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Abstract. In this paper, we consider numerical approximations for the viscous Cahn-Hilliard
equation with hyperbolic relaxation. This type of equations processes energy-dissipative structure.
The main challenge in solving such a diffusive system numerically is how to develop high order
temporal discretization for the hyperbolic and nonlinear terms, allowing large time-marching step,
while preserving the energy stability, i.e. the energy dissipative structure at the time-discrete level.
We resolve this issue by developing two second-order time-marching schemes using the recently
developed ‘‘Invariant Energy Quadratization’’ approach where all nonlinear terms are discretized
semi-explicitly. In each time step, one only needs to solve a symmetric positive definite (SPD) linear
system. All the proposed schemes are rigorously proven to be unconditionally energy stable, and
the second-order convergence in time has been verified by time step refinement tests numerically.
Various 2D and 3D numerical simulations are presented to demonstrate the stability, accuracy and
efficiency of the proposed schemes.

1. Introduction

The classical Cahn-Hilliard (CH) equation dates back to 1958 in Cahn and Hillard’s seminal paper
[5]. In the past decades, it has been well studied and broadly used to investigate the coarsening
dynamics of two immersible fluids. Recently, researchers have devoted tremendous attention on the
relaxed CH system, i.e. the viscous Cahn-Hilliard (VCH) system and its perturbed form with the
hyperbolic relaxation (HR) effect (referred as to the perturbed viscous Cahn-Hilliard equation).
Both VCH and VCH-HR have been well-studied theoretically where the topics are mainly focused
on the well-posedness, sharp interface limit or global attractor, etc., see [2, 3, 6, 11–13, 16, 17, 19–
21, 25–32, 36, 38, 43, 45–47, 56] and the references therein. Formally, the governing equation of
the VCH-HR system is slightly different from the CH equation by incorporating two extra terms,
including a strong damping (or called “viscosity”) term and a hyperbolic relaxation term (or called
“inertia”). The viscous effect is first proposed by Novick-Cohen [45] in order to introduce an
additional regularity and some parabolic smoothing effects, can be viewed as a singular limit of the
phase field equations for phase transitions [20]. The hyperbolic relaxation term was proposed by
Galenko et. al. in [25–30,38], in order to describe strongly non-equilibrium decomposition generated
by rapid solidification under supercooling into the spinodal region occurring in certain materials
(e.g., glasses). Since the VCH-HR system combines the hyperbolic relaxation and the viscosity
together, it is mathematically more tractable comparing to the CH or VCH systems [36,47,78].
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Before developing efficient numerical schemes to solve the VCH-HR system, we notice that its
reduced version, the classical CH equation is now widely applied to model the interfacial dynamics
in various scientific fields (cf. [5, 7, 18, 37, 39, 42, 57, 71, 72] and the references therein). The CH
equation as well as its analogous counterpart model, the Allen-Cahn equation, are both categorized
as representative equations of phase field type models. From the numerical point of view, when
solving phase field models, it is desirable to establish efficient numerical schemes that can verify
the so called “energy stable” property at the discrete level irrespectively of the coarseness of the
discretization. In what follows, those algorithms will be called unconditionally energy stable or
thermodynamically consistent. Schemes with this property are especially preferred since it is not
only critical for the numerical scheme to capture the correct long time dynamics of the system, but
also provides sufficient flexibility for dealing with the stiffness issue. In spite of this, we have to
point out a basic fact that larger time step will definitely induce larger computational errors. In
other words, the schemes with unconditional energy stability can allow arbitrary large time step
only for the sake of the stability concern. In practice, the controllable accuracy is one of the most
important factors to measure whether a scheme is reliable or not. Therefore, if one attempts to
use the time step as large as possible while maintaining desirable accuracy, the only possible choice
to develop more accurate schemes, e.g., the unconditionally energy stable second order schemes,
which is the main focus of this paper.

It is remarkable that, despite a great deal of work done for the numerical solution of the classical
CH system, almost all research related to the VCH or VCH-HR system had been focused on the
theoretical PDE analysis with very few numerical analysis or algorithm design. More precisely,
to the best of the authors’ knowledge, no schemes can be claimed to posses the following three
properties, namely, easy-to-implement, unconditionally energy stability and second order accuracy
for the VCH-HR model. This is due to the numerical difficulties of proper discretization for the
viscous effect and the hyperbolic inertia, besides for the regular stiffness issue induced by the
nonlinear double well potential. At the very least, even for the reduced version, i.e. the CH system,
the algorithm design is still challenging. It can be seen clearly from the following fact that some
severe stability restrictions on the time step will occur if the nonlinear term is discretized in some
normal ways like fully explicit type approach. Such a time step constraint can cause very high
computational cost in practice [4, 23, 51]. Many efforts (primarily for CH system) had been done
in order to remove this constraint and two commonly used techniques were developed, namely,
the nonlinear convex splitting approach [22, 33, 56, 58], and the linear stabilized approach [8, 40,
41, 44, 48–55, 61, 62, 70, 73, 76, 77]. The convex splitting approach is unconditionally energy stable,
but it produces nonlinear schemes, thus the implementation is complicated and the computational
cost might be high. The linear stabilized approach is linear so it is efficient and very easy to
implement. But, its stability requests a special property (generalized maximum principle) satisfied
by the classical PDE solution or the numerical solution, which is not trivial to prove. Moreover, it
is difficult to extend to second-order while preserving unconditional energy stability (cf. [51]).

Therefore, in order to develop some more efficient and accurate time marching schemes for
solving the VCH-HR equation, we use the Invariant Energy Quadratization (IEQ) approach, which
has been successfully applied to solve a variety of phase field type models, see [9, 10, 35, 59, 60, 63–
66, 68, 69, 74, 75]). Its idea is very simple but quite different from those traditional methods like
implicit, explicit, nonlinear splitting, or other various tricky Taylor expansions to discretize the
nonlinear potentials. The essential strategy of IEQ is to make the free energy quadratic. To be
more specific, the free energy potential is transformed into the quadratic form forcefully via the
change of variables. Then, upon a simple reformulation, all nonlinear terms are treated by the
semi-explicit way, which in turn yields a linear system. We develop two second order schemes, in
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which, one is based on the Crank-Nicolson, and the other is based on the Adam-Bashforth (BDF2).
The schemes are second order accurate, easy-to-implement (linear system), and unconditionally
energy stable (with a discrete energy dissipation law). Moreover, we show that the linear operator
of all schemes are symmetric positive definite, so that one can solve it using the well-developed fast
matrix solvers efficiently (CG or other Krylov subspace methods). Through various 2D and 3D
numerical simulations, we demonstrate stability and accuracy of the proposed schemes.

