
Journal of Computational and Applied Mathematics 290 (2015) 26–43

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Inexact Restoration method for nonlinear optimization
without derivatives
Ma. Belén Arouxét a, Nélida E. Echebest a,∗, Elvio A. Pilotta b

a Departamento de Matemática, FCE, Universidad Nacional de La Plata, CP 172, 1900 La Plata, Argentina
b Facultad de Matemática, Astronomía y Física, CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad
Universitaria (5000), Córdoba, Argentina

a r t i c l e i n f o

Article history:
Received 29 April 2014
Received in revised form 23 March 2015

MSC:
65K05
90C30
90C56

Keywords:
Inexact Restoration
Derivative-free optimization
Trust-region methods
Polynomial interpolation

a b s t r a c t

A derivative-free optimization method is proposed for solving a general nonlinear
programming problem. It is assumed that the derivatives of the objective function and
the constraints are not available. The new method is based on the Inexact Restoration
scheme, where each iteration is decomposed in two phases. In the first one, the violation
of the feasibility is reduced. In the second one, the objective function is minimized onto a
linearization of the nonlinear constraints. At both phases, polynomial interpolationmodels
are used in order to approximate the objective function and the constraints. At the first
phase a derivative-free solver for box constrained optimization can be used. For the second
phase, we propose a new method ad-hoc based on trust-region strategy that uses the
projection of the simplex gradient on the tangent space. Under suitable assumptions, the
algorithm iswell defined and convergence results are proved. A numerical implementation
is described and numerical experiments are presented to validate the theoretical results.

© 2015 Elsevier B.V. All rights reserved.

Contents

1. Introduction... 27
2. Inexact Restoration methods ... 27
3. Inexact Restoration without derivatives ... 28

3.1. General hypotheses and basic results ... 28
4. Convergence results of IR-DFO... 32

4.1. Convergence to feasible points .. 32
4.2. Convergence to optimality ... 33

5. Numerical experiments .. 38
5.1. Details on the implementation of IR-DFO algorithm ... 38
5.2. Test problems.. 38
5.3. Numerical results.. 39

6. Conclusions.. 41
Acknowledgments .. 42
References.. 43

∗ Corresponding author.
E-mail addresses: belen@mate.unlp.edu.ar (M.B. Arouxét), opti@mate.unlp.edu.ar (N.E. Echebest), pilotta@famaf.unc.edu.ar (E.A. Pilotta).

http://dx.doi.org/10.1016/j.cam.2015.04.047
0377-0427/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2015.04.047
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2015.04.047&domain=pdf
mailto:belen@mate.unlp.edu.ar
mailto:opti@mate.unlp.edu.ar
mailto:pilotta@famaf.unc.edu.ar
http://dx.doi.org/10.1016/j.cam.2015.04.047

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 27

1. Introduction

We present a new method for solving the general nonlinear programming problem

min f (x) subject to x ∈ Ω, C(x) = 0, (1)

whereΩ = {x ∈ Rn
|L ≤ x ≤ U, L < U}, f : Rn

→ R, C : Rn
→ Rm, where the derivatives of the objective function and

the constraints are not available, although we assume that all the functions are continuously differentiable.
This kind of problems appears in many real world situations. For instance, when the functional values are the results of

physical measurements or when the calculation of analytical derivatives is impractical [1–3].
Several methods and algorithms were developed for the unconstrained and box-constrained cases [4–9]. Later, in

the last decade, some methods for the linearly constrained optimization problems without derivatives were proposed
[10–15]. Derivative-free methods for more general constraints were addressed by means of Augmented Lagrangian ap-
proaches in [16–18].

Following the ideas of Powell’s methods (BOBYQA) [9], where polynomial interpolation and trust-region strategy were
used for box-constrained derivative-free optimization, we propose a method for the general optimization problem. Our
method is based on the Inexact Restoration (IR) approach introduced in [19] and revised in [20,21]. A survey on this subject
can be found in [22]. Each iteration includes two different phases: restoration and optimization. In the Restoration phase,
which is executed once per iteration, an intermediate point (restored point) is found such that its infeasibility is a fraction
of the infeasibility of the current point.

At the Optimization phase, a trial point belonging to πk, a linearization of the feasible region around the restored point, is
computed such that the objective function value is lower than in the restored point. A Lagrangian function can be also used
at the Optimization phase as it is proposed in [23,21]. Bymeans of amerit function, the new iterate is accepted or rejected. In
case of rejection, the trust-region radius is reduced and the Optimization phase is repeated around the same restored point.
This method improves almost separately the infeasibility and optimality. Filter criterion could be used instead of using a
merit function [24–27]. One of the more attractive features of the IR method is that its theory allows us to use any efficient
algorithm to perform each phase.

Recently, Bueno–Friedlander–Martínez–Sobral [28] also proposed a method based on IR for solving a nonlinear
derivative-free optimization problem in which the derivatives of the constraints are available. In our work, the derivatives
of the objective function and the constraints are not available and we approximate them by polynomial models, which is
one of the main differences with the previous cited work.

We have taken into account the flexibility that IR method provides for choosing different subalgorithms in each phase,
and therefore we performed two implementations of our method using two different solvers for Restoration phase:
BOBYQA [9] and TRB-Powell [4].

On the other hand, for the Optimization phase, a derivative-free optimization problem with linear constraints is
formulated. This problem could be solved by any efficient solver for linearly constrained derivative-free optimization, as
the method introduced by Kolda, Lewis and Torczon [13], however we formulated an algorithm ad-hoc.

The paper is organized as follows. In Section 2 we briefly describe the IR method [19]. In Section 3 we introduce our
derivative-free algorithm (IR-DFO) and some preliminary theoretical results. Also, we prove that the new algorithm is well
defined. Assuming suitable hypotheses we analyze some global convergence results in Section 4. Implementation details
and numerical experiments are shown in Section 5. Finally, some conclusions are made in Section 6.

Notation. Unless otherwise specified, our norm ∥ · ∥ is the standard Euclidean norm.
We let B denote a closed ball in Rn and B(z;∆) denote the closed ball centered at z, with radius∆ > 0.
ei denotes the ith coordinate vector of Rn.
We denote C ′(x) ∈ Rm×n, the Jacobian matrix of C(x) and C ′j (x) = ∇Cj(x)T for j = 1, . . . ,m.

2. Inexact Restoration methods

In this section we give a description of the IR method [19] along with some preliminary definitions.
First of all, we define a measure of infeasibility given by: h(x) = ∥C(x)∥. We used a penalty-like nonsmooth merit

function, which combines feasibility and optimality, to measure the progress to the solution. This function is given by

ψ(x, θ) = θ f (x)+ (1− θ)h(x), (2)

where θ ∈ [0, 1] is a penalty parameter used to give different weights to the objective function and the measure of
infeasibility. The choice of the parameter θ at each iteration depends on practical and theoretical considerations. See [19].

Given yk ∈ Rn we define a linear approximation of the feasible region of (1) as

T (yk) = {x ∈ Ω|C ′(yk)(x− yk) = 0}. (3)

Moreover, given z ∈ Rn we also define dc(z) the projected direction of−∇f (z) onto T (z) as
dc(z) = PT (z)(z −∇f (z))− z, (4)

where PT (z)(w) denotes the orthogonal projection of w onto T (z). A feasible point z such that dc(z) = 0 is considered as a
stationary point of (1) [29].

28 M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43

The IR model algorithm for solving (1) has the following form:

Inexact-Restoration model algorithm

Assume that α ∈ [0, 1), β > 0, δmin > 0, θ−1 ∈ (0, 1) are algorithm parameters independent of k. Let {ωk} be a
summable sequence of nonnegative terms and x0 ∈ Ω . Set k← 0.
Step 0: Penalty parameter

Define θ̄k = min{1,min{θk−1, . . . , θ−1} + ωk}.
Step 1: Restoration phase

If h(xk) = 0 we set yk = xk, otherwise compute yk ∈ Ω such that

∥yk − xk∥ ≤ βh(xk) (5)

and

h(yk) ≤ αh(xk). (6)

If this is not possible, stop the execution of the algorithm declaring failure in improving feasibility.
Step 2: Optimization phase

If yk = xk and dc(xk) = 0 terminate the execution of the algorithm declaring finite convergence. Otherwise, choose
δ ≥ δmin.

Step 2.1: Compute zk ∈ T (yk) as the solution of

min f (x)
s. t. x ∈ T (yk)

∥x− yk∥ ≤ δ.
(7)

Step 2.2: Choice of the penalty parameter
Define, for all θ ∈ [0, 1],

Pred(θ) = θ [f (xk)− f (zk)] + (1− θ)[h(xk)− h(yk)]. (8)

Choose θ sk , the maximum of the values of θ ∈ [0, θ̄k] such that Pred(θ sk) ≥
1
2 [h(x

k)− h(yk)]
Step 2.3: Acceptance or rejection criterion
Define Aredk = ψ(xk, θ sk)− ψ(z

k, θ sk), Predk = Pred(θ sk).
If Aredk ≥ 0.1Predk, define xk+1 = zk, θk = θ sk, k← k+ 1.
Otherwise, set δ = 0.5δ, θ̄k = θ sk , go to Step 2.1.
End of iteration k.

3. Inexact Restoration without derivatives

Before going further into details of the algorithm, we introduce some hypotheses and results of multivariate polynomial
interpolation that we make use throughout and that can be found to a more extent in [2, Chapter 2 and 3]. The algorithm
developed in this work employs linear and quadratic interpolation models to solve the subproblems of each phase, which
are obtained by functional interpolation in n+ 1 and 2n+ 1 points, respectively.

3.1. General hypotheses and basic results

From now on, we make the following assumptions in order to state theoretical and practical results.

(A1) Ω is a convex and compact set.
(A2) The Jacobian matrix of C(x) satisfies the Lipschitz condition [30]:

∥C ′(y)− C ′(x)∥ ≤ L1∥y− x∥, for all x, y ∈ Ω. (9)

(A3) The gradient of f satisfies the Lipschitz condition:

∥∇f (y)−∇f (x)∥ ≤ L2∥y− x∥, for all x, y ∈ Ω. (10)

Many of the theoretical results of the algorithm developed in this work are based on the properties of linear
multivariate interpolation models of the objective function and constraints.

