
On short recurrence Krylov type methods for linear
systems with many right-hand sides

Somaiyeh Rashedia, Sebastian Birkb, Andreas Frommerb, Ghodrat Ebadia

aDepartment of Mathematical Sciences, University of Tabriz, 51666-14766 Tabriz, Iran
bFachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097

Wuppertal, Germany

Abstract

Block and global Krylov subspace methods have been proposed as methods
adapted to the situation where one iteratively solves systems with the same
matrix and several right hand sides. These methods are advantageous, since they
allow to cast the major part of the arithmetic in terms of matrix-block vector
products, and since, in the block case, they take their iterates from a potentially
richer subspace. In this paper we consider the most established Krylov subspace
methods which rely on short recurrencies, i.e. BiCG, QMR and BiCGStab. We
propose modifications of their block variants which increase numerical stability,
thus at least partly curing a problem previously observed by several authors.
Moreover, we develop modifications of the “global” variants which almost halve
the number of matrix-vector multiplications. We present a discussion as well as
numerical evidence which both indicate that the additional work present in the
block methods can be substantial, and that the new “economic” versions of the
“global” BiCG and QMR method can be considered as good alternatives to the
BiCGStab variants.

Keywords: sparse linear systems, multiple right-hand sides, block methods,
Krylov subspace, non-Hermitian matrices
2010 MSC: 65F10, 65F30, 65F50, 65H10

1. Introduction

We consider simultaneous linear systems with the same matrix A ∈ Cn×n

and s right-hand sides (r.h.s.) bi,

Axi = bi, i = 1, . . . , s, (1)

which we also formulate in block form as the matrix equation

AX = B, where X = [x1| . . . |xs], B = [b1| . . . |bs] ∈ Cn×s.

Email addresses: s_rashedi_t@yahoo.com (Somaiyeh Rashedi),
birk@math.uni-wuppertal.de (Sebastian Birk), frommer@math.uni-wuppertal.de (Andreas
Frommer), ghodrat_ebadi@yahoo.com (Ghodrat Ebadi)

Preprint submitted to Journal of Computational and Applied Mathematics April 20, 2015

ar
X

iv
:1

50
4.

04
39

5v
1

 [
m

at
h.

N
A

]
 1

6
A

pr
 2

01
5

As a general rule we will use lower case letters with sub-indices for the columns
of the matrix denoted with the corresponding upper case letter.

Our overall assumption is that A is large and sparse and that a (precon-
ditioned) Krylov subspace type iterative method is to be used to iteratively
approximate the solutions for the different r.h.s. Our interest is in methods
which efficiently take advantage of the fact that we are given the s linear sys-
tems with the r.h.s. bi, i = 1, . . . , s simultaneously, and we use the generic name
simultaneous methods for any such method. Investigations in this setting are
not new, the development and analysis of block variants of the standard Krylov
subspace methods dating back to at least the mid 1980s [23]. With the ad-
vent of massively parallel processor architectures such as GPUs, where memory
access is usually the determining factor for computational speed, simultaneous
linear systems of the form (1) offer the possibility of optimizing memory access
to A by reading and storing A only once while updating the iterates for all s
r.h.s. simultaneously. Algorithms which take this into account can therefore be
expected to run faster because their arithmetic operations perform faster. More-
over, simultaneous methods also offer the potential to, in addition, increase the
speed of convergence when obtaining their iterates from a larger, “block” Krylov
subspace rather than the standard Krylov subspaces.

As a rule of thumb, working with s several r.h.s. simultaneously instead of
just one increases the number of vectors to be stored by a factor of s. This is why
simultaneous variants of the GMRES method may, due to the long recurrences
present in GMRES, suffer from the fact that the method has to be restarted
after a relatively small number of iterations. This typically degrades the speed
of convergence.

In this paper we therefore focus on simultaneous Krylov type methods relying
on short recurrences. We assume that A is a general non-singular matrix, i.e.
we do not assume that we can take advantage of additional properties of A like
symmetry, e.g. Typical and well-established methods for a single right-hand
side in this case are BiCG (bi-conjugate gradients [10]), BiCGStab (stabilized
BiCG [32]) and QMR (quasi-minimal residual method [12]), and we mainly
develop on three different simultaneous variants for each of these three methods
in this paper. In section 2 we introduce the three different principles termed
loop-interchanging, global and block to generate a simultaneous variant from a
given (single r.h.s.) Krylov subspace method and, as an example, describe the
resulting BiCG variants in some detail. We then devote section 3 to a discussion
of the various simultaneous methods known from the literature in our context
before developing two improvements in section 4. One improvement reduces
the arithmetic cost in the global BiCG and QMR variants by nearly a factor
of 2, suppressing almost all of the matrix-vector multiplications with AH . The
other improvement enhances numerical stability in the block methods through
the judicious use of QR-factorizations of the matrix of simultaneous residuals.
Section 5 contains an extensive numerical study for the various methods and
conclusions on which methods are to be preferred in which situations.

2

2. Loop-interchanging, global and block Krylov methods

In this section we describe three different approaches to obtain a simultane-
ous Krylov subspace method for s r.h.s. from a given method for a single r.h.s.
All resulting simultaneous methods reduce to the single r.h.s. method for s = 1.

Solving the systems (1) one after the other with the same Krylov subspace
method can be viewed as performing two nested loops with the outer loop (“for
i = 1, . . . , s”) running over the different r.h.s. and the inner loop (“for k = 1, . . .
until convergence”) performing the iteration of the Krylov subspace method.
These two loops can be interchanged, resulting in an algorithm where each
sweep through the inner loop can be organized in a way such that all occurring
matrix-vector multiplications for all i are gathered into one matrix-block-vector
multiplication, the term “block vector” denoting a matrix of size n × s. For
BiCG as the underlying single r.h.s. Krylov subspace method, Algorithm 1 states
the resulting Li-BiCG method, where Li stands for “loop interchanged”. Note
that whenever possible we cast inner loop operations as operations with n × s
matrices with, e.g., column x

(k)
i of X(k) ∈ Cn×s being the BiCG iterate for the

r.h.s. bi, etc. The inner loop index appears explicitly only when calculating the

i-th diagonal entries α
(k)
i and β

(k)
i of the s× s diagonal matrices diag(α(k)) and

diag(β(k)), respectively. All multiplications with the matrices A and AH appear
as matrix-block-vector multiplications AP (k) and AH P̂ (k). If the nominator in

the definition of α
(k)
i or β

(k)
i is zero, the iteration for r.h.s. bi breaks down.

Algorithm 1: Loop-interchanged BiCG (Li-BiCG)

choose X(0), R̂(0) ∈ Cn×s

put R(0) = B −AX(0), P (0) = R(0), P̂ (0) = R̂(0)

for k = 0, 1, 2, . . . until convergence do
Q(k) = AP (k)

α
(k)
i = 〈r(k)

i , r̂
(k)
i 〉/〈q

(k)
i , p̂

(k)
i 〉, i = 1, . . . , s

X(k+1) = X(k) + P (k)diag(α(k))

R(k+1) = R(k) −Q(k)diag(α(k)), R̂(k+1) = R̂(k) − (AH P̂ (k))diag(α(k))

β
(k)
i = 〈r(k+1)

i , r̂
(k+1)
i 〉/〈r(k)

i , r̂
(k)
i 〉, i = 1, . . . , s

P (k+1) = R(k+1) + P (k)diag(β(k)), P̂ (k+1) = R̂(k+1) + P̂ (k)diag(β(k))

Global methods take a different approach. They cast the s systems (1) into
one big, tensorized sn× sn system

(I ⊗A)x = b, where b =

 b1
...
bs

 , x =

 x1

...
xs

 , (2)

and then apply a standard Krylov subspace method to the system (2). Using
the matm×s operator to cast vectors x of length ns into matrices X of size n×s

3

“by columns”, i.e. (X)ij = x(j−1)n+i, and the identities

matn×s((I ⊗A)x) = AX, 〈x, y〉 = tr(Y HX) where

X = matn×s(x), Y = matn×s(y),

we end up with the formulation of BiCG for (2) given in Algorithm 2 known as
global BiCG (Gl-BiCG), see [21]. The algorithm breaks down if the nominator
in α(k) or β(k) is zero.

