case for further research. Such future research could consider some derivative-
free schemes analogous to those which efficiently solve stochastic differential
equations with a multidimensional Wiener process. For example, stochastic
Runge–Kutta methods for solving sdes are not only efficient but also have
good accuracy and stability [20, 16, 19, e.g.].

2 Iterative integration scheme

Consider the time derivative of any smooth function f(t, u) : R× Rm → Rk

for any k, for which the variable u satisfies the rapidly oscillating ode (1). We
use the term “smooth function” to mean the class of functions differentiable
as often as is needed for the expressions at hand (that is, restricted to a
suitable Sobolev space). Expand the time derivative of f(t, u) using the
chain rule:2

df

dt
=
∂f

∂t
+
∂f

∂u
· du
dt

= L0
tf(t, u) + vtL1

tf(t, u), (4)

in terms of the two operators (analogous to those used for sdes)

L0
t =

[
∂

∂t
+ a · ∂

∂u

]
t

and L1
t =

[
b · ∂
∂u

]
t

. (5)

The integral version of the chain rule (4) for any smooth function f(t, u),
integrated over the interval (tn, t), is

ft = ftn +

∫ t

tn

L0
sfs ds+

∫ Vt

Vtn

L1
sfs dVs . (6)

We now show how successive iterations of the integral formula (6) lead to
useful hierarchal integral expressions for the solution u(t) of the ode (1) at
tn+1 = tn + h . The integral expression involves powers of the micro time
scales h and $−1. Iteration of the formula (6) generates expressions with
precise remainders for error estimation.

First integral approximation We start with the ode (1) integrated over
the temporal interval (tn, tn+1),

utn+1 = utn +

∫ tn+1

tn

du

dt
dt = utn +

∫ tn+1

tn

at dt+

∫ tn+1

tn

bt dVt , (7)

2Equations (4) and (5) invoke the standard inner product dot operator “·”: that is,
∂f/∂u ·du/dt =

∑m
j=1(∂f/∂uj)(duj/dt) and a ·∂/∂u =

∑m
j=1 aj∂/∂uj for a, u ∈ Rm. This

dot product is implicit in all the operators L0
t and L1

t .
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having substituted the ode (1) to obtain the last expression on the right-
hand side. Now invoke the formula (6) for the integrands of both integrals
in the above equation, that is, for both ft = at and ft = bt . We obtain the
first expansion

utn+1 = utn + atn

∫ tn+1

tn

dt+ btn

∫ Vtn+1

Vtn

dVt +R1,1 (8)

where the remainder term is the sum of integrals

R1,1 :=

∫ tn+1

tn

∫ t

tn

L0
sas ds dt+

∫ tn+1

tn

∫ Vt

Vtn

L1
sas dVs dt

+

∫ Vtn+1

Vtn

∫ t

tn

L0
sbs ds dVt +

∫ Vtn+1

Vtn

∫ Vt

Vtn

L1
sbs dVs dVt . (9)

Upon evaluating the two integrals in formula (8) we obtain an estimate
for utn+1 , with second order errors in h and $−1 since (Vtn+1−Vtn) = O

(
$−1

)
,

namely

utn+1 = utn + atnh+ btn(Vtn+1 − Vtn) +O
(
h2 +$−2

)
. (10)

The four remainder integrals in equation (9) straightforwardly determines
the order of local error in the time step (10). This remainder is negligible at
first order in h and $−1 since each integral over a time variable provides an
additional order of h, and each integral over the oscillating function provides
an additional order of $−1; that is, the four neglected integrals are all of
second order, or higher, in h and/or $−1, as demonstrated by Lemma 2.

Definition 1. Let Ck(Ω) denote the space of functions into Rm on an open
set Ω ⊂ Rm+1 which are continuous up to and including kth order derivatives.
Define the norm for Ck(Ω), in terms of the vector p-norm ‖u‖p = (|u1|p +
· · ·+ |um|p)1/p for u ∈ Rm, as

‖z‖Ck
p (Ω) :=

∑
|α|≤k

‖Dαz‖pp

1/p

(11)

for all z ∈ Ck(Ω), for multi-index α = (α0, . . . , αm) ∈ Nm+1
0 , and where

Dαz :=
∂|α|z

∂tα0∂uα1
1 · · · ∂uαm

m

and |α| := α0 + · · ·+ αm .
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Lemma 2 (first error bound). Assume there exists an open domain Ω ⊂
Rm+1 such that (t, u(t)) ∈ Ω over the time interval tn ≤ t ≤ tn+1 . If a, b ∈
C1(Ω) are bounded by ‖a‖C1

p(Ω), ‖b‖C1
p(Ω) ≤ K , then the error of the time

step (10) is bounded by

‖R1,1‖p ≤ 1
2
(K2 +K)h2 + (2K2 +K)‖v‖h$−1 +K2‖v‖2$−2 (12)

where ‖v‖ = 2πmax0≤t<2π$−1 |vt|.

Proof. Since ‖a‖C1
p(Ω), ‖b‖C1

p(Ω) ≤ K , from the norm (11) the p-norm of rele-
vant derivative are bounded: ‖Dαa‖p, ‖Dαb‖p ≤ K for multi-indices |α| ≤ 1.
Now establish the bound that∥∥∥∥∫ Vt

Vtn

fs dVs

∥∥∥∥
p

≤ ‖f‖∞p ‖v‖$−1, (13)

where ‖f‖p,∞ = maxtn≤s≤tn+1 ‖fs‖p and tn ≤ t ≤ tn+1. This bound follows
from ∥∥∥∥∫ Vt

Vtn

fsdVs

∥∥∥∥
p

≤ ‖f‖p,∞
∣∣∣∣∫ t

tn

vs ds

∣∣∣∣
= ‖f‖p,∞

∣∣∣∣∫ tn+τ

tn

vs ds

∣∣∣∣ for 0 ≤ τ < 2π$−1

≤ ‖f‖p,∞‖v‖/2π
∣∣∣∣∫ tn+τ

tn

ds

∣∣∣∣
= ‖f‖p,∞‖v‖τ/2π
≤ ‖f‖p,∞‖v‖$−1,

where p-norms of integrals over vs are replaced with ordinary absolute values
since vt, t ∈ R.