(A4) We assume that each interpolation set Y = {y, z1, . . . , zn} ⊂ Rn, which is contained in the ball B(y,∆(Y)) of radius
∆(Y) = max1≤i≤n ∥z i−y∥, is ‘‘poised’’ for linear interpolation, i.e., thematrix of directions S = [z1−y z2−y . . . zn−y]
is nonsingular.
The definition of poisedness is independent of the basis for the space of linear polynomials of degree 1. Hence, if Y is
poised for the natural basis {1, x1, x2, . . . , xn} then it is poised for any other basis chosen [2, Chapter 2].

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 29

We denote L(x) = f (y)+ gf T (x− y) and mc
j (x) = Cj(y)+ gcTj (x− y) the linear interpolating model of f (x) and Cj(x) on

Y , respectively.
The linear model L(x) = f (y) + gf T (x − y) centered at y interpolates f at the points y, z1, . . . , zn, and gf satisfies

STgf = δ(f ; S) with δ(f ; S) = [f (z1) − f (y), . . . , f (zn) − f (y)]T . The convex hull of a set of n+1 affinely independent
points Y = {y, z1, . . . , zn} is called a simplex. Since the points are affinely independent, the matrix S = [z1 − y . . . zn − y]
is nonsingular.

Given a simplex of vertices Y , the simplex gradient of f at y is defined as STgf = δ(f ; S), which coincides with∇L(y), the
gradient of the linear model L(x). Therefore, the simplex gradient of f is closely related to linear multivariate polynomial
interpolation.

The geometrical properties of Y determine the quality of the corresponding ∇L(y) as an approximation to the exact
gradient of the objective function.

Now, we are interested in the quality of L(x) and ∇L(x) in the ball B(y,∆(Y))with radius∆(Y) centered at y.
Assumption (A4) gives a threshold to the difference between the functions and their interpolation models. Then, for all

x ∈ B(y,∆(Y)), considering the scaled matrix S̄ = S/∆(Y) = [z
1
−y

∆(Y) . . .
zn−y
∆(Y)], we have

|f (x)− L(x)| ≤ κef∆2, (11)

∥∇f (x)−∇L(x)∥ ≤ κeg∆, (12)

where κeg = L2(1+ n1/2
∥S̄−1∥/2) and κef = κeg + L2/2, which are given in Theorems 2.11 and 2.12 in [2].

Similarly, under the previous hypotheses the error bound between ∇Cj(x) and ∇mc
j (x), for all j = 1, . . . ,m, is given by

κegc∆ = L1(1+n1/2
∥S̄−1∥/2)∆. Then the matrix A(y), an approximation of C ′(y), whose jth row is the transpose of∇mc

j (y),
satisfies

∥C ′(y)− A(y)∥ ≤ κeJ∆, (13)

where κeJ =
√
mκegc∆.

We assume that it is possible to maintain the constants κef , κeg and κeJ , shown in the previous formulas, uniformly
bounded along the iterative process of our algorithm [2, Chapter 3 and 6].

Definition 1. Given y ∈ Rn and the hyperplane A(y)(x− y) = 0, we define

π := {x ∈ Ω | A(y)(x− y) = 0}. (14)

Definition 2. Given gf , the simplex gradient of f at y, y ∈ Rn, we also define gftan the projected direction of−gf ∈ Rn onto
π as

gftan = Pπ (y− gf)− y (15)

where Pπ (z) denotes the orthogonal projection of z onto π .

The algorithm proposed in this paper is defined as follows.

Algorithm 1 (IR-DFO). Given x0 ∈ Ω, f (x0), h(x0) = ∥C(x0)∥, α ∈ (0, 1), β > 1, δmin > 0, {ωk} > 0,

∞

k ωk < ∞,
{rk}, rk > 0, limk→∞ rk = 0, θ−1 ∈ (0, 1), 0 < ϵM < 1. Set k← 0.

Step 0: Penalty parameter
Define θk,−1 = min


1,min{θ−1, . . . , θk−1


+ ωk}.

Step I: Restoration phase
If h(xk) = 0, define yk = xk. Otherwise, compute yk ∈ Ω solving approximately

min
y∈Ω

h(y)2 s. t. ∥y− xk∥ ≤ βh(xk) (16)

satisfying h(yk) ≤ αh(xk), by a derivative-free algorithm. If this is not possible, stop the execution of the algorithm
declaring failure in improving feasibility. END.

Step II: Compute an approximation of C ′(yk)
Construct/update a set of interpolation points centered in yk, Y k

c = {y
k
}

{z1, z2, . . . , zn}, such that ∆k =

maxzi∈Y k
c
{∥z i − yk∥} satisfies

∆k ≤ min{rk, βk}, (17)

where βk = βh(xk) if h(xk) ≠ 0, else βk = rk.
Compute the matrix Ak, approximation of C ′(yk) and define

πk = {z ∈ Ω | Ak(z − yk) = 0}.

30 M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43

Step III: Optimization phase
III.a Choose δk,0 ≥ δmin. Set i ← 0. Obtain an approximate solution zk,0 of (7), replacing T (yk) by πk, such that
∥zk,0 − yk∥ ≤ δk,0, satisfying f (zk,0) ≤ f (yk), using an algorithm without derivatives, following the scheme of
Basic Algorithm 2. It must also provide an approximation of ∇f (yk), gf , and gf ktan = Pπk(y

k
− gf)− yk.

– If zk,0 = yk, with gf ktan = Pπk(y
k
− gf) − yk = 0 and h(xk) = h(yk) = 0, and rk < ϵM , define xk+1 = zk,0.

Terminate the execution of the algorithm declaring finite convergence.
III.b While xk+1 is not defined, do:

If i > 0, using Basic Algorithm 2, compute zk,i ∈ πk, such that ∥zk,i − yk∥ ≤ δk,i, f (zk,i) < f (yk), and gf ktan.
• Choice of penalty parameter:

Define Predk,i(θ) as in (8).
Compute θk,i, the maximum of the elements θ ∈ [0, θk,i−1] that verifies

Predk,i(θk,i) ≥
1
2
[h(xk)− h(yk)]. (18)

• Acceptance criteria of the point zk,i.
Define

Aredk,i(θk,i) = θk,i[f (xk)− f (zk,i)] + (1− θk,i)[h(xk)− h(zk,i)]. (19)

– If Aredk,i(θk,i) < 0.1 Predk,i(θk,i):
∗ if xk is feasible and δk,i ≤ min{ϵM , rk}, define

xk+1 = yk, θk = θk,i, iacc(k) = i, dk = gf ktan;

∗ else, choose δk,i+1 ∈ [0.1δk,i, 0.9δk,i]. Set i← i+ 1.
– If Aredk,i(θk,i) ≥ 0.1 Predk,i(θk,i), define

xk+1 = zk,i, θk = θk,i, iacc(k) = i, dk = gf ktan.

End while.

End k-th iteration.

Remark 1. Restoration phase is defined by conditions (5) and (6) like in [19]. Notice that the objective function is not
involved in such conditions.

An attractive feature of IR-type algorithms is the freedom to choose the procedure to perform the Restoration and
Minimization steps. In our method, different derivative-free algorithms can be used to obtain the required decrease of
infeasibility. We will give further details in Section 5.

Step III requires to solve a linearly constrained optimization problem. The basic idea of this step is the minimization of
the function f subject to linear constraints and a trust-region around the restored point, controlling the feasibility achieved
in Step I.

As in Martínez and Pilotta [19], in order to measure the progress to the solution, we use the merit function (2) and the
same procedure for updating the penalty parameter θ .

In particular, Ared(θk,i) = ψ(xk, θk,i)− ψ(zk,i, θk,i)measures the reduction of the merit function at the new point zk,i in
relation to the current xk.

When zk,0 = yk and the procedure continue in Step III.b, since in this case Ared(θk,0) = Pred(θk,0), after to find θk,0 such
that Pred(θk,0) ≥ 1

2 [h(x
k)− h(yk)], it satisfies the condition for which the k-iteration finishes defining xk+1 = zk,0 = yk and

iacc(k) = 0.

The results below will allow us to prove that Algorithm 1 is well defined and its convergence.

Remark 2. If x ∈ Rn, ∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞.

Lemma 1. Given gf , π and gftan as were defined in 1 and 2, ϵ > 0. Then

(i) ⟨gftan, gf ⟩ ≤ −
∥gftan∥2

2
(ii) If ∥∇f (y)− gf ∥ < ϵ

2 and ∥y− Pπ (y−∇f (y))∥ > ϵ then ∥gftan∥ > ϵ
2 .

Similarly, if ∥gftan∥ > ϵ then ∥y− Pπ (y−∇f (y))∥ > ϵ
2 .

(iii) If ∥gftan∥ > ϵ and ∥∇f (y)− gf ∥ < ϵ
4 then ⟨∇f (y), gftan⟩ < 0. Furthermore,

⟨∇f (y), gftan⟩ < −
1
4
∥gftan∥2. (20)

(iv) If ∥gftan∥ < ϵ
2 and ∥∇f (y)− gf ∥ < ϵ

2 then ∥Pπ (y−∇f (y))− y∥ < ϵ.

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 31

Proof. The result (i) is similar to that of [19, Section 2.6, p. 6] replacing ∇f by gf .
(ii) Since the projection Pπ is non-expansive, ∥Pπ (y−∇f (y))− Pπ (y− gf)∥ ≤ ∥∇f (y)− gf ∥, then it follows

∥y− Pπ (y−∇f (y))∥ ≤ ∥y− Pπ (y− gf)∥ + ∥∇f (y)− gf ∥. (21)

Therefore, ∥gftan∥ = ∥y − Pπ (y − gf)∥ ≥ ∥y − Pπ (y − ∇f (y))∥ − ∥∇f (y) − gf ∥ > ϵ
2 , as we wanted to prove. Similarly,

replacing gf with ∇f (y) in (21), it obtains the second inequality.
(iii) Since ⟨gftan,∇f (y)⟩ = ⟨gftan,∇f (y)− gf ⟩ + ⟨gftan, gf ⟩, then

⟨gftan,∇f (y)⟩ ≤ ∥gftan∥ ∥∇f (y)− gf ∥ + ⟨gftan, gf ⟩ .