The rest of the paper is organized as follows. In Section 2, we present the whole system and
show the energy law in the continuous level. In Section 3, we develop the numerical schemes and
prove their unconditional energy stabilities. In Section 4, we present various 2D and 3D numerical
experiments to validate the accuracy and efficiency of the proposed numerical schemes. Finally,
some concluding remarks are presented in Section 5.

2. Model Equations

First of all, we give a brief description for the model equations. We consider a binary alloy in a
bounded domain Ω ∈ Rd, d = 2, 3 with ∂Ω Lipschitz continuous. For any g1, g2 ∈ L2(Ω), we denote
the inner product and L2 norm as

(2.1) (g1, g2) =

∫

Ω
g1g2dx, ‖g1‖ =

∫

Ω
|g1|2dx.

We define φ(x, t) as volume fraction of one material component, and J the diffusion flux, then
the balance law for volume fraction gives

φt +∇ · J = 0.(2.2)

In order to describe the evolution for φ, we need to introduce a constitutive assumption on J . One
case could be

αJ t + J = −∇(
δE

δφ
+ βφt),(2.3)

where α ≥ 0 is the relaxation parameter, β ≥ 0 is the viscosity parameter, and E(φ) is the total
free energy that takes the form as

E(φ) =

∫

Ω

(ε2
2
|∇φ|2 + F (φ)

)
dx,(2.4)

where ε is a the positive constant that measures the interfacial width and F (φ) is a nonlinear bulk
potential.

For the choice of nonlinear potential F (φ), we can choose either (i) double well (Ginzburg-
Landau) potential where

(2.5) F (φ) = φ2(φ− 1)2;

or (ii) Flory-Huggins potential (cf. [47]) where

(2.6) F (φ) = (1− φ)ln(1− φ) + φlnφ+ θφ(1− φ), θ > 0.

By combining (2.2) and (2.3), the governing PDE reads as follows,

αφtt + φt = λ∆µ,(2.7)

µ = −ε2∆φ+ f(φ) + βφt,(2.8)
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where f(φ) = F ′(φ), i.e., f(φ) = 2φ(φ− 1)(2φ− 1) for double well potential and f(φ) = ln( φ
1−φ) +

θ(1− 2φ) for Flory-Huggins potential. The boundary conditions can be

(i) all variables are periodic; or (ii) ∂nφ|∂Ω = ∂nµ|∂Ω = 0,(2.9)

where n is the unit outward normal on ∂Ω.
When α = β = 0, the system degenerates to the standard CH system that conserves the local

mass density. When α 6= 0, the volume conservation will only hold provided
∫

Ω φt(0,x)dx = 0. To

see this, by taking the L2 inner product of (2.7) with 1, one can obtain directly

α
d

dt

∫

Ω
φt(t,x)dx +

∫

Ω
φt(t,x)dx = 0.(2.10)

This actually is an ODE system for time, and its solution is∫

Ω
φt(t,x)dx = exp(

−t
α

)

∫

Ω
φt(0,x)dx.(2.11)

Therefore, by setting
∫

Ω φt(0,x)dx = 0, we obtain
∫

Ω
φt(t,x)dx =

∫

Ω
φtt(t,x)dx = 0.(2.12)

Define the inverse Laplace operator ∆−1 such that v = ∆−1u (with
∫

Ω udx = 0), iff




∆v = u,

∫

Ω
udx = 0,

with the boundary conditions either (i) v is periodic, or (ii) ∂nv|∂Ω = 0.

(2.13)

We now derive that the energy dissipation law for model (2.7)-(2.8). Denote the total energy

(2.14) E =

∫

Ω

(ε2
2
|∇φ|2 + F (φ) +

α

2
|∇∆−1φt|2

)
dx.

Then, the model (2.7)-(2.8) satisfies the following energy dissipation law

dE
dt

= −‖∇∆−1φt‖2 − β‖φt‖2 ≤ 0.(2.15)

We introduce a new variable ψ = φt. Since
∫

Ω ψdx =
∫

Ω ψtdx = 0, using the operator ∆−1, we
rewrite the system (2.7)-(2.8) as follows,

α∆−1ψt + ∆−1ψ = −ε2∆φ+ f(φ) + βφt.(2.16)

By taking the L2 inner product of (2.16) with φt, we have

α(∆−1ψt, ψ) + (∆−1ψ,ψ)− β‖φt‖2 =
d

dt

∫

Ω

(ε2
2
|∇φ|2 + F (φ)

)
dx.(2.17)

Since
∫

Ω ψdx = 0, we can find another auxillary variable p such that p = ∆−1ψ, i.e.,

∆p = ψ,

∫

Ω
ψdx = 0,(2.18)

with the boundary condition specified in (2.13). By taking the L2 inner product of (2.18) with p,
that is

(p, ψ) = −‖∇p‖2 = (∆−1ψ,ψ).(2.19)

We differentiate (2.18) with time t to obtain

∆pt = ψt.(2.20)
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By taking the L2 inner product of (2.20) with p, we obtain (ψt, p) = (∆pt, p) = −1
2dt‖∇p‖2. Hence,

we derive

α(∆−1ψt, ψ) = α(ψt,∆
−1ψ) = α(ψt, p) = −α

2
dt‖∇p‖2.(2.21)

By combining (2.17)-(2.19)-(2.21), we obtain

d

dt

∫

Ω

(ε2
2
|∇φ|2 + F (φ) +

α

2
|∇p|2

)
dx = −‖∇p‖2 − β‖φt‖2 ≤ 0,(2.22)

that means the total free energy of the VCH-HR system (2.7)-(2.8) decays in time.