Since ‖L0
sas‖p, ‖L0

sbs‖p ≤ (K + K2) and ‖L1
sas‖p, ‖L1

sbs‖p ≤ K2 within
the time interval tn ≤ t ≤ tn+1, the remainder (9) is bounded by

‖R1,1‖p ≤ (K +K2)

(∣∣∣∣∫ tn+1

tn

∫ t

tn

ds dt

∣∣∣∣+

∣∣∣∣∫ Vtn+1

Vtn

∫ t

tn

ds dVt

∣∣∣∣)
+K2

(∣∣∣∣∫ tn+1

tn

∫ Vt

Vtn

dVs dt

∣∣∣∣+

∣∣∣∣∫ Vtn+1

Vtn

∫ Vt

Vtn

dVs dVt

∣∣∣∣) .
All the t integrals are evaluated exactly and equation (13) provides upper
bounds for all Vt integrals, with ‖t − tn‖p,∞ = h and ‖1‖p,∞ = 1, to obtain
the bound (12) on the remainder (9).
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Second integral approximation To estimate utn to third order errors in
h and $−1 we expand equation (8) further by applying formula (6) to the
integrands L0

sas, L1
saa, L0

sbs and L1
sbs in the remainder (9):

utn+1 = utn + atn

∫ tn+1

tn

dt+ btn

∫ Vtn+1

Vtn

dVt + L0
tnatn

∫ tn+1

tn

∫ t

tn

ds dt

+ L1
tnatn

∫ tn+1

tn

∫ Vt

Vtn

dVs dt+ L0
tnbtn

∫ Vtn+1

Vtn

∫ t

tn

ds dVt

+ L1
tnbtn

∫ Vtn+1

Vtn

∫ Vt

Vtn

dVs dVt +R2,2 , (14)

where the new remainder is the sum of eight integrals, namely

R2,2 :=

∫ tn+1

tn

∫ t

tn

∫ s

tn

L0
rL0

rar dr ds dt+

∫ tn+1

tn

∫ t

tn

∫ Vs

Vtn

L1
rL0

rar dVr ds dt

+

∫ tn+1

tn

∫ Vt

Vtn

∫ s

tn

L0
rL1

rar dr dVs dt+

∫ tn+1

tn

∫ Vt

Vtn

∫ Vs

Vtn

L1
rL1

rar dVr dVs dt

+

∫ Vtn+1

Vtn

∫ t

tn

∫ s

tn

L0
rL0

rbr dr ds dVt +

∫ Vtn+1

Vtn

∫ t

tn

∫ Vs

Vtn

L1
rL0

rbr dVr ds dVt

+

∫ Vtn+1

Vtn

∫ Vt

Vtn

∫ s

tn

L0
rL1

rbr dr dVs dVt +

∫ Vtn+1

Vtn

∫ Vt

Vtn

∫ Vs

Vtn

L1
rL1

rbr dVr dVs dVt .

(15)

We expect the six integrals in the time step (14) to be evaluated straight-
forwardly using the known properties of Vt. Then the eight integrals in the
remainder (15) provide the error when an estimate of utn+1 is required to
third order errors in h and $−1, as demonstrated by Lemma 3.

Lemma 3 (second error bound). Assume there exists an open domain Ω ⊂
Rm+1 such that (t, u(t)) ∈ Ω over the time interval tn ≤ t ≤ tn+1 . If a, b ∈
C2(Ω) are bounded by ‖a‖C2

p(Ω), ‖b‖C2
p(Ω) ≤ K , then the error of the time

step (14) is bounded by

‖R2,2‖p ≤ 1
6
(2K3 + 4K2 +K)h3 + 1

2
(8K3 + 8K2 +K)‖v‖h2$−1

+ (6K3 + 4K2)‖v‖2h$−2 + 2K3‖v‖3$−3. (16)

Outline of proof. Since ‖a‖C2
p(Ω), ‖b‖C2

p(Ω) ≤ K , from equation (11) the p-
norms of derivatives are bounded: ‖Dαa‖p, ‖Dαb‖p ≤ K for multi-indices
|α| ≤ 2 . Substitute ‖L0

rL0
rfr‖p ≤ (K+4K2+2K3), ‖L1

rL0
rfr‖p ≤ (K2+2K3),

‖L0
rL1

rfr‖p ≤ (2K2 + 2K3) and ‖L1
rL1

rfr‖p ≤ 2K3 into the remainder (15),

8



where function fr is either ar or br. Solve all temporal integrals exactly and
use equation (13) for upper bounds of all Vt integrals, using ‖(t−tn)l‖p,∞ = hl

for non-negative integer l ∈ N0.

Further integral approximations When higher orders of h and $−1 are
required, one would continue expanding integrands using formula (6) until
the desired order is reached. When all terms containing κ or fewer integrals
are retained for the evaluation of utn+1 , then the remainder, denoted Rκ,κ,
contains all neglected integrals and so consists of terms containing κ+ 1 in-
tegrals. However, this expansion assumes we weight h and $−1 of equal
importance in the expansion. In general, we truncate the expansions of the
integrals in h and $−1 at different orders since h and $−1 need not be of a
equal importance.