Considering the result of (i) we get ⟨gftan,∇f (y)⟩ ≤ ∥gftan∥2(
∥∇f (y)−gf ∥
∥gftan∥

−
1
2). So, ⟨gftan,∇f (y)⟩ < ∥gftan∥

2(14 −
1
2) =

−
1
4∥gftan∥

2.
Therefore, under the hypotheses given, gftan is a descent direction of f .
(iv) The proof is immediate considering (21). �

Remark 3. It is known that the projected direction of−∇f on π , if it is non-null, is a descent direction of f . The properties
above give us conditions to ensure when gftan is a descent direction of the objective function f .

The following algorithm is performed to solve the minimization problem at Step III from k-th iteration of IR-DFO. In this
algorithm, we follow the definitions given by Conn–Scheinberg–Vicente in [2, Chapter 2] about positive spanning set and
positive basis in Rn which are:

Definition 3. The positive span of a set of vectors [v1, . . . , vr] in Rn is the convex cone

{v ∈ Rn
: v = α1v1 + · · · + αrvr , αi ≥ 0, i = 1, . . . , r}.

Apositive spanning set inRn is a set of vectorswhose positive span isRn. The set [v1, . . . , vr] is said to be positively dependent
if one of the vectors is in the convex cone positively spanned by the remaining vectors, i.e., if one of the vectors is a positive
combination of the others; otherwise, the set is positively independent. A positive basis in Rn is a positively independent set
whose positive span is Rn.

Algorithm 2 (Basic Algorithm for Step III (Minimization)). Given πk, yk, xk, f (yk), rk > 0, βk > 0, Ak, Zk orthogonal basis of
N (Ak), Bk positive basis of N (Ak), Dk positive spanning set, i ≥ 0, δk,i > 0, 0 < γ2 < 1, 0 < η1 < 1, tol > 0.

Step 1. If i = 0, compute the simplex gradient gf , as an approximation of ∇f (yk), by interpolation on Y k
f = {y

k
}


{z1, z2, . . . , zn}, which is constructed or updated from a previous set, such that∆(Y k
f) ≤ min{rk, βk}.

Compute gftan = Pπk(y
k
− gf)− yk, the projected direction of−gf onto πk.

(1.a) If ∥gftan∥ ≠ 0, compute tk,0max = min{1, δk,0/∥gftan∥}. Set j← 0, t = tk,0max.
– While (f (yk + tgftan) ≥ f (yk) and tk,0max/2

j > tol) do
j← j+ 1, t = tk,0max/2

j. End While.
– If there exists t such that f (yk + tgftan) < f (yk), define zk,0 such that

f (zk,0) ≤ max{f (yk + tgftan), f (yk)− γ2, f (yk)− η1∥gftan∥δk,0} and gf ktan = gftan. Return.
(1.b) Compute τmax = mindj∈Dk{1, δk,0/∥dj∥}. Set ν = 0.

Find a dj ∈ Dk such that f (yk + τνdj) < f (yk), for the greatest τν = τmax/2ν, ν = 0, 1, 2,
If it is possible, define z̄k,0 = yk + τνdj, update Y k

f and gftan and define zk,0 such that
f (zk,0) ≤ max{f (z̄k,0), f (yk)− γ2, f (yk)− η1∥gftan∥δk,0} and gf ktan = gftan. Return.

(1.c) If it was not possible to find in item (1.a) or (1.b) a z such that f (z) < f (yk), define zk,0 = yk, gf ktan = gftan.
Return.

Step 2. If i > 0, compute tk,imax = min{1, δk,i/∥gftan∥}, where gftan = gf ktan ≠ 0.
(2.a) Find the greatest t ∈ (0, tk,imax] such that f (yk + tgftan) < f (yk).

If there exists t with success, define z̄k,i = yk + tgftan, go to step (2.c).
Else,

(2.b) Compute τmax = mindj∈Dk{1, δk,i/∥dj∥}.
Find the greatest τ ∈ (0, τmax] such that f (yk + τdj) < f (yk) for any dj ∈ Dk, and define z̄k,i = yk + τdj.
Update Y k

f and gftan, using the latest evaluations of f on Dk.
(2.c) Define zk,i, such that f (zk,i) ≤ max{f (z̄k,i), f (yk)− γ2, f (yk)− η1∥gftan∥δk,i}, and gf ktan = gftan. Return.

Lemma 2. Basic Algorithm 2 is well defined.

32 M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43

Proof. When i = 0, after a finite number of inner iterations the procedure finishes in (1.a) and/or (1.b) with success or in
(1.c) with non success.

If the projected direction of−∇f (yk) onto πk is non null, although the direction gftan has not been accurately computed,
the function descends on at least one direction of Dk [31]. Hence, there exists a zk,0 such that f (zk,0) < f (yk). On the other
hand,when that projection is null, the procedure finishes in (1.c), after a finite number of inner iterations, accepting zk,0 = yk.

When i > 0, corresponding to the case with success for i = 0, after a finite number of inner iterations the procedure
finds a point zk,i such that f (zk,i) < f (yk) in the trust-region with radius δk,i < δk,0. �

From assumptions (A1)–(A3), Martínez and Pilotta [19] stated a bounded deterioration result for the feasibility of the
point computed at the Optimization phase in relation with the point computed at the Restoration phase. More precisely,
they showed that given y ∈ Ω, x ∈ T (y), there exists L1 > 0 such that ∥C(x)∥ ≤ ∥C(y)∥ + L1∥x− y∥2.

Since we compute A(y), the Jacobian matrix approximation of C(y), we show that the deterioration of the feasibility on
πk, which depends on the radius∆(Y) of the interpolation set, is of the order of∆(Y)∥x− y∥.

Theorem 1. Given the system of nonlinear equations C(x) = 0 of the problem (1). There exists L1 > 0 (independent of k) such
that, if y ∈ Ω is computed in Restoration phase, x ∈ π then

∥C(x)∥ ≤ ∥C(y)∥ + κeJ∆(Y)∥x− y∥ + L1∥x− y∥2. (22)

Proof. Since x ∈ π, A(y)(x− y) = 0. Then, the result follows from (9) and (13),

∥C(x)∥ ≤ ∥C(y)∥ + ∥C ′(y)− A(y)∥ ∥(x− y)∥ + L1∥x− y∥2 ≤ ∥C(y)∥ + κeJ∆(Y)∥x− y∥ + L1∥x− y∥2. �

Remark 4. If∆(Y) is small enough, the linear term in (22) also becomes small. Such considerationwill be useful for obtaining
convergence results as those obtained by Martínez and Pilotta in [19].

In the following we will show that Algorithm IR-DFO is well defined. In fact, we will prove that, when the Algorithm
IR-DFO does not finished in Restoration phase with ‘‘failure in improving feasibility’’, there exists δk,i small enough such
that Aredk,i(θ) ≥ 0.1 Predk,i(θ) and zk,i will be the next iterate xk+1 or, if xk is feasible and δk,i ≤ min{ϵM , rk}, the iteration
finishes with xk+1 = xk.

Theorem 2. Algorithm IR-DFO is well defined.

Proof. Suppose Algorithm IR-DFO does not finishedwith ‘‘failure in improving feasibility’’. After some calculationwe obtain
that Aredk,i−0.1Predk,i = 0.9θk,i


f (xk)− f (zk,i)


+(1−θk,i)


∥C(xk)∥ − ∥C(zk,i)∥


−0.1(1−θk,i)


∥C(xk)∥ − ∥C(yk)∥


. Also,

Aredk,i−0.1Predk,i is equal to 0.9θk,i

f (xk)− f (zk,i)


+0.9(1−θk,i)


∥C(xk)∥ − ∥C(yk)∥


+(1−θk,i)


∥C(xk)∥ − ∥C(zk,i)∥


−

(1− θk,i)

∥C(xk)∥ − ∥C(yk)∥


.

Then Aredk,i − 0.1Predk,i = 0.9Predk,i + (1− θk,i)

∥C(yk)∥ − ∥C(zk,i)∥


.

Hence, by (18) and θk,i ∈ [0, 1], we obtain

Aredk,i − 0.1Predk,i ≥ 0.45

∥C(xk)∥ − ∥C(yk)∥


−

∥C(yk)∥ − ∥C(zk,i)∥ ,
by (6), we have

Aredk,i − 0.1Predk,i ≥ 0.45(1− α)∥C(xk)∥ −
∥C(yk)∥ − ∥C(zk,i)∥ .

If ∥C(xk)∥ ≠ 0, the first term of the right side of the last inequality is positive and, by continuity of C , the second term tends
to zero as δk,i → 0. Therefore, there exists a positive δk,i such that Aredk,i ≥ 0.1 Predk,i. This means that our algorithm is
well defined when ∥C(xk)∥ ≠ 0.

If xk is feasible, yk = xk and C(xk) = C(yk) = 0, there are two possibilities to analyze in Step III.b. If there exists i > 0,
such that δk,i ≤ min{ϵM , rk} and Aredk,i− 0.1Predk,i < 0, this step finishes with xk+1 = xk. Otherwise, there exists i ≥ 0 and
δk,i > 0 such that Aredk,i − 0.1Predk,i ≥ 0, then this step finishes with xk+1 = zk,i. Hence, xk+1 is well defined in both cases.
Consequently, Algorithm IR-DFO is well defined. �

4. Convergence results of IR-DFO

4.1. Convergence to feasible points

Theorem 3. Assume that {xk} is generated by Algorithm IR-DFO. Then,

lim
k→∞

ψ(xk, θk)− ψ(xk+1, θk) = 0.

(i.e., limk→∞ Aredk,iacc(k)(θk,iacc(k)) = 0).

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 33

Proof. This proof is similar to that of [19, Theorem 3.4] replacing ∥C+(xk)∥ by ∥C(xk)∥. �

Theorem 4. If Algorithm IR-DFO does not stop at StepI, then

lim
k→∞
∥C(xk)∥ = 0.