3. Numerical Schemes

We now construct two semi-discrete time marching numerical schemes for solving the model sys-
tem (2.7)-(2.8)-(2.9) and prove their energy stabilities based on the Invariant Energy Quadratization
(IEQ) approach. The intrinsic idea of the IEQ method is to transform the nonlinear potential into
quadratic form. It is feasible since we notice that the nonlinear potential F (φ) is always bounded
from below, in either the double well form (for the Ginzberg-Landau potential) or logarithmic form
(for the Flory-Huggins potential). Thus, in general, we could rewrite the free energy functional
F (φ) into the following equivalent form

F (φ) = (F (φ) +B)−B,(3.1)

where B is some constant to ensure F (x) +B > 0,∀x ∈ R, and define an auxilliary function U as

U =
√
F (φ) +B.(3.2)

Thus the total energy of (2.4) turns into a new form

E(φ,U) =

∫

Ω

(ε2
2
|∇φ|2 + U2 −B

)
dx.(3.3)

Then we obtain an equivalent PDE system by taking the time derivative for the new variable U :

αψt + ψ = ∆µ,(3.4)

µ = −ε2∆φ+ UH + βφt,(3.5)

Ut =
1

2
Hφt,(3.6)

ψ = φt,(3.7)

where

H(φ) =
f(φ)√
F (φ) +B

, f(φ) = F ′(φ).(3.8)

The boundary conditions for the new system are still (2.9) since the equation (3.6) for the new
variable U is simply an ODE with time. The initial conditions read as

φ|(t=0) = φ0, ψ|(t=0) = 0,(3.9)

U |(t=0) =
√
F (φ0) +B,(3.10)

where we simply set the initial profile of ψ to be zero point-wise.
It is clear that the new transformed system (3.4)-(3.7) still retains a similar energy dissipative

law. By applying the inverse Laplace operator ∆−1 to (3.4), taking the L2 inner product of it with
φt, of (3.6) with −U , using (2.19) and (2.21), and summing them up, we can obtain the energy
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dissipation law of the new system (3.4)-(3.5). If we denote the transformed (equivalent) energy as

(3.11) Ê =

∫

Ω

(ε2
2
|∇φ|2 + U2 +

α

2
|∇∆−1ψ|2

)
dx

the energy law of (3.4)-(3.5) reads

d

dt
= −‖∇∆−1φt‖2 − β‖ψ‖2 ≤ 0.(3.12)

Remark 3.1. We emphasize that the new transformed system (3.4)-(3.7) is exactly equivalent to
the original system (2.7)-(2.8), since (3.2) can be easily obtained by integrating (3.6) with respect to
the time. For the time-continuous case, the potentials in the new free energy (3.3) are the same as
the Lyapunov functional in the original free energy of (2.4), and the new energy law (3.12) for the
transformed system is also the same as the energy law (2.15) for the original system as well. We
will develop unconditionally energy stable numerical schemes for time stepping of the transformed
system (3.4)-(3.7), and the proposed schemes should formally follow the new energy dissipation law
(3.12) in the discrete sense, instead of the energy law for the originated system (2.15).

Remark 3.2. If F (φ) = φ2(φ−1)2, we let B = 0, thus H(φ) = 2φ−1. At this time, the IEQ method
is exactly the same as the so-called Lagrange multiplier method developed in [34]. We remark that
the Lagrange multiplier method in [34] only works for the fourth order polynomial potential (φ4).
This is because the term φ3 (the first order derivative of φ4) can be decomposed into a multiplication
of two factors: λ(φ)φ, where λ(φ) = φ2. In [34], this Lagrange multiplier term λ(φ) is then defined
as the new auxiliary variable U . However, for other type potentials, e.g., the F-H potential, the
new variable U will takes a form as λ(φ) = 1

φ ln( φ
1−φ), this is unworkable for algorithms design.

Remark 3.3. If F (φ) = (1−φ)log(1−φ)+φlogφ+θφ(1−φ), following the work in [14], we regularize
the logarithmic bulk potential by a C2 piecewise function. More precisely, for any 0 < σ � 1, the
regularized free energy is

F̂ (φ) =





φlnφ+ (1−φ)2

2σ + (1− φ)lnσ − σ
2 + θφ(1− φ), if φ ≥ 1− σ,

φlnφ+ (1− φ)ln(1− φ) + θφ(1− φ), if σ ≤ φ ≤ 1− σ,
(1− φ)ln(1− φ) + φ2

2σ + φlnσ − σ
2 + θφ(1− φ), if φ ≤ σ.

(3.13)

For convenience, we consider the problem formulated with the substitute F̂ (φ), but omit the ̂ in
the notation. Now the regularized functional F (φ) is defined in R. Small fluctuation of the numerical
solution φ near the boundary (0, 1) would not cause blow up of the numerical solution. In [14], the
authors proved the error bound between the regularized PDE and the original PDE is controlled by

σ up to a constant. For this case, we simply take B = 1 that can ensure F̂ (x) +B > 0,∀x ∈ R.

The time marching numerical schemes are developed to solve the new transformed system (3.4)-
(3.7). The proof of the unconditional stability of the schemes follows the similar lines as in the
derivation of the energy law (3.12). Let δt > 0 denote the time step size and set tn = n δt for
0 ≤ n ≤ N with the ending time T = N δt.

3.1. Crank-Nicolson Scheme. We first develop a second order scheme based on Crank-Nicolson
method, that reads as follows.