Consider the regime where the microscale oscillation time $−1 ∼ hρ for
some real exponent ρ > 0 . In this regime, suppose we wish to estimate utn+1

correct to O
(
hκ
)
. Since each integral over t adds order h and each integral

over Vt adds order $−1 ∼ hρ, each retained term in the integral estimate
of utn+1 must be composed of q0 integrals over t and q1 over Vt such that
q0 + q1ρ ≤ κ. The error of such an estimate is the sum of the neglected
integrals and is represented by the remainder Rκ,κ/ρ. In general, we define
the remainder Rκ0,κ1 as the sum of the remaining integrals after the recursive
integral expansion sufficient and necessary to estimate utn+1 so that all inte-
grals with q0 integrals over t and q1 over Vt such that q0/κ0 + q1/κ1 ≤ 1 have
constant integrand (for general a and b), as in equation (17). The orders κ0

and κ1 are chosen to suit the regime of application of the scheme.

Proposition 4 (order of error). Assume there exists an open domain Ω ⊂
Rm+1 such that (t, u(t)) ∈ Ω over the time interval tn ≤ t ≤ tn+1 . If a, b ∈
Cmax(κ0,κ1)(Ω) are bounded, then the estimate utn+1 has error Rκ0,κ1 = o

(
hκ0 +

$−κ1
)
.

Outline of proof. Expand the integrals for utn+1 so that all integrals with
q0 integrals over t and q1 over Vt such that q0/κ0 + q1/κ1 ≤ 1 have constant
integrand. Then the error, the remainder Rκ0,κ1 , must be the sum of terms
with p0 integrals over t and p1 integrals over Vt such that p0/κ0 + p1/κ1 > 1 .
By bounding the p0+p1 integrals in any such term, the term in the remainder
is O

(
hp0$−p1

)
. Scaling h = c1ε

1/κ0 and $−1 = c2ε
1/κ1 as ε→ 0 we find terms

O
(
hp0$−p1

)
= o

(
hκ0 + $−κ1

)
given p0/κ0 + p1/κ1 > 1 . Consequently, the

remainder Rκ0,κ1 = o
(
hκ0 +$−κ1

)
.

As an example of Proposition 4, Lemma 2 proves that R1,1 is O
(
h2 +

$−2
)

= o
(
h1 + $−1

)
. Similarly, from Lemma 3, R2,2 is O

(
h3 + $−3

)
=

9



o
(
h2 +$−2

)
, consistent with Proposition 4. Proposition 4 is flexible because

the exponents κ0 and κ1 need not be identical, nor need be integer.
An integral expansion for utn+1 is a useful estimate for utn+1 provided

the integral remainder terms are usefully small: typically this will be for
the regime h,$−1 � 1 . Therefore, although we emphasise the case where
h$ � 1, since this reflects the rapidly oscillating problem described by
ode (1), the approach is not constrained to this regime. For some exponent
ρ > 1 , the regime $−1 ∼ hρ implies h$ > 1, with more rapid oscillators
associated with larger exponents ρ. However, the case of exponent 0 < ρ < 1,
resulting in h$ < 1, is also valid and is analogous to sdes, as discussed in
Section 5.

The integral expansion for utn+1 to errors o
(
hκ0 + $−κ1

)
, in terms of

solvable integrals, is compactly written as

utn+1 = utn +
∑

(q0+1)/κ0+q1/κ1≤1

∫ tn+1

tn

(∫
D
dτ q0+q1

)
dt atn

+
∑

q0/κ0+(q1+1)/κ1≤1

∫ Vtn+1

Vtn

(∫
D
dτ q0+q1

)
dVt btn +Rκ0,κ1 , (17)

where dτ q0+q1 := {dτ1 . . . dτq0+q1} with

dτj =

{
dtL0

tn , 1 ≤ j ≤ q0,

dVt L1
tn , q0 + 1 ≤ j ≤ q0 + q1.

(18)

Here, {dτ1 . . . dτq0+q1} represents all unique permutations of the dτj. For
example, when q0 = 1 and q1 = 2 there are three unique permutations,

dτ 1+2 = {dtL0
tn dVt L1

tn dVt L1
tn} (19)

= dtL0
tn dVt L1

tn dVt L1
tn + dVt L1

tn dtL0
tn dVt L1

tn + dVt L1
tn dVt L1

tn dtL0
tn

= dt dVt dVt L0
tnL1

tnL1
tn + dVt dt dVt L1

tnL0
tnL1

tn + dVt dVt dtL1
tnL1

tnL0
tn .

The domain D of each integration requires the domain of the integrals over
t and Vt to be [tn, t] and [Vtn , Vt], respectively. The integrals appearing ex-
plicitly in equation (17) are straightforwardly evaluated once the microscale
oscillation vt is specified. Figure 2 shows a tree diagram representation of
equation (17) and illustrates some possible choices of exponents κ and ρ de-
pending upon desired order of accuracy and the relative magnitude of the
time step h and the microscale oscillation time $−1. Equation (17) is essen-
tially the Taylor series expansion of utn+1 about utn in powers of h and $−1

so we expect it to be usefully accurate when h,$−1 � 1.

10
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Figure 2: A tree diagram of the iterative integration scheme of equation (17)
where each branch indicates an additional iteration. Each node represents
one term in equation (17), with the root of the tree representing the leading
term utn . Each red branch indicates an integral over time t and each blue
branch indicate an integral over Vt: the thick red branch is

∫ t
tn
dt atn ; the

thick blue branch is
∫ Vt
Vtn

dVt btn ; the thin red branches are
∫ t
tn
L0
tdt ; and the

thin blue branches are
∫ Vt
Vtn
L1
tdVt . The dashed lines indicate truncations of

the expansion with errors Rκ,κ/ρ = O
(
hκ
)

for regimes $−1 ∼ hρ for four
examples of the exponents ρ and order κ; the nodes above the dashed line
represent the retained terms for each case.

