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Abstract

This work investigates the characterization of bright lesions in retinal fundus

images using texture analysis techniques. Exudates and drusen are evidences of

retinal damage in diabetic retinopathy (DR) and age-related macular degener-

ation (AMD) respectively. An automatic detection of pathological tissues could

make possible an early detection of these diseases. In this work, fractal analysis

is explored in order to discriminate between pathological and healthy retinal

texture. After a deep preprocessing step, in which a spatial and colour normal-

ization are performed, the fractal dimension is extracted locally by computing

the Hurst exponent (H) along different directions. The grayscale image is de-

scribed by the increments of the fractional Brownian motion model and the H

parameter is computed by linear regression in the frequency domain. The abil-

ity of fractal dimension to detect pathological tissues is demonstrated using a

home-made system, based on fractal analysis and Support Vector Machine, able

to achieve around a 70% and 83% of accuracy in E-OPHTHA and DIARETDB1

public databases respectively. In a second experiment, the fractal descriptor is
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combined with texture information, extracted by the Local Binary Patterns, im-

proving the bright lesion detection. Accuracy, sensitivity and specificity values

higher than 89%, 80% and 90% respectively suggest that the method presented

in this paper is a robust algorithm for describing retina texture and can be

useful in the automatic detection of DR and AMD.

Keywords: Retinal fundus image, Fractal analysis, Diabetic retinopathy,

Age-related macular degeneration, Local Binary Patterns.

1. Introduction

Diabetic retinopathy (DR) and age-related macular degeneration (AMD)

are two of the most common pathologies in the current society that provoke

retinal damage and can be directly related to blindness and vision impairment.

Although in recent years the number of cases has been significantly reduced, it is5

estimated that the 80% of cases of visual impairment is preventable or treatable.

The early diagnosis of these pathologies allows to reduce costs generated when

they are in advanced states and may become into chronic. Due to the large

of population at risk, a potential automatic screening would highly benefit to

clinicians reducing the workload of trained experts in the analysis of anomalous10

patterns of each disease.

Retinal fundus images are the most non-invasive acquisition modality in

which different lesions are manifested; these lesions are the basis to identify the

pathologies and their stage of proliferation. Figure 1 shows the distinctive lesions

evidenced in pathological fundus images. This work is focused on the automatic15

detection of the bright lesions that characterize DR and AMD, exudates and

drusen respectively.

In the literature, the most common procedure is to segment these lesions

using different methods [1–3] but in this work the characterization of the healthy

and the pathological retina is studied applying texture analysis techniques, in20

particular, fractal descriptors, avoiding the segmentation step.

Fractal objects are characterized by a high degree of complexity but also by
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(a) (b)

Figure 1: (a) Lesions of Diabetic Retinopathy and (b) signs of age-related macular degenera-

tion.

self-similarity represented by a repetition of patterns or statistical properties

over different scales. Based on this property of self-similarity it is possible

to describe an image by means of a fractal dimension (FD) parameter. The25

characterization of gray level images is described using the potential usefulness

of the fractional Brownian motion (fBm) model [4].

Fractals have been recognized as an effective descriptor of complex struc-

tures in biology and medicine [5]. In the literature, fractal analysis have been

proposed for characterizing biomedical signals and images [6–10]. Regarding30

to retinal fundus images, fractals have only been applied to the retinal blood

vessels characterization. In [11], a fractal analysis approach based on the box-

counting method was used to quantify vascular patterns in normal and abnormal

cases showing neovascularization (caused by proliferative diabetic retinopathy

in advanced stages of the disease). The algorithm was validated in ten im-35

ages. In [12], a blood vessel segmentation method based on fractal analysis

was proposed and a comparison of the fractal dimension (extracted from the

blood vessels) between hypertension and non-hypertension groups was carried

out without significant evidences of discrimination ability. The authors of [13]

proposed a semi-automatic method to compute the fractal dimension of fundus40

images. They established a comparison between their method and the box-

counting method. Finally, the authors applied the proposed algorithm with the
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aim of testing the impact in the variation of blood vessels due to the angle be-

tween the acquisition camera and the optical axis. To the best of the authors’

knowledge, fractal analysis has not been used previously in the characterization45

of retinal lesions and it could be a key factor because exudates and drusen are

the first recognizable signs of the diseases under study.

The main objective of this work is to demonstrate that the fBm model suits

well for the characterization of pathological texture in retinal images and as

novelty we demonstrate how it is possible to detect bright lesions by means of50

the fractal dimension. In addition, fractal dimension will be combined with

another texture descriptor in order to enhance the yield of a computer-aided

diagnosis system developed by the authors.