Scheme 1. Given the initial condition (U0, φ0), compute U1 and φ1 by assuming U−1 = U0 and
φ−1 = φ0 for the initial step. Having computed (φn, Un) and (φn−1,Un−1), with n ≥ 1, we update
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φn+1 and Un+1 as follows:

α
ψn+1 − ψn

δt
+
ψn+1 + ψn

2
= ∆µn+1,(3.14)

µn+1 = −ε2∆
φn+1 + φn

2
+
Un+1 + Un

2
H? + β

φn+1 − φn
δt

,(3.15)

Un+1 − Un =
1

2
H?(φn+1 − φn),(3.16)

ψn+1 + ψn

2
=
φn+1 − φn

δt
,(3.17)

where

H? =
f(φ?)√
F (φ?) +B

, φ? =
3

2
φn − 1

2
φn−1.(3.18)

The boundary conditions are either

(i) φn+1, µn+1 are periodic; or (ii) ∂nφ
n+1|∂Ω = ∂nµ

n+1|∂Ω = 0.(3.19)

Since the nonlinear coefficient H of the new variables U are treated explicitly, we can rewrite
the equations (3.16) and (3.17) as follows:





Un+1 =
H?

2
φn+1 + gn1 ,

ψn+1 =
2

δt
φn+1 + gn2 ,

(3.20)

where gn1 = (Un− H?

2 φ
n), gn2 = (− 2

δtφ
n−ψn). Thus (3.14)-(3.15) can be rewritten as the following

linear system

α̂φn+1 = ∆µn+1 + gn3 ,(3.21)

µn+1 = P1(φn+1) + gn4 ,(3.22)

where 



α̂ = (
α

δt
+

1

2
)

2

δt
,

P1(φn+1) = −ε
2

2
∆φn+1 +

1

4
H?H?φn+1 +

β

δt
φn+1,

gn3 = −(
α

δt
+

1

2
)gn2 + (

α

δt
− 1

2
)ψn,

gn4 =
−ε2

2
∆φn +

1

2
H?(gn1 + Un)− β

δt
φn.

(3.23)

Therefore, we can solve φn+1 and µn+1 directly from (3.21) and (3.22). Once we obtain φn+1, the
ψn+1, Un+1 are automatically given in (3.20). Furthermore, we notice

(P1(φ), ψ) =
ε2

2
(∇φ,∇ψ) +

1

4
(H?φ,H?ψ) +

β

δt
(φ, ψ),(3.24)

if ψ enjoys the same boundary condition as φ in (3.19). Therefore, the linear operator P1(φ) is
symmetric (self-adjoint). Moreover, for any φ with

∫
Ω φdx = 0, we have

(P1(φ), φ) =
ε2

2
‖∇φ‖2 +

1

4
‖Hnφ‖2 +

β

δt
‖φ‖2 ≥ 0,(3.25)

where “ = ” is valid if and only if φ ≡ 0.
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We first show the well-posedness of the linear system (3.14)-(3.17) (or (3.21)-(3.22)) as follows.

Theorem 3.1. The linear system (3.21)-(3.22) admits a unique solution in H1(Ω), and the linear
operator is symmetric positive definite.

Proof. From (3.14), by taking the L2 inner product with 1 and notice ψ0 = 0, we derive

(
α

δt
+

1

2
)

∫

Ω
ψn+1dx = (

α

δt
− 1

2
)

∫

Ω
ψndx = 0.(3.26)

From (3.17), we have ∫

Ω
φn+1dx =

∫

Ω
φndx = · · · =

∫

Ω
φ0dx.(3.27)

Let Vφ = 1
|Ω|
∫

Ω φ
0dx, Vµ = 1

|Ω|
∫

Ω µ
n+1dx, and we define

φ̂n+1 = φn+1 − Vφ, µ̂n+1 = µn+1 − Vµ.(3.28)

Thus, from (3.21)-(3.22), (φ̂n+1, µ̂n+1) are the solutions for the following equations with unknowns
(φ,w),

α̂φ−∆w = fn,(3.29)

w + Vµ − P1(φ) = gn,(3.30)

where fn = gn3 − α̂Vφ,
∫

Ω f
ndx = 0, gn = gn4 + 1

4H
?H?α0 + β

δtα0,
∫

Ω φdx = 0 and
∫

Ωwdx = 0.

Applying −∆−1 to (3.29) and using (3.30), we obtain

−α̂∆−1φ+ P1(φ)− Vµ = −∆−1fn − gn.(3.31)

Let us express the above linear system (3.31) as Aφ = b,
(i). For any φ1 and φ2 in H1(Ω) satisfy the boundary conditions (2.9) and

∫
Ω φ1dx =

∫
Ω φ2dx = 0,

using integration by parts, we derive

(A(φ1), φ2) = −α̂(∆−1φ1, φ2) + (P1(φ1), φ2)

≤ C1(‖∇∆−1φ1‖‖∇∆−1φ2‖+ ‖∇φ1‖‖∇φ2‖+ ‖φ1‖‖φ2‖)
≤ C2‖φ1‖H1‖φ2‖H1 .

(3.32)

Therefore, the bilinear form (A(φ1), φ2) is bounded ∀φ1, φ2 ∈ H1(Ω).
(ii). For any φ ∈ H1(Ω), it is easy to derive that, ,

(A(φ), φ) = α̂‖∇∆−1φ‖2 +
ε2

2
‖∇φ‖2 +

1

4
‖H?φ‖2 +

β

δt
‖φ‖2 ≥ C3‖φ‖2H1 ,(3.33)

for
∫

Ω φdx = 0 from Poincare inequality. Thus the bilinear form (A(φ), ψ) is coercive.
Then from the Lax-Milgram theorem, we conclude the linear system (3.31) admits a unique

solution in H1(Ω).
For any φ1, φ2 with

∫
Ω φ1dx = 0 and

∫
Ω φ2dx = 0, we can easily derive

(Aφ1, φ2) = (φ1,Aφ2).(3.34)

Thus A is self-adjoint. Meanwhile, from (3.33), we derive (Aφ, φ) ≥ 0, where “=” is valid if only if
φ = 0. This concludes the linear operator A is positive definite. �

The energy stability of the scheme (3.14)-(3.17) (or (3.21)-(3.22)) is presented as follows.
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Theorem 3.2. The scheme (3.14)-(3.17) (or (3.21)-(3.22)) is unconditionally energy stable satis-
fying the following discrete energy dissipation law,

1

δt
(En+1

cn2 − Encn2) = −
∥∥∥∇(pn+1 + pn)

2

∥∥∥
2
− β

∥∥∥φ
n+1 − φn
δt

∥∥∥
2
≤ 0,(3.35)

where

Ecn2 =
ε2

2
‖∇φ‖2 + ‖U‖2 +

α

2
‖∇p‖2 −B|Ω|.(3.36)

Proof. First, we combine (3.14) and (3.15) together and apply the ∆−1 to obtain

α

δt
∆−1(ψn+1 − ψn) + ∆−1ψ

n+1 + ψn

2

= −ε2∆
φn+1 + φn

2
+
Un+1 + Un

2
H? + β

φn+1 − φn
δt

.