Algorithm 2: Global BiCG (Gl-BiCG)

choose X(0), R̂(0) ∈ Cn×s

put R(0) = B −AX(0), P (0) = R(0), P̂ (0) = R̂(0)

for k = 0, 1, 2, . . . until convergence do
Q(k) = AP (k)

α(k) = tr((R̂(k))HR(k))/tr((P̂ (k))HQ(k))
X(k+1) = X(k) + α(k)P (k)

R(k+1) = R(k) − α(k)Q(k), R̂(k+1) = R̂(k) − α(k)(AH P̂ (k))
β(k) = tr((R̂(k+1))HR(k+1))/tr((R̂(k))HR(k))

P (k+1) = R(k+1) + β(k)P (k), P̂ (k+1) = R̂(k+1) + β(k)P̂ (k)

In the loop interchange and the global variant of BiCG the ith columns r
(`)
i

for ` = 0, . . . , k − 1 represent a basis for the Krylov subspace

Kk(A, r
(0)
i) = span{r(0)

i , Ar
(0)
i , . . . A(k−1)r

(0)
i },

and in both methods the iterate x
(k)
i , the ith column of X(k), is taken from

x
(0)
i + Kk(A, r

(0)
i). Block Krylov subspace methods take advantage of the fact

that the Krylov subspaces Kk(A, r
(0)
i), i = 1, . . . , s are available simultaneously

and take each iterate x
(k)
i from the larger “block” Krylov subspace

Kk(A,R(0)) :=

s∑
i=1

Kk(A, r
(0)
i),

which has dimension sk (or less if linear dependence occurs “across” the single

r.h.s. Krylov subspaces Kk(A, r
(0)
i)). The usual approach is to transfer the vari-

ational characterization for the iterates of the single r.h.s. method to the block
Krylov subspace. In this manner, the block BiCG method from [23] defines its it-
erates X(k) (they appear again as the columns of an n×s block vector) by requir-

ing that the iterates x
(k)
i are from x

(0)
i +Kk(A,R(0)) and their residuals are or-

thogonal to Kk(AH , R̂(0)) for some “shadow residual” block vector R̂(0) ∈ Cn×s.
The resulting method Bl-BiCG (block BiCG), is given as Algorithm 3. Note that

now the quantities α(k), α̂(k), β(k) and β̂(k) are s× s-matrices, and the method
breaks down prematurely if one of the matrices (P (k))HAH P̂ (k), (R̂(k))HR(k) is
singular.

4

Algorithm 3: Block BiCG (Bl-BiCG)

choose X(0), R̂(0) ∈ Cn×s

put R(0) = B −AX(0), P (0) = R(0), P̂ (0) = R̂(0)

for k = 0, 1, 2, . . . until convergence do

Q(k) = AP (k), Q̂(k) = AH P̂ (k)

α(k) =
(
(P̂ (k))HQ(k)

)−1(
(R̂(k))HR(k)

)
α̂(k) =

(
(P (k))HQ̂(k)

)−1(
(R(k))HR̂(k)

)
X(k+1) = X(k) + P (k)α(k)

R(k+1) = R(k) −Q(k)α(k), R̂(k+1) = R̂(k) − Q̂(k)α̂(k)

β(k) =
(
(R̂(k))HR(k)

)−1(
(R̂(k+1))HR(k+1)

)
β̂(k) =

(
(R(k))HR̂(k)

)−1(
(R(k+1))HR̂(k+1)

)
P (k+1) = R(k+1) + P (k)β(k), P̂ (k+1) = R̂(k+1) + P̂ (k)β̂(k)

Apart from the matrix-vector multiplications, the work to update the var-
ious quantities is substantially higher in block BiCG as compared to loop in-
terchanged BiCG and global BiCG. Counting an inner product or a SAXPY
operation with vectors of length n as one vector operation (representing n ad-
ditions and n multiplications), we have the following proposition, the proof of
which also gives an indication on how to save arithmetic work by re-using in-
formation from the previous iteration.

Proposition 1. One iteration of Li-BiCG, Gl-BiCG or Bl-BiCG requires two
matrix-block-vector multiplications (one with A and one with AH) with block-
vectors of size n× s plus 7s additional vector operations for Li-BiCG as well as
Gl-BiCG, and 7s2 additional vector operations for Bl-BiCG.

Proof. We only have to care about operations other than the multiplications

with A and AH . In Li-BiCG, assuming that we save 〈r̂(k+1)
i , r

(k+1)
i 〉 for re-use in

the next iteration, we need a total of 2s inner products to compute all α
(k)
i , β

(k)
i

and s SAXPYs for each of X(k+1), R(k+1), R̂(k+1), P (k+1), P̂ (k+1). Exactly

the same count holds for Gl-BiCG. In Bl-BiCG we can save
(
R̂(k+1)

)H
R(k+1)

for use in the next iteration, and we can exploit the fact that the two factors
defining α(k) are just the adjoints of those defining α̂(k), and similarly for β(k)

and β̂(k). So we need just 2s2 inner products to build these factors, and we
neglect the cost O(s3) for multiplying s× s matrices. The computation of each
of X(k+1), R(k+1), R̂(k+1), P (k+1), P̂ (k+1) requires s2 SAXPYs.

We note that the updates of X(k+1), R(k+1), R̂(k+1), P (k+1), P̂ (k+1) in the
block method actually represent BLAS3 GEMM operations, see [8] which have
a more favorable ratio of memory access to arithmetic work than SAXPY op-
erations, so the overhead of a factor of s of the block method vs. the loop
interchange and the global method suggested by Proposition 1 may show less
in actual timings.

5

In a similar way one obtains the three simultaneous variants Li-QMR, Gl-
QMR and Bl-QMR of the QMR method. The variational characterization in
Bl-QMR is that the 2-norm of the coefficients which represent the residual from
Kk(A,R(0)) in the nested bi-orthogonal basis of Kk(A,R(0)) with respect to
Kk(AH , R̂(0)), be minimal; see [11]. We do not write down the resulting al-
gorithms explicitly nor do we so for the BiCGStab variants Li-BiCGStab, Gl-
BiCGStab and Bl-BiCGStab. It is worth mentioning, though, that BiCGStab
does not have a proper variational characterization, its main property being
that multiplications with AH present in BiCG are replaced by those with A,
thus obtaining iterate x(k) from x(0) + K2k(A, r(0)) while imposing a steepest
descent property on the residual as an intermediate step. The block BiCGStab
method from [16] transfers this approach to the multiple r.h.s. case such that

the k-th iterate x
(k)
i is from x

(0)
i + K2k(A,R(0)), imposing a condition on the

residuals in the intermediate steps which, interestingly, is quite in the spirit of
a “global” steepest descent method. We refer to [16] for details.