In particular, every limit point of {xk} is feasible.

Proof. This proof is similar to that of [19, Theorem 3.5] replacing ∥C+(xk)∥ by ∥C(xk)∥. �

Remark 5. The sequence {yk}, generated in theRestorationphase, satisfies limk→∞ ∥C(yk)∥ = 0because∥C(yk)∥ ≤ ∥C(xk)∥
and limk→∞ ∥C(xk)∥ = 0 by Theorem 4. Therefore, every limit point of {yk} is feasible.

As a consequence of Step I of Algorithm IR-DFO, yk satisfies ∥yk − xk∥ ≤ β∥C(xk)∥ then, limk→∞ ∥yk − xk∥ = 0.
Hence, if x̄ is a limit point of {xk}, also x̄ is a limit point of {yk} since ∥yk − x̄∥ ≤ ∥yk − xk∥+ ∥xk − x̄∥. Analogously, every

limit point of {yk} is a limit point of {xk}.

4.2. Convergence to optimality

If the used interpolation models of the objective function are good enough, ∥gf ktan∥ is an indicator of optimality as we
have shown in Lemma 1. We will prove it cannot be bounded away from zero when xk is almost feasible in the sense of the
previous section.

Wewill prove the convergence of IR-DFO proceeding by contradiction, asMartínez and Pilotta in [19]. So, wewill assume
∥gf ktan∥ is bounded away from zero, assuming that the used interpolation models are good enough, for k large enough. Then
we will show that the results obtained from this hypothesis lead us to a contradiction.

Notation. For simplicity, we rename gf ktan by dk.

Hypothesis B

There exist ϵ > 0 and k0 ∈ N such that

∥dk∥ ≥ ϵ for all k ≥ k0.

Theorem 5. Suppose that Hypothesis B holds. Then, there exist k1 ≥ k0 and c2, c3 > 0 (independent of k) such that, whenever
yk is defined and zk,i is computed by Algorithm 2, we have that

f (zk,i) ≤ f (yk)−min{c2∥dk∥2, c3δk,i∥dk∥}, for all k ≥ k1.

Proof. By (10), yk + dk ∈ Ω , for all t ∈ [0, 1],

f (yk + tdk) ≤ f (yk)+ 0.1t

∇f (yk), dk


+ 0.9t


∇f (yk), dk


+

t2L2
2
∥dk∥2.

Since rk ↓ 0, there exists k1 ≥ k0 such that for all k ≥ k1, rk < ϵ
4L2κeg

. Then, by (20), for all k ≥ k1

f (yk + tdk) ≤ f (yk)+ 0.1t

∇f (yk), dk


+ t∥dk∥2


−

0.9
4
+

tL2
2


.

Furthermore, considering again (20) and t ≤ 0.9
2L2

we have that

f (yk + tdk) ≤ f (yk)−
0.1t
4
∥dk∥2.

As t∥dk∥ ≤ δk,i, then for t ≤ min{1, δk,i
∥dk∥

, 0.9
2L2
}we have that f (yk + tdk) ≤ f (yk)− 0.1t

4 ∥dk∥
2. Hence,

f (yk + tdk) ≤ f (yk)−
0.1
4

min

1,

δk,i

∥dk∥
,
0.9
2L2


∥dk∥2.

Thus, f (yk + tdk) ≤ f (yk)−min


0.1
4 ∥dk∥

2, 0.1
4 δk,i∥dk∥,

0.1
4

0.9
2L2
∥dk∥2


. Therefore, defining c3 = 0.1

4 and c2 = c3 min

1, 0.9

2L2


,

we obtain

f (yk + tdk) ≤ f (yk)−min

c2∥dk∥2, c3δk,i∥dk∥


.

So, for all k ≥ k1, f (zk,i) ≤ f (yk)−min

c2∥dk∥2, c3δk,i∥dk∥


. �

34 M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43

Lemma 3. Suppose that Hypothesis B holds. There exists k2, k2 ≥ k1, such that if xk is feasible (C(xk) = 0) for some k ≥ k2 then
there exist i ≥ 0 and δk,i ≥ min{rk, ϵM} such that

Aredk,i − 0.1Predk,i ≥ 0 (23)

is satisfied in StepIII.b of Algorithm IR-DFO.

Proof. If xk is feasible, ∥C(xk)∥ = 0 and yk = xk. If zk,i, i ≥ 0, is such that f (zk,i) ≤ f (yk),

Aredk,i − 0.1Predk,i = 0.9θk,i

f (xk)− f (zk,i)


− (1− θk,i)∥C(zk,i)∥.

Since f (xk) = f (yk), for all i, i ≥ 0 and θ ∈ (0, 1], it follows
Predk,i(θ) = θ(f (xk)− f (zk,i)) ≥ 1

2


∥C(xk)∥ − ∥C(yk)∥


= 0. Therefore, θk,i = θk,−1 for all i, i ≥ 0. Hence,

Aredk,i − 0.1Predk,i = 0.9θk,−1[f (xk)− f (zk,i)] − (1− θk,−1)∥C(zk,i)∥.

Suppose that for all k ≥ k1, if C(xk) = 0 then Aredk,i−0.1Predk,i ≥ 0 does not hold for 0 ≤ i ≤ ik0−1, being δk,i ≥ min{rk, ϵM}
and ik0 the first index which satisfies δk,ik0 < min{rk, ϵM}.

Then, denoting ikp = ik0 − 1, by Theorems 1 and 5, for k ≥ k1 we get 0 > Aredk,ikp − 0.1Predk,ikp ≥ 0.9θk,−1 min{c2∥dk∥2,

c3∥dk∥δk,ikp} − (1− θk,−1)(κeJ∆kδk,ikp
+ L1δ2k,ikp

). Therefore,

0.9θk,−1∥dk∥min{c2∥dk∥, c3δk,ikp} < (1− θk,−1)

κeJ∆kδk,ikp

+ L1δ2k,ikp


.

Hence, since 0 < δk,ik0
< δk,ikp

≤ 10δk,ik0 by the condition of the decrease at Step III.b,

0.9θk,−1∥dk∥min{c2∥dk∥/δk,ik0 , c3} < (1− θk,−1)(10κeJ∆k + 100L1δk,ik0). (24)

If ∥dk∥ < δk,ik0
, then ∥dk∥ < rk (δk,ik0 < rk). Otherwise, if ∥dk∥ ≥ δk,ik0 , since δk,ik0 < rk,∆k ≤ rk and

∥dk∥
δ
k,ik0

≥ 1, in (24) we have

that

0.9θk,−1∥dk∥min{c2, c3} < (1− θk,−1)(10κeJ rk + 100L1rk).

Then, considering A = min{c2, c3} and B = 1−θk,−1
0.9θk,−1

10(κeJ + 10L1), it obtains ∥dk∥ < B
A rk. Therefore, for all k ≥ k1 such that

C(xk) = 0, it obtains ∥dk∥ < rk or ∥dk∥ < B
A rk. It would have that ∥dk∥ tends to zero because rk ↓ 0 and this contradicts

Hypothesis B.
Hence, if Hypothesis B holds, there exists k2 ≥ k1 such that if k ≥ k2 and C(xk) = 0, there exists i ≥ 0 such that

δk,i ≥ min{rk, ϵM} and Aredk,i − 0.1Predk,i ≥ 0. �

Lemma 4. Suppose that Hypothesis B holds. Then, there exists c4, c5 > 0 (independent of k) such that

f (yk)− f (zk,i) ≥ min{c4, c5δk,i}

for all k ≥ k2, i = 0, 1, . . . , iacc(k).

Proof. The result follows trivially from Theorem 5 and Hypothesis B. �

Lemma 5. Suppose that Hypothesis B holds. Then, there exist γ1, γ2 > 0, independent of k, and i ≥ 0 such that ∥C(xk)∥ ≤
min{γ2, γ1δk,i} implies that θk,i = θk,i−1, for all k ≥ k2.

Proof. This proof is similar to that of [19, Lemma 4.2] replacing ∥C+(xk)∥ by ∥C(xk)∥. �

Lemma 6. Suppose that Hypothesis B holds. If ∥C(xk)∥ is sufficiently small (C(xk) ≠ 0), a step δk,i that satisfies

γ1

10
δk,i ≤ ∥C(xk)∥, (25)

is necessarily accepted in StepIII.b of IR-DFO, where γ1 is defined in Lemma 5.

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 35

Proof. If (25) holds then, by (6) and (18)

Predk,i ≥
1
2


∥C(xk)∥ − ∥C(yk)∥


≥

1− α
2
∥C(xk)∥ ≥

(1− α)γ1
20

δk,i.

So, (25) implies that

δk,i ≤
20

(1− α)γ1
Predk,i. (26)

By Theorem 1 and 1− θk,i > −1,
Aredk,i = Predk,i + (1− θk,i)


∥C(yk)∥ − ∥C(zk,i)∥


≥ Predk,i − κeJ∆kδk,i − L1δ2k,i. Then, by (26), it obtains

Aredk,i ≥ Predk,i − κeJ∆k
20

(1− α)γ1
Predk,i − L1δk,i

20
(1− α)γ1

Predk,i,

and (25) implies that Aredk,i ≥ Predk,i−κeJ∆k
20

(1−α)γ1
Predk,i−L1 10

γ1
∥C(xk)∥ 20

(1−α)γ1
Predk,i. The term of the right side is equal to

Predk,i

1− κeJ∆k

20
(1−α)γ1

− L1 10
γ1
∥C(xk)∥ 20

(1−α)γ1


. Then, considering that∆k ≤ β∥C(xk)∥, that term is greater than or equal

to

Predk,i


1− κeJβ∥C(x

k)∥
20

(1− α)γ1
− L1

10
γ1
∥C(xk)∥

20
(1− α)γ1


.

Hence, it obtains

Aredk,i ≥ Predk,i


1− ∥C(xk)∥


κeJβγ120+ L1200

(1− α)γ 2
1


.