(3.37)

Secondly, by taking the L2 inner product of (3.37) with φn+1 − φn, we obtain

α

δt
(∆−1(ψn+1 − ψn), φn+1 − φn) +

1

2
(∆−1(ψn+1 + ψn), φn+1 − φn)

=
ε2

2
(‖∇φn+1‖2 − ‖φn‖2) + (

Un+1 + Un

2
H?, φn+1 − φn) +

β

δt
‖φn+1 − φn‖2.

(3.38)

Thirdly, by taking the L2 inner product of (3.16) with −(Un+1 + Un), we obtain

−(‖Un+1‖2 − ‖Un‖2) = −(
1

2
H?(φn+1 − φn), Un+1 + Un).(3.39)

Fourthly, define pn+1 = ∆−1ψn+1. By subtracting with the n-step, we obtain

∆(pn+1 − pn) = ψn+1 − ψn.(3.40)

From (3.17) and (3.40), we derive
α

δt
(∆−1(ψn+1 − ψn), φn+1 − φn) =

α

2
(pn+1 − pn, ψn+1 + ψn)

=
α

2
(pn+1 − pn,∆(pn+1 + pn))

= −(
α

2
‖∇pn+1‖2 − α

2
‖∇pn‖2),

(3.41)

and
1

2
(∆−1(ψn+1 + ψn), φn+1 − φn) =

δt

4
(pn+1 + pn, ψn+1 + ψn)

=
δt

4
(pn+1 + pn,∆(pn+1 + pn))

= −δt
4
‖∇(pn+1 + pn)‖2.

(3.42)

Finally, by combining (3.38), (3.39), (3.41) and (3.42), we obtain

ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2) + ‖Un+1‖2 − ‖Un‖2 +

α

2
(‖∇pn+1‖2 − ‖∇pn‖2)

= −δt
4
‖∇(pn+1 + pn)‖2 − β

δt
‖φn+1 − φn‖2,

(3.43)

that concludes the theorem. �
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Remark 3.4. The proposed scheme (3.14)-(3.17) follows the new energy dissipation law (3.12)
formally instead of the energy law for the originated system (2.15). In the time-discrete case, the
energy E(φn+1, Un+1) (defined in (3.36)) can be rewritten as a second order approximation to the
Lyapunov functionals in E(φn+1) (defined in (2.15)), that can be observed from the following facts,
heuristically. Assuming the case for double well potential, from (3.16), we have

Un+1 − (
√
F (φn+1) +B) = Un − (

√
F (φn) +B) +Rn+1,(3.44)

where Rn+1 = O((φn+1 − φn)(φn+1 − 2φn + φn−1)). Since Rk = O(δt3) for 0 ≤ k ≤ n + 1 and

U0 = (
√
F (φ0) +B), by mathematical induction we can easily get

Un+1 =
√
F (φn+1) +B +O(δt2).(3.45)

3.2. Adam-Bashforth Scheme. Next, for the completion of the development of second order
schemes, we further develop a scheme based on the Adam-Bashforth backward differentiation for-
mula (BDF2). It provides an alternative second order scheme with the unconditional energy sta-
bility that is beneficial for the scheme development. Since the stability proof of the BDF2 scheme
is quite different from the Crank-Nicolson scheme, we give its details as well.

Scheme 2. Given the initial condition (φ0, U0), compute U1 and φ1 by assuming U−1 = U0 and
φ−1 = φ0 for the initial step. Having computed (φn, Un) and (φn−1, Un−1), with n ≥ 1, we solve
φn+1, Un+1 as follows:

α
3ψn+1 − 4ψn + ψn−1

2δt
+ ψn+1 = ∆µn+1,(3.46)

µn+1 = −ε2∆φn+1 + Un+1H† + β
3φn+1 − 4φn + φn−1

2δt
,(3.47)

3Un+1 − 4Un + Un−1 =
1

2
H†(3φn+1 − 4φn + φn−1),(3.48)

ψn+1 =
3φn+1 − 4φn + φn−1

2δt
,(3.49)

where

H† =
f(φ†)√
F (φ†) +B

, φ† = 2φn − φn−1.(3.50)

The boundary conditions are

(i) φn+1, µn+1 are periodic; or (ii) ∂nφ
n+1|∂Ω = ∂nµ

n+1|∂Ω = 0.(3.51)

Similar to the Crank-Nicolson scheme, we can rewrite the equations (3.48) and (3.49) as follows:




Un+1 =
H†

2
φn+1 + hn1 ,

ψn+1 =
3

2δt
φn+1 + hn2 ,

(3.52)

where hn1 = (U± − H†
2 φ
±), hn2 = 3

2δtφ
± with S± = 4Sn−Sn−1

3 for any variable S. Thus (3.46)-(3.47)
can be rewritten as the following linear system

α̃φn+1 = ∆µn+1 + hn3 ,(3.53)

µn+1 = P2(φn+1) + hn4 ,(3.54)
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where 



P2(φn+1) = −ε2∆φn+1 +
1

2
H†H†φn+1 +

3β

2δt
φn+1,

hn3 = −(
3α

2δt
+ 1)hn2 +

3α

2δt
ψ±,

hn4 =
1

2
H†hn1 −

3β

2δt
φ±,

α̃ = (
3α

2δt
+ 1)

3

2δt
.

