
Gaussian quadrature rules for C1 quintic splines
with uniform knot vectors

Michael Bartoňa,∗, Rachid Ait-Haddoub, Victor Manuel Caloc

aBCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14,
48009 Bilbao, Basque Country, Spain

bA-803 Mihogaoka 19, Ibaraki City 567-0047 Osaka, Japan
cCSIRO Professorial Chair in Computational Geoscience, Western Australian

School of Mines, Faculty of Science and Engineering, Curtin University,
Kent Street, Bentley, Perth, Western Australia, 6102, Australia

Abstract

We provide explicit quadrature rules for spaces of C1 quintic splines with uni-
form knot sequences over finite domains. The quadrature nodes and weights
are derived via an explicit recursion that avoids numerical solvers. Each rule
is optimal, that is, requires the minimal number of nodes, for a given func-
tion space. For each of n subintervals, generically, only two nodes are required
which reduces the evaluation cost by 2/3 when compared to the classical Gaus-
sian quadrature for polynomials over each knot span. Numerical experiments
show fast convergence, as n grows, to the “two-third” quadrature rule of Hughes
et al. [23] for infinite domains.

Keywords: Gaussian quadrature, quintic splines, Peano kernel, B-splines, C1

continuity, quadrature for isogeometric analysis

1. Introduction

Numerical quadrature has been of interest for decades due to its wide ap-
plicability in many fields spanning collocation methods [37], integral equations
[4], finite elements methods [38] and most recently, isogeometric analysis [13].
Numerical quadrature is an important tool for high-speed solution frameworks
[12, 16] as it is computationally cheap and robust when compared to analytic
integration methods [20].

A quadrature rule, or in short a quadrature, is said to be an m-point rule, if
m evaluations of a function f are needed to approximate its weighted integral

∗Corresponding author
Email addresses: Michael.Barton@kaust.edu.sa (Michael Bartoň),

rachid.aithaddou70@gmail.com (Rachid Ait-Haddou), Victor.Calo@Curtin.edu.au (Victor
Manuel Calo)

Preprint submitted to JCAM March 10, 2017

over an interval [a, b]∫ b

a

ω(x)f(x) dx =

m∑
i=1

ωif(τi) +Rm(f), (1)

where ω is a fixed non-negative weight function defined over [a, b]. Typically, the
rule is required to be exact, that is, Rm(f) ≡ 0 for each element of a predefined
linear function space L. Moreover, the rule is said to be optimal if m is the
minimal number of nodes τi at which f has to be evaluated.

In the literature, the term optimality may also refer to the approximation
error that the quadrature rule produces. That is, the number of nodes is given
and their layout is sought such that they minimize the error for a given class of
functions. Köhler and Nikolov [25, 26] showed that the Gauss-type quadrature
formulae associated with spaces of spline functions with equidistant knots are
asymptotically optimal in non-periodic Sobolev classes. This is a motivation
for studying Gauss-type quadrature formulae for spaces of spline functions, in
particular, with equidistant knots. In this paper, by optimal (or Gaussian) we
exclusively mean quadrature rules with the minimal number of nodes.

In the case when L is the linear space of polynomials of degree at most
2m − 1, then the m-point Gaussian quadrature rule [20] is both exact and
optimal. The Gaussian nodes are the roots of the orthogonal polynomials pm
where (p0, p1, . . . , pm, . . .) is the sequence of orthogonal polynomials with respect
to the measure µ(x) = ω(x)dx. Typically, the nodes of the Gaussian quadrature
rule have to be computed numerically which becomes expensive, especially for
high-degree polynomials.

Regarding the quadrature rules for splines, Micchelli and Pinkus [30] derived
the optimal number of quadrature nodes for a given knot sequence and specified
the range of intervals, the knot sequence subintervals, that contain at least one
node. There are two main difficulties compared to the polynomial case: firstly,
the optimal quadrature rule is not in general guaranteed to be unique, e.g.,
when the boundary constraints are involved, and, secondly, [30] determines only
a range of intervals, i.e., each node has several potential subintervals to lie in.
The latter issue is crucial as one cannot apply even expensive numerical solvers,
because the algebraic system to solve is not explicitly known. For each assumed
layout of nodes, one would have to solve a particular algebraic system using e.g.,
[3, 18, 36]. However, the number of eventual systems grows exponentially in the
number of subintervals and therefore such an approach is not feasible. Instead,
theorems that derive exact layouts of the nodes are essential. Our work in this
paper contributes such a theoretical result for a particular family of splines,
namely C1 quintics with uniform knot sequences.

The quadrature rules for splines differ depending on the particular space
of interest Sd,c, where d is the degree and c refers to continuity. For cases
with lower continuity, the “interaction” between polynomial pieces is lower and
hence, a higher number of nodes is required for the optimal quadrature rule. The
choice of the domain over which to define the quadrature can bring a significant
simplifications. Whilst there are few rules that are exact and optimal over a

2

finite domain, their counterparts are known when the integration domain is the
whole real line [23]. These half-point rules of Hughes et al. are independent of
the polynomial degree and the “half” indicates that the number of quadrature
points is roughly half the number of basis functions.

The half-point rules can be altered even for spaces with lower continuity,
e.g., for S4,1 an optimal rule was also derived in [23]. The rule is called a “two-
third rule” as it requires only two evaluations per subinterval whilst the classical
Gaussian rule for polynomials needs three nodes. However, these rules are exact
only over the real line. Because in most applications a finite domain is needed,
additional nodes have to be added to satisfy the boundary constraints and a
numerical solver has to be employed [5]. We focus only on optimal rules as
there are many schemes that introduce redundant nodes in order to overcome
the problem with a finite interval, see [5] and the references therein. The optimal
rules we introduce are unique, and require the minimum number of nodes for
S5,1.

Regarding optimal rules over finite domains, Nikolov [32] proved the unique
layout of nodes of the quadrature rule for S3,1 with uniform knot sequences and
derived a recursive algorithm that computes the nodes and weights in a closed
form. Recently [2], we generalized this result for S3,1 over a special class of
non-uniform knot sequences, called symmetrically-stretched. The rules possess
the three fundamental properties to make these rules useful in practice. These
are, the rules are exact, optimal, and yield a closed form algorithm, without
intervention of any numerical solver.

Finding Gaussian rules for splines in a closed form as was done in [32]
is rather a rare result. To compute Gaussian rules numerically, we have re-
cently used the fact that a Gaussian quadrature is a solution (root) of a well-
constrained piece-wise polynomial system of equations. Since the problem is
highly non-linear, numerical optimization typically fails to find the global min-
imizer from a mediocre initial guess. We showed that the Gaussian quadrature
rules from close-enough spline spaces offer good initial guesses for the optimiza-
tion stage to succeed [7]. Starting with a known Gaussian rule, e.g., a union of
classical polynomial Gaussian rules, the underlying spline space is continuously
transformed to the desired configuration and the root is numerically traced. Us-
ing this homotopy continuation concept, we derived numerically Gaussian rules
for spline spaces of various degrees and continuities [6, 8].