The rest of the paper is organized as follows: in Section 2, the fractional

Brownian motion model able to describe the fractal dimension in grayscale im-55

ages is explained. In addition, an explanation about how the fractal descriptor

is extracted from the retinal texture is detailed. Section 3 shows, on the one

hand, a statistical analysis of the fractal dimension according to the healthy and

pathological retinal texture. On the other hand, the results of the automatic

detection of bright lesions on two public fundus databases, using the home-made60

system, are presented. Finally, section 4 provides conclusions and some areas

for future work.

2. Material and methods

2.1. Material

The validation of the proposed method was carried out on two public public65

databases. E-OPHTHA database [14] is divided in two subsets depending on

the lesion type: exudates and microaneurysms. These lesions are manually

annotated by experts and the ground-truth is provided. The exudates subset

(E-OPHTHA EX) used in this work is composed by forty seven retinal images

of different spatial resolutions (see Table 1) acquired with the same field of view70
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angle, i.e. 40. Due to this resolution variety, a stage of spatial normalization is

essential.

Image resolution (pix.) 1440× 960 1504× 1000 2048× 1360 2544× 1696

Number of images 13 2 9 23

Table 1: Distribution of the E-OPHTHA EX images with exudates according to their resolu-

tion.

DIARETDB1 public database [15] consists of 89 colour fundus images, of

which 47 contain exudates. Images were captured using the same 50 degree field-

of-view digital fundus camera and all images present a resolution of 1500×115275

pixels. The 89 images of this database were marked by four experts. These

annotations are provided as a probability map. The procedure proposed by

the authors of DIARETDB1 to generate the ground truth images from the

probability map, is follow in this work. Each pixel marked as exudate by 3 of

the 4 experts is considered as exudate pixel in the binary mask.80

Note that a list with the original images used as well as the resulting source

code implemented of this work is publicly available in https://github.com/

adcogra/Fractal_Analysis_JCAM to reproduce and verify the obtained results

facilitating future fair comparisons.

2.2. Fractals85

The minimum number of independent variables to describe an object is de-

fined by the Euclidean dimension (E). A point is a 0-dimensional object; a line

is 1-dimensional while a plane is 2-dimensional. However, this approach does

not extract information about the “roughness” of the object, in other words,

Euclidean dimension of a line will always remain constant (E=1) whatever it is90

straight or crooked.

Two centuries ago different mathematicians such as Koch, Sierpinski and

Hausdorff established a geometric definition of fractals demonstrating that shapes

and objects have fractional dimension. Fractals objects are built based on a
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pattern repeated at different scales and can therefore be described as a part of95

themselves. This property illustrated in Figure 2 is known as “self-similarity”.

Figure 2: The first four iterations of the Koch snowflake.

To characterize such objects, a non-integer dimension is used: the fractal

dimension (FD). However, this term does not reflect a single descriptor, as

several definitions coexist. The simplest way to apprehend the FD is using the

homothety a.k.a. similarity dimension (DH):100

DH =
ln(N)

ln(r−1)
(1)

where N is the number of elementary patterns included in the object and r is

their reduction factor. This computation is valid only for a geometrical set with

internal homotheties, and can be extended to any set using the box-counting

a.k.a. Minkowski-Bouligand dimension (DB):

DB = lim
ε→0

log(Nε)

log(ε−1)
(2)

where Nε is the minimal number of subsets with a size ε required to cover the105

object. This FD reflects the complexity of the object and its construction. In

particular, a signal with higher FD is more complex or rough than a signal with

lower FD.

Another popular way to define the fractal dimension concept is the so-called

capacity(DC). This definition makes reference to the characterization of fractal110

patterns or sets by quantifying their complexity as a ratio of the change in detail

to the change in scale [16]. The relation between the length of an object and its
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roughness is given by:

Lδ = K · δ(1−DC) (3)

where Lδ is the length of the object, δ the measuring scale, K a constant and

DC the object fractal dimension (FD).115

2.3. Fractional Brownian motion model

In the work presented by Mandelbrot and Van Ness [17], fractional Brown-

ian motion is defined by its stochastic representation based on the long-range

dependence and self-similar behaviours. This representation is governed by a

single parameter called the Hurst exponent (H) [18] which is linked to the fractal120

dimension by H = E + 1 − FD, where E is the Euclidean dimension. Due to

the random nature of fundus lesions in terms of location, shape and size (see

Section 1), the fractal model based on fBm is used to describe these random

phenomena [19]. In the following lines, the fractional Brownian motion model

is formulated to be applied in grayscale images.125

The spectral representation of fBm, BH(t), is given by [20]:

BH(t) =
1

2π

∫ +∞

−∞

1

(iω)H+1/2
(eitω − 1)dB(ω) (4)

where BH(t) is a Gaussian, continuous, centered and non-stationary second-

order process, ω designates the set of all values of a random function (where ω

belongs to a sample space Ω), dB(ω) is the white noise integration corresponding

to the Gaussian process and t refers time and it ranges in the interval (−∞,+∞).130

Applying the initial condition BH(0) = 0, its covariance function (ρ) is given

by:

ρ(s, t) = E[BH(s)BH(t)] =
a2VH

2
(|t|2H + |s|2H − (t− s)2H) (5)

for 0 < s <= t where E[·] is the mathematical expectation, a is a constant and
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VH a function of H defined as [21]:

VH = Γ(1− 2H)
cos(πH)

πH
(6)

where Γ is the gamma function.135

The self-similarity property of the fBm can be expressed as:

BH(km) ≡ kHBH(m); ∀k and m > 0 (7)

As fBm is a non-stationary process, it is more convenient to study its incre-

mental process called fractional Gaussian noise (fGn), defined as the derivative

of fBm at a resolution m:

Gm(k) = BH(k)−BH(k −m) (8)

The corresponding autocovariance function γ(·) is given by:140

γ(τ) = E[Gm(k)Gm(k + τ)] =
σ2
m

2|m|2H
(|τ +m|2H + 2|τ |2H + |τ −m|2H) (9)

where σ2
m = a2VH |m|2H is the variance of Gm.

For fGn class signals, the probability distribution of a segment of the signal

is independent of the segment size and its temporal position in the signal [22].

This property plays an important role in this work due to a local computation

of the fractal dimension is performed as detailed in the following subsection.145

The Power Spectra Density (PSD) of the fGn can be calculated from (9),

and when m tends to infinity, a normalized spectrum of the fBm increments can

be defined as [23]:

PSDGm(f) ∝ |f |1−2H (10)

In this work, the fGn-based Spectral Estimator (GSE) is used in order to

compute the parameter H from the PSD of the fBm increments. Equation150

(10) shows that the PSD follows a law in |f |1−2H . In a log-log scale, the PSD
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function of the fBm increments is a line of slope 1 − 2H. The H parameter

can be estimated by linear regression. Regarding to the GSE implementation,

the average spectrum of the fGn is estimated for each patch by the square of

the modulus of the Fourier transform computed by the Fast Fourier Transform155

(FFT) algorithm.

2.4. Application to retinal images

As we introduced in section 1, the main novelty of this work is to apply

fractal analysis in order to model the healthy retinal texture and the bright

retinal lesions produced by DR and AMD. With the aim of reliably obtaining160

the fractal description of both tissues reliably, an image preprocessing step is

essential before the local fBm computation and the Hurst exponent estimation.

2.4.1. Retinal fundus image preprocessing

Public fundus images belonging to a specific database can present different

resolutions due to the configuration of the retinal camera. This fact can hin-165

der the comparison of the lesions and anatomical structures. E-OPHTHA EX

database is composed by images with four different resolutions as we mentioned

in section 2.1. For this reason, the first preprocessing step is a spatial nor-

malization. The images are resized to the dimensions of the smallest image

(1440× 960) after a local maximum filter applied in order to preserve the small170

bright lesions.

Another uncalibrated factor in fundus images is the background colour due

to the retina variability. Retinal fundus colour depends on age, ethnicity, dif-

ferences in retina pigmentation and other anatomical human factors. In order

to avoid problems in the fractal description due to these factors, a colour nor-175

malization of the images is performed (Figure 3(b)). In particular, a colour

normalization based on geometric tranformations applied to the chromatic his-

togram of the image [24] is performed.

Blood vessels cover a high percentage of the fundus image and are consid-

ered as noise or artefacts that hamper the classification of pathologies based on180
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background textures. For this reason it is necessary to remove the contribution

of this structure to the fractal analysis. Retinal vessels are detected using the al-

gorithm proposed by Morales et al. [25]. This method is based on mathematical

morphology and curvature evaluation for the detection of retinal vascular tree

(Figure 3(d)). A possible procedure to avoid blood vessels is to consider these185

structures as missing pixels and trying to restore them using the background.

