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Abstract

This paper examines convergence and stability of the two classes of theta-Milstein schemes

for stochastic differential equations (SDEs) with non-global Lipschitz continuous coefficients:

the split-step theta-Milstein (SSTM) scheme and the stochastic theta-Milstein (STM) scheme.

For θ ∈ [1/2, 1], this paper concludes that the two classes of theta-Milstein schemes converge

strongly to the exact solution with the order 1. For θ ∈ [0, 1/2], under the additional linear

growth condition for the drift coefficient, these two classes of the theta-Milstein schemes are also

strongly convergent with the standard order. This paper also investigates exponential mean-

square stability of these two classes of the theta-Milstein schemes. For θ ∈ (1/2, 1], these two

theta-Milstein schemes can share the exponential mean-square stability of the exact solution.

For θ ∈ [0, 1/2], similar to the convergence, under the additional linear growth condition, these

two theta-Milstein schemes can also reproduce the exponential mean-square stability of the

exact solution.
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1 Introduction

During the last decades, SDEs have become increasingly important tools to describe the real world

since stochastic models have wide applications in biological systems, neural network, financial

engineering and wireless communications. Most SDEs cannot be solved explicitly, so numerical

approximations become important tools to study stochastic models. When a numerical scheme is

put forward, it is crucial that this numerical scheme can converge to the exact solution. Moreover,

it also need to describe the asymptotic properties of the exact solution such as boundedness and

stability.

Most of the existing convergence theory for numerical methods of SDEs requires the global

Lipschitz condition (see [1–3]). However, many well-known stochastic systems do not satisfy the

global Lipschitz condition, for example, the stochastic Duffing-van der Pol oscillator [4,5], stochastic

Lorenz equation [5, 6], experimental psychology model [5], stochastic Ginzburg-Landau equation

[1, 5], stochastic Lotka-Volterra equations [1, 5, 7] and volatility processes [1, 5] and so on. For

some SDEs without the global Lipschitz condition, the classical explicit numerical schemes may

not converge to the exact solution in the strong mean-square sense (for example Euler-Maruyama

(EM) scheme and Milstein scheme, please see [8, 9]). Hence, numerical approximations for SDEs

without the global Lipschitz condition have received more and more attention in recent years.

For the SDEs with the one-sided Lipschitz condition (which is weaker than the global Lipschitz

condition) on the drift term and the global Lipschitz condition on the diffusion term, Hu [10]

examined convergence of the backward Euler-Maruyama (BEM) scheme and obtained that the

optimal rate of convergence is 0.5. Under an additional polynomial condition, Higham et al. [11,12]

and Bastani et al. [13] proved that BEM and split-step BEM schemes converge strongly to the exact

solution with the optimal rate 0.5. Mao and Szpruch [14] showed that under a dissipative condition

on the drift coefficient and the super linear growth condition on the diffusion coefficient, the BEM

scheme is convergent with strong order of a half. Under a monotone condition, strong convergence

of BEM scheme and theta-EM scheme were investigated by [15, 16]. Recently, there are various

explicit Euler schemes with one half order were proposed to approximate the SDEs with non-global

Lipschitz coefficients, see [17–20] and the references therein. However, it is still an important and

difficult work to look for more appropriate conditions to obtain the strong convergence rate of the

numerical schemes for SDEs without the global Lipschitz condition.

The explicit Milstein scheme for SDEs developed by Milstein [2] can obtain a strong order of

convergence higher than Euler-type schemes. Hu et al. [21] extended this scheme to solve SDEs with

time delay. Implicit Milstein schemes under the global Lipschitz condition were studied by Tian and

Burrage [22], Wang et al. [23], Alcock & Burrage [24]. The tamed Milstein scheme was investigated

in [25] for SDEs with non-global Lipschitz coefficients. Recently, Higham et al. [26] proposed a new

Milstein scheme, named as (θ, σ)-Milstein scheme, and investigated its strong convergence when

SDEs hold polynomial growth for the diffusion term. However, the strong convergence rates of

the implicit Milstein schemes for SDEs with non-global Lipschitz coefficients has not yet been well

investigated.
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Stability of numerical solutions is another central problem for numerical analysis. The mean-

square stability of numerical methods for linear stochastic differential equations have been studied

by [27–29]. For nonlinear SDEs, Higham et al. [30] showed that the BEM and the split-step BEM can

reproduce the mean-square exponential stability of the exact solution. Recently, without the global

Lipschitz, Huang [31] and authors [32, 33] presented conditions under which the stochastic theta

method and split-step theta method can not only reproduce the exponential mean-square stability

of the exact solution, but also preserve the bound of the Lyapunov exponent for sufficient small

stepsize, which measures the decay rate of the numerical solutions. However, there is little work

on the mean-square stability of the theta-Milstein schemes for SDEs with non-Lipschitz continuous

coefficients.

The main aim is to examine the boundedness and the convergence rate as well as the expo-

nential mean-square stability of theta Milstein schemes for SDEs with non-Lipschitz continuous

coefficients. This paper is organized as follows. The next section presents some necessary nota-

tions and preliminaries, and then introduces the stochastic theta-Milstein scheme and the split-step

theta-Milstein scheme. Section 3 establishes the uniform boundedness of the pth moments of the

theta-Milstein schemes and shows that for θ ∈ [1/2, 1], these two classes of theta-Milstein schemes

are bounded in the sense of moment, but for θ ∈ [0, 1/2], the linear growth condition on drift is

added to obtain the moment boundedness of the theta-Milstein schemes. Section 4 proves that the

theta-Milstein schemes strongly converge to the exact solution with the order 1. The final section

investigates the exponential mean-square stability of these two classes of theta-Milstein schemes.

2 Notations and preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let | · | denote
both the Euclidean norm in R

n. If x is a vector, its transpose is denoted by xT and the inner

product is denoted by 〈x, y〉 = xT y for x, y ∈ R
n. a ∨ b represents max{a, b} and a ∧ b denotes

min{a, b}. N+ represents the positive integer set, namely, N+ = {1, 2, 3, . . .}. Let (Ω,F,P) be a

complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions, that is, it is

right continuous and increasing while F0 contains all P-null sets. Let (w(t))t≥0 be a one-dimensional

Brownian motion defined on this probability space.

Let f, g : Rn 7→ R
n be Borel measurable functions. Let us consider the n-dimensional SDE of

the form

dx(t) = f(x(t))dt+ g(x(t))dw(t), t > 0 (2.1)

with initial data x(0) = x0 ∈ R
n. Assume that f and g satisfy the following assumption:

Assumption 2.1. Assume that the functions f, g ∈ C1 and there exist constants µ ∈ R and c > 0

such that for any x, y ∈ R
n

〈x− y, f(x)− f(y)〉 ≤ µ|x− y|2, (2.2)

|g(x) − g(y)|2 ≤ c|x− y|2. (2.3)
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Remark 2.1. From conditions (2.2) and (2.3), we have the following monotone condition

〈x, f(x)〉 ∨ |g(x)|2 ≤ α+ β|x|2, x ∈ R
n, (2.4)

where

α :=
1

2
|f(0)|2 ∨ 2|g(0)|2 and β := (µ +

1

2
) ∨ 2c.

It is well-known that existence and uniqueness of the global solution of the SDE (2.1) can be

guaranteed by the local Lipschitz condition and the monotone condition (or general LV condition)

(see [34]). Since f, g ∈ C1 implies that f and g satisfy the local Lipschitz condition, the monotone

condition (2.4) can guarantee the existence and uniqueness of the gloal solution for the SDE (2.1).

This implies that Assumption 2.1 can guarantee the existence and uniqueness of the global solution

of the SDE (2.1).

According to the monotone condition (2.4), we can present the following lemma (see Lemma

3.2 in [11]).

Lemma 2.2. Under Assumption 2.1, for each p ≥ 2 there is C = C(p, T ) > 0 such that

E

[

sup
0≤t≤T

|x(t)|p
]

≤ C(1 + E|x0|p).

In what follows, for the purpose of simplicity, let C represent a generic positive constant inde-

pendent of the stepsize ∆, whose value may change with each appearance.