From the point of view of applications, certain types of quadratures (in terms
of the relation between degrees and continuities of the underlying spline spaces)
are very important in isogeometric analysis as these spaces appear in Galerkin
discretizations when building the mass and stiffness matrices, see [6, 8]. The
quadrature rule for the spline spaces considered in this work, S5,1, can be used,
e.g., to exactly integrate the products in the stiffness matrix when the original
splines are C2 cubics (S3,2). The rule is exact, however, it is sub-optimal as
the products belong to S4,1. Nevertheless, this rule offers optimal convergence
for tensor product spaces for second order partial differential equations [38].
Another relevant application where S5,1 appears is when computing areas of
planar curved domains. When these domains are parametrized by C2 cubics

3

(splines used in geometric modeling the most frequently [19]), the unit normals
appearing in the area formula belong exactly to this space.

In the context of isogeometric analysis, quadrature rules for splines are im-
portant tools [1, 21, 22, 24, 28, 34] because they are cheap and elegant alter-
natives to symbolic integration [20]. Recently, alternative methods of building
mass and stiffness matrices have been proposed [27, 28]. They exploit the obser-
vation that, under certain conditions, the optimal convergence rate of the linear
system can be achieved despite the fact that the integration rule is not exact.
In this work, however, we focus on quadrature rules that are exact, that is, the
rules reproduce the integrals under affine mappings exactly up to machine preci-
sion. Another recent alternative for efficient mass and stiffness matrix assembly
is a weighted quadrature that is generated for each row of the mass/stiffness
matrix separately [10].

The computation of the nodes and weights of an Gaussian spline quadrature,
is rather challenging as one has to, first, derive the correct layout of the nodes
and then, typically, to solve non-linear systems of algebraic equations. For
polynomials of degree higher than three, the use of a numerical solver seems
unavoidable. Nevertheless, in this work we derive an optimal, explicit (recursive)
quadrature rule, despite the fact that we deal with degree five polynomials.
We prove that there exists an algebraic factorization in every recursion step
which makes the rule explicit. This is a rather surprising result because the
degree five basis functions yield in our case a curve-curve intersection problem
consisting of two implicit bivariate cubics. Such a scenario might in general
have nine real intersection points. However, we prove that the resultant is of
degree five and only its quadratic component contributes to the real solutions.
Consequently, our rule is explicit and therefore no numerical solver is needed.
We also show numerically, when the number of subintervals grows, that the rule
rapidly converges to the “two-third” rule of Hughes [23].

The rest of the paper is organized as follows. In Section 2, we recall some
basic properties of S5,1 and derive their Gaussian quadrature rules. In Section 3,
the error estimates are given and Section 4 shows some numerical experiments
that validate the theory proposed in this work. Finally, possible extensions of
our method are discussed in Section 5.

2. Gaussian quadrature formulae for C1 quintic splines

In this section we state a few basic properties of S5,1 splines and derive
explicit formulae for computing quadrature nodes and weights for spline spaces
with uniform knot sequences over a finite domain. Throughout the paper, πd
denotes the linear space of polynomials of degree at most d and [a, b] is a non-
trivial real compact interval.

2.1. C1 quintic splines with uniform knot sequences

We detail several properties of spline basis functions. We consider a uni-
form partition Xn = (a = x0, x1, ..., xn−1, xn = b) of the interval [a, b] with n

4

subintervals and define h := 1
n = xk − xk−1 for all k = 1, . . . , n. We denote

by Sn5,1 the linear space of C1 quintic splines over a uniform knot sequence
Xn = (a = x0, x1, ..., xn = b)

Sn5,1 = {f ∈ C1[a, b] : f |(xk−1,xk) ∈ π5, k = 1, ..., n}. (2)

The dimension of the space Sn5,1 is 4n+ 2.

Remark 1. In the B-spline literature [11, 17, 19], the knot sequence is usu-
ally written with knots’ multiplicities. However, in the isogeometric analysis
literature, see e.g., [9, 33], the knot vector is usually split into a vector carry-
ing the partition of the interval and a vector containing continuity information
(knot multiplicity). As in this paper the multiplicity is always four at every
knot, we follow the latter notation and, throughout the paper, write Xn without
multiplicity, i.e., xk < xk+1, k = 0, . . . , n− 1.

Similarly to [2, 32], we find it convenient to work with the non-normalized
B-spline basis. To define the basis, we extend our knot sequence Xn with two
extra knots outside the interval [a, b] in a uniform fashion

x−1 = x0 − h and xn+1 = xn + h. (3)

The choice of x−1 and xn+1 allows us to simplify expressions in Section 2.2, but
this setting does not affect the quadrature rule derived later in Theorem 2.1.
We follow [15] and denote by D = {Di}4n+2

i=1 the basis of Sn5,1 where

D4k−3(t) = [xk−2, xk−2, xk−1, xk−1, xk−1, xk−1, xk](.− t)5+,
D4k−2(t) = [xk−2, xk−1, xk−1, xk−1, xk−1, xk, xk](.− t)5+,
D4k−1(t) = [xk−1, xk−1, xk−1, xk−1, xk, xk, xk](.− t)5+,
D4k(t) = [xk−1, xk−1, xk−1, xk, xk, xk, xk](.− t)5+.

(4)

where [.]f stands for the divided difference and u+ = max(u, 0) is the truncated
power function. The direct computation of the divided differences gives the
following explicit expressions for t ∈ [xk−2, xk−1]

D4k−3(t) = (t−xk−2)
4(xk+8xk−1−9t)

4h6 ,

D4k−2(t) = (t−xk−2)
5

4h6 ,
(5)

and for t ∈ [xk−1, xk]

D4k−3(t) = (xk−t)5
4h6 ,

D4k−2(t) = (xk−t)4(xk−2+8xk−1−9t)
4h6 ,

D4k−1(t) = 10(t−xk−1)
2(xk−t)3

h6 ,

D4k(t) = 10(t−xk−1)
3(xk−t)2

h6 .

(6)

5

xk−2 xk−1 xk xk+1

D4k−3
D4k+2

D4k−1 D4k

Figure 1: Four consecutive knots xk−2, . . . , xk+1 of a uniform knot sequence, each of multiplic-
ity four. Six non-normalized spline basis functions D4k−3, . . . , D4k+2 with non-zero support
on [xk−1, xk] are displayed.

The functions have the following pattern: six basis functions D4k−3, . . . , D4k+2

have non-zero support on [xk−1, xk], moreover, two of them, D4k−1 and D4k,
act only [xk−1, xk] and are scaled Bernstein basis functions, see (6) and Fig. 1.