The error of the estimate (17) is the local error rather than global error
as it is only for one time step of size h from tn to tn+1. The order of global
error, that is, the error over many time steps, is a factor of h less than
the local error, provided certain continuity rules are satisfied. Specifically,
a(t, u), b(t, u) and their derivatives which appear in equation (17) must be
continuous in t and Lipschitz continuous in u. In addition, v(t) must be
continuous in t. By assuming the ode (1) has a unique solution we have, by
the Picard–Lindelöf theorem, already assumed these continuity rules.

For all but the simplest oscillating functions vt, a potentially computa-
tionally expensive part of equation (17) are the integrals over t and Vt, not
necessarily the operation of L0,1 on at and bt (which are simply derivatives).
One of the main advantages of this iterative integration scheme is that, for
a given oscillating function vt, once all required integrals over Vt and t are
evaluated, equation (17) is readily computed for any in the family of ode (1)
which have different at and bt, but the same vt. Table 1 shows the required
integrals for the common oscillating functions v1t = ei$t+φ, v2t = cos($t+φ)
and v3t = sin($t+ φ), with some arbitrary phase φ.

As a low order example of equation (17), consider a case where the oscil-
lation vt varies rapidly over the interval (tn, tn+1) such that $−1 � h � 1 .
For illustrative purposes, we choose the regime $−1 ∼ h2 and truncate to
errors R2,1 = O

(
h3
)

(exponents ρ = 2 and κ = 2 in Figure 2). Then the
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Table 1: Indefinite integrals appearing in the time steps (8), (14) and (17)
for three common oscillating functions v1t = ei$t+φ, v2t = cos($t + φ) and
v3t = sin($t+φ). Here, p and m are non-negative integers, but Kp

0 and Ip0 are
always replaced with Jp when they arise in the integral reduction. Negative p
or m may appear in the integral reduction, in which case, Ipm, K

p
m, L

p
m = 0

for negative p or m. For oscillating function v1t the integrals Ipm and Jp are
required, whereas for oscillating functions vt = v2t or vt = v3t the integrals Jp,
Kp
m and Lpm are required along with the identity v2m

3t = (1− v2
2t)

m.

integral integral reduction

Ipm =
∫
tpvm1t dt −i 1

m
$−1tpvm1t + i$−1 p

m
Ip−1
m

Jp =
∫
tp dt 1

p+1
tp+1

Kp
m =

∫
tpvm2t dt $−1 1

m
tpvm−1

2t v3t −$−1 p
m
Lp−1
m−1 + m−1

m
Kp
m−2

Lpm =
∫
tpvm2tv3t dt −$−1 1

m+1
tpvm+1

2t +$−1 p
m+1

Kp−1
m+1

integral expansion (17) reduces to

utn+1 = utn + atn

∫ tn+1

tn

dt+ L0
tnatn

∫ tn+1

tn

∫ t

tn

dt dt+ btn

∫ Vtn+1

Vtn

dVt +O
(
h3
)

= utn + atnh+ btn(Vtn+1 − Vtn) + L0
tnatnh

2/2 +O
(
h3
)
, (20)

where here, and in all following expansions, we replace the remainder term
Rκ0,κ1 with the order of error obtained from Proposition 4. In Figure 2 the
four nodes appearing above the dashed line labelled “ρ = 2, κ = 2” represent
the four terms of equation (20). In general, for constant order κ, continuously
varying exponent ρ in the regime $−1 ∼ hρ is equivalent to continuously
varying the strength of the oscillation relative to the time step h. Thus, while
maintaining a constant order κ so that the order with respect to h does not
change, varying exponent ρ in equation (17) encompasses oscillators of any
relative frequency.

3 Examples

We present three examples which demonstrate how one obtains a numerical
integration scheme, parametrised by time step h and oscillation frequency $,
from the integrals of equation (17).

12



3.1 Purely oscillatory system

We begin with a scalar ode which only involves a rapidly oscillating term vt
and the function b(t, u) = u1−γ, namely

du

dt
= u1−γvt , u(0) = u0 . (21)

This ode is readily solved analytically by separation of variables: for any
exponent γ

uh =

{
u0

[
1 + γu−γ0 (Vh − V0)

]1/γ
, γ 6= 0,

u0 exp(Vh − V0), γ = 0.
(22)

This example illustrates a straightforward implementation of equation (17).
Without loss of generality, we consider the one time step [0, h]. The given
ode (21) has a(t, u) = 0 and (L0

0)mb0 = 0 for positive integer m, so equa-
tion (17) reduces to

uh = u0 +

∫ Vh

V0

(
1 +

∫ Vt

V0

dVt L1
0 +

∫ Vt

V0

∫ Vt

V0

dVt dVt (L1
0)2

+

∫ Vt

V0

∫ Vt

V0

∫ Vt

V0

dVt dVt dVt (L1
0)3 + · · ·

)
dVt b0, (23)

where we choose the order of the integral expansion to be q →∞ . Since∫ Vt

V0

(Vt − V0)mdVt =
1

m+ 1
(Vt − V0)m+1, (24)

the expansion of uh in equation (23) simplifies to

uh = u0 +
∞∑
m=1

1

m!
(Vh − V0)m

[(
u1−γ ∂

∂u

)m−1

u1−γ

]
0

. (25)

In general, for m > 1 ,[(
u1−γ ∂

∂u

)m−1

u1−γ

]
0

= u1−mγ
0

m−1∏
s=1

(1− sγ) (26)

=

{
u0

(
γu−γ0

)m Γ(1/γ+1)
Γ(1/γ−m+1)

, γ 6= 0,

u0, γ = 0,

which, when substituted into equation (25), produces the Taylor series in time
step h about t = 0 of the analytic solution (22) in powers of (Vh−V0) ∼ $−1.
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In this special case the Taylor series is just in powers of $−1 rather than
powers of both h and $−1.