Then, if (25) holds and ∥C(x)∥ ≤ 0.9(1−α)γ 2
1

κeJ γ1β20+200L1
= H , the trial point zk,i is accepted in Step III.b of Algorithm IR-DFO. �

Lemma 7. Suppose that Hypothesis B holds. Then, there exists θ̄ > 0 such that θk ≥ θ̄ for all k ≥ k3, with k3 ≥ k2.

Proof. Let ϵ2 = min {γ2,H, γ1δmin}, where γ1 and γ2 are defined in Lemma 5 and H = 0.9(1−α)γ 2
1

κeJ γ1β20+200L1
is defined in Lemma 6.

Let k3 ≥ k2 ≥ k1 be such that ∥C(xk)∥ ≤ ϵ2 for all k ≥ k3. Since δmin ≥
∥C(xk)∥
γ1

, this implies that, for all k ≥ k3,

δk,0 ≥
∥C(xk)∥
γ1

, because ϵ2
γ1
≤ δmin ≤ δk,0.

Therefore, a possible trust-region radius such that δk,i <
∥C(xk)∥
γ1

cannot correspond to i = 0. Hence, it is preceded by

a δk,i−1, which necessarily verifies δk,i−1 ≤ 10δk,i < 10 ∥C(x
k)∥

γ1
. This means that δk,i−1 satisfies (25) and by Lemma 6 the

corresponding point zk,i−1 would be accepted for all k ≥ k3.
Therefore, δk,i must satisfy δk,i ≥

∥C(xk)∥
γ1

. Then, since ∥C(xk)∥ ≤ ϵ2 for all k ≥ k3, and ∥C(xk)∥ ≤ δk,iγ1, by Lemma 5, the
penalty parameter θk,i is never decreased for all k ≥ k3, i = 0, 1, . . . , iacc(k). Hence, there exists θ̄ > 0 such that θk ≥ θ̄
for all k ≥ k3, k ∈ {1, 2, . . . , } and this implies the desired result. �

Finally, in the next Theorem 6, we prove that Hypothesis B is false.

Theorem 6. Let {xk} be an infinite sequence generated by Algorithm IR-DFO. Then, there exists K2, an infinite subset of N, such
that

lim
k→∞
k∈K2

∥dk∥ = 0. (27)

Proof. Suppose that the thesis of the theorem is not true. Then, given ϵ > 0, there exists k0 ∈ N such that Hypothesis B is
true.

By definition of Aredk,i− 0.1Predk,i and Theorem 1, Aredk,i− 0.1Predk,i = 0.9

θk,i


f (xk)− f (zk,i)


+ (1− θk,i)


∥C(xk)∥−

∥C(yk)∥

+(1−θk,i)


∥C(yk)∥−∥C(zk,i)∥


≥ 0.9θk,i


f (yk)−f (zk,i)


+0.9θk,i


f (xk)−f (yk)


−(1−α)|C(xk)|−κeJ∆kδk,i−L1δ2k,i.

Then, by Lemma 4, there exists c4, c5 > 0 such that

f (yk)− f (zk,i) ≥ min{c4, c5δk,i}, for all k ≥ k1, k1 ≥ k0, i = 0, 1, . . . , iacc(k).

By Lemma 7, (5) and∆k ≤ β∥C(xk)∥,

δk,i ≥
∥C(xk)∥
γ1

≥
∆k

βγ1
for all k ≥ k3 ≥ k2 ≥ k1, i = 0, 1, . . . , iacc(k).

36 M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43

Therefore, Aredk,i − 0.1Predk,i ≥ 0.9θ̄ min{c4, c5δk,i} − cβ∥C(xk)∥ − c6δ2k,i, for all k ≥ k3 ≥ k2 ≥ k1, i = 0, 1, . . . , iacc(k),
where c is a constant that depends on a bound of ∥∇f (x)∥ onΩ and c6 = κeJβγ1 + L1.

Let us define δ̄ = min


0.45θ̄c4
c6

 1
2
,

0.45θ̄c5
c6


. If δk,i ≤ δ̄ then

c6δ2k,i ≤ 0.45θ̄ min

c4, c5δk,i


, (28)

so, when δk,i ≤ δ̄ we have that

Aredk,i − 0.1Predk,i ≥ 0.45θ̄ min{c4, c5δk,i} − cβ∥C(xk)∥, (29)

for all k ≥ k3, i = 0, 1, . . . , iacc(k). Let k4 ≥ k3 such that

cβ∥C(xk)∥ ≤ 0.45θ̄ min

c4, c5

δ̄

10


, (30)

for all k ≥ k4. By (29) and (30) we have that for all k ≥ k4, if i ∈ N correspond to the first trust-region radius δk,i less than or
equal to δ̄ (so, δ̄ ≥ δk,i ≥ δ̄

10),

Aredk,i − 0.1Predk,i ≥ 0. (31)

This means that δk,i ≥ δ̄
10 must be accepted. Then,

δk,iacc(k) ≥
δ̄

10
, for all k ≥ k4. (32)

Notice that, f (yk)− f (xk) ≥ −
f (yk)− f (xk)

 and (1− θk,iacc(k))(1− α) > −1 by (6), then

(1− θk,iacc(k))

∥C(xk)∥ − ∥C(yk)∥


≥ (1− θk,iacc(k))(1− α)∥C(xk)∥ ≥ −∥C(xk)∥.

Then, if k ≥ k4, by Lemma 4, Lemma 7 and (5), considering

Predk,iacc(k) = θk,iacc(k)

f (xk)− f (zk,i)


+ (1− θk,iacc(k))


∥C(xk)∥ − ∥C(yk)∥


,

which is equal to θk,iacc(k)

f (yk)− f (zk,i)


+ θk,iacc(k)


f (yk)− f (xk)


+ (1− θk,iacc(k))


∥C(xk)∥ − ∥C(yk)∥


, it follows

Predk,iacc(k) ≥ θ̄

f (yk)− f (zk,i)


−

f (yk)− f (xk)
− ∥C(xk)∥, and

Predk,iacc(k) ≥ θ̄ min

c4,

c5δ̄
10


− c7∥C(xk)∥, (33)

where c7 is a constant that depends on the bound of ∥∇f (x)∥ onΩ and β of ∥yk − xk∥ ≤ β∥C(xk)∥.
Let k5 ≥ k4 such that c ′∥C(xk)∥ ≤ 0.5θ̄ min


c4,

c5 δ̄
10


, for all k ≥ k5.

Then, we obtain Predk,iacc(k) ≥ 0.5θ̄ min{c4,
c5 δ̄
10 }, for all k ≥ k5. This and (31) imply that Aredk,iacc(k) is bounded away

from zero for all k ≥ k5 and we have a contradiction with the result of Theorem 3. Hence, Hypothesis B cannot be true, as
we wanted to prove. �

Theorem 7. Let {yk} be the infinite sequence generated by Algorithm IR-DFO, with yk the solution found in Restoration phase.
Then,

lim
k∈K2
∥Pπk(y

k
−∇f (yk))− yk∥ = 0. (34)

Proof. By (12), {∆k} ↓ 0, the result of Theorem 6 and (21)

∥yk − Pπk(y
k
−∇f (yk))∥ ≤ ∥yk − Pπk(y

k
− gf)∥ + ∥∇f (yk)− gf ∥,

it obtains limk∈K2 ∥Pπk(y
k
−∇f (yk))− yk∥ = 0, as we wanted to prove. �

Theorem 8. Assume that {xk} is generated by Algorithm IR-DFO and Assumptions A1–A4 hold. Let {yk} be, k ∈ K2, like
in Theorem 7, and x̄ the limit point of this sequence.

If limk→∞ ∥Ak − C ′(yk)∥ = 0 and the Mangasarian–Fromovitz constraint qualification (MFCQ) holds at x̄, then x̄ fulfills the
Karush–Kuhn–Tucker (KKT) conditions [30].

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 37

Proof. The optimal solution of the linear constrained problem

min ∥p− (yk −∇f (yk))∥2,
s.t. p ∈ πk = {p ∈ Ω | Ak(p− yk) = 0}

is pk = Pπk(y
k
−∇f (yk)). Hence, pk satisfies the optimality condition for this problem.

IfΩ = {x ∈ Rn
: Li ≤ xi ≤ Ui}, there exists λk ∈ Rm, µu

k ∈ Rn
+
, and µl

k ∈ Rn
+
such that

pk − yk = (−∇f (yk))− AT
kλk −

n
i=1

µu
k,iei −

n
i=1

µl
k,i(−ei),

with Ak(pk − yk) = 0, and µu
k,i ≥ 0, µl

k,i ≥ 0, µu
k,i(Ui − pk,i) = 0, and µl

k,i(pk,i − Li) = 0, i = 1, . . . , n.
Since ∥pk − yk∥ tends to zero, by Theorem 7, also x̄ is a feasible limit point of {pk}.
Set IU = {i ∈ {1, 2, . . . , n} : x̄i = Ui}, IL = {i ∈ {1, 2, . . . , n} : x̄i = Li} and I0 = {i ∈ {1, 2, . . . , n} : Li < x̄i < Ui}.
Hence, there exists k0 ∈ K2 such that for k > k0, k ∈ K2, pk satisfies Li < pk,i < Ui, for i ∈ I0 (because pk → x̄), then

µu
k,i = 0 for all i ∈ I0.
Consequently, for k > k0, k ∈ K2 the optimality condition implies

pk − yk = −∇f (yk)− AT
kλk −


i∈IU

µu
k,iei −


i∈IL

µl
k,i(−ei), (35)

Ak(pk − yk) = 0, and µu
k,i ≥ 0, µl

k,i ≥ 0, µu
k,i(Ui − pk,i) = 0, i ∈ IU and µl

k,i(pk,i − Li) = 0, i ∈ IL.
By Carathéodory’s Theorem (convex hull) [30, (Exercise B.1.7, p. 689)], for all k ∈ K2, k > k0 there exist Ik ⊆ {1, 2,

. . . , n}, IkU ⊆ IU , and IkL ⊆ IL such that

{aki }i∈Ik , {ei}i∈IkU , {−ei}i∈IkL


is linearly independent. Therefore, denoting aki = [A

T
k]i,

the ith column of AT
k ,

pk − yk = (−∇f (yk))−

i∈Ik

λ̄k,iaki −

i∈IkU

µ̄u
k,iei −


i∈IkL

µ̄l
k,i(−ei).