Among the basic properties of the basis D, we need to recall the fact that
D4k+2(t) ≤ D4k+1(t) for t ∈ [xk−1, xk] for k = 1, . . . , n and are equal at the
knot xk, that is, D4k+1(xk) = D4k+2(xk) = 1

4h . Moreover, we have that

D4k−1(xk−1+xk

2) = D4k(xk−1+xk

2) = 5
16h . From (5) and (6), the integrals of

the basis functions are computed

I[Dk] =
1

6
for k = 3, 4, . . . , 4n, (7)

where I[f] stands for the integral of f over the interval [a, b]. The first and the
last two integrals are

I[D1] = I[D4n+2] =
1

24
and I[D2] = I[D4n+1] =

1

8
. (8)

A less obvious property that binds together four consecutive basis functions,
which is used later for our quadrature rule in Section 2.2, is formalized as follows.

Lemma 2.1. Let Xn = (a = x0, x1, ..., xn = b), be a uniform knot sequence and
for any k = 1, . . . , n define

Pk(t) = 2D4k+1(t)− 2D4k+2(t) +
1

2
D4k−1(t)−D4k(t). (9)

Then Pk(t) ≥ 0 for any t ∈ (xk−1, xk) and Pk(t) = 0 if and only if t = xk−1+xk

2 .

Proof. Over an interval (xk−1, xk), the function Pk is a single quintic polyno-
mial. Therefore, it can be expressed in terms of Bernstein basis and can be
viewed as a Bézier curve on a particular domain, see Fig. 2. Looking at its

6

xk−1
xk−1+xk

2 xk

[xk−1 + 2
10h,

1
8h]

Pk

2D4k+1 − 2D4k+2

D4k+2D4k−1

D4k

1
2D4k−1 −D4k

Figure 2: The linear blend of basis functions (9), Pk, is expressed as a Bézier curve on

[xk−1,
xk−1+xk

2
] with a control point sequence (red dots) with non-negative y-coordinates

(11). Consequently, Pk is non-negative on [xk−1, xk] and has a single root (of multiplicity

two) at
xk−1+xk

2
.

shape, one cannot conclude non-negativity from the control polygon, when con-
sidered on the whole interval (xk−1, xk). Hence we define

P 1
k (t) = Pk(t) on [xk−1,

xk−1+xk

2],

P 2
k (t) = Pk(t) on [xk−1+xk

2 , xk],
(10)

and using h = xk − xk−1 we further write

P 1
k (t) =

5∑
i=0

q1iB
5
i (t), where B5

i (t) =
(
5
i

) (2t−2xk−1

h

)i (
2xk−1+h−2t

h

)5−i
and analogously for P 2

k . The conversion from monomial to Bernstein basis gives
the control points (p10, . . . , p

1
5) of P 1

k over the interval [xk−1, xk−1 + h/2] as

(p10, p
1
1, p

1
2, p

1
3, p

1
4, p

1
5) =

(
0, 0,

1

8h
,

1

16h
, 0, 0

)
(11)

and similarly for P 2
k we obtain

(p20, p
2
1, p

2
2, p

2
3, p

2
4, p

2
5) =

(
0, 0,

1

16h
,

1

4h
,

1

2h
, 0

)
. (12)

Therefore, P 1
k and P 2

k are non-negative on open intervals (xk−1, xk−1+h/2) and
(xk−1 + h/2, xk), respectively. Due to the fact that (p14, p

1
5) = (p20, p

2
1) = (0, 0),

the only root (with multiplicity two) of Pk on (xk−1, xk) is xk−1 + h/2.

7

xk−1
xk−1+xk

2 xk xk+1τi

Pk

2D4k+1 − 2D4k+2

D4k+2
D4k−1

D4k

D4k+4

1
2D4k−1 −D4k

Figure 3: The assumption of existence of a single node τi inside [xk, xk+1] implies τi =
xk+1+xk

2
. Consequently, the rule (13) must return zero for Pk on [xk−1, xk], i.e. Qxk

xk−1
(Pk) =

0. As Pk is non-negative on (xk−1, xk) with one double root
xk−1+xk

2
, this fact violates the

assumption of a single node in (xk, xk+1).

Remark 2.D4k+1−D4k+2, D4k−1, D4k are all positive polynomials on (xk−1, xk)
and therefore there exist infinitely many non-negative blends. However, the ex-
istence of a non-negative blend when the coefficients have to satisfy a certain
constraint is not obvious and the full impact of this particular blend with coeffi-
cients 2, 12 ,−1 will be seen later in Lemma 2.2.

2.2. Gaussian quadrature formulae

In this section, we derive a quadrature rule for the family Sn5,1, see (2).
Similarly to [2], we derive a quadrature rule that is optimal, exact and explicit.

With respect to exactness and optimality, according to [29, 30] there exists
a quadrature rule

Qba(f) :=

2n+1∑
i=1

ωif(τi) ∼=
∫ b

a

f(t)dt (13)

that is exact for every function f from the space Sn5,1. The explicitness follows
from the construction.

Lemma 2.2. Let Xn = (a = x0, x1, ..., xn = b) be a uniform knot sequence.
Each of the intervals Jk = (xk−1, xk) (k = 1, . . . , n) contains at least two nodes
of the Gaussian quadrature rule (13).

Proof. We proceed by induction on the index of the segment Jk. There must
be at least two nodes of the Gaussian quadrature rule inside the interval J1. If
there were no node inside J1, the exactness of the rule would be violated for D1.
If there was only one node, using the exactness of the quadrature rule for D3

and D4, it must have been the midpoint τ1 = (x0+x1)
2 with the weight ω1 = 8

15h.
However, this contradicts exactness of D1 and D2 as D1 < D2 on (x0, x1).

Now, let us assume that every segment Jk, k < n, contains–two or more–
Gaussian nodes and prove that Jk+1 contains at least two nodes too. By con-
tradiction, if there is no node inside (xk, xk+1), the exactness of the quadrature

8

rule (13) for D4k+3 is violated. If there is a single node in (xk, xk+1), due to
the exactness of the quadrature rule (13) for D4k+3 and D4k+4, it must be the

midpoint τi = (xk+xk+1)
2 as it is their only intersection point, see Fig. 3, and

their integrals are equal, see (7), I[D4k+3] = I[D4k+4] = 1
6 . The correspond-

ing weight must be ωi = 8
15h. Moreover D4k+1(τi) − D4k+2(τi) = − 5

64h and
combining with ωi, we have

2ωi(D4k+1(τi)−D4k+2(τi)) = − 1

12
. (14)

Consider a blend Pk(t) = 2D4k+1(t) − 2D4k+2(t) + 1
2D4k−1(t) − D4k(t), see

Fig. 3. As Pk is a blend of basis functions, the rule (13) must integrate it
exactly on [xk−1, xk+1], that is Qxk+1

xk−1(Pk) = I(Pk) = − 1
12 . However, combining

this fact with (14), the rule must return zero when applied to Pk on [xk−1, xk],
i.e. Qxk

xk−1
(Pk) = 0. But due to Lemma 2.1, Pk is non-negative on (xk−1, xk)

with the only root at xk−1+xk

2 , which contradicts the assumption of a single
quadrature node in (xk, xk+1) and completes the proof.