Fixed any time T > 0 and given a stepsize ∆ = T/N for certain integer N , we introduce the

split-step theta-Milstein (SSTM) approximation
{

yk = zk + θf(yk)∆,

zk+1 = zk + f(yk)∆ + g(yk)∆wk +
1
2L

1g(yk)(|∆wk|2 −∆), k = 0, 1, 2, . . . , N.
(2.5)

where y0 = x(0), z0 = y0 − θf(y0)∆, θ ∈ [0, 1], L1 = g(x) ∂
∂x and ∆wk := w((k + 1)∆) − w(k∆) be

the Brownian increment. This scheme {zk}k≥0 can be considered as an extension from the split-step

theta method developed by our previous work [31]. It is interesting that the approximation {yk}k≥0

in (2.5) is in fact the stochastic theta-Milstein (STM) approximation

yk+1 = yk + θf(yk+1)∆ + (1− θ)f(yk)∆ + g(yk)∆wk +
1

2
L1g(yk)(|∆wk|2 −∆), (2.6)

which can be proved by substituting zk = yk − θf(yk)∆ into the second equation in (2.5). The

STM (2.6), investigated in [35] for linear scalar SDEs, can be consider as the special case σ = 0 of

the (θ, σ)-Milstein scheme developed by Higham et al. [26]. When θ = 0, {zk}k≥0 and {yk}k≥0 are

the classical Milstein approximation proposed in Milstein [2]. When θ = 1, {yk}k≥0 becomes the

drift-implicit Milstein scheme, which was investigated in [36]. Since theta-Milstein schemes (2.5)

and (2.6) are semi-implicit when θ ∈ (0, 1], to guarantee that they are well defined, we restrict the

stepsize ∆ satisfying θµ∆ < 1. This, together with the one-sided Lipschitz condition (2.2), the

equation

y = z + θ∆f(y)

has unique solution y = F∆,θ(z) for any z ∈ R
n.
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3 Uniform boundedness of pth moments

In order to investigate the boundedness of pth moments and convergence of the two classes theta-

Milstein approximations, we need the following assumption, which is standard for the classical

Milstein scheme.

Assumption 3.1. Assume that the functions f, g ∈ C2 and there exists a constant σ such that for

any x, y ∈ R
n

|L1g(x) − L1g(y)|2 ≤ σ|x− y|2. (3.1)

Then let us investigate the pth moment boundedness of the theta-Milstein approximations for

θ ∈ [1/2, 1] and θ ∈ [0, 1/2), respectively.

Theorem 3.1. Let Assumptions 2.1 and 3.1 hold, θ ∈ [1/2, 1] and let ∆ < ∆∗ = 1/(2θβ). Then

for each p ≥ 2

E

[

sup
k∆∈[0,T ]

|zk|p
]

≤ C (3.2)

and

E

[

sup
k∆∈[0,T ]

|yk|p
]

≤ C. (3.3)

Proof. By the second equation in (2.5),

|zk+1|2 = |zk|2 + |f(yk)|2∆2 +
1

4
|L1g(yk)(|∆wk|2 −∆)|2

+2∆zTk f(yk) + 〈g(yk)∆wk, L
1g(yk)(|∆wk|2 −∆)〉

+2〈zk + f(yk)∆, g(yk)∆wk +
1

2
L1g(yk)(|∆wk|2 −∆)〉+ |g(yk)|2|∆wk|2

= |zk|2 + 2∆yTk f(yk) + 2|g(yk)|2|∆wk|2 + (1− 2θ)|f(yk)|2∆2

+
1

2
|L1g(yk)|2(|∆wk|2 −∆)2 +

2

θ
〈yk − (1− θ)zk, g(yk)∆wk〉

+
1

θ
〈yk − (1− θ)zk, L

1g(yk)(|∆wk|2 −∆)〉,

where we used the equation zk = yk − θf(yk)∆. Note that θ ∈ [1/2, 1]. By (2.4), we have

|zk+1|2 ≤ |zk|2 + 2(α+ β|yk|2)∆ + 2|g(yk)|2|∆wk|2 +
1

2
|L1g(yk)|2(|∆wk|2 −∆)2

+
2

θ
〈yk, g(yk)∆wk〉 − 2

1− θ

θ
〈zk, g(yk)∆wk〉+

1

θ
〈yk, L1g(yk)(|∆wk|2 −∆)〉

−1− θ

θ
〈zk, L1g(yk)(|∆wk|2 −∆)〉,
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which implies

|zk+1|2 ≤ |z0|2 + 2αT + β∆

k
∑

i=0

|yi|2 + 2

k
∑

i=0

|g(yi)|2|∆wi|2

+
1

θ

k
∑

i=0

〈yi, L1g(yi)(|∆wi|2 −∆)〉+ 2

θ

k
∑

i=0

〈yi, g(yi)∆wi〉

−2
1− θ

θ

k
∑

i=0

〈zi, g(yi)∆wi〉+
1

2

k
∑

i=0

|L1g(yi)|2(|∆wi|2 −∆)2

−1− θ

θ

k
∑

i=0

〈zi, L1g(yi)(|∆wi|2 −∆)〉.

Recall the elementary inequality: for x1, · · · , xl ≥ 0, p ≥ 1, l = 1, 2, ..., N ,

(

l
∑

i=1

xi

)p
≤ lp−1

l
∑

i=1

xpi .

We therefore have

1

8p−1
|zk+1|2p ≤ (|z0|2 + 2αT )p + βp∆p

(

k
∑

i=0

|yi|2
)p

+ 2p
(

k
∑

i=0

|g(yi)|2|∆wi|2
)p

+2p
∣

∣

∣

k
∑

i=0

〈yi, L1g(yi)(|∆wi|2 −∆)〉
∣

∣

∣

p
+ 4p

∣

∣

∣

k
∑

i=0

〈yi, g(yi)∆wi〉
∣

∣

∣

p

+2p
∣

∣

∣

k
∑

i=0

〈zi, g(yi)∆wi〉
∣

∣

∣

p
+ 2−p

(

k
∑

i=0

|L1g(yi)|2(|∆wi|2 −∆)2
)p

+
∣

∣

∣

k
∑

i=0

〈zi, L1g(yi)(|∆wi|2 −∆)〉
∣

∣

∣

p
. (3.4)

Note that yi is Fi- measurable while ∆wi is independent of Fi. Hence, for any integer m < N ,

E

(

sup
0≤k≤m

k
∑

i=0

|g(yi)|2|∆wi|2
)p

≤ Np−1
E

[

sup
0≤k≤m

k
∑

i=0

|g(yi)∆wi|2p
]

= Np−1
E

[

m
∑

i=0

|g(yi)∆wi|2p
]

= Np−1
m
∑

i=0

E|g(yi)|2pE|∆wi|2p

≤ C∆
m
∑

i=0

E[α+ β|yi|2]p

≤ C∆

m
∑

i=0

E[αp + βp|yi|2p]

≤ C + C∆

m
∑

i=0

E[|yi|2p], (3.5)
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where we also used (2.4). Using the Burkholder-Davis-Gundy inequality, we have

E

[

sup
0≤k≤m

∣

∣

∣

k
∑

i=0

yTi L
1g(yi)(|∆wi|2 −∆)〉

∣

∣

∣

p]

≤ CE

[

m
∑

i=0

|yi|2|L1g(yi)|2∆2
]p/2

≤ C∆p(m+ 1)p/2−1
m
∑

i=0

E[|yi|2|L1g(0)|2 + σ|yi|2]p/2

≤ C∆p/2 + C∆p/2+1
m
∑

i=0

E[|yi|2p], (3.6)

E

[

sup
0≤k≤m

∣

∣

∣

k
∑

i=0

yTi g(yi)∆wi

∣

∣

∣

p]

≤ CE

[

m
∑

i=0

|yi|2|g(yi)|2∆
]p/2

≤ C∆p/2(m+ 1)p/2−1
E

m
∑

i=0

|yi|p[α+ β|yi|2]p/2

≤ C + C∆
m
∑

i=0

[1 + E[|yi|2p], (3.7)

E

[

sup
0≤k≤m

∣

∣

∣

k
∑

i=0

zTi g(yi)∆wi

∣

∣

∣

p]

≤ CE

[

m
∑

i=0

|zi|2|g(yi)|2∆
]p/2

≤ C∆p/2(m+ 1)p/2−1
E

m
∑

i=0

|zi|p[α+ β|yi|2]p/2

≤ C∆

m
∑

i=0

[1 + E[|yi|2p] + C∆

m
∑

i=0

E[|zi|2p], (3.8)

and

E

[

sup
0≤k≤m

∣

∣

∣

k
∑

i=0

zTi L
1g(yi)(|∆wi|2 −∆)〉

∣

∣

∣

p]