3. Discussion of the literature

The loop interchange approach is most probably not new, although we are
not aware of a systematic discussion as a construction principle for simultaneous
methods.

Global methods were considered in a variety of papers. Surprisingly, al-
though they all just realize the approach to perform the respective single r.h.s.
method for (2) and then “matricize” all operations with vectors of length ns, we
could not find this fact mentioned explicitly in the literature. The first global
methods are global full orthogonalization (Gl-FOM) and global generalized min-
imal residual (Gl-GMRES), introduced in [20]. Gl-BiCG and Gl-BiCGStab
were suggested in [21], and global variants of less well-known Krylov subspace
methods were subsequently proposed in [18] (Gl-CMRH), [34] (Gl-CGS), [15]
(Gl-SCD) and [35] (Gl-BiCR and its variants).

Block Krylov subspace methods were introduced in [23], where Bl-BiCG was
considered together with block conjugate gradients (Bl-CG). The (long recur-
rence) block generalized minimal residual (Bl-GMRES) algorithm goes back to
[27] and [33], and a convergence analysis can be found in [28]. Block Krylov
subspace methods require additional work for factorizations and multiplications
of n × s or s × s matrices in each iteration (cf. Proposition 1). Very often,
this substantially slows down the overall process. The hybrid method from [29]
describes an approach, where this additional work is reduced by adding cycles
in which a (matrix valued) polynomial obtained from the block Arnoldi process
of a previous cycle is used. The additional cycles save arithmetic cost since they
do not perform the block Arnoldi process.

The Bl-QMR method was suggested in [11], Bl-BiCGStab goes back to [16],
and Bl-LSQR, a block least squares QR-algorithm to solve the normal equations
for simultaneous r.h.s. was given in [22]. The block methods relying on the non-
symmetric Lanczos process can suffer from the fact that this process can break

6

down prematurely if the bi-orthogonality condition imposed on the to be com-
puted block basis vectors can not be fulfilled. Numerically, this will typically
result in very ill-conditioned s × s matrices in Bl-BiCG and Bl-BiCGStab for
which linear systems have to be solved in the algorithm. The non-symmetric
Lanczos process at the basis of Bl-QMR from [1] does, in principle, not suffer
from this phenomenon since it incorporates a look-ahead strategy which cures
almost all possible unwanted breakdowns.1 Both, the block Arnoldi process at
the basis of Bl-GMRES as well as the symmetric or non-symmetric Lanczos pro-
cess at the basis of Bl-CG or Bl-BiCG, Bl-QMR and Bl-BiCGStab, respectively,
should account for an additional danger of producing ill-conditioned s× s sys-
tems arising because of deflation. Occurrence of deflation within a block Krylov
subspace method means that while the block Krylov subspaces Kk(A,R(0)) or
Kk(AH , R̂(0)) has dimension ks, the next, Kk+1(A,R(0)) or Kk+1(AH , R̂(0)), has
dimension less than (k+1)s. Similar reductions in dimension might occur again
in later iterations. In principle, deflation is advantageous, since it allows to
reduce the number of matrix-vector operations per iteration. However, algo-
rithms have to be adjusted, and additional book-keeping is necessary. Deflation
in the unsymmetric block Lanczos process and the block Arnoldi process was
considered in [4], the consequences for Bl-GMRES are discussed in detail in
[17]. Bl-QMR from [11] and the Bl-CG variant considered in [3] address defla-
tion by indeed explicitly reducing the dimension of the block Krylov subspaces.
Interestingly, the latter two methods now work by applying the matrix-vector
multiplications one at a time instead of simultaneously to a block vector, check-
ing for deflation after each such operation. These methods can thus no longer
take advantage of a possible performance gain due to multiplications of matri-
ces with block-vectors. This is in contrast to the modifications of Bl-BiCG and
Bl-CG from [23] and [9] which “hide” the possible singularity of the s×s matri-
ces by using QR-decompositions and modified update formulae. This approach
to treat deflation implicitly does not allow to save matrix-vector multiplications
when deflation occurs, but keeps the advantage of relying on matrix-block-vector
multiplications. It does not require any additional book-keeping. Recently, in
[2] a variant of Bl-CG was developed which treats deflation explicitly, but still
uses matrix-block-vector multiplications.

A round-off error analysis for Bl-BiCGStab in [31] lead the authors to sug-
gest a numerically more stable modification which basically interchanges the
minimization step and the BiCG step present in each iteration of Gl-BiCGStab.
A numerically more stable variant of Bl-BiCG which enforces A-orthogonality
between the individual vectors and not just between block vectors, and which
contains an additional QMR-type stabilization step, was considered in [26].

1This cure is somewhat cumbersome to implement, though.

7

4. Improvements: Cost and stability

In any of the three simultaneous BiCG methods we are free to choose R̂(0),
the initial block-vector of shadow residuals, popular choices being R̂(0) = R(0)

or R̂(0) = R(0). If we take R̂(0) to have identical columns, i.e.

R̂(0) = r̂(0)1T , where r̂(0) ∈ Cn, 1 = (1, . . . , 1)T ∈ Cs,

we see that in Gl-BiCG (Algorithm 2) all “shadow” block vectors P̂ (k) and R̂(k)

conserve this structure for all k, i.e.

P̂ (k) = p̂(k)1T , R̂(k) = r̂(k)1T , p̂(k), r̂(k) ∈ Cn.

A comparable situation occurs neither in Li-BiCG nor in Bl-BiCG. Only in
Gl-BiCG can we therefore take advantage of an initial shadow residual with
identical columns and just compute the vectors p̂(k) and r̂(k) rather than the
respective block vectors in iteration k−1. In particular, we then need to multiply
AH only with a single vector instead of a whole block vector with s columns.
The resulting “economic” version eGl-BiCG of Gl-BiCG is given as Algorithm 4,
where we used the sum-operator to denote the sum of all components of a (row)
vector and the relation tr(1r̂HR) = sum(r̂HR) for 1 ∈ Cs, r̂ ∈ Cn, R ∈ Cn×s.

Algorithm 4: Economic global BiCG (eGl-BiCG)

choose X(0) ∈ Cn×s, r̂(0) ∈ Cn

put R(0) = B −AX(0), P (0) = R(0), p̂(0) = r̂(0)

for k = 0, 1, 2, . . . until convergence do
Q(k) = AP (k)

α(k) = sum((r̂(k))HR(k))/sum((p̂(k))HQ(k))
X(k+1) = X(k) + α(k)P (k)

R(k+1) = R(k) − α(k)Q(k), r̂(k+1) = r̂(k) − α(k)(AH p̂(k))
β(k) = sum((r̂(k+1))HR(k+1))/sum((r̂(k))HR(k))

P (k+1) = R(k+1) + β(k)P (k), p̂(k+1) = r̂(k+1) + β(k)p̂(k)

In a similar way, we obtain an economic version, eGl-QMR, of the global
QMR method. There is no such opportunity for Gl-BiCGStab, where multipli-
cations with AH are not present anyway. In the economic global methods the
work to be performed for the shadow residuals and search directions is identical
to that for just one single r.h.s., so that it becomes increasingly negligible for
larger values of s, s ' 10 say. In this manner, the economic global methods
eliminate one of the important disadvantages of the short recurrence Krylov
subspace methods based on the non-symmetric Lanczos process, and we will see
in the numerical experiments that eGl-BiCG and eGl-QMR perform favorably
when compared with simultaneous BiCGStab variants, for example.