This example is particularly simple in that one evaluates all integrals in
equation (23) exactly, without having to truncate the infinite sum of inte-
grals at some particular point. For more complicated coefficient functions
a(t, u) and b(t, u) one must almost always truncate the series of integrals at
some order.

3.2 Oscillatory system with exponential macroscale

This section compares our integral method for solving the ode (1) with
a method developed by Condon, Deaño and Iserles (cdi) [4, 6, 7]. Let’s
consider nonlinear odes of the form

du

dt
= α(t)u+ µu1−γv(t), u(0) = u0 , (27)

which have the exact solution

u(t) = exp

[∫ t

0

α(s)ds

]

×


{
γµ
∫ t

0
v(s) exp

[
−γ
∫ s

0
α(r)dr

]
ds+ uγ0

}1/γ

, γ 6= 0 ,

u0 exp
[
µ
∫ t

0
v(s)ds

]
, γ = 0 .

(28)

If the integrals in the above solutions cannot be solved analytically, they
may be solved numerically using a Filon quadrature [12]. The macroscale
behaviour of u(t) would be exponential for real α(t) and sinusoidal when
α(t) is imaginary. The rapid microscale oscillations are superimposed on the
macroscale. Figure 1 plots two examples of solutions to the ode (27).

The cdi method [4, 6, 7] expands u(t) in terms of powers of $−1, with
the coefficients of these powers written in terms of a Fourier expansion,

u(t) =
∞∑
r=0

1

$r
ψr(t) where ψr(t) =

∞∑
j=−∞

ψr,j(t)e
ij$t. (29)

The oscillating function is also written as a Fourier expansion,

vt =
∞∑

j=−∞

aj(t)e
ij$t. (30)

On substituting equations (29) and (30) into the ode and equating simi-
lar powers of $−1 and ei$t, one obtains equations to solve for the coeffi-
cients ψr,j(t): each ψr,0(t) is obtained from a first order ode; the remaining
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coefficients, ψr,j(t) for j 6= 0, are a function of the coefficients ψq,i(t) for q < r
for all i. For a solution of u(t) correct to O

(
$−m

)
, a possible disadvantage is

that one must solve (m+ 1) odes. Although the cdi method appears quite
cumbersome in its general form, the number of odes to be solved increases
linearly with order, as discussed in more detail in Section 4. Furthermore,
the odes for the ψr,0(t) do not contain any rapidly oscillating terms so are
readily solved by standard numerical methods.

A disadvantage of the cdi method is that significant pre-processing has to
be done for every new differential equation to which the method is applied.
In contrast, apart from evaluating derivatives of the coefficient functions
a and b, our method only needs new pre-processing if one changes the rapidly
oscillating function v(t).

3.2.1 Linear case

We set α(t) = t and exponent γ = 1 , so that a(t, u) = ut and b(t, u) = µ
is constant, with sinusoidal rapid oscillations v(t) = cos$t . The resulting
linear ode is

du

dt
= ut+ µ cos$t , u(0) = u0 . (31)

Using both our integral method and the method of cdi, we evaluate this
ode over the interval [0, h] correct to errors R4,2 = O

(
h5
)

assuming $−1 ∼
h2; that is, exponent ρ = 2 and order κ = 4 in Figure 2.

In the cdi method the nonzero aj are a1 = a−1 = µ/2. Up to second
order in $−1 the odes are dψr,0(t)/dt = tψr,0(t), for r = 0, 1, 2, with initial
conditions ψ0,0(0) = u0 and ψ1,0(0) = ψ2,0(0) = 0. For this case there are
only four other nonzero coefficients, ψ1,±1 and ψ2,±1. Thus the cdi estimate
for ode (31) at t1 = h is

uh = u0 exp(h2/2) +$−1µ sin$h−$−2hµ cos$h+O
(
$−3

)
. (32)

Solving the particular ode (31) using our integral method requires equa-
tion (17) with exponent ρ = 2 and order κ = 4 ,

uh = u0 +

∫ h

0

[
1 +

∫ Vt

V0

dVt L1
0 +

∫ t

0

dtL0
0 +

∫ Vt

V0

∫ t

0

dt dVt L0
0L1

0

+

∫ t

0

∫ Vt

V0

dVt dtL1
0L0

0 +

∫ t

0

∫ t

0

dt dt (L0
0)2 +

∫ t

0

∫ t

0

∫ t

0

dt dt dt (L0
0)3

]
dt a0

+

∫ Vh

V0

[
1 +

∫ t

0

dtL0
0 +

∫ t

0

∫ t

0

dt dt (L0
0)2 +

∫ Vt

V0

dVt L1
0

]
dVt b0 +O

(
h5
)
.