≤ CE

[

m
∑

i=0

|zi|2|L1g(yi)|2∆2
]p/2

≤ C∆p(m+ 1)p/2−1
m
∑

i=0

E[|zi|2|L1g(0)|2 + σ|yi|2]p/2

≤ C + C∆
m
∑

i=0

E[|yi|2p] +C∆
m
∑

i=0

E[|zi|2p]. (3.9)
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Similarly, we have

E

(

sup
0≤k≤m

k
∑

i=0

|L1g(yi)|2(|∆wi|2 −∆)2
)p

≤ Np−1
E

[

sup
0≤k≤m

k
∑

i=0

|L1g(yi)(|∆wi|2 −∆)|2p
]

= Np−1
E

[

m
∑

i=0

|L1g(yi)(|∆wi|2 −∆)|2p
]

≤ Np−1
m
∑

i=0

E|L1g(yi)|2pE|(|∆wi|2 −∆)|2p

= C∆

m
∑

i=0

E[|L1g(0)|2 + σ|yi|2]p

≤ C∆
m
∑

i=0

E[|L1g(0)|2p + σ|yi|2p]

≤ C + C∆

m
∑

i=0

E[|yi|2p]. (3.10)

Combining (3.5)-(3.10) with (3.4) yields

E

[

sup
0≤k≤m+1

|zk|2p
]

≤ C + C∆

m
∑

i=0

E[|yi|2p] + C∆

m
∑

i=0

E[|yi|2p]

≤ C + C∆
m
∑

i=0

E

[

sup
0≤k≤i

|yk|2p
]

+C∆
m
∑

i=0

E

[

sup
0≤k≤i

|zk|2p
]

. (3.11)

Using zk = yk − θf(yk)∆ and (2.4), we have

|zk|2 = |yk|2 − 2θyTk f(yk)∆ + θ2∆2|f(yk)|2

≥ (1− 2θ∆β)|yk|2 − 2θ∆α,

that is,

(1− 2θ∆β)|yk|2 ≤ |zk|2 + 2θ∆α, (3.12)

which together with (3.11) implies that for ∆ < ∆∗

E

[

sup
0≤k≤m+1

|zk|2p
]

≤ C + C∆

m
∑

i=0

E

[

sup
0≤k≤i

|zk|2p
]

.

Using the discrete-type Gronwall inequality and noting that (m+ 1)∆ ≤ T give

E

[

sup
0≤k≤m+1

|zk|2p
]

≤ C. (3.13)

This together with (3.12) gives the desired assertion (3.3).

The following theorem gives the moment boundedness for θ ∈ [0, 1/2).
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Theorem 3.2. Let Assumptions 2.1 and 3.1 hold, θ ∈ [0, 1/2) and let ∆ < ∆1 = 1/(2θβ) (∆1 = ∞
if θ = 0). If function f satisfies the linear growth condition

|f(x)|2 ≤ K(1 + |x|2), (3.14)

then for each p ≥ 2

E

[

sup
k∆∈[0,T ]

|yk|p
]

≤ C (3.15)

and

E

[

sup
k∆∈[0,T ]

|zk|p
]

≤ C. (3.16)

Proof. By (2.5),

|zk+1|2 = |zk|2 + 2〈zk, f(yk)∆ + g(yk)∆wk +
1

2
L1g(yk)(|∆wk|2 −∆)〉

+
∣

∣

∣
f(yk)∆ + g(yk)∆wk +

1

2
L1g(yk)(|∆wk|2 −∆)

∣

∣

∣

2
. (3.17)

Note that

zk = yk − θf(yk)∆. (3.18)

Substituting this into (3.17) produces

|zk+1|2 ≤ |zk|2 + 2〈yk, f(yk)∆ + g(yk)∆wk +
1

2
L1g(yk)(|∆wk|2 −∆)〉

+θ2∆2|f(yk)|2 + 2|f(yk)∆ + g(yk)∆wk +
1

2
L1g(yk)(|∆wk|2 −∆)|2

≤ |zk|2 + 2yTk f(yk)∆ + 2yTk g(yk)∆wk + yTk L
1g(yk)(|∆wk|2 −∆)〉

+7∆2|f(yk)|2 + 6|g(yk)∆wk|2 + 3|L1g(yk)(|∆wk|2 −∆)|2

≤ |zk|2 + (2α + 7|f(0)|2∆)∆+ (2β + 7K∆)|yk|2∆
+2yTk g(yk)∆wk + yTk L

1g(yk)(|∆wk|2 −∆)〉
+6|g(yk)∆wk|2 + 3|L1g(yk)(|∆wk|2 −∆)|2,

which implies

|zk+1|2 ≤ |z0|2 + (2α+ 7|f(0)|2∆)T + (2β + 7K∆)∆

k
∑

i=0

|yi|2

+2

k
∑

i=0

yTi g(yi)∆wi +

k
∑

i=0

yTi L
1g(yi)(|∆wi|2 −∆)〉

+6
k

∑

i=0

|g(yi)∆wi|2 + 3
k

∑

i=0

|L1g(yi)(|∆wi|2 −∆)|2. (3.19)
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Similar to (3.4), we have

1

6p−1
|zk+1|2p ≤ (|z0|2 + (2α+ 7|f(0)|2∆)T )p + (2β + 7K∆)p∆p

(

k
∑

i=0

|yi|2
)p

+2p
∣

∣

∣

k
∑

i=0

yTi g(yi)∆wi

∣

∣

∣

p
+

∣

∣

∣

k
∑

i=0

yTi L
1g(yi)(|∆wi|2 −∆)〉

∣

∣

∣

p

+6p
(

k
∑

i=0

|g(yi)∆wi|2
)p

+ 3p
(

k
∑

i=0

|L1g(yi)(|∆wi|2 −∆)|2
)p

. (3.20)

Combining (3.5)-(3.7), (3.10) with (3.20) yields

E

[

sup
0≤k≤m+1

|zk|2p
]

≤ C + C∆

m
∑

i=0

E[|yi|2p],

which together with (3.12) implies

E

[

sup
0≤k≤m+1

|zk|2p
]

≤ C + C∆

m
∑

i=0

E[|yi|2p] ≤ C + C∆

m
∑

i=0

E[ sup
0≤k≤i

|zk|2p].

Note that (m + 1)∆ ≤ T . Using the discrete-type Gronwall inequality gives the desired assertion

(3.16). Similarly, using (3.12) and (3.16) gives another desired assertion (3.15).

Remark 3.1. For θ ∈ [0, 1/2), the linear growth condition (3.14) may be necessary for guaranteeing

the moment boundedness of the theta-Milstein schemes. This fact can be found in [32, Lemma 3.2]

and [8, 9].

4 Convergence of the theta-Milstein approximations

Let us now introduce appropriate continuous-time interpolations corresponding to the discrete

numerical approximations. More accurately, let us define the continuous solutions z(t) and y(t) for

t ∈ [tk, tk+1) as follows







z(t) = z(tk) + (t− tk)f(yk) + g(yk)(w(t) − w(tk)) +
1

2
L1g(yk)(|w(t) − w(tk)|2 − (t− tk)),

y(t) = F∆,θ(z(t)),

(4.1)

with z(0) = z0 = y0 − θ∆f(y0), where tk = k∆. Note that z(t) = y(t) − θf(y(t))∆. Then the

continuous-time approximations z(t) and y(t) are Ft- measurable. In our analysis it will be more

natural to work with the equivalent definition of z(t)

z(t) = z(0) +

∫ t

0
f(y(š))ds +

∫ t

0
g(y(š))dw(s) +

∫ t

0

∫ s

š
L1g(y(ǔ))dw(u)dw(s), (4.2)

where š = tk for s ∈ [tk, tk+1). Note that z(tk) = zk and y(tk) = yk. We refer to z(t) and y(t) as

the continuous-time extensions of the discrete approximations zk and yk, respectively.
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In what follows, we also use Taylor’s formula frequently. If a function h : Rn → R
n is twice

differentiable, the following Taylor’s formula holds

h(z(s)) − h(z(š)) = h′(z(s̆))(z(s) − z(š)) + R̄s(h), (4.3)

where R̄s(h) is the remainder term defined by

R̄s(h) =

∫ 1

0
(1− r)h′′(z(š) + r(z(s)− z(š)))(z(s) − z(š), z(s)− z(š))dr. (4.4)

Here for any u, v ∈ R
n the derivatives have the following expression

h′(·)(u) =
n
∑

i=1

∂h

∂xi
ui, h′′(·)(u, v) =

n
∑

i,j=1

∂2h

∂xi∂xj
uivj .