Deflation in Bl-BiCG occurs if at some iteration k one of the block vectors
P (k), P̂ (k), R(k), and R̂(k) becomes rank deficient, even though one might have

8

taken care for this not to happen in iteration 0. In practice, exact deflation
happens rarely, but if one of the block vectors is almost rank deficient (inexact

deflation), some of the matrices α(k), α̂(k), β(k), and β̂(k) will be computed inac-
curately, resulting in numerical instabilities of the algorithm. Already in [23] it
was therefore proposed to use a QR factorization of the search direction block
vectors P (k) and P̂ (k) to avoid such instabilities. A systematic study of different
other remedies was presented in [9] for the Hermitian positive definite case, i.e.,
for the block CG method, and it turned out that the variant which uses a QR
factorization of the residual block vectors is most convenient. This approach can
be transported to block BiCG, and we performed a series of numerical compar-
isons which shows that also in the non-Hermitian case the variant which relies
on a QR factorization of the block residuals is to be preferred over the one with
QR-factorization of the block search vectors.

To precisely describe the resulting variant of block BiCG, consider a (thin)
QR-factorization of the block residuals in Bl-BiCG (Algorithm 3),

R(k) = Q(k)C(k), R̂(k) = Q̂(k)Ĉ(k), (3)

where

Q(k), Q̂(k) ∈ Cn×s, (Q(k))HQ(k) = (Q̂(k))
H
Q̂(k) = I, C(k), Ĉ(k) ∈ Cs×s.

A possible ill-conditioning of R(k) or R̂(k) translates into an ill-conditioned ma-
trix C(k) or Ĉ(k), respectively, and Bl-BiCG can now be stabilized by using the
QR-factorizations (3) while at the same time avoiding the occurrence of (C(k))−1

and (Ĉ(k))−1. To do so, we represent the search direction block vectors P (k)

and P̂ (k) as
P (k) = V (k)C(k), P̂ (k) = V̂ (k)Ĉ(k).

For the update of the block vectors V (k) and V̂ (k) from Algorithm 3 we then
get

V (k+1) = Q(k+1) + V (k)
(
C(k)β(k)(C(k+1))−1

)
,

V̂ (k+1) = Q̂(k+1) + V̂ (k)
(
Ĉ(k)β̂(k)(Ĉ(k+1))−1

)
,

and using (3) in the update for the block residuals we obtain

Q(k+1)C(k+1)(C(k))
−1

= Q(k) −AV (k)
(
C(k)α(k)(C(k))−1

)
,

Q̂(k+1)Ĉ(k+1)(Ĉ(k))
−1

= Q̂(k) −AH V̂ (k)
(
Ĉ(k)α̂(k)(Ĉ(k))−1

)
.

This shows that computationally we can obtain S(k+1) = C(k+1)(C(k))
−1

to-
gether with Q(k+1) from a QR factorization of Q(k)−AV (k)

(
C(k)α(k)(C(k))−1

)
,

and similarly for the “shadow” block vectors. Moreover, we have

C(k)α(k)(C(k))−1 = C(k)
(
(P̂ (k))HAP (k)

)−1(
(R̂(k))HR(k

)
(C(k))

−1

=
(
(V̂ (k))HAV (k)

)−1(
(Q̂(k))HQ(k

)
, (4)

9

and, analogously,

Ĉ(k)α̂(k)(Ĉ(k))−1 =
(
(V (k))HAH V̂ (k)

)−1(
(Q(k))HQ̂(k)

)
, (5)

C(k)β(k)(C(k+1))−1 =
(
(Q̂(k))HQ(k)

)−1
(Ŝ(k+1))H

(
(Q̂(k+1))HQ(k+1)

)
, (6)

Ĉ(k)β̂(k)(Ĉ(k+1))−1 =
(
(Q(k))HQ̂(k)

)−1
(S(k+1))H

(
(Q(k+1))HQ̂(k+1)

)
. (7)

Putting things together, we arrive at the block BiCG algorithm using QR-
factorization of the block residual, termed Bl-BiCG-rQ, given as Algorithm 5.

Algorithm 5: Block BiCG with QR factorization of residual block vectors
(Bl-BiCG-rQ)

choose X(0), R̂(0) ∈ Cn×s

put R(0) = B −AX(0), Q(0)C(0) = R(0), Q̂(0)Ĉ(0) = R̂(0), V (0) =
Q(0), V̂ (0) = Q̂(0)

for k = 1, 2, . . . until convergence do

W (k) = AV (k), Ŵ (k) = AH V̂ (k)

α(k) =
(
(V̂ (k))HW (k)

)−1(
(Q̂(k))HQ(k)

)
α̂(k) =

(
(V (k))HŴ (k)

)−1(
(Q(k))HQ̂(k)

)
X(k+1) = X(k) + V (k)α(k)C(k)

Q(k+1)S(k+1) = Q(k) −W (k)α(k), C(k+1) = S(k+1)C(k)

Q̂(k+1)Ŝ(k+1) = Q̂(k) − Ŵ (k)α̂(k), Ĉ(k+1) = Ŝ(k+1)Ĉ(k)

β(k) =
(
(Q̂(k))HQ(k)

)−1
(Ŝ(k+1))H

(
(Q̂(k+1))HQ(k+1)

)
β̂(k) =

(
(Q(k))HQ̂(k)

)−1
(S(k+1))H

(
(Q(k+1))HQ̂(k+1)

)
V (k+1) = Q(k+1) + V (k)β(k), V̂ (k+1) = Q̂(k+1) + V̂ (k)β̂(k)

Several remarks are in order: First, in Algorithm 5 we re-used the sym-
bols α(k), β(k) etc. which now designate the quantities at the right of (4) - (7).
Second, although the block residuals R(k) are no more available explicitly in
the algorithms, their 2-norms and Frobenius norms can still be easily retrieved
and used in a stopping criterion, since both these norms are invariant under
orthogonality transformations and thus

‖R(k)‖ = ‖Q(k)C(k)‖ = ‖C(k)‖,

C(k) being available from the algorithm. Third, Algorithm 5 requires more work
than Algorithm 3, mainly because of the additional two QR-factorizations of
block vectors required in each iteration. They have at least a cost of 3ns2+O(ns)
each (using, e.g., the modified Gram-Schmidt algorithm). Finally, all block
vectors in Algorithm 5 now always have full rank, thus reducing one source
of possible ill-conditioning in α(k), β(k), etc. In the case of A being Hermitian
and positive definite, where BiCG can be reduced to CG, this is an exhaustive
cure to possible ill-conditioning, see [9]. In BiCG, however, it can still happen
that, e.g., (Q̂(k))HQ(k) or (V̂ (k))HW (k) is ill-conditioned or singular. This is

10

inherent to the bi-orthogonality condition on which the whole method is built,
and can be avoided only if one is willing to deviate from the bi-orthogonality
condition by, for example, modifying the method using a look-ahead version of
the unsymmetric block Lanczos process.

Relying on the deflation procedure from [1] within a look-ahead block Lanc-
zos process, the block QMR method from [11] addresses possible rank-deficiency
in the block residuals as well as possible further breakdowns related to the bi-
orthogonality condition. In this approach, the basis vectors for the next Krylov
subspace are built one at a time and are then checked for deflation, so that this
approach does not allow to compute matrix-block-vector products.

To conclude this section, we remark that it is possible to, in a similar spirit,
use a QR-factorization of the residuals in the block BiCGStab method. We
do not write down the resulting algorithm, Bl-BiCGStab-rQ explicitly, but we
will report on its performance in our numerical experiments. A corresponding
variant based on QR factorization of the search directions performed less well
in our experiments, as was the case in Bl-BiCG.