(33)
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We firstly calculate the relevant operations of Ljt on the coefficient functions
a(t, u) = ut and b(t, u) = µ:

L0
tat = (1 + t2)ut, (L0

t )
2at = (3 + t2)tut,

(L0
t )

3at = (3 + 6t2 + t4)ut, L1
tat = µt,

L0
tL1

tat = µ, L1
tL0

tat = µ(1 + t2),

L0,1
t bt = 0, (L0

t )
2bt = 0. (34)

On substituting these with t = 0 into equation (33), evaluating all integrals,
using Table 1, we obtain

uh = u0(1 + h2/2 + h4/8) +$−1µ sin$h+O
(
h5
)
. (35)

Further work shows that theO
(
h5
)

andO
(
h6
)

corrections are−$−2hµ cos$h
and u0h

6/48 +$−3µ sin$h, respectively.
The two estimates in equations (32) and (35) obtained via the two dif-

ferent methods are not identical. One reason for the difference is that the
cdi method only involves an expansion in the microscale time $−1, whereas
our integral method involves an expansion in both $−1 and h. Consequently,
the first term in equation (32) is u0 exp(h2/2), but in equation (35) this term
is replaced by a Taylor expansion in h with error O

(
h5
)
. The different ex-

pansions also affect how the solutions are truncated: the cdi estimate has
error O

(
$−3

)
but no apparent h dependent error; whereas the other estimate

has error R4,2 = O
(
h5
)

= O
(
$−5/2

)
. Thus, the term $−2hµ cos$h appears

in the cdi estimate but not in the integral method estimate because in the
former it is less than the required order, but in the latter it is not.

3.2.2 A nonlinear case

Let’s choose the case of ode (27) with exponent γ = −1 and constant α(t) =
α so that a(t, u) = αu and b(t, u) = µu2. We also choose complex rapid
oscillations v(t) = ei$t so that the ode (27) becomes

du

dt
= αu+ µu2ei$t, u(0) = u0 . (36)

As in the linear case, section 3.2.1, we solve this nonlinear ode over the time
interval [0, h] correct to errors R4,2 = O

(
h5
)
, assuming $−1 ∼ h2.

For the cdi method the only nonzero aj coefficient is a1 = 1. The
odes for ψr,0 are trivial, as in the linear example of section 3.2.1;3 namely,

3The cdi method involves a Fourier expansion of v(t) and derivatives of the func-
tions a(t, u) and b(t, u) with respect to u. Therefore, the cdi method is particularly
simple when v(t) is exponential or sinusoidal, and a(t, u) and b(t, u) are small powers of u.
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dψr,0(t)/dt = αψr,0(t) for r = 0, 1, 2 and ψ0,0 = u0, ψ1,0 = −ψ1,1(0), ψ2,0 =
−[ψ2,1(0) + ψ2,2(0)]. On evaluating all ψr,j coefficients, at time t1 = h

uh = u0e
αh +$−1(1− vheαh)iµu2

0e
αh

+$−2[−(α + µu0) + (α + 2µu0)vhe
αh − µu0v

2
he

2αh]µu2
0e
αh

+O
(
$−3

)
. (37)

For the iterative integral method, the differential operations of Ljt on a(t, u)
and b(t, u) at the initial time t = 0 are

(L0
0)n(L1

0)ma0 = αn+1µmm!um+1
0 ,

(L0
0)n(L1

0)mb0 = 2nαnµm+1(m+ 1)!um+2
0 . (38)

Table 1 provides the required integrals, Ipm and Jp with phase φ = 0. Sub-
stituting the integrals and equation (38) into equation (17) produces

uh = u0 + h(1 + hα/2 + h2α2/6 + h3α3/24)αu0

+$−1[(1 + αh+ α2h2/2)− vh(1 + 2αh+ 2α2h2)]iµu2
0

−$−2[(1− vh)µu0 + α](1− vh)µu2
0 +O

(
h5
)
, (39)

Again this expression is the Taylor series expansion of the cdi (37) in h, as
expected. The O

(
h5
)

correction is

h5α5u0/120 + h3$−1(1− 8vh)iα
3µu2

0/6

− h$−2[α(1− 2vh) + (1− vh)(1− 3vh)µu0]αµu2
0. (40)

3.3 Cater for unknown microscale phase

The microscale oscillations may be so fast that we do not know the phase of
the oscillations: in modelling oscillations we know that phases easily drift but
amplitudes are much more robust [1, 2, 8, e.g.]. Further, a small uncertainty
in the frequency will, over the many oscillations in one time step h, manifest
itself as a de-correlation of the phase of v(t) at the end of the time step h
compared to that at the beginning. An average over all phases reflects a
modelling of such de-correlation. Thus this section addresses issues arising
from uncertain phases of the microscale oscillations.

Suppose the oscillation vt includes an unknown ‘random’ phase φ which
we accommodate in analysis by replacing v(t) by v(t + φ). In this case,
the procedure for finding the series expansion of the ode solution does not
change. Once utn+1 has been obtained as a function of φ, an average over
all φ is performed, defined by

〈·〉φ =

∫
φ

(·)dφ
/∫

φ

dφ, (41)
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where the subscript φ on the integrals refers to the domain of the phase φ.
For example, consider the ode (1) with general functions a(t, u) and b(t, u)

and v(t) = cos($t + φ). Both a(t, u) and b(t, u) are independent of φ. The
φ-averaged solution at tn+1, for exponent ρ = 2 and order κ = 4 in Figure 2
and corresponding to error R4,2, is obtained by averaging equation (17) over
all phases φ,

〈utn+1〉φ = 〈utn〉φ +

〈∫ tn+1

tn

(
1 +

∫ t

tn

dtL0
tn + +

∫ t

tn

∫ t

tn

dt dt (L0
tn)2

+

∫ t

tn

∫ t

tn

∫ t

tn

dt dt dt (L0
tn)3

)
dt atn

〉
φ

+

〈∫ Vtn+1

Vtn

(∫ Vt

Vtn

dVt L1
tn

)
dVt btn

〉
φ

+O
(
h5
)

= 〈utn〉φ + atnh+ L0
tnatnh

2/2 + (L0
tn)2atnh

3/6 + (L0
tn)3atnh

4/24

+ L1
tnbtn [1− cos($h)]$−2/2 +O

(
h5
)
. (42)

In the above, we neglect all single integrals over Vt since they vanish af-
ter averaging over φ. If higher order accuracy is required, Table 1 provides
the relevant integrals, Jp, Kp

m and Lpm. Our integral expansion approach
empowers the resolution of macroscale effects generated by microscale inter-
actions, the last line of equation (42), without resolving all the complexity
of microscale details, and in the presence of microscale uncertainty.