(3.55)

Actually, we can solve φn+1 and µn+1 directly from (3.53) and (3.54). Once we obtain φn+1, the
ψn+1, Un+1 is automatically given in (3.52). Furthermore, we notice

(P2(φ), ψ) = ε2(∇φ,∇ψ) +
1

2
(H†φ,H†ψ) +

3β

2δt
(φ, ψ),(3.56)

if ψ enjoys the same boundary condition as φ in (3.51). Therefore, the linear operator P2(φ) is
symmetric (self-adjoint). Moreover, for any φ with

∫
Ω φdx = 0, we have

(P2(φ), φ) = ε2‖∇φ‖2 +
1

2
‖H†φ‖2 ≥ 0,(3.57)

where “ = ” is valid if and only if φ ≡ 0.

Remark 3.5. One can show the well-posedness of the linear system (3.46)-(3.49) (or (3.53)-(3.54)).
Likewise, when we rewrite (3.53)-(3.54) into a linear equation using the inverse Laplace operator,
we can show the linear operator is symmetric (self-adjoint) and positive definite.

The energy stability of the scheme (3.46)-(3.49) (or (3.53)-(3.54)) is presented as follows.

Theorem 3.3. The scheme (3.46)-(3.49) (or (3.53)-(3.54)) is unconditionally energy stable satis-
fying the following discrete energy dissipation law,

1

δt
(En+1

bdf2 − Enbdf2) ≤ −‖∇pn+1‖2 − β
∥∥∥3φn+1 − 4φn + φn−1

2δt

∥∥∥
2
≤ 0,(3.58)

where

En+1
bdf2 =

ε2

2

(‖∇φn+1‖2 + ‖2∇φn+1 −∇φn‖2
2

)
+
‖Un+1‖2 + ‖2Un+1 − Un‖2

2

+
α

2

‖∇pn+1‖2 + ‖2∇pn+1 −∇pn‖2
2

−B|Ω|.
(3.59)

Proof. First, from (3.46), by taking the L2 inner product with 1 and notice ψ0 = 0, we derive

(
3α

2δt
+ 1)

∫

Ω
ψn+1dx =

4α

2δt

∫

Ω
ψndx− α

2δt

∫

Ω
ψn−1dx = 0.(3.60)

where we use
∫

Ω ψ
1dx = 0, this is valid since ψ1 can be obtained using the Crank-Nicolson scheme.

Second, we combine (3.46) and (3.47) together and applying the ∆−1 to obtain

α∆−1(
3ψn+1 − 4ψn + ψn−1

2δt
) + ∆−1ψn+1

= −ε2∆φn+1 + Un+1H† + β
3φn+1 − 4φn + φn−1

2δt
.

(3.61)
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Third, by taking the L2 inner product of (3.37) with 3φn+1 − 4φn + φn−1, and applying the
following identity

(3a− 4b+ c, 2a) = a2 − b2 + (2a− b)2 − (2b− c)2 + (a− 2b+ c)2,(3.62)

we obtain
α

2δt
(∆−1(3ψn+1 − 4ψn + ψn−1), 3φn+1 − 4φn + φn−1) + (∆−1ψn+1, 3φn+1 − 4φn + φn−1)

=
ε2

2

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖2∇φn+1 −∇φn‖2 − ‖2∇φn −∇φn−1‖2

+ ‖3∇φn+1 − 4∇φn −∇φn−1‖2
)

+ (Un+1H†, 3φn+1 − 4φn + φn−1) +
β

2δt
‖3φn+1 − 4φn + φn−1‖2.

(3.63)

Third, by taking the L2 inner product of (3.16) with −2Un+1, we obtain

−(‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2 + ‖Un+1 − 2Un + Un−1‖2)

= −(H†(3φn+1 − 4φn + φn−1), Un+1).
(3.64)

Fourth, define pn+1 = ∆−1ψn+1, by subtracting with the n and n− 1-step, we obtain

∆(3pn+1 − 4pn + pn−1) = 3ψn+1 − 4ψn + ψn−1.(3.65)

From (3.49) and (3.65), we derive
α

2δt
(∆−1(3ψn+1 − 4ψn + φn−1), 3φn+1 − 4φn + φn−1)

= α(3pn+1 − 4pn + pn−1, ψn+1)

= α(3pn+1 − 4pn + pn−1,∆pn+1)

= −α
2

(‖∇pn+1‖2 − ‖∇pn‖2 + ‖2∇pn+1 −∇pn‖2 − ‖2∇pn −∇pn−1‖2

+ ‖∇pn+1 − 2∇pn +∇pn−1‖2),

(3.66)

and

(∆−1ψn+1, 3φn+1 − 4φn + φn−1) = 2δt(pn+1, ψn+1)

= 2δt(pn+1,∆pn+1)

= −2δt‖∇pn+1‖2.
(3.67)

Finally, by combining (3.63), (3.64), (3.66) and (3.67), we obtain

ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖2∇φn+1 −∇φn‖2 − ‖2∇φn −∇φn−1‖2 + ‖∇φn+1 − 2∇φn +∇φn−1‖2)

+ ‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2 + ‖Un+1 − 2Un + Un−1‖2

+
α

2
(‖∇pn+1‖2 − ‖∇pn‖2 + ‖2∇pn+1 −∇pn‖2 − ‖2∇pn −∇pn−1‖2 + ‖∇pn+1 − 2∇pn +∇pn−1‖2)

= −2δt‖∇pn+1‖2 − β

2δt
‖3φn+1 − 4φn + φn−1‖2.

That concludes the theorem. �
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Remark 3.6. Heuristically, the 1
δt(E

n+1
bdf2 −Enbdf2) is a second order approximation of d

dtE(φ,U) at

t = tn+1. For instance, for any smooth variable S with time, one can write
(‖Sn+1‖2 + ‖2Sn+1 − Sn‖2

2δt

)
−
(‖Sn‖2 + ‖2Sn − Sn−1‖2

2δt

)

∼=
(‖Sn+2‖2 − ‖Sn‖2

2δt

)
+O(δt2) ∼= d

dt
‖S(tn+1)‖2 +O(δt2).