Corollary 1. If n is an even integer, then each of the intervals Jk = (xk−1, xk)
(k = 1, 2, . . . , n) contains exactly two Gaussian nodes and the middle xn/2 =
(a + b)/2 of the interval [a, b] is also a Gaussian node. If n is odd then each
of the intervals Jk = (xk−1, xk) (k = 1, 2, . . . , n; k 6= (n+ 1)/2) contains exactly
two Gaussian nodes, while the interval J(n+1)/2 contains three Gaussian nodes:
the middle (a+ b)/2 and the other two positioned symmetrically with respect to
(a+ b)/2.

Proof. From [30], the optimal quadrature rule (13) is known to require 2n + 1
Gaussian nodes. From Lemma 2.2, we know the location of 2n of them as each
of the intervals Jk contains at least two nodes. The last node must be the
midpoint (a + b)/2. We prove this by contradiction, distinguishing two cases
depending on the parity of n. For n even, if one of the intervals Jk has more
than two nodes then, by symmetry, Jn−k has to contain the same number of
nodes and we exceed 2n + 1, contradicting our quadrature rule (13). For n
odd, let us assume that the middle interval J(n+1)/2 contains exactly two nodes.
Then, by symmetry, at least two of the remaining intervals contain three nodes,
contradicting our quadrature rule (13). Therefore, the middle interval J(n+1)/2

contains exactly three nodes, where the middle one is, again by symmetry, forced
to be the midpoint (a+ b)/2.

With the knowledge of the exact layout of the optimal quadrature nodes, we
now construct a scheme that starts at the boundary of the interval and parses to
its middle, recursively computing the nodes and weights. This process requires
to solve only for the roots of a quadratic polynomial.

Let us denote

αk = τ2k−1 − xk−1, βk = xk − τ2k, (15)

9

xk−1 xkτ2k−1

︷ ︸︸ ︷
aaaaaa

︷ ︸︸ ︷
aaaaaaaaaaaaaaaaaaa

τ2k

h

αk βk

aaa︸ ︷︷ ︸
Figure 4: Notation on [xk−1, xk].

where τ2k−1 and τ2k, τ2k−1 < τ2k, are the two quadrature nodes on (xk−1, xk),
k = 1, . . . , [n/2] + 1, see Fig. 4. Keeping in mind h = xk − xk−1, we have

xk − τ2k−1 = h− αk, τ2k − xk−1 = h− βk. (16)

Let ω2k−1 and ω2k be the corresponding weights of the Gaussian quadrature rule
over the interval (xk−1, xk). The exactness requirement of the rule when applied
to D4k−1 and D4k, see (6) and (7), gives the following algebraic constraints

ω2k−1α
2
k(h− αk)3 + ω2k(h− βk)2β3

k =
h6

60
,

ω2k−1α
3
k(h− αk)2 + ω2k(h− βk)3β2

k =
h6

60
.

(17)

The exactness of the rule when applied on D4k−3 and D4k−2, respectively, gives

ω2k−1(h− αk)5 + ω2kβ
5
k = 4h6r4k−3,

ω2k−1

(
5(h− αk)4

2h5
− 9(h− αk)5

4h6

)
+ ω2k

(
5β4

k

2h5
− 9β5

k

4h6

)
= r4k−2,

(18)

where r4k−3 and r4k−2 are the residues between the exact integrals, see (7) and
(8), and the result of the rule when applied to D4k−3 and D4k−2 on the previous
interval [xk−2, xk−1], respectively. That is

r4k−3 = I[D4k−3]−Qxk−1
xk−2

(D4k−3),

r4k−2 = I[D4k−2]−Qxk−1
xk−2

(D4k−2).
(19)

Due to the fact that both (17) and (18) are linear in ω2k−1 and ω2k, their
elimination from (17) gives

ω2k−1 =
h5(h− 2βk)

60α2
k(h− αk)2(h− αk − βk)

,

ω2k =
h5(h− 2αk)

60β2
k(h− βk)2(h− αk − βk)

,

(20)

and from (18) we obtain

ω2k−1 =
−2h5(9βkr4k−3 − 10hr4k−3 + βkr4k−2)

5(h− αk)4(h− αk − βk)
,

ω2k =
−2h5(hr4k−3 + αkr4k−2 + 9r4k−3αk − hr4k−2)

5β4
k(h− αk − βk)

.

(21)

10

β1

0 h α1

Φ1(α1, β1) = 0

Ψ1(α1, β1) = 0

∗
∗

Figure 5: The algebraic system (22) over the domain (0, h)× (0, h) (grey) for the first (k = 1)
subinterval [x0, x1] is shown. The two intersection points correspond to the two Gaussian
nodes on [x0, x1] and are computed by projection onto α1-axis using the resultant. The
coordinates of the intersection points with respect to α1-axis are the roots of the quadratic
polynomial (24).

Equating ω2k−1 and ω2k from (20) and (21) we obtain

Φk(αk, βk) = 0,

Ψk(αk, βk) = 0,
(22)

an algebraic system of degree three with the unknowns αk and βk. Solving this
non-linear system of two equations with two unknowns can be interpreted as the
intersection problem of two algebraic curves, see Fig. 5. The domain of interest
is (0, h)× (0, h) as both quadrature points lie inside (xk−1, xk).

Using the resultant, see e.g. [14], of these two algebraic curves in the di-
rection of βk, one obtains a univariate polynomial, in general, of degree nine.
Interestingly, our system (22) produces–for all admissible residues r4k−3 and
r4k−2–only a quintic polynomial Ek(αk) that gets factorized over R as

Resβk
(Φk(αk, βk),Ψk(αk, βk)) = Ek(αk) = Qk(αk)Ck(αk), (23)

where Qk is a quadratic factor and the vector of its coefficients with respect to
the monomial basis, qkmo = (qk0 , q

k
1 , q

k
2), is–in terms of the residues–expressed as

qk2 = 1− 480r4k−3 + 576r24k−3 + 576r24k−2 − 1152r4k−2r4k−3,

qk1 = 2h(12r4k−2 + 108r4k−3 − 1),

qk0 = h2(1− 24r4k−2 + 24r4k−3),

(24)

and for the vector of monomial coefficients ckmo = (ck0 , c
k
1 , c

k
2 , c

k
3) of the cubic

factor Ck we obtain

ck3 = −216r4k−3 − 24r4k−2 + 2,

ck2 = h(24r4k−2 − 24r4k−3 − 5),

ck1 = 4h2,

ck0 = −h3.