5. Numerical experiments

The purpose of this section is to assess the efficiency and stability of the
various simultaneous methods. To this end we performed numerical experiments
for five different examples in which systems with several r.h.s. arise naturally.
These examples will be described in detail below. All iterations were started
with X(0) = 0. In all examples we preprocessed the block vector B of r.h.s. by
computing its QR-factorization, B = QR and then replaced B by Q. The initial
shadow block residual was taken equal to the initial residual, R̂(0) = R(0) (= Q),
except for the economic versions where we took r̂(0) as the arithmetic mean of all
initial residuals. The stopping criterion was always ‖R(k)‖F ≤ 10−10 · ‖R(0)‖F .

All experiments were run in Matlab on an Intel Core i7-4770 quad core pro-
cessor. Most of our Matlab code is based on pre-compiled Matlab functions
and routines, e.g. for computing sparse matrix-vector products, factorizations
or products of matrices. We therefore trust that the reported timings are sig-
nificant with the possible exception of the loop interchanged methods where the
explicitly occurring inner loop over the r.h.s. introduces a non-negligible part of
interpreted code, thus increasing the compute time.

For our Matlab experiments, the ratio a of the time required to perform s
single matrix-vector multiplications and that for a matrix-block vector multi-
plication with block size s ranges between 1.2 and 2.7. The benefit of working
with block vectors is thus substantial. In our case, this gain is primarily due to
the fact that Matlab uses all cores for block vectors, whereas it uses only one
core for a single vector. On other processors and with other compilers similar
gains do occur albeit sometimes for different reasons. We refer to [25] for a re-
cent publication where the benefits of matrix-block vector multiplications in the
presence of limited memory bandwidth are investigated based on an appropriate
“roofline” performance model.

11

Table 1: Number of r.h.s. s, measured acceleration factor a (ratio of the time for s matrix-
vector multiplications to the time for one matrix-block vector multiplication with block size
s), and value of ρ from (8) for the numerical examples.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5
no prec. prec. no prec. prec. no prec. prec. no prec. prec. no prec.

s 4 19 19 12 20
a 2.65 1.21 2.66 1.69 2.60 1.71 1.57 1.18 1.38
ρ 0.8 0.36 2.76 1.29 2.76 1.29 0.24 0.14 5.00

The additional work to be performed in the block methods (see Proposi-
tion 1) is of the order of O(s2) vector operations, s the number of right hand
sides. This must be considered relative to the work required for s matrix-vector
products, which amounts to s · nnz/n vector operations, nnz being the number
of non-zeros in A. Therefore, the ratio

ρ =
s2

s · nnz/n
= s · n

nnz
(8)

can be regarded as a quantity measuring the (relative) additional cost for s r.h.s.
in the block methods. If ρ is large, the additional arithmetic cost is substantial.

Notwithstanding the detailed description of our examples below, Table 1
reports the values of the various quantities just discussed for these examples. For
Examples 1-4 we will also report results using ILU preconditioning. Besides from
accelerating the convergence, preconditioning increases the cost of a matrix-
(block)-vector multiplication which is now a preconditioned matrix-block vector
multiplication. This affects the ratio a and reduces the ratio ρ. Table 1 therefore
gives values for the unpreconditioned and the preconditioned cases. Since none
of the standard preconditioners was effective for Example 5, we only report
results for the unpreconditioned case there.

5.1. Description of examples

We considered the following five examples.

Example 1. This is a variation of an example which was given in [19] in the
context of Krylov subspace type methods for the Sylvester equation. We con-
sider the elliptic pde

−uxx − uyy + 2α1ux + 2α2uy − 2α3u = 0,

on the unit square with Dirichlet boundary conditions, where α1 = α2 = α3 = 5.
We discretize using finite differences on an equispaced grid with 200×200 interior
grid points. We build a total of four r.h.s. associated with the four corners of Ω.
For a given corner, we construct the r.h.s. such that it represents the boundary
condition of u being continuous and piecewise linear on the boundary with value

12

1 at that corner and value 0 at all the other corners. From the four solutions
to these four r.h.s. we can thus, by superposition, retrieve the solutions for any
continuous piecewise linear boundary values for u.

This is an example of an elliptic pde with mild convection, the value for ρ
from (8) is relatively small, ρ = 0.8.

Example 2. We consider the three-dimensional advection dominated elliptic
pde on the unit cube

uxx + uyy + uzz + ν · ux = f, (x, y, z) ∈ Ω = (0, 1)3, (9)

where ν > 0 is a parameter which controls the influence of the convection term
and f is defined such that for zero Dirichlet boundary conditions the exact
solution is u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz), see [30] as an example
where BiCGStab encounters convergence problems for larger values of ν. We
discretize (9) using finite differences on an equispaced grid with 503 interior
grid points. This results in a linear system of size n = 125,000 with seven
non-zeros per row. We generate one r.h.s. by imposing zero Dirichlet boundary
conditions on all faces of Ω. In order to be able to (by superposition) retrieve
solutions for any Dirichlet boundary conditions which depend piecewise affinely
on x, y and z on any of the six faces of Ω, we generate a total of 18 additional
r.h.s. with f = 0 in (9). To be specific, for the face with x = 0, e.g., we set
the boundary conditions equal to 0 on all other faces and obtain three r.h.s.
by setting the boundary condition on that face equal to y, to z and to the
constant 1, respectively, and similarly for the five other faces. Our choice for
ν is ν = 1,000, as in [30], resulting in a convection dominated equation and a
highly non-symmetric system matrix. The value for ρ from (8) is significantly
larger than in the first example, ρ ≈ 2.7.

Example 3. Same as Example 1, but now with ν = 10. This means that the
matrix is “almost” symmetric.

Example 4. This example arises from quantum chromodynamics (QCD), the
physical theory of the strong interaction between the quarks as constituents of
matter. The Wilson-Dirac matrix DW in lattice QCD represents a discretization
of the Dirac operator from QCD, see [13], e.g. One has DW = I − κD with D
representing a periodic nearest neighbor coupling on a four-dimensional lattice,
and there are 12 variables per lattice point, one for each possible combination
of four spin and three color indices. The couplings are defined via a gluon
background field which is drawn from a statistical distribution and therefore
varies irregularly from one lattice point to the next. A typical “propagator
computation” in lattice QCD amounts to solve

DWxi = ei, i = 1, . . . , 12,

where e1, . . . , e12 are the first s = 12 unit vectors (corresponding to the twelve
variables at one lattice point). For our computation we took a Wilson-Dirac

13

matrix based on a 84 lattice and thus has dimension 12 · 84 = 49,152. Our
configuration corresponds to a typical configuration in lattice QCD with tem-
perature parameter β = 5.6 and coupling parameter κ = 0.16066 corresponding
to run A3 in [6, 7]. Similar matrices can be found e.g. as conf5 4-8x8-20 and
conf6 0-8x8-80 from the University of Florida Sparse Matrix Collection [5].
The entries of DW are complex numbers, the matrix is non-symmetric with its
spectrum being symmetric to the real axis and located in the right half plane.
There are 49 non-zeros per row in DW . This is our example with the smallest
value for ρ from (8), ρ ≈ 0.25.