Remark 3.7. The new variable U is introduced in order to handle the nonlinear bulk potential
F (φ). Since the discrete energy still includes the gradient term of φ, therefore, due to the Poincare
inequality and mass conservation property for Cahn-Hilliard equation

∫
Ω φ

n+1dx =
∫

Ω φ
0dx, the

H1 stability for the variable φ is still valid for the proposed scheme, which makes it possible to
implement the rigorous error analysis. About the complete error analysis of the IEQ type schemes
for solving the classical CH equation with general nonlinear bulk potentials, we refer to a recent
article [67], in which, some reasonable sufficient conditions about boundedness and continuity for
the nonlinear potential are given and optimal error estimates are obtained. Similar work can be
performed for the VCH-HR system as well with no essential difficulties.

4. Numerical tests.

In this section, we present various numerical experiments to validate the theories derived in
the previous section and demonstrate the efficiency, energy stability and accuracy of the proposed
numerical schemes. In all examples, we set the domain Ω = [0, 1]d, d = 2, 3 unless elaborated.
We use the second order central finite difference method to discretize the space operators in the
semi-discretized model. In all simulations, we set ε = 0.01, and α, β will be chosen accordingly. For
double well potential case, we set B = 0 and U = φ(1− φ). For Flory-Huggins case, we set B = 1,
σ = 0.001 and χ = 2.5.

4.1. Convergence test. We first test the convergence rates of the two proposed schemes, the
second-order Crank-Nicolson scheme (CN2) (3.14)-(3.17) and the second-order Backward-Difference
scheme (BDF2) (3.46)-(3.49). Use the following initial condition

(4.1) φ = 0.5
(

1 + max(tanh
0.2−R1

ε
, tanh

0.2−R2

ε
)
)
,

with R1 =
√

(x− 0.71)2 + (y − 0.5)2 and R2 =
√

(x− 0.29)2 + (y − 0.5)2. The initial profile of
φ is shown in the first panel of Fig. 2. The spacial mesh is 256 × 256. We perform the time-step
refinement test to obtain the order of convergence in time by taking a linear refinement path for
time step δt = 0.01

2k
, k = 0, 1, · · · , 6. The numerical errors are calculated as the difference between

the solution of coarse time step and that of the adjacent finner time step. We plot the Cauchy
sequence of L2 errors at t = 4 with different time step sizes in Fig. 1 and the convergence rate is
shown to be second order for both schemes.
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(a) L2 error for the phase variable φ. (b) L2 error for the auxillary variable U .

Fig. 1. Convergence test for the L2 errors for φ and U computed by the the second
order scheme CN2 and BDF2 using different temporal resolutions at t = 4. The time
step is δt = 0.01(1

2)k for k = 0, 1, 2, 3, 4, 5, 6 and the numerical errors are calculated
as the difference between the solution of the coarse time step and that of the adjacent
finner time step.

4.2. The viscous and hyperbolic relaxation effects for the coalescence of two kissing
bubbles. In this example, we study the coalescence dynamics of two kissing bubbles by varying
the viscous and hyperbolic relaxation parameters α and β. The computational domain Ω is still
[0, 1]2 and the initial profile is given in (4.1), and we use the CN2 scheme and 1282 grid points to
discretize the domain.

We start with the classical Cahn-Hilliard equation by setting α = β = 0. In Fig. 2, the two
bubbles coalesces into one big bubble ( in a lower free energy state) due to the combination of
the surface tension effect. Then, we further set the hyperbolic relaxation parameter α = 1 while
keeping viscous parameter of β = 0. The numerical result in shown in Fig. 3. At t = 1 and 2, the
interface of the circle shows some sawtooth profile and eventually forms a circle, i.e. the Cahn-
Hilliard equation with hyperbolic relaxation term predicts different dynamics, but the same final
steady state. Then we investigate the viscous effect by setting β = 1 and α = 0. The numerical
results are illustrated in Fig. 4. We observe that the coalesce speed is much slower than the two
cases where β = 0.

Fig. 2. Time evolution of the drop in 2D when β = 0 and α = 0. Snapshots
are taken at t = 0, 1, 2, 10, 200.
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Fig. 3. Time evolution of the drop in 2D when β = 0 and α = 1. Snapshots
are taken at t = 0, 1, 2, 10, 200.

Fig. 4. Time evolution of the drop in 2D when β = 1 and α = 0. Snapshots
are taken at t = 0, 1, 2, 10, 200.

We plot the evolution of energy curves for nine cases in Fig. 5 when both α and β take the three
values of 0, 0.5.1. We find that β can dramatically affect the speed of coalesces than α. Both the
results from Scheme 1 and Scheme 2 are shown, and they predict the same dynamics.

Fig. 5. Time evolution of the free energy functional for the coalescence of two
kissing bubbles for nine choices of order parameters α = 0, 0.5, 1, and β = 0, 0.5, 1.
(A) energy plot of (3.11) using Scheme 1; (B) energy plot of (3.11) using Scheme 2.
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4.3. Energy. Since the two developed schemes follow a modified energy law with the new energy
(3.11) instead of the original energy (2.14). In the continuous level, these are energies are equivalent.
However, when they are discretized, the new energy (3.11) is a second-order approximation of the
original one (2.14), as stated in Remark 3.4 and 3.6. To verify this statement, we perform the
following simulations. We use the initial condition φ = 0.5(1 + cos(2πz) cos(2πy)) and periodic
boundary conditions. Without the loss of generality, we choose α = β = 0.5. Since we do not
have the analytical solution, the original energy (2.14) is calculated by using the fully implicit
scheme with the time step δt = 2−12 as the benchmark solution. In Fig. 6, the second-order
convergence of the transformed energy (3.11) that are computed by the Scheme 1 to the original
energy (2.14) is observed via the time-step refinement test. To further demonstrate the effectiveness
of our proposed unconditionally energy stable schemes, we further plot the time evolution of the
modified energy (3.11) using progressively larger time steps with δt = 0.00625, 0.01235, 0.25, 0.5
and 1. Fig. 7 demonstrates the energy decays even with very larger time steps like δt = 1, which
means the schemes behave truly as the theory indicates, i.e., they are stable for progressively large
time steps.