(25)

11

τn+1 τn+2τn

xm−2 xm−1 xm xm+1

Figure 6: The situation for odd n on the middle interval Jm = [xm−1, xm]. The node τn+1

is the middle of the interval, τn and τn+2 are computed from (32).

We recall that two roots of Ek defined in (23) determine the two quadra-
ture nodes that lie inside [xk−1, xk]. Interestingly, the cubic factor does not
contribute to the computation of the nodes which is formalized as follows.

Lemma 2.3. The cubic polynomial Ck defined in (25) has no roots inside [0, h].

A proof can be found in Appendix.

We now proceed to the main contribution of the paper: a recursive algorithm
that computes the nodes and the weights of the Gaussian quadrature for uniform
C1 quintic splines. Due to Lemma 2.3, the recursion operates in a closed form
fashion by solving for the roots of quadratic polynomials (24). Before we state
the theorem, we need to establish some notation.

Let us denote by Ak and Bk, k = 2, . . . , [n/2] + 1, the actual values of
residues (19) when being evaluated at the nodes τ2k−3 and τ2k−2 on the interval
[xk−2, xk−1], i.e.,

Ak = I[D4k−3]− ω2k−3D4k−3(τ2k−3)− ω2k−2D4k−3(τ2k−2),

Bk = I[D4k−2]− ω2k−3D4k−2(τ2k−3)− ω2k−2D4k−2(τ2k−2),
(26)

and the coefficients of the quadratic polynomial (24) become

ak = 1− 480Ak + 576A2
k + 576B2

k − 1152BkAk,

bk = 2h(12Bk + 108Ak − 1),

ck = h2(1− 24Bk + 24Ak).

(27)

In the case when n is odd, see Fig. 6, the middle subinterval contains three
nodes and the algebraic system that needs to be solved results in a quadratic
polynomial with the following coefficients

ãm = −2(108Am + 12Bm + 1),

b̃m = 2h(108Am + 12Bm − 1),

c̃m = h2(12Am − 12Bm + 1).

(28)

We are now ready to formalize the main theorem.

Theorem 2.1. The sequences of nodes and weights of the Gaussian quadrature
rule (13) are given explicitly by the initial values A1 = 1

24 and B1 = 1
8 and the

recurrence relations (k = 1, ..., [n/2]) for the nodes

τ2k−1 = xk−1 +
−bk−

√
b2k−4akck
2ak

and τ2k = xk −
−bk+

√
b2k−4akck
2ak

(29)

12

and for the weights

ω2k−1 =
h5(2τ2k − 2xk−1 − h)

60(τ2k−1 − xk + h)2(xk − τ2k−1)2(τ2k − τ2k−1)
,

ω2k =
h5(2xk − 2τ2k−1 − h)

60(xk−1 − τ2k + h)2(τ2k − xk−1)2(τ2k − τ2k−1)
.

(30)

If n is even (n = 2m), then τn+1 = xm = (a+ b)/2 and

ωn+1 = 4h(
1

6
−Am+1). (31)

If n is odd (n = 2m− 1), then τn+1 = (a+ b)/2,

τn = xm−1 +
−b̃m−

√
b̃2m−4ãmc̃m
2ãm

and τn+2 = xm − −b̃m+
√
b̃2m−4ãmc̃m
2ãm

(32)

and the corresponding weights are

ωn = ωn+2 =
h(108Am + 12Bm − 1)2

30(156Am − 36Bm + 1)
,

ωn+1 =
4h(1152AmBm + 264Am − 576A2

m − 576B2
m − 24Bm + 1)

15(156Am − 36Bm + 1)
.

(33)

Proof. We proceed by induction. Assume the quadrature nodes (τ2l−1, τ2l) and
weights (ω2l−1, ω2l) are known for l = 1, . . . , k− 1 (k ≤ [n/2]) and compute the
new ones on (xk−1, xk). For k = 1, as there are no nodes on (x−1, x0), (26)
gives A1 = I[D1] = 1

24 and B1 = I[D2] = 1
8 . By Corollary 1, there are exactly

two nodes inside (xk−1, xk). Due to Lemma 2.3, only the roots of the quadratic
factor in (23) contribute to the computation of the nodes and hence solving
Qk(αk) = 0 with coefficients from (27) gives αk and βk. Combining these with
(15) results in (29). The weights are computed from (20) using the identities
(15) and (16). By Corollary 1, we have τn+1 = (a+ b)/2. If n is even, using the
exactness of the quadrature for D2n+1, the associated weight is computed from

1

6
= I[D2n+1] = Am+1 + ωn+1D2n+1(τn+1). (34)

Evaluating D2n+1((a+ b)/2) = 1
4h gives (31). If n is odd, due Corollary 1, there

are three nodes inside (xm−1, xm); one is the middle point (a + b)/2 and the
other two are symmetric with respect to it, see Fig. 6. Using the notation of
(15) for the middle interval, i.e., αm = τ2m−1 − xm−1, the rule must integrate
exactly D4m−3, D4m−2 and D4m−1 which gives the following 3 × 3 algebraic
system

(h−αm)5+α5
m

4h6 ωn + 1
128hωn+1 = Am,

(h−αm)4(9αm+h)+α4
m(10h−9αm)

4h6 ωn + 11
128hωn+1 = Bm,

10α2
m(h−αm)2

h5 ωn + 5
16hωn+1 = 1

6 ,

(35)

13

Algorithm 1 GaussianQuadrature([a, b], n)

1: INPUT: compact interval [a, b] and number of uniform segments n

2: A1 = 1
24 ; B1 = 1

8 ;
3: for k = 1 to [n/2] do
4: compute τ2k−1, τ2k from (29), and ω2k−1, ω2k from (30);
5: end for
6: τn+1 = (a+ b)/2; /* middle node */

7: if n is even then
8: compute ωn+1 from (31);
9: else

10: compute τn and τn+2 from (32) and ωn, ωn+1 and ωn+2 from (33);
11: end if
12: for k = 1 to [n/2] do
13: τ2n−2k+3 = τ2k−1; τ2n−2k+2 = τ2k; /*symmetry */

14: ω2n−2k+3 = ω2k−1; ω2n−2k+2 = ω2k;
15: end for
16: OUTPUT: {τi, ωi}2n+1

i=1 , set of nodes and weights of the Gaussian quadra-
ture for Sn5,1 on interval [a, b];

with unknowns αm, ωn and ωn+1. Eliminating ωn+1 from the first two and
second two equations, respectively, and solving for ωn we obtain

ωn =
2h5(11Am −Bm)

5(h2 − 2hαm + 2α2
m)(h− 2αm)2

=
h5(240Bm − 11)

60(h2 + 9hαm − 9α2
m)(h− 2αm)2

and the problem reduces to solving for the roots of a univariate (rational) func-
tion in αm. The numerator is a quadratic polynomial with coefficients (28)
which proves (32). Inserting (28) into (35) and solving for ωn and ωn+1 then
gives (33) and completes the proof.