Replacing z(s)− z(š) in (4.3) with (4.1) and rearranging lead to

h(z(s)) − h(z(š)) = h′(z(s̆))
(

∫ s

š
g(y(š))dw(s)

)

+Rs(h), (4.5)

where

Rs(h) = h′(z(s̆))
(

(s− š)f(y(š)) +
1

2
L1g(y(š))(|w(s) − w(š)|2 − (s− š))

)

+ R̄s(h).

In order to obtain the strong convergent rate, we also need the following assumption.

Assumption 4.1. There exist positive constants D and q such that for all x ∈ R
n

|f ′(x)| ∨ |f ′′(x)| ≤ D(1 + |x|q) (4.6)

and

|g′′(x)| ≤ D. (4.7)

Let us firstly give the convergence theorem of the theta-Milstein schemes for θ ∈ [1/2, 1] as

below.

Theorem 4.1. Let Assumptions 2.1, 3.1 and 4.1 hold, θ ∈ (1/2, 1] and let ∆ < ∆∗ = 1/(2θβ).

Then for any p ≥ 2,

E

[

sup
t∈[0,T ]

|x(t)− z(t)|p
]

≤ C∆p (4.8)

and

E

[

sup
t∈[0,T ]

|x(t)− y(t)|p
]

≤ C∆p. (4.9)

To prove Theorem 4.1, we need the following lemmas.

Lemma 4.2. Let the conditions in Theorem 4.1 hold. Then for any p ≥ 2,

sup
0≤k≤N

[

E|f(yk)|p
]

∨ sup
0≤k≤N

[

E|f ′(yk)|p
]

∨ sup
0≤k≤N

[

E|f ′′(yk)|p
]

≤ C (4.10)

and

sup
0≤k≤N

[

E|g(yk)|p
]

∨ sup
0≤k≤N

[

E|L1g(yk)|p
]

≤ C. (4.11)

Moreover, replacing yk by zk, (4.10) and (4.11) are also true.
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Proof. By the polynomial growth condition (4.6), the global Lipschitz condition for g and L1g and

Theorem 3.1 give the desired assertions immediately.

Similarly, we can use the polynomial growth condition (4.6), the global Lipschitz condition for

g and L1g and Lemma 2.2 to obtain the following lemma, whose proof is omitted.

Lemma 4.3. Let conditions in Theorem 4.1 hold. Then for any p ≥ 2,

sup
0≤t≤T

[

E|f(x(t))|p
]

∨ sup
0≤t≤T

[

E|f ′(x(t))|p
]

∨ sup
0≤t≤T

[

E|f ′′(x(t))|p
]

≤ C (4.12)

and

sup
0≤t≤T

[

E|g(y(t))|p
]

∨ sup
0≤t≤T

[

E|L1g(y(t))|p
]

≤ C. (4.13)

Lemma 4.4. Let conditions in Theorem 4.1 hold. For any p ≥ 2,

E

[

sup
t∈[0,T ]

|z(t)|p
]

∨ E

[

sup
t∈[0,T ]

|y(t)|p
]

≤ C (4.14)

and

E

[

sup
t∈[0,T ]

|z(t) − y(t)|p
]

≤ C∆p. (4.15)

Proof. For any p ≥ 2 and t ∈ [0, T ], by (4.2),

E

(

sup
s∈[0,t]

|z(s)|p
)

≤ 4p−1
E|z(0)|p + 4p−1

E

∣

∣

∣

∫ t

0
|f(y(š))|ds

∣

∣

∣

p
+ 4p−1

E

(

sup
s∈[0,t]

∣

∣

∣

∫ s

0
g(y(š))dw(s)

∣

∣

∣

p)

+4p−1
E

(

sup
s∈[0,t]

∣

∣

∣

∫ s

0

∫ v

v̌
L1g(y(ǔ))dw(u)dw(v)

∣

∣

∣

p)

. (4.16)

Using Lemma 4.2, we have

E

∣

∣

∣

∫ t

0
|f(y(š))|ds

∣

∣

∣

p
≤ CE

∫ t

0
|f(y(š))|pds ≤ C. (4.17)

Applying the Burkholder-Davis-Gundy inequality and Lemma 4.2 yield

E

(

sup
s∈[0,t]

∣

∣

∣

∫ s

0
g(y(š))dw(s)

∣

∣

∣

p)

≤ cpE
(

∫ t

0
|g(y(š))|2ds

)p/2

≤ C

∫ t

0
E|g(y(š))|pds ≤ C (4.18)

and

E

(

sup
s∈[0,t]

∣

∣

∣

∫ s

0

∫ v

v̌
L1g(y(ǔ))dw(u)dw(v)

)p
≤ cpE

(

∫ t

0

∣

∣

∣

∫ v

v̌
L1g(y(ǔ))dw(u)

∣

∣

∣

2
dv

)p/2

≤ C∆p/2

∫ t

0
E|L1g(y(v̌))|pdv

≤ C, (4.19)
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where cp is a constant dependent on p. Therefore, (4.17)-(4.19) and (4.16) produce

E

[

sup
s∈[0,T ]

|z(s)|p
]

≤ C,

which together with (3.12) gives

E

[

sup
s∈[0,T ]

|y(s)|p
]

≤ C.

Note that z(t) = y(t)− θf(y(t))∆. Hence (4.15) follows from (4.14).

Lemma 4.5. Let conditions in Theorem 4.1 hold. For any p ≥ 2 and t ∈ [0, T ],

E|x(t)− x(ť)|p ≤ C∆p/2 (4.20)

and

E|z(t)− z(ť)|p ≤ C∆p/2. (4.21)

Proof. By (2.1) and the Burkholder-Davis-Gundy inequality, we have

E|x(t)− x(ť)|p = CE|
∫ t

ť
f(x(s))ds|p + CE|

∫ t

ť
g(x(s))dw(s)|p

≤ C∆p−1

∫ t

ť
E|f(x(s))|pds+ CE

∣

∣

∣

∫ t

ť
|g(x(s))|2ds

∣

∣

∣

p/2
≤ C∆p/2,

where we also used Lemma 4.3. By (4.1), we have

E|z(t)− z(ť)|p = C∆p
E|f(y(ť))|p + CE|g(y(ť))(w(t) − w(ť))|p

+CE|L1g(y(ť))(|w(t) − w(ť)|2 − (t− ť))|p

≤ C∆p
E|f(y(ť))|p + C∆p/2

E|g(y(ť))|p + C∆p
E|L1g(y(ť))|p.

Then we obtain (4.21) from Lemma 4.2.

Lemma 4.6. For any p ≥ 2 and t ∈ [0, T ],

E|Rt(f)|p ≤ C∆p. (4.22)

Proof. By the definition of Rt(f), we have

E|Rt(f)|p ≤ ∆p3p−1
E|f ′(z(ť))(f(y(ť)))|p + 3p−1

E|R̄t(f))|p

+∆p3p−1 1

2
E|f ′(z(ť))(L1g(y(ť)))|pE

∣

∣

∣
|w(t) − w(ť)|2 − (t− ť))

∣

∣

∣

p
.