3.4 Frequency dependent coefficients

The oscillating function v(t) may have an amplitude which varies with the
frequency, say v(t) = O

(
$−ν

)
. This may describe situation where certain

frequencies are attenuated by a filter. For example, in electrical circuits a
filter may affect all frequencies within a given range and cause the amplitude
of the voltage across some circuit element to decrease in some frequency
dependent way. Possible examples include v(t) = $−1 cos$t, where ν =
1 and the amplitude decreases with frequency, or v(t) = $1/2ei$t, where
ν = −1/2 and the amplitude increases with frequency. This case is roughly
analogous with the noise term in sdes, where on a microscale time scale dt
the stochastic fluctuations of the noise have ‘amplitude’ ∝ dt−1/2 (so that
increments are ∝

√
dt): here the microscale dt ∼ $−1 so the analogous

amplitude scales like
√
$; that is, the exponent ν = −1/2. In essence we

make predictions at finite large frequency $ through integral expansions
truncated to reflect different distinguished limits, limits where the oscillations
also become large.
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For v(t) = O
(
$−ν

)
one proceeds as before but must reconsider the order

of each v(t) dependent term in the integral expansion (17). Recall that each
integral over Vt is originally O

(
$−1

)
. Now, with the additional factor of $−ν ,

each integral over Vt is O
(
$−(1+ν)

)
. Therefore, a term with q1 integrals

over Vt was previously O
(
$−q1

)
but is now O

(
$−q1(1+ν)

)
. To reasonably

ensure the higher order terms that appear in the corresponding residual (that
is, those involving many integrals over Vt and t) are negligible compared
to the lower order terms, $−q1(1+ν) should decrease with increasing q1. As
$−1 < 1 and q1 > 0, we thus require ν > −1. To generalise equation (17)
for v(t) = O

(
$−ν

)
one replaces κ1 with κ′1 and defines κ′1 = κ1/(ν + 1). The

error of this generalised version of equation (17) is Rκ0,κ′1
= o
(
hκ0 + $−κ

′
1

)
,

from Proposition 4.
For example, consider the family of odes

du

dt
= αu+$1/2µu2ei$t, u(0) = u0 . (43)

Each such ode is identical to the nonlinear example in Section 3.2.2, with the
exception that here we choose v(t) = $1/2ei$t to have a frequency dependent
amplitude. We again solve over the interval [0, h] correct to errors O

(
h5
)
,

assuming $−1 ∼ h2. For this case, ρ = 2, κ = 4 and ν = −1/2 so κ0 = κ = 4
and κ′1 = κ1/(ν + 1) = κ/ρ(ν + 1) = 4 and the error is R4,4 = O

(
h5
)
. After

substituting into equation (17) with ρ replaced by ρ′ and evaluating all terms,
we obtain the time step rule

uh =S4(h′)u0 +$−1/2[S3(h′)− v′hS3(2h′)]iµu2
0

−$−1[S2(h′)− 2v′hS2(2h′) + v′2h S2(3h′)]µ2u3
0

−$−3/2[S1(h′)− v′hS1(2h′)]αµu2
0

−$3/2[S1(h′)− 3v′hS1(2h′) + 3v′2h S1(3h′)− v′3h S1(4h′)]iµ3u4
0

−$−2(1− v′h)22iαµ2u3
0 +$−2(1− v′h)4µ4u5

0 +O
(
h5
)

(44)

where h′ = hα, v′h = ei$h and the Taylor polynomial Sn(x) =
∑n

j=0 x
j/j! .

Thus our approach flexibly adapts to many different parameter regimes.

4 Numerical considerations

The cdi method and the integral method are both recursive so are scalable
to higher orders when implementing a numerical solution. However, if the
ode changes even slightly then all pre-processing calculations must be redone
in the cdi method; further the cdi method does not appear to have much
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scope for parallelisation as higher order terms depend explicitly on lower
order terms.

In our integral approach, for a given oscillation vt, we need to compute
integrals of the form ∫ t

tn

(s− tn)pvms ds, (45)

for non-negative integers p,m, where the highest values of p and m are deter-
mined by the desired order of accuracy of the solution utn+1 . Some examples
of these integrals are shown in Table 1. The above integrals are only calcu-
lated once for any given oscillation vt in the pre-processing. The numerical
simulation for solving ode (1) then simply involves evaluating operations
of L0

t and L1
t on at and bt at t = tn, (which are straightforward derivatives)

and substitution into equation (17). While the evaluation of integrals (45)
for a given vt may be computationally expensive, possibly requiring extensive
numerical calculations (for example, v(t) = ei cos$t), once they are evaluated
one can quickly solve for a family of odes (1) with the same v(t) but differ-
ent a(t, u) and b(t, u). This contrasts with analogous numerical schemes for
sde where the corresponding stochastic integrals need to be computed on the
fly since stochastic effects are independent in every time step and between
every realisation.