For the convenience, we summarize the recursion in Algorithm 1.

3. Error estimation for the C1 quintic splines quadrature rule

In the previous section, we have derived a quadrature rule that exactly inte-
grates functions from Sn5,1 with uniform knot sequences. If f is not an element
of Sn5,1, the rule produces a certain error, also known as remainder. The analysis
of this error is the objective of this section.

Let W r
1 = {f ∈ Cr−1[a, b]; f (r−1)abs. cont., ||f (r)||L1

< ∞}. As the
quadrature rule (13) is exact for polynomials of degree at most five, for any
element f ∈W d

1 , d ≥ 6, we have

R2n+1[f] := I[f]−Qba[f] =

∫ b

a

K6(R2n+1; t)f (6)(t)dt,

14

where the Peano kernel [20] is given by

K6(R2n+1; t) = R2n+1

[
(t− .)5+

5!

]
.

An explicit representation for the Peano kernel over the interval [a, b] in terms
of the weights and nodes of the quadrature rule (13) is given by

K6(R2n+1; t) =
(t− a)6

720
− 1

120

2n+1∑
k=1

ωk(t− τk)5+. (36)

Moreover, according to a general result for monosplines and quadrature rules
[30], the only zeros of the Peano kernel over (a, b) are the knots of multiplicity
four of the quintic spline. Therefore, for any t ∈ (a, b), K6(R2n+1; t) ≥ 0 and,
by the mean value theorem for integration, there exists a real number ξ ∈ [a, b]
such that for f ∈ C6[a, b]

R2n+1(f) = c2n+1,6f
(6)(ξ) with c2n+1,6 =

∫ b

a

K6(R2n+1; t)dt. (37)

Hence, the constant c2n+1,6 of the remainder R2n+1 is always positive and our
quadrature rule belongs to the family of positive definite quadratures of order
6, e.g., see [31, 32, 35]. Integration of (36) gives

Theorem 3.1. The error constant c2n+1,6 in (37) of the quadrature rule (13)
is given by

c2n+1,6 =
(b− a)7

5040
− 1

720

2n+1∑
k=1

ωk(τk − a)6. (38)

As a direct consequence of Theorem 3.1 and (37), one can upper bound the
error of the quadrature rule, (29) and (30), when applied to a function f in W r

1

that does not belong to Sn5,1. This requires only to have a bound of f (6) on
[a, b].

4. Numerical Experiments

In this section, we show some examples of quadrature nodes and weights for
particular numbers of subintervals and discuss the asymptotic behavior of the
rule for n→∞.

In the case when the domain is the whole real line, the exact and optimal
rule is easy to compute. Similarly to [23], Eq.(29), where the rule was derived
for S4,1, for S5,1 case one obtains∫

R
f(t) dt =

∑
i∈Z

h(
7

15
f(ih) +

8

15
f(

2i+ 1

2
h)), (39)

that is, the nodes are the knots and the middles of the subintervals. Similarly
to [23], only two evaluations per subinterval are needed which gives 2/3 cost

15

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

odd

n = 3

0 1 2 3 4
0.1

0.2

0.3

0.4

0.5

0.6

even

n = 4

[τ3, ω3]

[τ4, ω4]

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6 n = 5

...

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6 n = 6

...

0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6 n = 15

0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6 n = 16

Figure 7: The quadrature rules (13) for various n are shown. The interval is set [a, b] =
[0, n], i.e., the distance between the neighboring knots is normalized to h = 1. The green
dots visualize the quadrature; the x-coordinates are the nodes and the y-coordinates the
corresponding weights. As n→∞, the nodes converge to the knots and the midpoints of the
subintervals, the weights converge to 0.46 and 0.53 (black lines), cf. Table 1 and (39).

reduction ratio when compared to the classical Gaussian quadrature for poly-
nomials. Observe the convergence of our general uniform rule to its limit, (39),
when n → ∞. The weights and nodes are shown in Table 1, see also Fig. 7.
Only few initial nodes and weights differ from the limit values as 7

15 = 0.46 and
8
15 = 0.53. From Table 1 we conclude that for large values of n, one needs to
compute only the first nine nodes and weights that differ from the limit values

16

Table 1: Nodes and weights for Gaussian quadrature (13) with double-precision for
various n are shown. To observe the convergence to (39), the interval was set as
[a, b] = [0, n]. Due to the symmetry, only the first n + 1 nodes and weights are
displayed.

n = 5 n = 6

i τi ωi τi ωi

1 0.1225148226554413 0.3020174288145723 0.1225148226554413 0.3020174288145723

2 0.5441518440112252 0.4850196082224646 0.5441518440112252 0.4850196082224646

3 1.0064654716056596 0.4467177201362911 1.0064654716056596 0.4467177201362911

4 1.5002730728687338 0.5330387209380418 1.5002730728687338 0.5330387209380418

5 2.0000387957905171 0.4665398664562177 2.0000387972956304 0.4665398713719121

6 2.5 0.5333333108648244 2.5000000105321137 0.5333333220982075

7 – – 3 0.4666666568370204

n = 7 n = 8

1 0.1225148226554413 0.3020174288145723 0.1225148226554413 0.3020174288145723

2 0.5441518440112252 0.4850196082224646 0.5441518440112252 0.4850196082224646

3 1.0064654716056596 0.4467177201362911 1.0064654716056596 0.4467177201362911

4 1.5002730728687338 0.5330387209380418 1.5002730728687338 0.5330387209380418

5 2.0000387972956304 0.4665398713719121 2.0000387972956304 0.4665398713719121

6 2.5000000105321137 0.5333333220982075 2.5000000105321137 0.5333333220982075

7 3.0000000015045261 0.4666666617518435 3.0000000015045293 0.4666666617518435

8 3.5 0.5333333333333333 3.5000000000000000 0.5333333333333333

9 – – 4 0.4666666666666665

n = 9 n = 10

1 0.1225148226554413 0.3020174288145723 0.1225148226554413 0.3020174288145723

2 0.5441518440112252 0.4850196082224646 0.5441518440112252 0.4850196082224646

3 1.0064654716056596 0.4467177201362911 1.0064654716056596 0.4467177201362911

4 1.5002730728687338 0.5330387209380418 1.5002730728687338 0.5330387209380418

5 2.0000387972956304 0.4665398713719121 2.0000387972956304 0.4665398713719121

6 2.5000000105321137 0.5333333220982075 2.5000000105321137 0.5333333220982075

7 3.0000000015045293 0.4666666617518435 3.0000000015045293 0.4666666617518435

8 3.5000000000000000 0.5333333333333333 3.5000000000000000 0.5333333333333333

9 4.0000000000000000 0.4666666666666666 4.0000000000000000 0.4666666666666665

10 4.5 0.5333333333333333 4.5000000000000000 0.5333333333333333

11 – – 5.0000000000000000 0.4666666666666666

by more than ε = 10−16.