By Lemmas 4.4 and 4.5 as well as Assumption 4.1, we can obtain E|R̄t(f))|p ≤ C∆p. By Lemma

4.2, we can obtain the desired assertion (4.22).
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Proof of Theorem 4.1. Let e(t) = x(t)− z(t). By (4.2) and (2.1), we have

e(t) = e(0) +

∫ t

0
[f(x(s))− f(y(š))]ds +

∫ t

0
[g(x(s)) − g(y(š))−

∫ s

š
L1g(y(ǔ))dw(u)]dw(s). (4.23)

For the purpose of simplification, define G(s) = g(x(s)) − g(y(š)) −
∫ s
š L1g(y(ǔ))dw(u). Applying

Itô’s formula to |e(t)|2 gives

|e(t)|2 = |e(0)|2 +
∫ t

0
|G(s)|2ds+ 2

∫ t

0
〈e(s), G(s)〉dw(s) + 2

∫ t

0
〈e(s), f(x(s)) − f(y(š))〉ds

≤ θ2∆2|f(x(0))|2 +
∫ t

0
|G(s)|2ds+ 2

∫ t

0
〈e(s), G(s)〉dw(s) + 2µ

∫ t

0
|e(s)|2ds

+2

∫ t

0
〈e(s), f(z(š))− f(y(š))〉ds + 2

∫ t

0
〈e(s), f(z(s)) − f(z(š))〉ds

= : θ2∆2|f(x(0))|2 + J1(t) + J2(t) + 2µ

∫ t

0
|e(s)|2ds+ J3(t) + J4(t). (4.24)

Applying Itô’s formula for g(x(s)) gives

g(x(s)) = g(x(š)) +

∫ s

š
L1g(x(u))dw(u) +

∫ s

š
(g ⋄ f)(x(u)))du, (4.25)

where (g ⋄ f)(x(u))) = g′(x(u))f(x(u)) + 1
2trace{g(x(u))T g′′(x(u))g(x(u))}. Substituting (4.25)

into G(s) and using the Burkholder-Davis-Gundy inequality and Hölder’s inequality yield that for

any p ≥ 2,

E|G(s)|p ≤ 4p−1
E|g(x(š))− g(y(š))|p + 4p−1

E

∣

∣

∣

∫ s

š
[L1g(x(u)) − L1g(x(ǔ))]dw(u)

∣

∣

∣

p

+4p−1
E

∣

∣

∣

∫ s

š
[L1g(x(ǔ))− L1g(y(ǔ))]dw(u)

∣

∣

∣

p
+ 4p−1

E

∣

∣

∣

∫ s

š
(g ⋄ f)(x(u)))du

∣

∣

∣

p

≤ CE|x(š)− y(š)|p +CE

∣

∣

∣

∫ s

š
|x(u)− x(ǔ)|2]ds

∣

∣

∣

p/2

+CE

∣

∣

∣

∫ s

š
|x(ǔ)− y(ǔ)|2ds

∣

∣

∣

p/2
+ C∆p

≤ CE|x(š)− z(š)|p + CE|z(š)− y(š)|p + C∆p/2−1
E

∫ s

š
|x(u) − x(ǔ)|pds

+C∆p/2−1
E

∫ s

š
|x(ǔ)− z(ǔ)|pds+ C∆p/2−1

E

∫ s

š
|z(ǔ)− y(ǔ)|pds+ C∆p

≤ CE|e(š)|p + C∆p,

where we also used Assumptions 2.1 and 3.1 as well as Lemmas 2.2, 4.2, 4.5. Hence,

E

[

sup
t∈[0,r]

|J1(t)|p/2
]

= CE

∫ r

0
|G(s)|pds ≤ C

∫ r

0
E|e(š)|pds+ C∆p. (4.26)

Using the Burkholder-Davis-Gundy inequality and the Hölder inequality yields that for any p ≥ 2
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and r ∈ [0, T ]

E

[

sup
t∈[0,r]

|J2(t)|p/2
]

= 2p/2E sup
t∈[0,r]

∣

∣

∣

∫ t

0
〈e(s), G(s)〉dw(s)

∣

∣

∣

p/2

≤ 2p/2cpE
(

∫ r

0
|〈e(s), G(s)〉|2ds

)p/4

≤ 2p/2cpE
(

sup
s∈[0,r]

|e(s)|2
∫ r

0
|G(s)|2ds

)p/4

where cp is a constant dependent on p. Recalling the fundamental inequality: 2ab ≤ κ1a
2 + 1

κ1
b2

for any a, b, κ1 > 0 yields

E

[

sup
t∈[0,r]

|J2(t)|p/2
]

≤ κ1E
[

sup
s∈[0,r]

|e(s)|p
]

+
2pc2p
κ1

E

(

∫ r

0
|G(s)|2ds

)p/2

≤ κ1E
[

sup
s∈[0,r]

|e(s)|p
]

+ C

∫ r

0
E|e(š)|pds+ C∆p. (4.27)

Similarly, using Hölder’s inequality, Assumption 4.1 and Lemma 4.4, we have

E

[

sup
t∈[0,r]

|J3(t)|p/2
]

≤ CE

∫ t

0
|e(s)|pds+ CE

∫ r

0
|f(z(š))− f(y(š))|pds

≤ C

∫ r

0
E|e(s)|pds +C

∫ r

0

√

E(1 + |z(š)|q + |y(š)|q)2pE|z(š)− y(š)|2pds

≤ C

∫ r

0
E|e(s)|pds +C∆p. (4.28)

Now, let us estimate J4. Using (4.5) produces

J4(t) = 2

∫ t

0

〈

e(s), f ′(z(š))
(

∫ s

š
g(y(š))dw(u)

)

+Rs(f)
〉

ds

= 2

∫ t

0

〈

e(s), f ′(z(š))
(

∫ s

š
g(y(š))dw(u)

)〉

ds+ 2

∫ t

0
〈x(s)− z(s), Rs(f)〉ds

≤ J41(t) +

∫ t

0
|e(s)|2ds+

∫ t

0
|Rs(f)|2ds, (4.29)

where J41(t) = 2
∫ t
0 〈e(s), f ′(z(š))(

∫ s
š g(y(š))dw(u))〉ds. It is easy to deduce from Lemma 4.6 that

E

[

sup
t∈[0,r]

∣

∣

∣

∫ t

0
|Rs(f)|2ds

∣

∣

∣

p/2]

≤ C∆p. (4.30)

Noting that e(s) = e(š) +
∫ s
š [f(x(u)) − f(y(š)]du+

∫ s
š G(u)dw(u), we have

J41(t) = 2

∫ t

0

∫ s

š
〈e(š), f ′(z(š))(g(y(š)))〉dw(u)ds

+2

∫ t

0

〈

∫ s

š
G(u)dw(u), f ′(z(š))

(

∫ s

š
g(y(š))dw(u)

)〉

ds

+2

∫ t

0

〈

∫ s

š
[f(x(u))− f(y(š))]du, f ′(z(š))

(

∫ s

š
g(y(š))dw(v)

)〉

ds

=: J411(t) + J412(t) + J413(t).
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For any t ∈ [0, T ], let kt = max{k > 0, tk < t}. Define ŝ := ti for ti−1 < s ≤ ti and ŝ := t for

tkt < s ≤ t. Applying Fubini’s theorem, we can obtain

J411(t)/2 =

kt
∑

i=1

∫ ti

ti−1

∫ s

ti−1

〈e(ti−1), f
′(z(ti−1))(g(y(ti−1)))〉dw(u)ds

+

∫ t

tkt

∫ s

tkt

〈e(tkt), f ′(z(tkt))(g(y(tkt)))〉dw(u)ds

=
kt
∑

i=1

∫ ti

ti−1

∫ ti

u
〈e(ti−1), f

′(z(ti−1))(g(y(ti−1)))〉dsdw(u)

+

∫ t

tkt

∫ t

u
〈e(tkt), f ′(z(tkt))(g(y(tkt)))〉dsdw(u)

=

kt
∑

i=1

∫ ti

ti−1

(ti − u)〈e(ti−1), f
′(z(ti−1))(g(y(ti−1)))〉dsdw(u)

+

∫ t

tkt

(t− u)〈e(tkt), f ′(z(tkt))(g(y(tkt)))〉dsdw(u)

=

∫ t

0
(û− u)〈e(ǔ), f ′(z(ǔ))(g(y(ǔ)))〉dw(u).