Example 5. The FEAST method to compute some eigenpairs [24] for the gen-
eralized eigenvalue problem Ax = λBx evaluates the contour integrals

∮
Γ
(A −

tB)−1BY dt where Γ is a circle that contains the eigenvalues of the eigenpairs
that are to be computed and Y ∈ Cn×m consists of m randomly chosen columns
yi. Using numerical quadrature for the integral, this means that one has to solve
several linear systems (A − tjB)xi = yi for a given choice of the quadrature
nodes tj . For our example, we took A as the matrix stemming from a model
for graphene belonging to the parameter W = 200 in [14] with n = 40,000,
and B = I. There, the eigenpairs corresponding to the eigenvalues of smallest
modulus are sought, i.e. Γ is centred at 0 with a radius of 0.125. We solve the
systems (A− tI)xi = yi for t = −0.0919 + 0.0848i (which corresponds to z3 in
[14]) and 20 random right-hand sides yi. Here, the value for ρ from (8) is ρ = 5,
the largest value in our examples.

Let us note that this example lends itself to a “shifted” Krylov subspace
approach where systems are simultaneously solved for various values of tj , but
this is less relevant in our context.

5.2. Stabilization of block BiCG and block BiCGStab

We first report on a comparison of the block BiCG method, Algorithm 3
and block BiCGStab from [21] with the versions which improve stability using
a QR-factorization of the block residuals. For block BiCG, this version is given
explicitly in Algorithm 5.

Figure 1 shows convergence plots for Example 1 without preconditioning (top
row) and with a (right) no-fill ILU preconditioner (bottom row) obtained via
the Matlab function ilu. The left plots show the relative Frobenius norm of the
block residual as a function of the total number of matrix-vector multiplications
(there are 2s of those per iteration). The right plots show the same resid-
ual norms, but now as a function of wall clock time. Figure 1 shows that both,
Bl-BiCG as well as Bl-BiCGStab, can significantly improve when the QR factor-
izations are used, sometimes making iterations converge which otherwise would
diverge. In the presence of preconditioning, where the preconditioned matrix
is better conditioned and convergence is reached after a relatively small num-
ber of iterations, QR factorizations has a less pronounced effect, and standard
Bl-BiCGStab actually now converges, too. Since computing a QR-factorization
of a block of s vectors of length n requires an arithmetic cost of O(s2) vector
operations, this cost is substantial unless ρ is really small. From the plots in

14

0 1000 2000 3000 4000
10

−10

10
0

10
10

(equivalent) matrix−vector multiplications

re
si

du
al

 n
or

m

Example 5.1

Bl−BiCG
Bl−BiCG−rQ
Bl−BiCGStab
Bl−BiCGStab−rQ

0 1 2 3 4
10

−10

10
0

10
10

time

re
si

du
al

 n
or

m

Example 5.1

Bl−BiCG
Bl−BiCG−rQ
Bl−BiCGStab
Bl−BiCGStab−rQ

0 200 400 600 800 1000 1200 1400

10
−10

10
−5

10
0

(equivalent) matrix−vector multiplications

re
si

du
al

 n
or

m

Example 5.1, with ILU prec.

Bl−BiCG
Bl−BiCG−rQ
Bl−BiCGStab
Bl−BiCGStab−rQ

0 0.5 1 1.5 2 2.5 3

10
−10

10
−5

10
0

time

re
si

du
al

 n
or

m

Example 5.1, with ILU prec.

Bl−BiCG
Bl−BiCG−rQ
Bl−BiCGStab
Bl−BiCGStab−rQ

Figure 1: Convergence plots for Bl-BiCG and Bl-BiCGStab and their variants using a QR-
factorization of the block residual. Top: Example 1, bottom: Example 1 with ILU precondi-
tioning.

the right column of Figure 1 we indeed see that this additional cost is impor-
tant and that more than outweighs the small gains in terms of the number of
matrix-vector multiplications.

Table 2 summarizes the results for all our examples. For all four methods,
it reports the number of matrix-vector multiplications and the time needed
to reach the stopping criterion (reduction of the initial block residual by a

Table 2: Iteration counts #it, wall clock times and final residual norms ‖R‖ for Bl-BiCG and
its variant with QR-factorization of the block residual (top two rows), and their counterparts
for Bl-BiCGStab (bottom two rows).

variants of Bl-BiCG (first two rows) and Bl-BiCGStab (last two rows), no precond.

Example 1 Example 2 Example 3 Example 4 Example 5
#it time ‖R‖ #it time ‖R‖ #it time ‖R‖ #it time ‖R‖ #it time ‖R‖
500 2.28s div. 500 43.83s div. 500 44.99s 0.28 500 62.92s 1e-03 528 36.49s 3e-10
500 3.85s 1e-08 500 101.1s div. 156 31.66s 2e-10 237 38.85s 3e-10 533 79.86s 3e-10
500 2.46s 0.093 500 45.15s div. 111 9.73s 2e-10 175 20.66s 2e-10 1200 77.72s 2e-3
355 2.96s 1e-10 500 91.17s div. 101 18.10s 2e-10 157 25.07s 2e-10 957 131.7s 3e-10

variants of Bl-BiCG (first two rows) and Bl-BiCGStab (last two rows), ILU precond.

Example 1 Example 2 Example 3 Example 4
#it time ‖R‖ #it time ‖R‖ #it time ‖R‖ #it time ‖R‖
500 7.72s 0.04 28 6.13s 2e-10 50 11.35s 3e-10 68 23.33s 2e-10
163 2.89s 1e-10 28 9.18s 8e-11 50 17.06s 3e-10 62 23.72s 3e-10
113 1.38s 3e-10 16 2.74s 4e-11 33 5.87s 6e-11 41 10.15s 2e-10
115 1.69s 3e-11 16 4.09s 3e-11 33 8.84s 5e-11 40 11.72s 7e-11

15

factor of 10−10 or maximum of 500 iterations reached in Examples 1-4, 1,200
for Example 5). We also report the final relative norm of the block residual
which was explicitly re-computed upon termination. If this final residual norm
is larger than 1, we interpret this as divergence, noted as “div.” in the table.
Smaller residual norms like 10−4 may be interpreted as an indicator of slow
convergence, too slow to be competitive within our setting.

Table 2 confirms our conclusions from the discussion of Figure 1: QR-
factorization improves numerical stability, and it has the potential to turn oth-
erwise divergent iterations into convergent ones. Its (relative) additional cost is
indicated by the value of ρ from (8), and it is relatively small for Examples 1
and 4, whereas it is relatively high for the other examples where it thus does
not pay off in the cases where the non-stabilized method is already conver-
gent. The known convergence problems of BiCGStab for Example 2, see [30],
carry over to both variants of the block method, and we may conclude that the
non-convergence is not a matter of numerical stability but of BiCGStab and
its block counterpart not being able to efficiently accommodate the relevant
spectral properties of the respective matrix; see also the discussion in [30].

5.3. Comparison of all methods

We proceed by comparing the number of matrix-vector multiplications and
the wall clock times for all methods. Figure 2 does so for the case without
preconditioning. We use bar plots to allow for an immediate visual comparison
of the methods and we group our measurements by “families” of methods. Since
Example 5 needs much more iterations than the other examples, we scaled the
bar plots for this example by dividing by 5. A missing vertical bar indicates
that the corresponding method either diverged or stagnated at a large residual
norm. Instead of implementing a Bl-QMR method by ourselves we used a
Matlab implementation by Freund and Malhotra which was publicly available
at least until 2008 at the web site of Lucent technologies. This implementation
is very cautious about possible ill-conditioning and (near) deflation, and for this
reason it actually does all matrix-vector products one at a time, i.e. it does not
use matrix-block vector products. As a result, this block QMR implementation
can not be competitive with respect to timings, and for the unpreconditioned
systems considered here we obtained premature break downs in all examples.
The situation becomes slightly different in the preconditioned case, see below.