Since there is only a finite number of possible index sets, there exists an infinite set K3 ⊂ {k ∈ K2 : k > k0}, such that the
sets Ik, IkU , I

k
L are repeated. So, for k ∈ K3, Ik = Ī, IkU = ĪU , IkL = ĪL. Then, for all k ∈ K3,

pk − yk = (−∇f (yk))−

i∈Ī

aki λ̄k,i −

i∈ĪU

µ̄u
k,iei −


i∈ĪL

µ̄l
k,i(−ei), (36)

and the vectors {{aki }i∈Ī , {ei}i∈ĪU , {−ei}i∈ĪL} are linearly independent.
Let Sk = max


max{|λ̄k,i|, i ∈ Ī},max{µ̄u

k,i, i ∈ ĪU },max{µ̄l
k,i, i ∈ ĪL}


, k ∈ K3.

If {Sk}k∈K3 is unbounded, dividing both sides of (36) by Sk,
pk−yk

Sk
=

−∇f (yk)
Sk

−


i∈Ī

(aki −∇Ci(yk)+∇Ci(yk))
λ̄k,i

Sk
−


i∈ĪU

µ̄u
k,i

Sk
ei −


i∈ĪL

µ̄l
k,i

Sk
(−ei), (37)

µ̄u
k,i
Sk
≥ 0 and

µ̄l
k,i
Sk
≥ 0. As for each k there is a coefficient equal to 1 or−1, there exists an infinite set K4 ⊂ K3 for which the

indices of the coefficients equal to 1(or−1) coincide. Taking limits on both sides in (37), for k ∈ K4, we obtain that

0 = −

i∈Ī

∇Ci(x̄)λ̄i −

i∈ĪU

µ̄u
i ei −


i∈ĪL

µ̄l
i(−ei),

µ̄u
i ≥ 0 and µ̄l

i ≥ 0, with some coefficients non null, because for each k there is a coefficient equal to 1 (or−1). Then, that
result implies the linear dependence of the vectors involved. Hence, the previous result contradicts our hypotheses, because
in x̄ the MFCQ constraint qualification holds. Therefore, Sk must be bounded.

Consequently, since {Sk}k∈K3 is bounded, limk∈K3 λ̄k,i = λi, limk∈K3 µ̄
u
k,i = µ

u
i , and limk∈K3 µ̄

l
k,i = µ

l
i. Then, taking limits

on both sides in (36), it obtains

0 = (−∇f (x̄))−

i∈Ī

∇Ci(x̄)λi −

i∈ĪU

µu
i ei −


i∈ĪL

µl
i(−ei),

µu
i ≥ 0, µl

i ≥ 0, µu
i (Ui − x̄i) = 0, for all i ∈ ĪU and µl

i(x̄i − Li) = 0, i ∈ ĪL. Therefore, x̄ satisfies the first order KKT
conditions. �

38 M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43

5. Numerical experiments

In this section we present some computational results obtained with two Fortran 77 implementations of IR-DFO
algorithm. These experiments were run on a personal computer with INTEL(R) Core (TM) 2 Duo CPU E8400 at 3.00 GHz and
3.23 GB of RAM. As it is usual in derivative-free optimization articles we are interested in the number of function evaluations
needed for satisfying the stopping criteria.

Our results are compared to those obtainedwith the IRmethod of Bueno et al. in [28], and to those obtainedwith Powell’s
software COBYLA [32], a trust-region method for constrained problems that models the objective and constraint functions
by linear interpolation. The cited IR method, which is also a method based on the Inexact Restoration framework, solves
nonlinear problems in which the derivatives of the objective function are not available, whereas the derivatives of the
constraints are.

5.1. Details on the implementation of IR-DFO algorithm

We have considered two versions of IR-DFO, IR-DFOBQA and IR-DFOTRB. The only difference between them is how
the Restoration phase is solved. In IR-DFOBQA we used BOBYQA [9], while in IR-DFOTRB we used TRB-Powell [4]. Both
derivative-free methods solve bound constrained optimization problems. They are based on quadratic approximations of
the objective function and trust region techniques.

We used in both versions of IR-DFO the following general parameters: α = 0.7, β = 100, rk = (m + 1)/(2 + k)2,
ωk = (m+ 1)/(1+ k)2, wherem is the number of equality constraints of problems, ϵM = 10−5, δmin = 0.5.

Given an iterate xk of IR-DFO, at the Restoration phase we apply BOBYQA (or TRB-Powell), starting from the initial point
u0
= xk. It iterates until finding a new iterate uj, such that satisfies suitable conditions for defining yk = uj, i.e., satisfying

the descent condition h(yk) ≤ αh(xk) and ∥yk − xk∥ ≤ βh(xk), for fixed parameters 0 < α < 1 and β > 0.
Both iterative algorithms generate a sequence {uj

}, for j = 0, 1, 2, . . . , with uj
∈ Ωk, beingΩk = {y ∈ Ω : ∥y− xk∥∞ ≤

β
√
nh(x

k)}. We used ρbeg = min{0.5, β
√
n∥C(x

k)∥}, for the initial radius of the trust-region, and the other parameters were the
default parameters of both methods [4,9].

The Optimization phase consists of minimizing the objective function, inside a trust-region, with linear constraints.
We solved this problem, without using derivatives, with an implemented algorithm ad-hoc following the scheme 2. This
algorithm solves approximately the minimization of a linear model of the objective function in a set which approximates
the feasible region.

In this implementation of the Optimization phase we used the DLSVRR and DQPROG subroutines of the IMSL Fortran
Numerical Library (Visual Fortran). The first computes the singular value decomposition (USV) of the matrix Ak and the
projection of gf onto N(Ak). The second performs the projection of gf on the approximate feasible set when the variables
are bounded.

Step II requires the calculation of the simplex gradients of Cj, for j = 1, . . . ,m, which requires to select a set of in-
terpolation points. In the first iteration we construct the set Y 0

c = {y
0, z1, . . . , zn} for computation the models mc

j (x) =
Cj(y0) + gcTj (x − y0), j = 1, . . . ,m, and generating the matrix A(y0) = A0, an approximation of C ′(y0). We consider
z i − y0 = ρ0ei and the corresponding values Cj(z i), for i = 1, . . . , n and j = 1, . . . ,m, ρ0 < r0.

Step III also requires to compute the model L(x) = f (yk) + gf T (x − yk). In the first iteration, we used the vectors
of the matrix V of the decomposition USV of A0 to obtain the model L(x) = f (y0) + gf T (x − y0), considering the set
Y 0
f = {y

0, z1, . . . , zn}, where z i = y0 + ρ0vi and f (z i), for i = 1, . . . , n. If there are not active bound constraints at y0

it is possible to obtain gf using only the vectors of a basis of N(A(y0)) extracted from V .
In the following iterations Y k

c and Y k
f are updated, adding the new yk as the center of them and eliminating a point zt , the

farthest from the center, trying to maintain the linear independence of the directions.
In some iterations of this preliminary implementation the interpolation sets are newly constructed, while in others they

are updated from the previous ones. The construction takes place in the first iteration and whenever it is not possible to
preserve the linear independence of the directions easily.

In this implementation we have not constructed Dk, the positive spanning set of the active constraints at yk. As noted in
Remark 1, if zk,0 = yk because f does decrease for i = 0, Step III finishes with xk+1 = yk. Neither has it been taken advantage
of the information that comes from the last model calculated by the method that solves the Restoration phase (Step I).

Both shortcomings in the current implementationwill be the subject of a careful study in a future implementationwhich
could result in a significant decrease of the number of functional evaluations.

5.2. Test problems

We have selected a set of 32 nonlinear programming problems defined by Hock and Schittkowski [33] with nonlinear
constraints and/or box constraints. The dimension of these problems (n) varies from 2 to 10 and the number of nonlinear
constraints (m) varies from 1 to 6. The selected test set contains some of the problems used by the authors of [28] in their
numerical tests.

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 39

Table 1
Characteristics of selected problems.

Problem n m nL nU nL+ nU f ∗

6 2 1 0 0 0 0.0000D+00
7 2 1 0 0 0 −1.7321D+00
8 2 2 0 0 0 −1.0000D+00
9 2 1 0 0 0 −5.0000D−01

14 3 2 1 0 0 1.3935D+00
18 4 2 2 0 2 5.0000D+00
26 3 1 0 0 0 0.0000D+00
27 3 1 0 0 0 4.0000D−02
32 4 2 4 0 0 1.0000D+00
33 5 2 4 0 1 −4.5858D+00
34 5 2 2 0 3 −8.3400D−01
35 4 1 4 0 0 1.1111D−01
39 4 2 0 0 0 −1.0000D+00
40 4 3 0 0 0 −2.5000D−01
41 4 1 0 0 4 1.9259D+00
46 5 2 0 0 0 0.0000D+00
47 5 3 0 0 0 0.0000D+00
48 5 2 0 0 0 0.0000D+00
52 5 3 0 0 0 5.3266D+00
53 5 3 0 0 5 4.0930D+00
55 6 6 4 0 2 6.3333D+00
56 7 4 0 0 0 −3.4560D+00
60 3 1 0 0 3 3.2568D−02
61 3 2 0 0 0 −1.4365D+02
63 3 2 3 0 0 9.6172D+02
77 5 2 0 0 0 2.4150D−01
78 5 3 0 0 0 −2.9197D+00
79 5 3 0 0 0 7.8777D−02
80 5 3 0 0 5 5.3949D−02
81 5 3 0 0 5 5.3949D−02

111 10 3 0 0 10 −4.7761D+01
112 10 3 10 0 0 −4.7761D+01

In Table 1we show the data of the selected problems. It shows the name, the dimension of the problem (n), the number of
equality constraints (m), the number of variables which are bounded from below (nL), those which are bounded from above
(nU), the number of variables which are bounded from below and above (nL + nU) and the optimal value of the objective
function (f ∗). Initial points were the same as in the cited Ref. [33].