For any κ2 > 0, using the Burkholder-Davis-Gundy inequality, Hölder’s inequality and Lemma 4.2

gives

E

[

sup
t∈[0,r]

|J411(t)|p/2
]

≤ cpE
(

∫ r

0
2|(û− u)〈e(ǔ), f ′(z(ǔ))(g(y(ǔ)))〉|2du

)p/4

≤ cpE
(

∫ r

0
2|e(ǔ)|2∆2|f ′(z(ǔ))(g(y(ǔ)))|2du

)p/4

≤ cpE
(

2 sup
s∈[0,r]

|e(s)|2∆2

∫ r

0
|f ′(z(ǔ))(g(y(ǔ)))|2du

)p/4

≤ κ2E
[

sup
s∈[0,r]

|e(s)|p
]

+
c2p2

p/2

κ2
∆p

E

(

∫ r

0
|f ′(z(ǔ))(g(y(ǔ)))|2du

)p/2

≤ κ2E
[

sup
s∈[0,r]

|e(s)|p
]

+ C∆p, (4.31)
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Similarly,

E

[

sup
t∈[0,r]

|J412(t)|p/2
]

≤ CE

∫ r

0

∣

∣

∣

〈

∫ s

š
G(u)dw(u), f ′(z(š))

(

∫ s

š
g(y(š))dw(u)

)〉
∣

∣

∣

p/2
ds

≤ C

∫ r

0

√

E

∣

∣

∣

∫ s

š
G(u)dw(u)

∣

∣

∣

p
E

∣

∣

∣

∫ s

š
f ′(z(š))(g(y(š)))dw(u)

∣

∣

∣

p
ds

≤ C

∫ r

0

√

E

∣

∣

∣

∫ s

š
|G(u)|2du

∣

∣

∣

p/2
E

∣

∣

∣

∫ s

š
|f ′(z(š))(g(y(š)))|2du

∣

∣

∣

p/2
ds

≤ C

∫ r

0

√

∆p−2

∫ s

š
E|G(u)|pdu

∫ s

š
E|f ′(z(š))(g(y(š)))|pduds

≤ C

∫ r

0

√

∆p[E|e(š)|p +∆p]ds

≤ C

∫ r

0
E|e(š)|pds+ C∆p. (4.32)

In order to estimate J413, we divide it into the following three parts

J413(t) = 2

∫ t

0

〈

∫ s

š
[f(x(u))− f(x(ǔ))]du, f ′(z(š))

(

∫ s

š
g(y(š))dw(v)

)〉

ds

+2

∫ t

0

〈

∫ s

š
[f(z(ǔ))− f(y(š))]du, f ′(z(š))

(

∫ s

š
g(y(š))dw(v)

)〉

ds

+2

∫ t

0

〈

∫ s

š
[f(x(ǔ))− f(z(ǔ))]du, f ′(z(š))

(

∫ s

š
g(y(š))dw(v)

)〉

ds

= : I1(t) + I2(t) + I3(t). (4.33)

Using the Burkholder-Davis-Gundy inequality and Hölder’s inequality give that for any p ≥ 2,

E

[

sup
t∈[0,r]

|I1(t)|p/2
]

≤ CE

∫ r

0

∣

∣

∣

〈

∫ s

š
[f(x(u)) − f(x(ǔ))]du, f ′(z(š))

(

∫ s

š
g(y(š))dw(u)

)〉
∣

∣

∣

p/2
ds

≤ C

∫ r

0

√

E

∣

∣

∣

∫ s

š
[f(x(u))− f(x(ǔ))]du

∣

∣

∣

p
E

∣

∣

∣

∫ s

š
f ′(z(š))(g(y(š)))dw(u)

∣

∣

∣

p
ds

≤ C

∫ r

0

√

∆p−1

∫ s

š
E|f(x(u))− f(x(ǔ))|pdu∆p/2−1

∫ s

š
E|f ′(z(š))(g(y(š)))|pduds

≤ C

∫ r

0

√

∆p−1∆∆p/2∆p/2−1∆ds ≤ C∆p, (4.34)

17



where we used Lemma 4.2 and 4.5. Similarly,

E

[

sup
t∈[0,r]

|I2(t)|p/2
]

≤ (2T )p/2E

∫ r

0

∣

∣

∣

〈

∫ s

š
[f(z(ǔ))− f(y(ǔ))]du, f ′(z(š))

(

∫ s

š
g(y(š))dw(u)

)〉
∣

∣

∣

p/2
ds

≤ C

∫ r

0

√

E

∣

∣

∣

∫ s

š
[f(z(ǔ))− f(y(ǔ))]du

∣

∣

∣

p
E

∣

∣

∣

∫ s

š
f ′(z(š))(g(y(š)))dw(u)

∣

∣

∣

p
ds

≤ C

∫ r

0

√

∆pE|f(z(š))− f(y(š))|p∆p/2−1

∫ s

š
E|f ′(z(š))(g(y(š)))|pduds

≤ C

∫ r

0

√

∆p∆p∆p/2ds ≤ C∆p. (4.35)

Applying Fubini’s theorem obtains

I3(t) = 2

∫ t

0

∫ s

š
(s− š)〈f(x(š))− f(z(š)), f ′(z(š))(g(y(š)))〉dw(v)ds

= 2

∫ t

0

∫ v̂

v
(s− š)〈f(x(š))− f(z(š)), f ′(z(š))(g(y(š)))〉dsdw(v).

Therefore,

E

[

sup
t∈[0,r]

|I3(t)|p/2
]

≤ CE

(

∫ r

0

∣

∣

∣

∫ v̂

v
(s − v̌)〈f(x(v̌))− f(z(v̌)), f ′(z(v̌))(g(y(v̌)))〉ds

∣

∣

∣

2
dv

)p/4

≤ CE

(

∫ t

0

∣

∣

∣

∫ v̂

v
(s− v̌)ds〈f(x(v̌))− f(z(v̌)), f ′(z(v̌))(g(y(v̌)))〉

∣

∣

∣

2
dv

)p/4

≤ C∆p

∫ r

0
E〈f(x(v̌))− f(z(v̌)), f ′(z(v̌))(g(y(v̌)))〉

∣

∣

∣

p/2
dv

≤ C∆p. (4.36)

By (4.34)-(4.36), we obtain from (4.33)

E

[

sup
t∈[0,r]

|J413(t)|p/2
]

≤ C∆p,

which together with (4.31) and (4.32) implies

E

[

sup
t∈[0,r]

|J41(t)|p/2
]

≤ 3p/2−1
(

E

[

sup
t∈[0,r]

|J411(t)|p/2
]

+ E

[

sup
t∈[0,r]

|J412(t)|p/2
]

+E

[

sup
t∈[0,r]

|J413(t)|p/2
])

≤ 3p/2−1κ2E
[

sup
s∈[0,r]

|e(s)|p
]

+ C

∫ r

0
E|e(š)|pds+ C∆p. (4.37)

Combining (4.37), (4.30) with (4.29) gives

E

[

sup
t∈[0,r]

|J4(t)|p/2
]

≤ 3p−2κ2E
[

sup
s∈[0,r]

|e(s)|p
]

+ C

∫ r

0
E|e(š)|pds+ C∆p + C

∫ r

0
E|e(s)|pds.
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Let κ = (κ1 + 3p−2κ2)6
p/2−1. Combining (4.26), (4.27), (4.28), (4.38) and (4.24) produces

E

[

sup
t∈[0,r]

|e(t)|p
]

≤ 6p/2−1
4

∑

l=1

E

[

sup
t∈[0,r]

|Jl(t)|p/2
]

+ C∆p + C

∫ r

0
|e(s)|pds

≤ κE
[

sup
s∈[0,r]

|e(s)|p
]

+ C∆p + C

∫ r

0
E

[

sup
u∈[0,s]

|e(u)|p
]

ds.

Therefore, letting κ1 and κ2 be sufficiently small such that κ < 1, we have

E

[

sup
t∈[0,r]

|e(t)|p
]

≤ C

∫ r

0
E

[

sup
u∈[0,s]

|e(s)|p
]

ds+ C∆p. (4.38)

Thus, the result (4.8) follows from the Gronwall inequality. The desired assertion (4.9) follows from

(4.8) and Lemma 4.4.

For θ ∈ [0, 1/2], we can use the similar techniques to obtain the following convergence theorem.

Its proof is omitted.

Theorem 4.7. Let Assumptions 2.1, 3.1 and 4.1 hold, θ ∈ [0, 1/2) and let ∆ < ∆1 = 1/(2θβ)

(∆1 = ∞, if θ = 0). If the function f satisfies the linear growth condition (3.14), then for any

p ≥ 2 we have

E

[

sup
t∈[0,T ]

|x(t)− z(t)|p
]

≤ C∆p

and

E

[

sup
t∈[0,T ]

|x(t)− y(t)|p
]

≤ C∆p.

Remark 4.1. Convergence for θ ∈ (1/2, 1] in Theorem 4.1 are partially based on the Assumption

2.1. This does not imply that condition (2.3) in Assumption 2.1 is necessary. For example, Kloeden

and Neuenkirch [37] showed that the semi-implicit Milstein scheme (STM scheme with θ = 1)

converges to the exact solution for the Cox-Ingersoll-Ross process, whose diffusion term is non-

Lipschitz continuous.