This technique is known as image inpainting and different kind of methods ex-

ist in the literature. In this paper, the diffusion-based inpainting method by

means of the simplest isotropic diffusion model is used with the implementation

proposed in [26]. Figure 3(e) shows a retinal inpainted image, the input to the190

fractal analysis stage.

In fundus images, the green component of the RGB-representation shows

the maximum contrast between lesions and background, the red channel is often

saturated and has low contrast, and the blue channel is very noisy and suffers

poor dynamic range. For these reasons, the green component is commonly used195

to segment the lesions [1, 27, 28] and it is used in this work (Figure 3(f)).

(a) (b) (c)

(d) (e) (f)

Figure 3: Retinal fundus image preprocessing. (a) Original image, (b) colour-normalized

image, (c) green component of the normalized image, (d) vessel mask extracted using [25], (e)

inpainted image without blood vessels and (f) input image to the fractal analysis stage.
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2.4.2. Local computation of the fractal dimension

The lesions induced by macular degeneration or diabetic retinopathy present

different sizes according to the stage of the disease. In most cases, lesions

represent less than one percent of the total number of pixels that compose the200

retinal image. For this reason, in the feature extraction stage, fractal dimension

is performed locally, in other words, the image is divided in patches using a

sliding window (Figure 4(a)) and the texture descriptor is computed for each

patch. The window used is a square of canonical size (Nw) with overlap of

(∆x,∆y). Note that patches containing optic disk pixels [29] are not considered205

in the process. Patches should also be completely contained within the field of

view of the retinal image (Figure 4(b)).

Δx 

Δy 

(a) (b)

Figure 4: (a) Image grid indicating the positions of the sliding windows (Nw = 64) using

(∆x,∆y) = (32,32) and (b) binary mask used in order to exclude the patches containing optic

disk pixels or the patches located out of the field of view.

In this work fractal dimension of 2D image patches is extracted. With the

aim of reducing the loss of information, a multi-dimensional extension of the

fBm is used by means of the multiparameter Wiener process, or Brownian sheet210

presented in [30]. An anisotropic extension of the fGn allows the extraction of

different Hurst exponents, one parameter in each of the L directions, gathered in

the vector parameter H = (H1, H2, ...,HL). In particular, the Hurst parameter

in L = 2 directions (0 and 90 degrees) is computed from the average PSD (in
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each direction) and stacked as a vector H = [H0◦ , H90◦ ].215

Let X be an image patch of dimensions M ×N , for each row m we obtain

the 1D signal d[n] = X[m,n + 1] − X[m,n] and compute the discrete Fourier

transform given by:

D[k] =

N−1∑
n=0

d[n]e
−j2πkn

N (11)

These 1D spectra compound the M rows of a 2D matrix D′[k, l]. Finally,

the PSD is computed by a pointwise averaging in each column as:220

PSD[k] =
1

M

M−1∑
l=0

D′[k, l] (12)

Figure 5(a) shows a patch extracted from the retina background of the image

displayed in Figure 4; the white arrow defines a specific patch row in which the

intensity is studied. We can notice the non-stationarity of this intensity signal

(Figure 5(b)) along the patch width. As recalled above, the increments of the

intensity are easier to study due to their stationarity (Figure 5(c)). In Figure225

5d it is possible to observe the PSD
0◦

extracted from the patch under study by

means of equation (12).

Finally, in order to extract the H parameter of the patch, a linear regression

in log-log scale for the PSD curve (Figure 5(d)) is performed and the Hurst

exponent is estimated using equation (10). Linear regression is performed in230

the frequency interval f ∈ [fini, fend] in which the PSD curve, plotted in a log-

log scale, is linear. This linear behaviour shows the fractal nature of the tissue

under study. The intergroup roughness of image patches is quite different, in

other words, the linear segment in the log-PSD curve for patches labelled as

healthy and pathological is located in a different frequency interval. However,235

this range of frequencies is quite similar between patch images of the same class

(i.e. low intragroup deviation). These facts allow the automatic computation

of the optimal frequency range for each category. Two representative subsets

of image patches containing Nh healthy patches and Np pathological patches

respectively are extracted from the training set. For each patch of both subsets,240
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Figure 5: (a) A pathological ROI extracted from a retinal image, (b) the intensity of each

pixel extracted from the ROI according to the arrow, (c) the increments of the line presented

and (d) the periodogram of the increments of all lines of the ROI.

the optimal frequency range is manually selected fi = [finii , fendi ] where i

ranges between 1 and Np or Nh depending on the subset. Thanks to the low

intragroup deviation, two frequency ranges of reference f ′h = [fhini , fhend ] and

f ′p = [fpini , fpend ] can be computed from each subset of the selected frequencies