5.3. Numerical results

In these numerical experiments we considered that IR-DFO obtains an acceptable solution to a given problem if ∥gf ktan∥ ≤
10−5, ∥C(x)∥ ≤ 10−5 and rk ≤ 10−5. The iterative procedure can also finish when the feasibility phase does not satisfy the
condition ∥C(y)∥ ≤ α∥C(xk)∥.

We considered that IR-DFO fails to solve a problem in the next three cases:

Fail 1: The number of iterations is greater than 100.
Fail 2: If it is impossible to satisfy ∥C(y)∥ ≤ α∥C(xk)∥when ∥C(xk)∥ > 10−5.
Fail 3: The number of evaluations of the objective function (EvalF) is greater than a certain number fmax. In these

experiments, fmax = 2000.

The stopping criterion used in COBYLA is related to trust-region size. In our experiments, the final value for the trust-
region bound in COBYLA was set to 10−5.

Firstly, in Table 2 we show the performance of IR-DFOBQA versus IR-DFOTRB with respect to the problems derived
from Table 1. It shows the optimal objective value achieved (f (xend)), the value of the measure of the obtained feasibility
(∥C(xend)∥) and the number of function evaluations with a detail of the number of constraints evaluations (EvalC) and the
number of objective function evaluations (EvalF).

We can observe from Table 2 that both versions end with Fail 2 in problems HS34, HS81 and HS111. We can also see no
problem ends with failure 3.

The average of evaluations of the objective function required for IR-DFOBQA is 216while for IR-DFOTRB is 130. Functional
values obtained for both implementations are similar. The average evaluations required by IR-DFOBQA in this phase is 467
and 394 by IR-DFOTRB. The obtained values of infeasibility are similar in both versions.

The results of the previous table are also compared to those obtained with the IR method in [28], and to those obtained
with COBYLA [32]. The criterion for comparison between those methods is solely based on the number of evaluations of the

40 M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43

Table 2
IR-DFOBQA vs. IR-DFOTRB: feasibility and optimality.

P IR-DFOBQA IR-DFOTRB
HS EvalC/EvalF f (xend) ∥C(xend)∥ EvalC/EvalF f (xend) ∥C(xend)∥

6 58/78 2.2228D−08 0.0000D+00 61/86 1.1358D−06 0.0000D+00
7 66/175 −1.7321D+00 1.1905D−07 130/166 −1.7320D+00 5.3768D−06
8 129/16 −1.0000D+00 1.7565D−06 96/15 −1.0000D+00 1.6540D−06
9 119/430 −5.0000D−01 1.20486D−06 84/44 −5.0000D−01 1.7256D−06

14 111/21 1.3935D+00 1.6524D−06 144/27 1.3935D+00 3.1641D−06
18 242/17 5.0001D+00 1.43598D−06 308/101 4.9992D+00 4.0675D−06
26 128/67 8.2533D−05 5.3805D−06 148/180 5.1882D−05 5.0994D−07
27 103/88 4.0030D−02 1.6715D−06 91/35 4.0042D−02 1.0094D−08
32 143/22 1.0326D+00 5.0298D−06 398/44 1.0004D+00 1.3941D−06
33 213/23 −4.5858D+00 1.0207D−06 160/56 −4.5853D+00 2.4352D−06
34 542/86 −4.7402D−01 5.9576D−05a 969/72 −4.9003D+00 5.2846D−05a

35 140/99 1.1375D−01 1.3381D−06 128/38 1.1208D−01 1.7343D−06
39 1440/224 −1.0003D+00 1.8238D−06 1142/122 −1.0000D+00 1.5968D−06
40 194/81 −2.5000D−01 7.3348D−06 247/57 −2.5000D−01 4.3251D−06
41 155/88 1.9299D+00 6.3565D−06 143/56 1.9236D+00 1.7868D−06
46 613/192 1.3863D−04 5.0252D−06 391/105 1.8757D−04 1.3081D−06
47 285/205 1.2274D−04 6.1251D−06 299/205 7.4171D−06 5.5986D−06
48 492/783 1.7550D−06 8.4776D−06 250/91 1.2019D−05 6.1770D−06
52 717/58 5.3267D+00 7.2797D−10 526/310 5.3346D+00 3.1464D−11
53 822/613 4.0913D+00 3.0903D−06 680/464 4.0933D+00 1.5270D−06
55 133/8 6.3333D+00 6.8104D−06 263/9 6.3333D+00 6.1310D−06
56 998/365 −3.4558D+00 1.5403D−06 777/223 −3.4560D+00 7.5157D−06
60 386/110 4.1361D−02 6.5755D−06 151/71 3.2569D−02 2.4060D−06
61 690/138 −1.4318D+02 2.5869D−06 528/138 −1.4360D+02 1.2887D−06
63 449/739 9.6171D+02 2.8318D−06 356/22 9.6171D+02 3.1307D−06
77 301/112 2.4607D−01 1.1790D−06 427/270 2.4154D−01 5.6888D−06
78 150/213 −2.9181D+00 3.9746D−06 396/293 −2.9195D+00 3.6211D−06
79 196/136 7.8840D−02 2.6115D−06 304/216 7.8787D−02 1.0613D−06
80 230/19 5.3567D−02 3.3546D−06 232/20 5.3567D−02 2.3546D−06
81 225/19 5.3565D−02 6.0092D−05a 220/21 5.3565D−02 2.3509D−05a

111 823/74 −4.7765D+01 5.3176D−05a 907/101 −4.7769D+01 5.3994D−05a

112 4015/1799 −4.7365D+01 9.5576D−06 1946/600 −4.7376D+01 6.5626D−06
a The final solution does not satisfy the optimal value of f or infeasibility measure required.

objective function at the required points. For completeness, in Table 3 we show the numerical results for the IR algorithm
and COBYLA.

For these comparisons we use performance profile introduced in [34] and data profile for derivative-free optimization
presented in [35]. The performance profile of a solver s is defined as the fraction of problems where the performance ratio
is at most α, that is, ρs(α) = 1

|P| size {p : rp,s ≤ α}, where rp,s =
tp,s

{min tp,s:s∈S}
, tp,s is the number of function evaluations

required to satisfy the convergence test, P is the set of problems, |P| denotes the cardinality of P and S is the set of solvers
considered.

The data profile of a solver s, which gives the percentage of problems that can be solved with τ function evaluations, is
computed by ds(τ) = 1

|P| size{p : tp,s ≤ τ } [35].
The performance profile for the first comparison is shown in Fig. 1. There we compare the results of the two versions of

IR-DFO with the results of the IR method of Bueno et al.. We considered the total number of evaluations required (EvalC +
EvalF) in our implementations, while the number of the objective function evaluations is used for IR, according to what was
reported by the authors in [28]. Remember also that this method uses derivatives in the restoration phase.

We can notice that the IR-DFOTRB version has done less total evaluations in a 60% of the problems, while IR-DFOBQA in
a 50%. Furthermore, the IR method of Bueno et al. has made fewer evaluations of the objective function at approximately
62% problems.

The performance profile in Fig. 1 shows that the IR-DFOTRB proposal has a promising behaviorwith respect to IR of Bueno
et al., since in the latter they use derivatives in the restoration phase.

In the following figures, using the data profiles discussed in [35], we compare IR-DFO with COBYLA analyzing separately
the number of objective function evaluations and the number of constraints evaluations as a measure of the performance.
In Fig. 2 the performance measure was the number of constraints evaluations. In Fig. 3 the criterion for comparison was the
number of objective function evaluations.

In Fig. 2 the data profile shows that COBYLA solves the largest percentage of problems for all sizes less than 1000 evalua-
tions of constraints. We believe that this result is associated to the fact that the two versions of IR-DFO completely recalcu-
lated the quadratic model that approximates the function h(x) =

m
i=1 Ci(x)2 each time that the restoration phase is solved.

The data profile of Fig. 3 shows that IR-DFOTRB solves the largest percentage of problems by almost all sizes of the number
of objective function evaluations. We can observe that IR-DFOTRB and COBYLA solve 90% of problems with approximately

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 41

Performance ratio

Fig. 1. Performance profile: Total functional evaluations.

Table 3
IR and COBYLA: comparison of the number of evaluations.

P IR COBYLA
HS EvalF f (xend) ∥C(xend)∥ EvalFa f (xend) ∥C(xend)∥

6 366 5.57D−10 4.D−09 46 4.78D−11 5.E−10
7 153 −1.73D+00 1.D−09 51 −1.73D+00 3.D−07
8 4 −1.00D+00 1.D−09 22 −1.00D+00 2.D−07
9 117 −5.00D−01 4.D−15 37 −5.00D−01 5.D−07

14 20 1.39D+00 3.D−09 22 1.39D+00 5.D−08
18 39217 5.00D+00 9.D−10 105 5.00D+00 6.D−07
26 11112 1.58D−07 9.D−09 246 1.87D−06 6.D−08
27 4135 4.00D+00 7.D−09 246 4.00D−02 6.D−09
32 86 1.00D+00 1.D−09 31 1.00D+00 6.E−09
33 54 −4.00D+00b 5.D−09 26 −4.58D+00 5.D−05b

34 228 −8.34D−01 2.D−09 40 −8.34D−01 3.D−07
35 289 1.11D−01 7.D−10 64 1.11D−01 2.D−10
39 125 −9.89D−01 4.D−09 96 −1.00D+00 4.D−07
40 133 −2.50D−01 2.D−09 77 −2.50D−01 7.D−08
41 430 1.93D+00 1.D−09 69 1.41D+00 0.D+00
46 1485 1.42D−06 1.D−09 1847 3.93D−06 8.D−08
47 289 1.15D−08 9.D−10 107 1.08D−08 3.D−07
48 861 1.07D−24 2.D−15 91 1.52D−08 6.D−08
52 307 5.33D+00 3.D−09 136 5.33+00 2.D−08
53 308 4.09D+00 3.D−09 99 4.09D+00 6.D−08
55 18 6.67D+00b 3.D−09 45 6.66D+00b 2.D−07
56 21267 1.06D−06 5.D−10 232 −3.45D+00 4.D−07
60 596 3.26D−02 8.D−10 53 3.26D−02 8.D−07
61 182 −1.44D+02 3.D−09 90 −8.19D+01b 2.D−06
63 171 9.62D+02 4.D−09 59 9.62D+02 6.D−07
77 790 2.41D−01 2.D−09 112 2.41D−01 1.D−06
78 566 −2.92D+00 8.D−09 91 −2.92D+00 5.D−07
79 362 7.88D−02 6.D−09 77 7.87D−02 1.D−06
80 658 5.35D−02 2.D−09 79 5.39D−02 4.D−07
81 770 5.39D−02 6.D−09 113 5.39D−02 2.D−06

111 2470 −4.28D+01 2.D−09 434 −4.77D+01 6.D−08
112 10907 −4.78D+01 3.D−09 212 −4.77D+01 2.D−08
a In COBYLA the number of constraints evaluations(EvalC) is equal to EvalF .
b The final solution does not satisfy the optimal value of f or infeasibility measure required.