Remark 4.2. Higham and his coauthors [11, 12] showed that the split step backward Euler and

backward Euler schemes strongly converge to the exact solution with the standard order 0.5. In

fact, by the similar skills used in the proof of Theorem 4.1, we can show that the convergence rate

0.5 holds for theta-Euler schemes (split-step theta and stochastic theta schemes) with θ ∈ (1/2, 1].

Moreover, for the SODE with additive noise, that is, g(x) is a constant, then L1g(x) = 0, the

theta-Milstein schemes are degenerated to the theta-Euler schemes. Hence, our convergence results

show that the theta-Euler schemes (θ ∈ (1/2, 1]) is convergent with order 1, which is a new result

for the SODE with one-sided Lipschitz and polynomial Lipschitz continuous drift.

In this section, although the strong convergence results for the theta-Milstein schemes are

established under Assumptions 2.1, 3.1 and 4.1, the following exponential mean-square stability

only depends on the one-sided Lipschitz condition (2.2) and the local Lipschitz condition.
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5 Stability analysis of the theta-Milstein schemes for SDEs

For the purpose of stability, assume that f(0) = g(0) = 0. This shows that (2.1) admits a trivial

solution. Then inequality (3.1) in Assumption 3.1 becomes

|L1g(x)|2 ≤ σ|x|2. (5.1)

In this section, we assume that f and g satisfy the following local Lipschitz condition, which is

classical for the nonlinear SDEs.

Assumption 5.1. (Local Lipschitz condition) f and g satisfy the local Lipschitz condition, that

is, for each j > 0 there exists a positive constant Kj such that for any x, y ∈ R
n with |x| ∨ |y| ≤ j,

|f(x)− f(y)| ∨ |g(x) − g(y)| ≤ Kj|x− y|. (5.2)

To investigate stability of numerical approximations, let us firstly give the stability criterion of

SDE (2.1) (also see [34]):

Theorem 5.1. Let Assumption 5.1 hold. If there exists a positive constants γ such that for all

x, y ∈ R
n,

2xT f(x) + |g(x)|2 ≤ −γ|x|2, (5.3)

then the solution of (2.1) has the property

E|x(t)|2 ≤ C(x0)e
−γt, (5.4)

where C(x0) is a positive constant dependent on the initial data x0.

Under the one-sided Lipschitz condition (2.2), we define

∆∗ =







1

µθ
, θ ∈ (0, 1), and µ > 0,

∞, θ = 0 or µ < 0.

When ∆ < ∆∗, the two classes of theta-Milstein schemes are well defined. Moreover, we have the

following stability result.

Theorem 5.2. Let the conditions in Theorem 5.1 hold. Under condition (5.1) and the one-sided

Lipschitz condition (2.2), the following two stability results hold.

(i) Let θ ∈ [0, 1/2]. If there exists a positive constant K such that for any x ∈ R
n,

|f(x)|2 ≤ K|x|2, (5.5)

then for any ∆ < ∆∗
1 =

γ

(1− 2θ)K + 0.5σ
∧∆∗, k ∈ N+,

E|zk|2 ≤ C(x0)e
−γ∆k∆ and E|yk|2 ≤ C(x0)e

−γ∆k∆,

where γ∆ = − 1

∆
log

(

1− γ − (1− 2θ)K∆− 0.5σ∆

(1 + θ∆
√
K)2

∆
)

.
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(ii) Let θ ∈ (1/2, 1]. Then for any ∆ < ∆∗
2 =

2γ

σ
∧∆∗, k ∈ N+,

E|zk|2 ≤ C(x0)e
−γ∆k∆ and E|yk|2 ≤ C(x0)e

−γ∆k∆,

where γ∆ = − 1

∆
log

(

1− (2θ − 1)(γ − 0.5σ∆)∆

2θ − 1 + (γ − 0.5σ∆)∆θ2

)

.

Proof. For any large l > 0, define the stoping time

λl = inf{i > 0 : |yi| > l or |zi| > l}. (5.6)

It is observed that |yk−1| ≤ l, |zk−1| ≤ l for k ∈ [0, λl]. By (2.5),

|zk|2 ≤ 4
(

|zk−1|2 + |f(yk−1)|2∆2 + |g(yk−1)|2|∆wk−1|2 +
1

4
|L1g(yk−1)|2||∆wk−1|2 −∆|2

)

.

Then we can obtain that

E[|zk|21[0,λl](k)] ≤ 4l2 + 4E[|f(yk−1)|21[0,λl](k)]∆
2 + 4E[|g(yk−1)|2|∆wk−1|21[0,λl](k)]

+E[|L1g(yk−1)|2||∆wk−1|2 −∆|21[0,λl](k)]

≤ 4l2 + 4E[|f(yk−1)|21[0,λl](k)]∆
2 + 4

(

E[|g(yk−1)|41[0,λl](k)]E[|∆wk−1|4]
)1/2

+
(

E[|L1g(yk−1)|41[0,λl](k)]E[|(∆wk−1)
2 −∆|4]

)1/2
,

where we used Hölder’s inequality. Making use of the property E[|∆wk|2i] = (2i − 1)!!∆i, we

have E[|∆wk−1|4] = 3∆2 and E[|(∆wk−1)
2 −∆|4] ≤ 23(E[|∆wk−1|8] + ∆4) = 23(7!! + 1)∆4, where

(2i − 1)!! = (2i − 1)(2i − 3) · · · 3 · 1 for i = 1, 2, . . .. By Assumption 5.1 and (5.1), it is easy to

deduce that |f(yk−1)|21[0,λl](k) ≤ K2
l l

2, |g(yk−1)|41[0,λl](k) ≤ K4
l l

4 and |L1g(yk−1)|41[0,λl](k) ≤
σ2l4. Therefore,

E[|zk|21[0,λl](k)] ≤ 4l2 + 4K2
l l

2∆2 + 8K2
l l

2∆+ 4
√
7!! + 1σl2∆2 =: K(l), (5.7)

which together with zk = yk − θ∆f(yk, yk−m) and 2xT f(x) ≤ −γ|x|2 yields

|zk|2 = |yk|2 − 2θ∆yTk f(yk) + |f(yk)|2∆2θ2 ≥ (1 + γθ∆)|yk|2. (5.8)

Hence,

E[|yk|21[0,λl](k)] ≤ K(l). (5.9)

By (2.5),

|zk+1|2 = |zk|2 + |f(yk)|2∆2 +
1

4
|L1g(yk)(|∆wk|2 −∆)|2 + 〈g(yk)∆wk, L

1g(yk)(|∆wk|2 −∆)〉

+2〈zk + f(yk)∆, g(yk)∆wk +
1

2
L1g(yk)(|∆wk|2 −∆)〉+ |g(yk)|2|∆wk|2 + 2∆zTk f(yk)

= |zk|2 + 2∆yTk f(yk) + |g(yk)|2∆+ (1− 2θ)|f(yk)|2∆2 +
1

2
∆2|L1g(yk)|2 +mk,
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where mk = 2〈yk + (1 − θ)f(yk)∆, g(yk)∆wk + 1
2L

1g(yk)(|∆wk|2 − ∆)〉 + |g(yk)|2(|∆wk|2 − ∆) +

〈g(yk)∆wk, L
1g(yk)(|∆wk|2 −∆)〉+ 1

4 |L1g(yk)|2[(|∆wk|2 −∆)2 − 2∆2]. Using condition (5.1) and

the coupled condition (5.3), we get

|zk+1|2 ≤ |zk|2 − γ∆|yk|2 + (1− 2θ)∆2|f(yk)|2 + 0.5∆2σ|yk|2 +mk. (5.10)

Case (i) θ ∈ [0, 1/2): Note that the linear growth condition of f and (5.3) imply

|g(x)|2 ≤ −2xT f(x) ≤ |x|2 + |f(x)|2 ≤ (1 +K)|x|2. (5.11)

From conditions (5.1), (5.5) and (5.11), there is a positive constant C̄ such that

|mk| ≤ [C̄ + C̄|∆wk|2 + C̄|∆wk|4]|yk|2. (5.12)

Noting that yk and 1[0,λl](k) are Fk∆- measurable while ∆wk is independent of Fk∆, then we obtain

from (5.9) that E[mk1[0,λl](k)] = 0. The linear growth condition (5.5) gives

|zk+1|2 ≤ |zk|2 + [(1− 2θ)K∆+ 0.5σ∆ − γ]∆|yk|2 +mk. (5.13)