Of particular importance to a numerical implementation is the increase
in the number of terms as the order of the estimate is increased. For the
cdi method % ∈ N is defined such that aj = 0 for all |j| ≥ % + 1, and
the maximum number of ψr,j terms requiring calculation for a given r is
2r% + 1 [7]. For example, in Section 3.2, % = 1 and so each ψr introduces
up to 2r + 1 terms. Recall that for this method ψr is the coefficient of $−r.
Therefore, increasing the order of the solution from O

(
$−n+1

)
to O

(
$−n

)
requires, in general, a linear increase in number of ψr,j terms of 2n%+ 1.

For our integral method with error Rκ0,κ1 where κ0 = κ and κ1 = κ/ρ,
the number of integral terms to be calculated is

N(κ, ρ) =
κ∑
i=0

ρ(κ−i)∑
j=0

(i+ j)!

i!j!
− 1. (46)

For ρ > 1 an increase in the order of the estimate from O
(
$−n+1

)
=

O
(
h(n−1)ρ

)
to O

(
$−n

)
= O

(
hnρ
)

results in an increase in the number of
integral terms which is significantly more than the linear increase of the
cdi method. In this sense the integral method appears less efficient than the
cdi method; however, these integrals are done only once as a pre-processing
step, and are thereafter useful to solve a large family of odes. For example,
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N(n, 1) = 2(2n−1) and so increasing the order from O
(
$−n+1

)
= O

(
h(n−1)

)
to O

(
$−n

)
= O

(
hn
)

the increases the number of integral terms by 2n. The
larger the value of ρ, the greater the increase in terms so 2n for ρ = 1 is a
lower bound for the increase in terms when ρ > 1.

5 Relate stochastic Wiener process to oscil-

lations

We have discussed the case of a rapid oscillator with a well defined and very
short period of oscillation $−1 such that $−1 � h < 1. To conveniently
truncate the expansions in both h and $−1 we often define an exponent ρ
such that $−1 ∼ hρ and require ρ > 1. Larger exponents ρ are associated
with higher frequency oscillators. In contrast, a stochastic process such as a
Wiener process is noisy and has no well defined oscillation. A noise term has
many relevant, but unspecified, short and long time scales. When expanding
in terms of these time scales, it is the longer time scales (corresponding to
slow ‘frequencies’) which determine the order of a given term. Therefore, for
truncation purposes, only the slowest frequencies are relevant and these are
defined by $. An additional complication is that the amplitude of the noise
is frequency dependent and typically, for noise with time scale $−1, with
amplitude O

(
$−ν

)
with ν = −1/2, as discussed in Section 3.4. In general,

Vtn+1 − Vtn ∼ $−(ν+1) ∼ hρ
′

for some 0 < ρ′ < 1 where ρ′ = ρ(ν + 1) .
We now show how equation (17) connects to two stochastic schemes, the

Euler scheme and the Milstein scheme, which are both used to solve Ito
stochastic differential equations of the form given in equation (1) but with
Vt replaced by a Wiener process Wt [14, 11, e.g.]. We still require h,$−1 � 1
so that the expansion is valid. We set κ0 = κ and κ′1 = κ1/(ν + 1) =
κ/ρ(ν+1) = κ/ρ′. The Euler scheme is reproduced from equation (17) when
1/2 < ρ′ < 1 and 1 ≤ κ < 2ρ′ ,

utn+1 = utn + atn

∫ tn+1

tn

dt+ bn

∫ Wtn+1

Wtn

dWt +O
(
hε
)

= utn + atn(tn+1 − tn) + btn(Wtn+1 −Wtn) +Rκ,κ/ρ′ . (47)

When ν = −1/2 , ρ′ = ρ/2 and 1 ≤ κ < ρ < 2 . The Milstein scheme is
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reproduced from equation (17) when 1/3 < ρ′ < 1 and 1, 2ρ′ ≤ κ < 1+ρ′ , 3ρ′ ,

utn+1 = utn + atn

∫ tn+1

tn

dt+ btn

∫ Wtn+1

Wtn

dWt + L1
tnbtn

∫ Wtn+1

Wtn

∫ Wt

Wtn

dWt dWt +Rκ,κ/ρ′

= utn + an(tn+1 − tn) + btn(Wtn+1 −Wtn)

+ btn(∂b/∂u)tn
[
(Wtn+1 −Wtn)2 − (tn+1 − tn)

]
/2 +Rκ,κ/ρ′ , (48)

where the final integral is evaluated using Ito’s lemma. When ν = −1/2 ,
2/3 < ρ < 2 and 1, ρ ≤ κ < 1 + ρ/2 , 3ρ/2 . One can easily improve on
these two schemes by choosing larger κ (resulting in a higher order of accu-
racy) and smaller ρ (accounting for longer time scales in the noise term) in
equation (17).

6 Conclusion

We propose a straightforward methodology for integrating odes which con-
tain rapidly oscillating factors. These odes are not to be confused with
smooth odes which have highly oscillatory solutions. Our method requires
repeated iterations of the integral version of the chain rule, akin to that used
for sdes. The method gives an estimate and a remainder for any time step h
and period of oscillation $−1. The estimate over a time step is obtained
by evaluating a series of straightforward integrals over time t and the oscil-
lation Vt, in terms of derivatives of the smooth coefficient functions which
appear in the original differential equation. The remainder gives an exact
expression for the error to provide a bound in any given application. Such
rapidly oscillating systems require $−1 � h < 1 , but our method is also
applicable to any case within the limit $−1, h < 1 .

We expect the method presented here to adapt to more complex problems
such as higher order differential equations and differential equations involv-
ing multiple rapid oscillators [3]. Another possibility for future research is
the development of a derivative free scheme: the scheme presented here re-
quires the computation of derivatives of a(t, u) and b(t, u), which is may be
inconvenient in applications.
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