We can make the following observations: The loop-interchanged and the
global methods require almost the same number of matrix-vector multiplications
in all examples. Since the other arithmetic work is also comparable, this should
result in similar wall clock times. This is, however, not what we see, the loop
interchanged methods requiring substantially more time. We attribute this to
the fact that the loop interchanged methods are the only ones were there is a
non-negligible amount of interpreted Matlab code. “Plain” block methods suffer
from non-convergence in a significant number of cases (8 out of 10). Using a
QR-factorization of the residuals reduces the number of failures to 2. When they
work, the block methods reduce the number of matrix-vector multiplications as
compared to loop-interchanged or global methods by never more than a factor

16

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4 Ex. 5.5 / 5
0

2000

4000

6000

8000

10000

12000

14000

m
at

rix
−

ve
ct

or
 m

ul
tip

lic
at

io
ns

 u
nt

il
co

nv
er

ge
nc

e

BiCG family of methods

Li−BiCG
Gl−BiCG
eGl−BiCG
Bl−BiCG
Bl−BiCG−rQ

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4 Ex. 5.5 / 5
0

5

10

15

20

25

30

35

40

45

50

tim
e

fo
r

co
nv

er
ge

nc
e

(in
 s

)

BiCG family of methods

Li−BiCG
Gl−BiCG
eGl−BiCG
Bl−BiCG
Bl−BiCG−rQ

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4 Ex. 5.5 / 5
0

2000

4000

6000

8000

10000

12000

14000

m
at

rix
−

ve
ct

or
 m

ul
tip

lic
at

io
ns

 u
nt

il
co

nv
er

ge
nc

e

QMR family of methods

Li−QMR
Gl−QMR
eGl−QMR
Bl−QMR

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4 Ex. 5.5 / 5
0

5

10

15

20

25

30

35

40

45

50

tim
e

fo
r

co
nv

er
ge

nc
e

(in
 s

)
QMR family of methods

Li−QMR
Gl−QMR
eGl−QMR
Bl−QMR

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4 Ex. 5.5 / 5
0

2000

4000

6000

8000

10000

12000

14000

m
at

rix
−

ve
ct

or
 m

ul
tip

lic
at

io
ns

 u
nt

il
co

nv
er

ge
nc

e

BiCGStab family of methods

Li−BiCGStab
Gl−BiCGStab
Bl−BiCGStab
Bl−BiCGStab−rQ

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4 Ex. 5.5 / 5
0

5

10

15

20

25

30

35

40

45

50

tim
e

fo
r

co
nv

er
ge

nc
e

(in
 s

)

BiCGStab family of methods

Li−BiCGStab
Gl−BiCGStab
Bl−BiCGStab
Bl−BiCGStab−rQ

Figure 2: Number of matrix-vector multiplications and time for all methods and all examples,
no preconditioning.

17

of 2. Because of the additional arithmetic cost, block methods never win in
terms of wall clock time, and for larger values of ρ (Examples 2, 3 and 5) they
require more than twice the time than the corresponding global method across
all “families”. The economic versions of the global methods always appear as
the best within their respective “family”. They do not exhibit convergence
problems, and they reduce the number of matrix-vector multiplications when
compared with the global and loop interchanged methods. At the same time,
their wall clock times are smallest. Overall, the economic global BiCG method
appears to be the most efficient one, in tie with global BiCGStab for Example 1
and block BiCGStab for Example 4. Note that these are the examples with the
smallest value for ρ.

Figure 3 shows the results for Examples 1-4 where we now use ILU (right)
preconditioning. More precisely, we used Matlab’s ilu do obtain a no-fill ILU
in Examples 1-3 and an ILU with threshold and pivoting with a drop tolerance
of 5 · 10−2 in Example 4. The number of matrix-vector multiplications and the
wall clock times decrease for all methods as compared to the un-preconditioned
case. Block QMR now converges for Example 1, but its wall-clock time is not
competitive for the reasons explained earlier. The other block methods fail
only once for BiCG, and never for BiCGStab. While the economic versions of
the global methods still yield the best timings within their “family”, the block
BiCGStab methods and global BiCGStab now perform better in terms of wall
clock time for all four examples. The value of ρ being particularly small for
Example 4, this is the example where block BiCGStab gains most against loop
interchanged or global BiCGStab.

Summarizing our findings we can conclude that one should use the block
methods with particular care since there is a danger of non- convergence due to
numerical instabilities. This can be somewhat attenuated by using the suggested
QR-factorization of the block residuals. The additional arithmetic cost in the
block methods should not be neglected, and—depending on ρ— there must be
a substantial gain in matrix-vector multiplications in the block methods if this
additional cost is to be outweighed. Global methods and loop interchanged
methods require about the same amount of matrix-vector multiplications and
additional arithmetic cost, so that they should require about the same time,
too, if it were not for special effects in a Matlab implementation which mixes
compiled and interpreted code. The economic versions of global BiCG and
global QMR appear to perform well with respect to both, stability and efficiency.
For better conditioned systems, e.g. when an efficient preconditioner is at hand,
the block BiCGStab methods and global BiCGStab behave stably, and then
their runtime is less than for the economic global methods.

References

[1] J. I. Aliaga, D. L. Boley, R. W. Freund, V. Hernandez, A Lanczos-type
method for multiple starting vectors, Math. Comp. 69 (2000) 1577–1601.

18

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex 5.4
0

500

1000

1500

2000

2500

3000

3500

m
at

rix
−

ve
ct

or
 m

ul
tip

lic
at

io
ns

 u
nt

il
co

nv
er

ge
nc

e

BiCG family of methods, with ILU prec.

Li−BiCG
Gl−BiCG
eGl−BiCG
Bl−BiCG
Bl−BiCG−rQ

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex 5.4
0

5

10

15

20

25

30

tim
e

fo
r

co
nv

er
ge

nc
e

(in
 s

)

BiCG family of methods, with ILU prec.

Li−BiCG
Gl−BiCG
eGl−BiCG
Bl−BiCG
Bl−BiCG−rQ

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex 5.4
0

500

1000

1500

2000

2500

3000

3500

m
at

rix
−

ve
ct

or
 m

ul
tip

lic
at

io
ns

 u
nt

il
co

nv
er

ge
nc

e

QMR family of methods, with ILU prec.

Li−QMR
Gl−QMR
eGl−QMR
Bl−QMR

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex 5.4
0

5

10

15

20

25

30

tim
e

fo
r

co
nv

er
ge

nc
e

(in
 s

)
QMR family of methods, with ILU prec.

Li−QMR
Gl−QMR
eGl−QMR
Bl−QMR

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex 5.4
0

500

1000

1500

2000

2500

3000

3500

m
at

rix
−

ve
ct

or
 m

ul
tip

lic
at

io
ns

 u
nt

il
co

nv
er

ge
nc

e

BiCGStab family of methods, with ILU prec.

Li−BiCGStab
Gl−BiCGStab
Bl−BiCGStab
Bl−BiCGStab−rQ

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex 5.4
0

5

10

15

20

25

30

tim
e

fo
r

co
nv

er
ge

nc
e

(in
 s

)

BiCGStab family of methods, with ILU prec.