Ωh = {f1, f2, ..., fNh} and Ωp = {f1, f2, ..., fNp} as the minimum finii and245

maximum fendi respectively. These frequency ranges of reference are used in

the automatic computation of the fractal dimension. For each image patch,

the curvature inside both frequency ranges is calculated. The frequency range

in which the log-PSD curvature is minimum is the frequency range selected to

carry out the linear regression.250

Algorithm 1 describes the complete process to locally estimate the fractal

dimension in L = 2 directions from grayscale fundus images.
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Algorithm 1: Local fractal analysis computation

Data: RGB fundus image f = (fr, fg , fb) is the pre-processed retinal image as it was

detailed in Section 2.4.1, optic disc mask Mod, external mask Mext, size of

the sliding window Nw, vectors r and c containing the y and x coordinates of

the centres of the patches in which the local analysis is performed.

Result: Hurst exponent matrix H containing the fractal dimension in two directions

per patch.

Inicialization:

ind← 1;

Green channel selection:

fin ← fg ;

Mask computing:

M ← and(Mod,Mext)

Local fractal analysis:

for i← 1 to length(r) do

for j ← 1 to length(c) do

M� ←MNw (ri, cj) ;

f�
in ← fNw

in (ri, cj) ;

if
∑

x

∑
y M� > 0 then

PSD0◦ ← PSD(f�
in);

PSD90◦ ← PSD(rotate(f�
in, 90));

PSD
0◦ ← mean(PSD0◦ ) ;

PSD
90◦ ← mean(PSD90◦ ) ;

P̂ SD
0◦
← polyfit(log10(PSD

0◦
)) ;

P̂ SD
90◦
← polyfit(log10(PSD

90◦
)) ;

H0◦ ← [−0.5(slope(P̂ SD
0◦

)− 1)] ;

H90◦ ← [−0.5(slope(P̂ SD
90◦

)− 1)] ;

Hind ← [H0◦ , H90◦ ];

ind← ind + 1 ;

end

end

2.4.3. Classification process

After the feature extraction stage, the Support Vector Machine (SVM) clas-

sifier [31] using the Bootstrap Aggregating (Bagging) technique [32] is used to255
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classify each patch, extracted from an image, in healthy or pathological ac-

cording to its fractal dimension. SVM maximises the distance between the

hyperplanes defined by specific samples, called support vectors, with the aim

of finding the optimal separation between classes. It is important to note that

SVM algorithm is applied using the kernel trick technique [33]. In this tech-260

nique, a specific non-linear function (Φ) is used for mapping non-linear separable

data points (Ω = {x1, x2, ..., xn}; points xi ∈ <d) in the original space Σ, into

a higher dimensional space in which the data is linearly separable. When this

hyperplane of separation is projected back to the input space (Σ), it has the

form of a non-linear curve. The new feature space can be of unlimited dimension265

and thus the hyperplane separating the data can be very complex. The function

K(x, xi) = Σ(x)TΣ(xi) is known as kernel function and in this work, each SVM

model is trained using a gaussian kernel (i.e. a Radial Basis Function kernel)

defined by the following expression:

K(x, x′) =

(
‖x− x′‖2

2σ2

)
(13)

where σ ∈ < is a kernel parameter and ‖x−x′‖ is the dissimilarity measure.270

Combining the SVM method with the Bagging technique it is possible to

improve the stability and accuracy of the machine learning algorithm, reducing

the variance and avoiding the overfitting. In this work, the Bagging technique is

also used to solve the problem of the unbalanced classes caused by the different

number of healthy and pathological patches extracted from a retinal fundus275

image. Given T pathological patches and K healthy patches where K >> T ,

the bagging technique can be applied in order to balance the classes. In first

place, a random permutation of the healthy patches is carried out. After that,

M different SVM models can be trained using groups of L healthy patches and

the L pathological patches. The final number of classifiers can be calculated as280

M = round (K/L).

An overview of the proposed method is presented in Figure 6. The flow chart

shows the different steps of the pre-processing and feature extraction stages.
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Figure 6: Flow chart of the pre-processing and fractal analysis stages.

3. Results

3.1. Statistical significance analysis of the fractal dimension285

The main purpose of this work is to analyse the ability of fractals to dis-

criminate between pathological and healthy retina. For this reason, in the first

experiment a statistical analysis of the fractal dimension, described by the Hurst

exponent variable, is carried out.