(a) Energy Error with CN scheme (b) Energy Error with BDF2 scheme

Fig. 6. The energy difference between the original energy formulation (2.14) and
the approximated energy (3.11) that is computed by Scheme 1 with different time
steps. This figure shows the approximated energy (3.11) is definitely a second-order
approximation of the original energy (2.14).

(a) Energy Error with Scheme 1. (b) Energy Error with Scheme 2.

Fig. 7. The time evolution of the energy (3.11) using various time step sizes δt =
0.00625, 0.01235, 0.25, 0.5 and 1.



NUMERICAL SCHEMES FOR THE VCH-HR MODEL 17

4.4. Spinodal Decomposition in 3D. In this example, we study the phase separation dynamics
in 3D that is called ‘‘ spinodal decomposition ’’. The process of the phase separation can be stud-
ied by considering a homogeneous binary mixture, which is quenched into the unstable part of its
miscibility gap. In this case, the spinodal decomposition takes place, which manifests in the sponta-
neous growth of the concentration fluctuations that leads the system from the homogeneous to the
two-phase state. Shortly after the phase separation starts, the domains of the binary components
are formed and the interface between the two phases can be specified [1, 15,79].

The initial conditions are taken as the randomly perturbed concentration fields as follows,

(4.2) φ0(x, y, z) = φ0 + 0.001rand(x, y, z),

where the rand(x, y) represents the random number in [0, 1] and has zero mean. The computational
domain is [0, 2π]3 and we use the scheme CN2 and 1283 grid points to discretize the domain, the
time step is δt = 0.001 for all 3D simulations.

From the 2D tests, we know the viscous parameter β can have more effects on the dynamics than
the hyperbolic parameter α. Thus in the following 3D simulations, we simply set β = 0.9 and α = 0.
The red domain, corresponding to the larger values of φ = 1, indicates the concentrated polymer
segments [24], and the blue region, corresponding to the smaller values of φ = −1, indicates the
macromolecular microspheres (MMs). In Fig. 8, we perform numerical simulations for the initial
profile φ0 = 0.5, that means the volume fraction of the polymer segments are almost same as the
surrounding MMs. The final steady state forms the uniform two layer structure around t = 1800.
Fig. 9 shows the dynamical behaviors of the phase separation for the initial value φ0 = 0.3 which
means the volume of the MMS are much more than that of the polymer segments. We observe that
the MMS finally accumulate together to the cylindrical shape.

Fig. 8. 3D spinodal decomposition for random initial data with φ0 = 0.5. Snapshots
of the phase variables φ are taken at t = 20, 40, 60, 120, 160, 240, 700, and 1800.
The order parameter is α = 0 and β = 0.9.

Note the boundary conditions of the governing system can be the periodic or no-flux, in Fig. 10,
we perform numerical simulations for the initial profile of φ0 = 0.3 and α = β = 0 for these two
boundary conditions. For both cases, we observe that the MMS finally accumulate together to the
sperical shape, where the final shape is 1/8 spherical segment at a corner for no-flux condition, and
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Fig. 9. 3D spinodal decomposition for random initial data with φ0 = 0.3. Snapshots
of the phase variables φ are taken at t = 20, 40, 60, 120, 160, 240, 700 and 2000.
The order parameter is α = 0 and β = 0.9.

a sphere for the period boundary condition (with parts at each corner of the cube). We plot the
evolution of energy curves for both cases in Fig. 11. And we observe the energy of the spherical
segment with no-flux boundary condition is smaller than that of the sphere in the period boundary
condition.

Here we also conducted several numerical tests using the Flory-Huggin potential in (3.13). The
numerical results are shown in Figure 12. By using different initial value of φ0, the predicted
dynamics are dramatically different, and the steady state are distinct as well. A detailed discussion
on the correlations of initial values and final steady state is out of scope for current paper. Interested
readers are encouraged to conduct the numerical studies using our proposed schemes.

5. Concluding Remarks

In this paper, we develop two second-order in time schemes to solve the viscous Cahn-Hilliard
equation with hyperbolic relaxation terms, by utilizing the novel IEQ approach. It is effective
and efficient, and particularly suitable to discretize the complicated nonlinear potential with lower
bound. Compared to the prevalent nonlinear schemes based on the convex splitting approaches or
other nonlinear schemes, the IEQ approach can easily conquer the inconvenience from nonlinearities
by linearizing the nonlinear terms in the new way. The developed schemes (i) are accurate (ready
for second or higher order in time); (ii) are stable (unconditional energy dissipation law holds); and
(iii) are easy to implement (only need to solve linear equations at each time step). Furthermore,
the induced linear system is symmetric positive definite, thus one can apply any Krylov subspace
methods with mass lumping as pre-conditioners for solving such system efficiently. We emphasize
that, to the best of the authors’ knowledge, the schemes to solve the case of logarithmic potential
are the first such linear and accurate schemes with provable energy stabilities. Finally, the method
is general enough to be extended to develop linear schemes for a large class of gradient flow problems
with complex nonlinearities in the free energy density. Although we consider only time discrete
schemes in this study, the results can be carried over to any consistent finite-dimensional Galerkin
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(a) The case with no-flux boundary condition.

(b) The case with periodic boundary condition.

Fig. 10. 3D spinodal decomposition for random initial data with φ0 = 0.3 for no-
flux and periodic boundary conditions. Snapshots are taken at t = 1, 2, 5, 50. And
the order parameters are α = β = 0 for both cases.

Fig. 11. Time evolution of the free energy functional for spinodal decomposition
for no-flux and periodic boundary conditions with φ0 = 0.3, α = β = 0.

approximations since the proofs are all based on a variational formulation with all test functions
in the same space as the space of the trial functions.
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(a) φ0 = 0.5

(b) φ0 = 0.3

Fig. 12. 3D Spinodal decomposition with Flory-Huggins free energy. Here we
choose α = β = 0.5 and the initial condition as (4.2) with (a) φ0 = 0.5 and (b)
φ0 = 0.3. The plot of φ at time t = 100, 200, 500, 4000 are shown respectively.
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