5. Conclusion

We have presented a recursive algorithm that computes quadrature nodes
and weights for spaces of quintic splines with uniform knot sequences over finite
domains. The presented quadrature is explicit, that is, in every step of the
recursion the new nodes and weights are computed in closed form, without using

17

a numerical solver. The number of nodes per subinterval is two and hence the
cost reduction compared to the classical Gaussian quadrature for polynomials
is 2/3. For 3D problems where tensor product rules are used, this integration
cost reduction ratio is only (2

3)3
.
= 27%.

We have also shown numerically that in the limit, when the length of the
interval goes to infinity, our rule converges to the “two-third rule” of Hughes et
al. [23] that is known to be exact and optimal over the real line.

For C1 splines, our quadrature rule is optimal (Gaussian), that is, it requires
minimal number of evaluations. However, it is still exact for any quintic splines
with higher continuity than C1 and therefore can be safely applied in such a
space.

Acknowledgements

The first and the third author have been supported by the Center for Nu-
merical Porous Media at King Abdullah University of Science and Technology
(KAUST) and the European Union’s Horizon 2020 Research and Innovation
Program of the Marie Skodowska-Curie grant agreement No. 644202. The
first author has been partially supported by the Basque Government through
the BERC 2014-2017 program, by Spanish Ministry of Economy and Compet-
itiveness under Grant MTM2016-76329-R. The third author as been partially
supported by National Priorities Research Program grant 7-1482-1-278 from the
Qatar National Research Fund (a member of The Qatar Foundation).

References

[1] C. Adam, T.J.R. Hughes, S. Bouabdallah, M. Zarroug, and H. Maitournam.
Selective and reduced numerical integrations for NURBS-based isogeomet-
ric analysis. Computer Methods in Applied Mechanics and Engineering,
284:732–761, 2015.

[2] R. Ait-Haddou, M. Bartoň, and V.M. Calo. Explicit Gaussian quadrature
rules for C1 cubic splines with symmetrically stretched knot sequences.
Journal of Computational and Applied Mathematics, 290:543–552, 2015.

[3] M. Aizenshtein, M. Bartoň, and G. Elber. Global solutions of well-
constrained transcendental systems using expression trees and a single so-
lution test. Computer Aided Geometric Design, 29(5):265 – 279, 2012.

[4] K. E. Atkinson. A Survey of Numerical Methods for the Solution of Fred-
holm Integral Equations of the Second Kind. SIAM, Philadelphia, 1976.

[5] F. Auricchio, F. Calabrò, T. J. R. Hughes, A. Reali, and G. Sangalli. A
simple algorithm for obtaining nearly optimal quadrature rules for NURBS-
based isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 249-252(1):15–27, 2012.

18

[6] M. Bartoň and V.M. Calo. Gauss–Galerkin quadrature rules for quadratic
and cubic spline spaces and their application to isogeometric analysis.
Computer-Aided Design, 82:57–67, 2017.

[7] M. Bartoň and V.M. Calo. Gaussian quadrature for splines via homotopy
continuation: rules for C2 cubic splines. Journal of Computational and
Applied Mathematics, 296:709–723, 2016.

[8] M. Bartoň and V.M. Calo. Optimal quadrature rules for odd-degree spline
spaces and their application to tensor-product-based isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering, 305:217–240,
2016.

[9] A. Buffa, J. Rivas, G. Sangalli, and R. Vazquez. Isogeometric discrete
differential forms in three dimensions. SIAM J. Numer. Anal., 49:818–844,
2011.

[10] F. Calabrò, G. Sangalli, and M. Tani. Fast formation of isogeometric
Galerkin matrices by weighted quadrature. Computer Methods in Applied
Mechanics and Engineering, 2016.

[11] E. Cohen, R. F. Riesenfeld, and G. Elber. Geometric Modeling with Splines:
An Introduction. A. K. Peters, 2001.

[12] N.O. Collier, L. Dalcin, and V. M. Calo. PetIGA: High-performance isoge-
ometric analysis. http://arxiv.org/abs/1305.4452, 2013.

[13] J. A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis:
Toward Integration of CAD and FEA. John Wiley & Sons, 2009.

[14] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer,
2005.

[15] H. B. Curry and I.J. Schoenberg. On Pólya frequency functions IV: the
fundamental spline functions and their limits. J. Analyse Math., 17:71–107,
1966.

[16] L. Dalcin and N. Collier. Petiga: High performance isogeometric analysis.
https://bitbucket.org/dalcinl/petiga, 2012.

[17] C. de Boor. On calculating with B-splines. Journal of Approximation
Theory, 6(1):50–62, 1972.

[18] G. Elber and M.S. Kim. Geometric constraint solver using multivariate
rational spline functions. SMA ’01 Proceedings of the sixth ACM symposium
on Solid modeling and applications, pages 1 – 10, 2001.

[19] G. Farin, J. Hoschek, and M. S. Kim. Handbook of Computer Aided Geo-
metric Design. Elsevier, Amsterdam, 2002.

[20] W. Gautschi. Numerical Analysis. Springer, 1997.

19

[21] R. Hiemstra, F. Calabrò, and T.J.R. Schillinger, D.and Hughes. Optimal
and reduced quadrature rules for tensor product and hierarchically refined
splines in isogeometric analysis. Computer Methods in Applied Mechanics
and Engineering, 2016.

[22] M. Hillman, J.S. Chen, and Y. Bazilevs. Variationally consistent domain
integration for isogeometric analysis. Computer Methods in Applied Me-
chanics and Engineering, 284:521–540, 2015.

[23] T.J.R. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-
based isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 199(58):301 – 313, 2010.

[24] K.A. Johannessen. Optimal quadrature for univariate and tensor product
splines. Computer Methods in Applied Mechanics and Engineering, 2016.

[25] P. Köhler and G. Nikolov. Error bounds for Gauss type quadrature formulae
related to spaces of splines with equidistant knots. Journal of Approxima-
tion Theory, 81:368–388, 1995.

[26] P. Köhler and G. Nikolov. Error bounds for optimal definite quadrature
formulae. Journal of Approximation Theory, 81:397–405, 1995.