From the 47 color fundus images with exudates of the E-OPHTHA EX290

database, 10991 healthy and 2151 patches with lesion are extracted. Figure

7(a) shows the average PSD of the fGn computed from each labelled patch. As

it can be observed, the lines that describes these curves (red and green) will be

characterized by different slopes and these slopes will define the H parameter

or fractal dimension.295

The statistical significance of the fractal dimension variable according to the

two populations under study is analysed by means of the students t-test [34]. A

random selection of 2151 healthy patches is carried out in order to balance the

groups. Figure 7(b) shows the box comparison of H parameter. The p-value

obtained from the t-test p < 0.001 is statistically highly significant, so this fact300

is promising in order to use the fractal analysis to detect automatically the

bright lesions typical in DR and AMD retina background.

3.2. Automatic exudate detection using fractal analysis

An automatic system combining the different stages detailed in Figure 6 was

developed by the authors. This computer-aided diagnosis system is used with305

the aim to demonstrate the ability of fractal dimension to discriminate between

healthy and pathological texture.

16



Healthy patches Pathological patches
0.2

0.4

0.6

0.8

1

H
ur

st
 e

xp
on

en
t (

H
)

H distribution according to the patch texture type

(a) (b)

Figure 7: (a) Average PSD comparison between the two populations, pathological (in red)

and healthy (in green) and (b) Hurst exponents ± SD estimated using GSE for the healthy

and pathological groups.

To avoid biased results produced by training and testing sets selection, in this

work we use an external k-fold cross-validation procedure. For each database un-

der study, the whole dataset composed by N images is divided into k partitions.310

Then patches extracted from the images belonging to k − 1 partitions are used

for training a classifier as described in Section 2.4.3, and the patches extracted

from the remaining partition of images are used for testing. The procedure is

carried out k times, leaving out a different partition in each repetition.

The optimal patch size (Nw) and the overlap (∆x,∆y) used to extract the315

local features were obtained through an internal v−fold cross-validation process

with v = 8 folds. Note that this technique is applied to the “patch” instances

extracted from the fundus images. From this process, a patch size Nw = 64 pix.

and an overlap (∆x,∆y) = 32 pix. were obtained as optimal parameters for

the local analysis in the exudate detection task. Regarding to the classification320

stage, a Radial Basis Function (RBF) kernel was used. RBF kernel is charac-

terised by two parameters (C, γ). The parameter C trades off miss-classification

of training examples against simplicity of the decision surface, while the param-

eter γ defines how far the influence of a single training example reaches. Internal

v − fold cross-validation was used in the experiments in order to “grid search”325

the optimal parameters. Several pairs of (C, γ) values were tried and the one

with the highest cross-validation accuracy was selected for each k partition [31].
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In addition, the problem of unbalanced data is solved using the Bagging

technique with M = 7 classifiers. It is important to note that in the test stage,

each SVM classifier predicts one label for each patch and the final decision is330

obtained using a voting algorithm. The individual decision of each classifier is

pondered by the probability assigned in the classification. The final assignment

of the class is made according to the sum of all weighted decisions. If this sum

is greater than 0.5, the patch is classified as pathological texture, while if the

sum is less than 0.5 the tissue is classified as healthy. The whole classification335

strategy is summarized in Figure 8.
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Figure 8: Overview of the classification strategy.

Table 2 shows the evaluation of the classification performance for the two

public databases detailed in Section 2.1. The classification of the retina back-

ground patches extracted from the 14 images that compose the test set are

evaluated by using six metrics. Accuracy (ACC) measures the fraction of cor-340

rect predictions by the total number of cases. Sensitivity (SENS) and specificity

(SPEC) measure the proportion of positive and negative cases which are cor-

rectly identified as such, respectively. The positive and negative predictive val-

ues (PPV and NPV respectively) measure the proportion of positive (negative)

cases classified correctly according to the gold standard and the total number of345

positive (negative) predictions determined by the classification system. Finally,

the area under the ROC curve (AUC) relates the hit rate to the false alarm

rate and it is an extended way to measure the predictive modelling accuracy

[35]. This measure allows to establish fair comparisons where there is a strong
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imbalance between classes [36].350

Database ACC SENS SPEC PPV NPV AUC

E-OPHTHA EX 0.6980 0.6149 0.7488 0.2981 0.9213 0.7168

DIARETDB1 0.8361 0.6047 0.8657 0.3448 0.9459 0.8176

Table 2: Results of the classification patch process using the fractal descriptor.

As we can observe, fractal dimension presents a promising ability to describe

patches with lesions allowing the discrimination from the healthy texture. It

is important to note that using only two features (the Hurst exponent in two

directions), the classifier is able to correctly classify 69.8% of all the instances

extracted from the test images of the E-OPHTHA EX database and 83.61% of355

all the patches extracted from the test images of the DIARETDB1 database.