Then for ∆ < ∆∗
1 and sufficiently large l, by (5.10) and using linear growth condition (5.5), we have

|zk∧λl
|2 ≤ |z0|2 + [(1 − 2θ)K∆+ 0.5σ∆ − γ]∆

(k∧λl)−1
∑

i=0

|yi|2 +
(k∧λl)−1
∑

i=0

mi

≤ |z0|2 +
k−1
∑

i=0

1[0,λl](i)mi. (5.14)

Hence, for ∆ < ∆∗
1, E[|zk∧λl

|2] ≤ E|z0|2 = E|y0 − θ∆f(y0)|2 =: K̄. Note that

E[|zλl
|21{λl<k}] ≤ E[|zk∧λl

|2] ≤ K̄. (5.15)

We now claim |zλl
| > l. Otherwise, |zλl

| ≤ l. By the definition of λl, |yλl
| > l and |yλl−i| ≤ l for

i > 0. Then by zk = yk − θ∆f(yk),

|zλl
|2 = |yλl

|2 − 2θ∆yTλl
f(yλl

) + |f(yλl
)|2∆2θ2

≥ (1 + γθ∆)|yλl
|2

> (1 + γθ∆)l2 ≥ l2,

which is a contradiction. By (5.15), for any k > 0

P{λl < k} ≤ K̄

l2
→ 0, l → ∞, (5.16)

that is, as l → ∞, λl ↑ ∞ a.s. Define µ∆ = γ − (1− 2θ)K∆− 0.5σ∆. For ∆ < ∆∗
1, µ∆ > 0. Using

the linear growth condition (5.5) gives

|zk|2 = |yk − θf(yk)∆|2 ≤ (1 + θ∆
√
K)2|yk|2.
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Substituting this into (5.13) yields that for ∆ < ∆∗
1

|zk+1|2 ≤
(

1− µ∆∆

(1 + θ∆
√
K)2

)

|zk|2 +mk,

which implies

eγ∆k∆|zk|2 ≤ |z0|2 +
k−1
∑

j=0

eγ∆j∆mj.

where γ∆ = − 1
∆ log

(

1− µ∆∆

(1+θ∆
√
K)2

)

. Replacing k by k ∧ λl yields

eγ∆(k∧λl)∆|zk∧λl
|2 ≤ |z0|2 +

k−1
∑

j=0

eγ∆j∆1[0,λl](j)mj .

Taking expectation gives

E[eγ∆(k∧λl)∆|zk∧λl
|2] ≤ E|z0|2.

By Fatou’s Lemma, letting l → ∞, we have

eγ∆k∆
E[|zk|2] ≤ E|z0|2, (5.17)

which together with (5.8) implies the desired assertion.

Case (ii) θ ∈ (1/2, 1]: Since θ ∈ (1/2, 1], by ∆f(yk) = (yk−zk)/θ, we obtain from the definition

of mk

mk = 2
〈

yk +
1− θ

θ
(yk − zk), g(yk)∆wk +

1

2
L1g(yk)(|∆wk|2 −∆)

〉

+|g(yk)|2(|∆wk|2 −∆) + 〈g(yk)∆wk, L
1g(yk)(|∆wk|2 −∆)〉

+
1

4
|L1g(yk)|2[(|∆wk|2 −∆)2 − 2∆2]

and from (5.3)

|g(yk)|2 ≤ −2yTk f(yk) = − 2

∆θ
[yTk (yk − zk)] ≤

1

θ∆
(3|yk|2 + |zk|2). (5.18)

This, together with (5.1), produces that there is a positive constants C such that

|mk| ≤ C[1 + |∆wk|2 + |∆wk|4]|yk|2 +C[1 + |∆wk|2]|zk|2. (5.19)

We therefore have E[mk1[0,λl](k)] = 0. By (5.10) and ∆f(yk) = (yk − zk)/θ,

|zk+1|2 ≤
(1− θ)2

θ2
|zk|2 +

[1− 2θ

θ2
− (γ − 0.5σ∆)∆

]

|yk|2 +
4θ − 2

θ2
zTk yk +mk. (5.20)

Note that ∆ < 2γ
σ implies 2θ − 1 + (γ − 0.5σ∆)∆θ2 > 0. Since

2zTk yk ≤ 2θ − 1 + (γ − 0.5σ∆)∆θ2

2θ − 1
|yk|2 +

2θ − 1

2θ − 1 + (γ − 0.5σ∆)∆θ2
|zk|2,
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we get from (5.20)

|zk+1|2 ≤
[(1− θ)2

θ2
+

(2θ − 1)2

θ2(2θ − 1 + (γ − 0.5σ∆)∆θ2)

]

|zk|2 +mk

= |zk|2 +
(1− 2θ)(γ − 0.5σ∆)∆

2θ − 1 + (γ − 0.5σ∆)∆θ2
|zk|2 +mk, (5.21)

By the similar techniques used in case of θ ∈ [0, 1/2], we can prove that λl ↑ ∞ a.s., as l → ∞.

Note that (5.21) implies

eγ∆k∆|zk|2 ≤ |z0|2 +
k−1
∑

j=0

eγ∆j∆mj,

where γ∆ = − 1
∆ log

(

1 − (2θ−1)(γ−0.5σ∆)∆
2θ−1+(γ−0.5σ∆)∆θ2

)

. Then we obtain the desired assertion by repeating

the proof process of the case (i).

Remark 5.1. Theorem 5.2 shows that the two theta-Milstein schemes can share the exponential

mean-square stability of the exact solution. In fact, the upper bound γ of the decay rate can also

be reproduced arbitrarily accurately for sufficiently small stepsize ∆ since lim∆→0 γ∆ = γ.

Let us now examine the linear scalar system

dx(t) = µx(t)dt+ cx(t)dw(t) (5.22)

It is known that mean-square stability for (5.22) is equivalent to

2µ+ c2 < 0. (5.23)

Moreover, it is easy to observe that the two classes of Milstein schemes are equivalents for the linear

SDE (5.22). Here we rewrite this scheme as follows:

yk+1 = yk + θµ∆yk+1 + (1− θ)µ∆yk + cyk∆wk +
c2

2
yk[|∆wk|2 −∆]. (5.24)

For the linear scalar SDE (5.22), we have the following stability theorem.

Theorem 5.3. Let condition (5.23) hold. If

(2µ+ c2) +
1

2
c4∆+ (1− 2θ)µ2∆ < 0, (5.25)

then the Milstein scheme (5.24) holds

E|yk|2 = e−γ∆k∆
E|x0|2,

where γ∆ = − 1

∆
log

(

1 +
[2µ + c2 + (1− 2θ)µ2∆+ 1/2c4∆]∆

(1− θ∆µ)2

)

.
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Proof. Rearranging equation (5.24) gives

yk+1 =
1

1− θµ∆

(

1 + (1− θ)µ∆+ c∆wk +
c2

2
[|∆wk|2 −∆]

)

yk.

Note that yk is Fk∆- measurable and ∆wk is independent of Fk∆. We therefore have

E|yk+1|2 =
[1 + (1− θ)µ∆]2 + c2∆+ c4

2 ∆
2

(1− θµ∆)2
E|yk|2

=
[

1 +
[2µ + c2 + (1− 2θ)µ2∆+ 1/2c4∆]∆

(1− θµ∆)2

]

E|yk|2

= e−γ∆(k+1)∆
E|x0|2,

where we used E∆wk = 0, E|∆wk|2 = ∆, E(∆wk)
3 = 0 and E|∆wk|4 = 3∆2.

Remark 5.2. Theorem 5.3 shows that (i) for θ ∈ [0, 1/2], if ∆ < ∆∗ := −2µ−c2

0.5c4+(1−2θ)µ2 , Milstein

scheme (5.24) shares the exponential mean-square stability of the exact solution. (ii) For θ ∈
(1/2, 1], if µ2 < c4

2(2θ−1) (the diffusion term plays a crucial role), then for ∆ < ∆∗, Milstein scheme

(5.24) is exponentially mean-square stable, and if µ2 ≥ c4

2(2θ−1) (the drift term plays a crucial role),

then Milstein scheme (5.24) is exponentially mean-square stable unconditionally. These results are

coincident with Theorem 2.1 in [35]. Theorem 5.3 also presents the exponential decay rate γ∆ of

theta-Milstein scheme.
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