300 evaluations while IR-DFOBQA approximately 80%. The biggest difference is approximately 10% and it happens when the
number of function evaluations is approximately 300.

6. Conclusions

We have presented a new method to solve an optimization problem with general constraints without the use of
derivatives. The proposed method is based on Inexact Restoration method [19], which has proven being very successful
in nonlinear programming when first order information of the objective function and the constraints is available.

42 M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43

Constraints evaluations

Fig. 2. Data profile: Constraints evaluations.

Objective function evaluations

Fig. 3. Data profile: Objective function evaluations.

The complexity, due to the inability to use derivatives, makes getting theoretical results is a difficult task. Therefore, we
would like to emphasize that it has been one of the most important parts of this work. Under appropriate assumptions, we
have shown the good definition of the algorithm IR-DFO and also convergence to feasible points that satisfy appropriate
conditions of optimality.

From the practical point of view, two implementations of the proposed algorithm were tested considering a set of small
scale problems. The only difference between the two versions is the algorithm used to solve the Restoration phase. These
preliminary implemented versions of IR-DFOhave obtained promising numerical results. However,we believe it is necessary
to test our algorithm with a more challenging set of problems for more conclusive results. Also, we would like to compare
the performance of the tested algorithm with other derivative-free algorithms defined for solving the same problem. It will
be necessary to perform a more sophisticated implementation of IR-DFO to improve the procedure to update the sets of
interpolation along the iterative process. These will be the subject of our future research.

Since IR-DFO belongs to the class of methods that consider feasibility and optimality at different phases, the user is free
to choose different algorithms for both phases. For this purpose different alternatives can be studied to solve each phase. In
particular, we would like to define a derivative-free algorithm based on a quadratic model, instead of a linear one, to solve
the optimality phase. Moreover, it would be interesting consider filter methods [24–27] instead of merit function to accept
or reject the new approximation. Also, it will be a subject of study in our future work.

Acknowledgments

Wewish to thank the three anonymous reviewers whose comments and suggestions helped us to improve the contents
and readability of our paper.

M.B. Arouxét et al. / Journal of Computational and Applied Mathematics 290 (2015) 26–43 43

References

[1] P. Alberto, F. Nogueira, H. Rocha, L.N. Vicente, Pattern search methods for user-provided points: Application to molecular geometry problems, SIAM
J. Optim. 14 (2004) 1216–1236.

[2] A. Conn, K. Scheinberg, L.N. Vicente, Introduction to Derivative-Free Optimization, in: MPS SIAM Series on Optimization, SIAM, 2009.
[3] G. Gray, T. Kolda, K. Sale,M. Young, Optimizing an empirical scoring function for transmembrane protein structure determination, INFORMS J. Comput.

16 (2004) 406–418.
[4] M.B. Arouxét, N. Echebest, E.A. Pilotta, Active-set strategy in Powell’s method for optimization without derivatives, Comput. Appl. Math. 30 (1) (2011)

171–196.
[5] R. Lewis, V. Torczon, Pattern search algorithms for bound constrained minimization, SIAM J. Optim. 9 (1999) 1082–1099.
[6] M. Marazzi, J. Nocedal, Wedge trust-region methods for derivative-free optimization, Math. Program. 91 (2002) 289–305.
[7] J. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308–313.
[8] M.J.D. Powell, The NEWUOA software for unconstrained optimization without derivatives, in: G. Di Pillo, M. Roma (Eds.), Large-Scale Nonlinear

Optimization, Springer, New York, 2006, pp. 255–297.
[9] M.J.D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, Cambridge NA Report NA2009/06, University of

Cambridge, Cambridge, 2009.
[10] M.A. Abramson, O.A. Brezhneva, J.E. Dennis Jr., R.L. Pingel, Pattern search in the presence of degenerate linear constraints, Optim. Methods Softw. 23

(3) (2008) 297–319.
[11] A.L. Custódio, L.N. Vicente, Using sampling and simplex derivatives in pattern search methods, SIAM J. Optim. 18 (2007) 537–555.
[12] A.L. Custódio, J.E. Dennis, L.N. Vicente, Using simplex gradients of nonsmooth functions in direct search methods, IMA J. Numer. Anal. 28 (2008)

770–784.
[13] T. Kolda, R. Lewis, V. Torczon, Stationarity results for generating set search for linearly constrained optimization, SIAM J. Optim. 17 (2006) 943–968.
[14] R. Lewis, V. Torczon, Pattern search methods for linearly constrained minimization, SIAM J. Optim. 10 (2000) 917–941.
[15] S. Lucidi, M. Sciandrone, P. Tseng, Objective derivative-free methods for constrained optimization, Math. Program. 92 (2002) 37–59.
[16] M.A. Diniz Ehrhardt, J.M. Martínez, L.G. Pedroso, Derivative-free methods for nonlinear programming with general lower-level contraints, Comput.

Appl. Math. 30 (2011) 19–52.
[17] R. Lewis, V. Torczon, A globally convergent agmented Lagrangian pattern search algorithm for optimization with general constraints and simple

bounds, SIAM J. Optim. 12 (2002) 1075–1089.
[18] R. Lewis, V. Torczon, A direct search approach to nonlinear programming problems using an Augmented Lagrangian method with explicit treatment

of linear constraints, Technical Report WM-CS-2010-01, College of William and Mary, Department of Computer Sciences, 2010.
[19] J.M. Martínez, E.A. Pilotta, Inexact restoration algorithms for constrained optimization, J. Optim. Theory Appl. 104 (2000) 135–163.
[20] A. Fischer, A. Friedlander, A new line search inexact restoration approach for nonlinear programming, Comput. Optim. Appl. 46 (2010) 336–346.
[21] J.M. Martínez, Inexact-restoration method with lagrangian tangent decrease and new merit function for nonlinear programming, J. Optim. Theory

Appl. 111 (2001) 39–58.
[22] J.M. Martínez, E.A. Pilotta, Inexact restoration methods for nonlinear programming: advances and perspectives, in: L. Qi, K. Teo, X. Yang (Eds.),

Optimization and Control with Applications, in: Appl. Optim., vol. 96, Springer, New York, 2005, pp. 271–291.
[23] J.M. Martínez, Two-phase model algorithm with global convergence for nonlinear programming, J. Optim. Theory Appl. 96 (1998) 397–436.
[24] C. Gonzaga, E. Karas, M. Vanti, A globally convergent filter method for nonlinear programming, SIAM J. Optim. 14 (3) (2003) 646–669.
[25] C. Gu, A dwindling filter inexact projected Hessian algorithm for large scale nonlinear constrained optimization, Appl. Math. Comput. 219 (2013)

10898–10908.
[26] C. Gu, D. Zhu, A dwindling filter trust region algorithm for nonlinear optimization, Appl. Math. Comput. 240 (2014) 72–81.
[27] E. Karas, E.A. Pilotta, A. Ribeiro, Numerical comparison of merit function with filter criterion in inexact restoration algorithms using hard-spheres

problems, Comput. Optim. Appl. 44 (2009) 427–441.
[28] L.F. Bueno, A. Friedlander, J.M. Martínez, F.N. Sobral, Inexact restoration method for derivative-free optimization with smooth constraints, SIAM J.

Optim. 23 (2) (2013) 1189–1213.
[29] J.M. Martínez, B.F. Svaiter, A practical optimality condition without constraint qualifications for nonlinear programming, J. Optim. Theory Appl. 118

(2003) 117–133.
[30] D.P. Bertsekas, Nonlinear Programming, second ed., Athena Scientific, Belmont, Massachusetts, 1999.
[31] C. Davis, Theory of positive linear dependence, Amer. J. Math. 76 (1954) 733–746.
[32] M.J.D. Powell, A direct search optimizationmethod t hatmodels the objective and constraint functions by linear interpolation, in: S. Gomez, J. Hennart

(Eds.), Advances in Optimization and Numerical Analysis, Kluwer Academic, Dordrecht, 1994, pp. 51–67.
[33] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes, in: Lecture Notes in Economics and Mathematical Systems, vol. 187,

Springer, 1981.
[34] E. Dolan, J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201–213.
[35] J. Moré, S.M. Wild, Benchmarking derivative-free optimization algorithms, SIAM J. Optim. 20 (1) (2009) 172–191.

http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref1
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref2
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref3
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref4
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref5
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref6
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref7
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref8
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref9
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref10
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref11
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref12
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref13
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref14
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref15
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref16
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref17
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref18
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref19
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref20
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref21
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref22
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref23
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref24
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref25
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref26
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref27
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref28
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref29
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref30
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref31
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref32
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref33
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref34
http://refhub.elsevier.com/S0377-0427(15)00273-3/sbref35

	Inexact Restoration method for nonlinear optimization without derivatives
	Introduction
	Inexact Restoration methods
	Inexact Restoration without derivatives
	General hypotheses and basic results

	Convergence results of IR-DFO
	Convergence to feasible points
	Convergence to optimality

	Numerical experiments
	Details on the implementation of IR-DFO algorithm
	Test problems
	Numerical results

	Conclusions
	Acknowledgments
	References