Li−BiCGStab
Gl−BiCGStab
Bl−BiCGStab
Bl−BiCGStab−rQ

Figure 3: Number of matrix-vector multiplications and time for all methods, Examples 1-4
with ILU preconditioning.

19

[2] S. Birk, Deflated shifted block Krylov subspace methods for hermitian pos-
itive definite matrices, Ph.D. thesis, Bergische Universität Wuppertal, to
appear (2015).

[3] S. Birk, A. Frommer, A deflated conjugate gradient method for multiple
right hand sides and multiple shifts, Numer. Algorithms 67 (2014) 507–529.

[4] J. Cullum, T. Zhang, Two-sided Arnoldi and nonsymmetric Lanczos algo-
rithms, SIAM J. Matrix Anal. Appl. 24 (2002) 303–319.

[5] T. A. Davis, Y. Hu, The University of Florida Sparse Matrix Collection
38 (1) (2011) 1:1–1:25.
URL http://doi.acm.org/10.1145/2049662.2049663

[6] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, N. Tantalo, QCD with
light Wilson quarks on fine lattices (I): First experiences and physics results
arXiv 0702:056.

[7] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, N. Tantalo, QCD with
light Wilson quarks on fine lattices (II): DD-HMC simulations and data
analysis arXiv 0702:082.

[8] J. J. Dongarra, J. Ducroz, I. Duff, S. Hammarling, A set of level 3 Basic
Linear Algebra Subprograms, ACM Trans. Math. Softw. 16 (1988) 1–17.

[9] A. A. Dubrulle, Retooling the method of block conjugate gradients, Elec-
tron. Trans. Numer. Anal. 12 (2001) 216–233.

[10] R. Fletcher, Conjugate gradient methods for indefinite systems, in: G. Wat-
son (ed.), Proceedings of the Dundee Biennial Conference on Numerical
Analysis, Springer-Verlag, New York, 1975.

[11] R. W. Freund, M. Malhotra, A block-QMR algorithm for non-Hermitian
linear systems with multiple right-hand sides, Linear Algebra Appl. 254
(1997) 119–157.

[12] R. W. Freund, N. M. Nachtigal, QMR: A quasi-minimal residual method
for non-hermitian linear systems, Numer. Math. 60 (1991) 315–339.

[13] A. Frommer, K. Kahl, S. Krieg, B. Leder, M. Rottman, Adaptive aggre-
gation based domain decomposition multigrid for the lattice Wilson Dirac
operator, SIAM J. Sci. Comp. 36 (4) (2014) A1581–A11608.

[14] M. Galgon, L. Krämer, J. Thies, A. Basermann, B. Lang, On the parallel
iterative solution of linear systems arising in the FEAST algorithm for
computing inner eigenvalues, Preprint BUW-IMACM 14/35, submitted
(2014).
URL http://www.imacm.uni-wuppertal.de/fileadmin/imacm/

preprints/2014/imacm_14_35.pdf

20

http://doi.acm.org/10.1145/2049662.2049663
http://www.imacm.uni-wuppertal.de/fileadmin/imacm/preprints/2014/imacm_14_35.pdf
http://www.imacm.uni-wuppertal.de/fileadmin/imacm/preprints/2014/imacm_14_35.pdf

[15] C. Gu, Z. Yang, Global SCD algorithm for real positive definite linear
systems with multiple right-hand sides, Appl. Math. Comput. 189 (2007)
59–67.

[16] A. E. Guennouni, K. Jbilou, H. Sadok, A block version of BiCGSTAB
for linear systems with multiple right-hand sides, Electron. Trans. Numer.
Anal. 16 (2003) 129–142.

[17] M. H. Gutknecht, Block Krylov space methods for linear systems with
multiple right-hand sides: an introduction, in: A. H. Siddiqi, I. S. Duff,
O. Christensen (eds.), Modern Mathematical Models, Methods and Algo-
rithms for Real World Systems, Anamaya Publishers, New Delhi, India,
2007, pp. 420–447.

[18] M. Heyouni, The global Hessenberg and global CMRH methods for linear
systems with multiple right-hand sides, Numer. Algo. 26 (2001) 317–332.

[19] D. Y. Hu, L. Reichel, Krylov subspace methods for the Sylvester equations,
Linear Algebra Appl. 174 (1992) 283–314.

[20] K. Jbilou, A. Messaoudi, H. Sadok, Global FOM and GMRES algorithms
for matrix equation, Appl. Numer. Math 31 (1999) 49–63.

[21] K. Jbilou, H. Sadok, A. Tinzefte, Oblique Projection Methods for Linear
Systems With Multiple Right-hand Sides, Electron. Trans. Numer. Anal.
20 (2005) 119–138.

[22] S. Karimi, F. Toutounian, The Block Least Squares Method for Solv-
ing Nonsymmetric Linear Systems with Multiple Right-hand Sides, Appl.
Math. Comput. 177 (2006) 852–862.

[23] D. P. O’Leary, The Block Conjugate Gradient Algorithm and Related
Methods, Linear Algebra Appl. 29 (1980) 293–322.

[24] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems,
Phys. Rev. B 79 (2009) 115112.

[25] M. Röhrig-Zöllner, J. Thies, M. Kreutzer, A. Alvermann, A. Pieper,
A. Basermann, G. Hager, G. Wellein, H. Fehske, Increasing the perfor-
mance of the Jacobi-Davidson method by blocking, submitted.
URL http://elib.dlr.de/89980/

[26] V. Simoncini, A stabilized QMR version of block BiCG, SIAM J. Matrix
Anal. Appl. 18 (1997) 419–434.

[27] V. Simoncini, E. Gallopoulos, An iterative method for nonsymmetric sys-
tems with multiple right-hand sides, SIAM J. Sci. Statist. Comput. 16
(1995) 917?933.

[28] V. Simoncini, E. Gallopoulos, Convergence properties of block GMRES and
matrix polynomials, Linear Algebra Appl. 247 (1996) 97–119.

21

http://elib.dlr.de/89980/

[29] V. Simoncini, E. Gallopoulos, A hybrid block GMRES method for nonsym-
metric systems with multiple right-hand sides, J. Comput. Appl. Math. 66
(1996) 457–469.

[30] G. L. Sleijpen, D. R. Fokkema, BICGSTAB(l) for linear equations involving
unsymmetric matrices with complex spectrum, Electron. Trans. Numer.
Anal. 1 (1993) 11–32.

[31] H. Tadano, T. Sakurai, Y. Kuramashi, Block BiCGGR: A new block Krylov
subspace method for computing high accuracy solutions, JSIAM Lett. 1
(2009) 44–47.

[32] H. A. Van Der Vorst, Bi-CGSTAB: A fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci.
Stat. Comput. 13 (1992) 631–644.

[33] B. Vital, Etude de quelques méthodes de résolution de problèmes linéaires
de grande taille sur multiprocesseur, Ph.D. thesis, Univ. de Rennes I,
Rennes (1990).

[34] J. Zhang, H. Dai, J. Zhao, Generalized global conjugate gradient squared
algorithm, Appl. Math. Comput. 216 (2010) 3694–3706.

[35] J. Zhang, H. Dai, J. Zhao, A new family of global methods for linear systems
with multiple right-hand sides, J. Comput. Appl. Math. 236 (2011) 1562–
1575.

22

	1 Introduction
	2 Loop-interchanging, global and block Krylov methods
	3 Discussion of the literature
	4 Improvements: Cost and stability
	5 Numerical experiments
	5.1 Description of examples
	5.2 Stabilization of block BiCG and block BiCGStab
	5.3 Comparison of all methods