From the SPEC and NPV measures of Table 2 it is possible to determine the

great capacity of fractal analysis for modelling the healthy tissue. Regarding

to the sensitivity and positive predicted values, results suggest the difficulty

of discriminating a large test set using two features. With the objective of360

improving this aspect, texture information is incorporated to the feature vector

combining the Hurst parameters with another descriptor.

Figure 9 shows the visual representation of the exudate detection in one

representative image of each database. In this figure, red squares indicate the

true positives, green squares the false positives and the blue squares reveal the365

false negative detections.

3.3. Fractal dimension combined with Local binary patterns

As we demonstrated above, fractal analysis is able to describe pathological

retinal tissues with around 70% and 83% of success in each database under

evaluation. However, the SVM classifiers involved in the bagging process are370

using only two features, the Hurst exponent or fractal dimension in L = 2

directions, to perform the discrimination. In order to improve the accuracy of

the bright lesion detection, the fractal descriptor is combined with Local Binary
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Deteccion de lesiones en image014

(a) (b)

Figure 9: Automatic exudate detection in two retinal images using the fractal dimension as

unique feature. (a) Representative image (DS000U30.jpg) from the E-OPHTHA EX database

and (b) representative image (image014.png) from DIARETDB1 database. Red squares indi-

cate the true positives, green squares the false positives and the blue squares reveal the false

negative detections.

Patterns (LBP). LBP is a powerful grey-scale texture operator used in many

computer vision applications. This descriptor establishes a label for each pixel375

taking into account its neighbourhood which is defined by a radiusR and number

of points P . Many variants of LBP exist in the literature but the rotation-

invariant uniform LBP presented in [37] is used in this work. Using this LBP

variant, ten different texture labels could be generated depending on the binary

string computed in the comparison between a pixel and its neighbourhood.380

When LBP is used for texture description it is common to include a contrast

measure by defining the Rotational Invariant Local Variance [37]. As a novelty

in the retina texture description stage, in this work LBP (rotation-invariant

uniform variant) and VAR are combined following the process proposed by Guo

et al. [38] resulting the LBP variance (LBPV). Both descriptors (LBP and385

VAR) are computed for the whole image and the normalized histogram of the

LBPV is extracted from each patch.

LBPV is computed in a circular neighbourhood of radius R = 1 by defining

P = 8 neighbours. A discrete histogram composed by ten labels or patterns
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describes each patch extracted from the images. A new model taking only into390

account this texture information is trained. Table 3 reports the classification

performance obtained for the two databases under study.

Database ACC SENS SPEC PPV NPV AUC

E-OPHTHA EX 0.7212 0.7947 0.6121 0.4178 0.8603 0.7393

DIARETDB1 0.8229 0.8366 0.7990 0.4212 0.8987 0.8125

Table 3: Classification patch performance using as feature vector the ten patterns of the LBPV

histogram.

As can be observed in the previous table, the LBPV descriptor presents a

good performance in exudate detection. Using the ten features provided by

the LBPV histogram, 72.12% and 82.29% of classification accuracy is achieved395

for each database. Paying attention to the sensitivity and PPV values, the

texture information is able to reduce the number of false positives at expense

of a drastic reduction of the true negatives detections. Analysing the results

showed in Tables 2 and 3, in particular SENS, SPEC, PPV and NPV measures,

it is possible to extract a complementary behaviour between the roughness and400

texture descriptors. In spite of this complementary behaviour, a similar overall

performance in the classification is glimpsed attending to the ACC and AUC

measures. This fact is exploited in a second test, in which the ten features

obtained from the LBPV histogram computation are combined with the fractal

dimension computed in two directions (0 and 90 degrees) composing a feature405

vector that combines texture and roughness information. The same test as we

presented in the previous section is performed achieving the results showed in

Table 4.

The fact of feeding the classifier with a combination of texture and contrast

information (LBPV) and roughness information (FD) provides a powerful sys-410

tem to discriminate between healthy and pathological retinal tissue. A promis-

ing trade-off between sensitivity-specificity and PPV-NPV (Table 4) propitiates

higher values of AUC. Based on [39], AUC values greater than 0.85 invites to
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Database ACC SENS SPEC PPV NPV AUC

E-OPHTHA EX 0.8477 0.7478 0.8705 0.4061 0.9528 0.8686

DIARETDB1 0.8987 0.8083 0.9023 0.4175 0.9656 0.8812

Table 4: Classification patch performance using as feature vector the fractal dimension com-

bined with the LBPV histogram.

consider the proposed methodology as a “good diagnostic test” for the hard ex-

udate detection. The robustness of the proposed system against the variability415

introduced by the use of different image databases is another relevant aspect to

emphasize.