[27] A. Mantzaflaris and B. Jüttler. Exploring matrix generation strategies in
isogeometric analysis. In International Conference on Mathematical Meth-
ods for Curves and Surfaces, pages 364–382. Springer, 2012.

[28] A. Mantzaflaris and B. Jüttler. Integration by interpolation and look-up
for galerkin-based isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering, 284:373–400, 2015.

[29] C. Micchelli. The fundamental theorem of algebra for monosplines with
multiplicities. Lineare Operatoren und Approximation, pages 419–430,
1972.

[30] C.A. Micchelli and A. Pinkus. Moment theory for weak Chebyshev systems
with applications to monosplines, quadrature formulae and best one-sided
l1 approximation by spline functions with fixed knots. SIAM J. Math.
Anal., 8:206 – 230, 1977.

[31] G. Nikolov. Asymptotically optimal definite quadrature formulae. ZAMM
SII, 75:653 – 654, 1995.

[32] G. Nikolov. On certain definite quadrature formulae. Journal of Compu-
tational and Applied Mathematics, 75(2):329 – 343, 1996.

[33] A. Sarmiento, D. Garcia, L. Dalcin, N. Collier, and V. M. Calo. Micropolar
fluids using B-spline divergence conforming spaces. In Procedia Computer
Science, volume 29, pages 991–1001, 2014.

20

[34] D. Schillinger, S. Hossain, and T.J.R. Hughes. Reduced bézier element
quadrature rules for quadratic and cubic splines in isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering, 277:1–45, 2014.

[35] G. Schmeisser. Optimale Quadraturformeln mit semidefiniten Kernen. Nu-
mer. Math., 20:32 – 53, 1972.

[36] E.C. Sherbrooke and N.M. Patrikalasis. Computation of the solutions
of nonlinear polynomial systems. Computer Aided Geometric Design,
10(5):379 – 405, 1993.

[37] I. H. Sloan. A quadrature-based approach to improving the collocation
method. Numerische Mathematik, 54(1):41 – 56, 1988.

[38] G. Strang and G.J. Fix. An analysis of the finite element method, volume
212. Prentice-hall Englewood Cliffs, NJ, 1973.

21

Appendix

Proof of Lemma 2.3. Without loss of generality, we may assume h = 1 as the
roots of Ck change with scaling factor h, cf. (25). The cubic Ck can be split
into two summands fk and gk, the first independent and the latter dependent
on r4k−3 and r4k−2, i.e.

fk = 2t3 − 5t2 + 4t− 1 = (t− 1)2(t− 1

2
),

gk = (−216r4k−3 − 24r4k−2)t3 + (24r4k−2 − 24r4k−3)t2

= −24t2(t− r4k−2 − r4k−3
9r4k−3 + r4k−2

)

(40)

We show that Ck(t) < 0 on [0, 1]. We denote by ξg the non-zero root of gk,

ξg =
r4k−2 − r4k−3
9r4k−3 + r4k−2

,

and consider the particular subdivision of [0, 1] into 1) [0, ξg], 2) [ξg,
1
2], and 3)

[12 , 1]. We investigate Ck on each of these three subintervals separately:
Case 3) We express Ck in Bernstein (B) basis and show all its coefficients

are negative. Let T[12 ,1] be the transformation matrix [19] from monomial to

Bernstein basis on [12 , 1]

T[12 ,1] =


1 1 1 1
1
2

2
3

5
6 1

1
4

5
12

2
3 1

1
8

1
4

1
2 1

 , (41)

and let ckB = (cB0 , c
B
0 , c

B
0 , c

B
0) be the vector of Bernstein coefficients. Then the

conversion is given by ckB = ckmoT[12 ,1] and we obtain

cB0 = −33r4k−3 + 3r4k−2,

cB1 =
1

12
− 64r4k−3 + 4r4k−2,

cB2 = −124r4k−3 + 4r4k−2,

cB3 = −240r4k−3.

(42)

Looking at the cBi coefficients, we start with the second one and prove that
64r4k−3 − 4r4k−2 >

1
12 . We know that r4k−3 and r4k−2 are by definition both

positive and also r4k−2 > r4k−3, which is a direct consequence of D4k+1(t) >
D4k+2(t) on (xk−1, xk), and also r4k−3, r4k−2 <

1
6 . Consider the blend Pk(t)

from Lemma 2.1. Pk(t) ≥ 0 gives polynomial inequality 2D4k+1(t)−2D4k+2(t)+
1
2D4k−1(t) ≥ D4k(t). By evaluating both sides at the two nodes and by multi-
plying with corresponding weights, i.e., by applying the quadrature rule Q on
[xk−1, xk], we obtain

2(4r4k−3 − r4k−2) +
1

12
≥ 1

6
(43)

22

because D4k−1 and D4k act only on this interval and hence the rule reproduces
their integrals exactly. Combining (43) with r4k−3 > 0 proves the desired in-
equality. Moreover, combining (43) with 1

6 > r4k−2 gives

16r4k−3 > 5r4k−2, (44)

and the other three inequalities follow directly from (44) and the fact r4k−3 > 0.
Case 1) Similarly to case 3), we compute the cBi coefficients and show that

all are negative. The conversion is given by ckB = ckmoT[0,ξg], where

T[0,ξg] =


1 1 1 1

0 1
3ξg

1
2ξg ξg

0 0 1
3ξ

2
g ξ2g

0 0 0 ξ3g

 (45)

is the corresponding transformation matrix. We obtain ckB = (cB0 , c
B
1 , c

B
2 , c

B
3)

cB0 = −1,

cB1 =
−31r4k−3 + r4k−2
3(9r4k−3 + r4k−2)

,

cB2 = −4

3

80r24k−3 − 5r4k−3r4k−2 + 6(r4k−3 − r4k−2)3

(9r4k−3 + r4k−2)2
,

cB3 =
−100r24k−3(11r4k−3 − r4k−2)

(9r4k−3 + r4k−2)3
.

(46)

Negativity of cB1 and cB3 follows directly from (44). It remains to prove

80r24k−3 − 5r4k−3r4k−2 + 6(r4k−3 − r4k−2)3 > 0,

which using (44) and r4k−2 > r4k−3 simplifies to

64r24k−3 > 6r34k−2,

which again follows from (44) using r4k−2 <
1
6 .

Case 2) fk has a double root at t = 1 and gk has a double root at t = 0. For
the third root, it holds

r4k−2 − r4k−3
9r4k−3 + r4k−2

<
1

2
(47)

which follows from (44). From case 3), we know gk(1
2) = −33r4k−3 + 3r4k−2

and from case 1) fk(ξg) = cB3 that are both negative. Moreover, we know
that fk is monotonically increasing while gk is monotonically decreasing on
(ξg,

1
2). Therefore fk(t) < 0 on [ξg,

1
2) and gk < 0 on (ξg,

1
2] which completes

the proof.

23