The new feature vector provides an accurate bright lesion detection in fun-

dus images. Now, only particular patches composed by less of five percent of

pixels with lesion are not identified as pathological tissue. Figure 10 shows the420

automatic identification of exudates in the same images that in the previous

section allowing to observe the improvement by visual inspection.
Deteccion de lesiones en image014

(a) (b)

Figure 10: Automatic lesion detection in two retinal images using the LBPV histogram and

the fractal dimension as feature vector. (a) Representative image (DS000U30.jpg) from the

E-OPHTHA EX database and (b) representative image (image014.png) from DIARETDB1

database.

Thanks to DIARETDB1 public database, the proposed method for exudate

detection can be compared with some state-of-the-art works, in which, the de-

22



tection/segmentation of these lesions is performed by using classical techniques425

such as filtering and mathematical morphology. Table 5 summarizes the exu-

date detection results achieved by the proposed method and by other works of

the literature.

Methods Sensitivity Specificity PPV

Sopharak et al.[40] 0.4348 0.9931 0.2548

Walter et al.[1] 0.6600 0.9864 0.1945

Welfer et al.[2] 0.7048 0.9884 0.2132

M.Ghafourian et al.[3] 0.7828 - -

Proposed method 0.8083 0.9023 0.4175

Table 5: Comparison of exudate detection methods for the 47 retinal images with exudates

of DIARETDB1 database.

The proposed method presents the best trade-off between sensitivity-specificity

improving the representative methods involved in the comparison. In Sopharak430

et al.[40] and Walter et al. [1], poor sensitivity values are achieved. This fact is

quite relevant taking into account that this parameter is directly related with the

quality of predicting positive instances. Sensitivity value is the unique measure

provided by [3] about the performance of its method. Taking into account only

one parameter is not possible to establish the goodness of that method. The435

algorithm introduced by [2] provides interesting results. However, analysing to-

gether the three parameters of Table 5 it is possible to observe that our method

outperforms the Welfers’ one. It is important to note that if AUC parame-

ter would have been included in the works involved in the comparison a more

exhaustive comparison would have enabled.440

4. Conclusions

In this work, fractional Brownian motion model was used in order to de-

scribe grayscale retinal images allowing the estimation of the fractal dimension.

With the aim of reliably applying fractal analysis in fundus images, a prepro-
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cessing stage combining resizing, inpainting and colour-normalization methods445

was essential due to the high image variability in the databases. After that,

different test were carried out using the E-OPHTHA and DIARETDB1 pub-

lic databases. The local estimation of the Hurst exponent by linear regression

made possible to discriminate between healthy and pathological retinal tissue

in a statistical highly significant way (p<0.001). This fact led the authors to450

develop an automatic system able to detect the bright lesions using as feature

the fractal dimension and a committee of SVM classifiers. The obtained results

glimpsed the need of creating a more robust feature vector able to avoid the

possibility of underfitting. The normalized LBPV histograms were extracted

from the image patches and new experiments using this descriptor showed a455

complementary behaviour with respect to the fractal dimension. This fact pro-

pitiated a last experiment, in which, the SVM models were recalculated using as

feature vector a combination of roughness information, provided by the fractal

analysis, and texture information, extracted by the LBPV histograms. This

novel approach reached an accurate bright lesion detection. In particular, 85%460

and 90% of accuracy was achieved in E-OPHTHA EX and DIARETDB1 re-

spectively. In addition, the proposed system was able to outperform the most

representative state-of-the-art methods in exudate detection showing the best

trade-off between sensitivity-specificity.

In future research, piecewise fractional Brownian motion model will be ex-465

plored. In this model, the PSD of the graylevel increments is supposed multi-

fractal, in other words, the spectrum can be divided in fragments and several

Hurst parameters will be extracted by linear regressions. Each patch will be

represented by a fractal signature. Moreover, the authors would like to explore

Minkowski functionals and Minkowski tensors [41] with the aim of extracting470

new fractal features from fundus images [42]. In addition, fractal analysis will

be used to detect red dark lesions as microaneurysms and haemorrhages. This

fact would allow to automatically discriminate between two of the most frequent

causes of blindness or vision impairment in the world: diabetic retinopathy and

age-related macular degeneration.475
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