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Abstract

Kahan’s method and a two-step generalisation of the discrete gradient method are both
linearly implicit methods that can preserve a modified energy for Hamiltonian systems with
a cubic Hamiltonian. These methods are here investigated and compared. The schemes
are applied to the Korteweg–de Vries equation and the Camassa–Holm equation, and the
numerical results are presented and analysed.
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1 Introduction

The field of geometric numerical integration has garnered increased attention over the last three
decades. It considers the design and analysis of numerical methods that can capture geometric
properties of the flow of the differential equation to be modelled. These geometric properties are
mainly invariants over time; they are conserved quantities such as Hamiltonian energy, angular
momentum, volume or symplecticity. Among them the conservation of energy is particularly
important for proving the existence and uniqueness of solutions for partial differential equations
(PDEs) [1]. Numerical schemes inheriting such properties from the continuous dynamical system
have been shown in many cases to be advantageous, especially when integration over long time
intervals is considered [2].

For general non-linear differential equations, one may use a standard fully implicit scheme to
solve a problem numerically. Then a non-linear system of equations must be solved at each time
step. Typically this is done by the use of an iterative solver where a linear system is to be solved
at each iteration. This quickly becomes a computationally expensive procedure, especially since
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the number of iterations needed in general increases with the size of the system; see a numerical
example comparing the computational cost for implicit and linearly implicit methods in [3]. A
fully explicit method on the other hand, may over-simplify the problem and lead to the loss
of important information, and will often have inferior stability properties. The golden middle
way may be found in linearly implicit schemes, i.e. schemes where the non-linear terms are
discretized such that the solution at the next time step is found from solving one linear system.

Our aim is to present and analyse linearly implicit schemes with preservation properties. We
consider ordinary differential equations (ODEs) that can be written in the form

ẋ = f (x) = S∇H(x), x ∈Rd ,

x(0) = x0,
(1.1)

where S is a constant skew-symmetric matrix and H is a cubic Hamiltonian function. The famous
geometric characteristic for equations like (1.1) is that the exact flow is energy-preserving,

d

d t
H(x) =∇H(x)T d x

d t
=∇H(x)T S∇H(x) = 0,

and symplectic if S is the canonical skew-symmetric matrix:

Ψy0 (t )T SΨy0 (t ) = S, (1.2)

where Ψy0 (t ) := ∂ϕt (y0)
∂y0

, with ϕt :Rd →Rd , ϕt (y0) = y(t ) the flow map of (1.1) [2]. A numerical
one-step method is said to be energy-preserving if H is constant along the numerical solution,
and symplectic if the numerical flow map is symplectic. Both the energy-preserving methods
and the symplectic methods, the latter of which has the ability to preserve a perturbation of the
Hamiltonian H of (1.1), have their own advantages. In particular, the energy-preserving property
has been found to be crucial in the proof of stability for several such numerical methods, see e.g
[4]. However, there is no numerical integration method that can be simultaneously symplectic
and energy-preserving for general Hamiltonian systems [5]. In this paper we will focus on
energy-preserving numerical integration.

We wish to study and compare two types of existing methods with geometric properties. The
first one is Kahan’s method for quadratic ODE vector fields [6], which by construction is linearly
implicit, and for which the geometric properties have been studied in [7]. Kahan’s method has
not been extensively studied for solving PDEs so far, with the notable exception [8]. This is a
one-step method, but we will also give its formulation as a two-step method in this paper, for
easier comparison to the other method to be studied. That method, which we call the polarised
discrete gradient (PDG) method, is based on the multiple points discrete variational derivative
method for PDEs presented by Furihata, Matsuo and coauthors in the papers [9, 10, 11] and the
monograph [12]. A more general framework for such schemes is given by Dahlby and Owren
in [3]. With the aim of easing the comparison to Kahan’s method, we present here the two-step
method of [12, 3] as it looks for ODEs of the form (1.1). When Hamiltonian PDEs are considered,
by semi-discretizing in space to obtain a system of Hamiltonian ODEs and then applying the
PDG method, one may obtain the schemes of the aforementioned references; a specific scheme
will depend on the choice of spatial discretization as well as the choices of some functions to be
explained in the next section: the polarised energy and the polarised discrete gradient.
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This paper is divided into two main parts. In the next chapter, we present the methods in
consideration, and give some theoretical results on their geometric properties. In Chapter 3, we
present numerical results for the Camassa–Holm equation and the Korteweg–de Vries equation,
including analysis of stability and dispersion, comparing the methods.

2 Linearly implicit schemes

We will present an ODE formulation of the linearly implicit schemes presented by Furihata,
Matsuo and coauthors in [9, 10, 11, 12] and by Dahlby and Owren in [3]. Inspired by the
nomenclature of the latter reference, we call these schemes polarised discrete gradient methods.
Then we present a special case of this polarisation method in the same framework as Kahan’s
method, with the goal of obtaining more clarity in comparison of the methods.

2.1 Polarised discrete gradient methods

The idea behind the PDG methods is to generalise the discrete gradient method in such a way
that a relaxed variant of the preservation property is intact, while nonlinear terms are discretized
over consecutive time steps to ensure linearity in the scheme. Let us first recall the concept of
discrete gradient methods. A discrete gradient is a continuous map ∇H :Rd ×Rd →Rd such that
for any x, y ∈Rd

H(y)−H(x) = (y −x)T ∇H(x, y).

The discrete gradient method for (1.1) is then given by

xn+1 −xn

∆t
= S∇H(xn , xn+1),

which will preserve the energy of the system (1.1) at any time step. Here and in what follows, xn

is the numerical approximation of x at t = tn and xn
k is the numerical approximation of the kth

component of x at t = tn .
Restricting ourselves to two-step methods, we define the PDG methods as follows.

Definition 1. For the energy H of (1.1), consider the polarised energy as a function H̃ :Rd×Rd →
R satisfying the properties

H̃(x, x) = H(x),

H̃(x, y) = H̃(y, x).

A polarised discrete gradient (PDG) for H̃ is a function ∇H̃ :Rd ×Rd ×Rd →Rd satisfying

H̃(y, z)− H̃(x, y) = 1

2
(z −x)T ∇H̃(x, y, z), (2.1)

∇H̃(x, x, x) =∇H(x),

and the corresponding polarised discrete gradient scheme is given by

xn+2 −xn

2∆t
= S∇H̃(xn , xn+1, xn+2). (2.2)
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Proposition 1. The numerical scheme (2.2) preserves the polarised invariant H̃ in the sense that
H̃(xn , xn+1) = H̃(x0, x1) for all n ≥ 0.

Proof.

H̃(xn+1, xn+2)− H̃(xn , xn+1) = 1

2
(xn+2 −xn)T ∇H̃(xn , xn+1, xn+2)

=∆t∇H̃(xn , xn+1, xn+2)T S∇H̃(xn , xn+1, xn+2)

= 0,

where the last equality follows from the skew-symmetry of S.

We remark here that in the cases where we seek a time-stepping scheme for the system of
Hamiltonian ODEs resulting from discretizing a Hamiltonian PDE in space in an appropriate
manner, e.g. as described in [13], H will be a discrete approximation to an integral H. Thus
a two-step PDG method and a standard one-step discrete gradient method, the latter in general
fully implicit, will preserve two different discrete approximations separately to the same H.

The task of finding a PDG satisfying (2.1) is approached differently in our two main ref-
erences, [9, 10, 11, 12] and [3]. Furihata, Matsuo and coauthors apply a generalisation of the
approach introduced by Furihata in [14] for finding discrete variational derivatives, while Dahlby
and Owren suggest a generalisation of the average vector field (AVF) discrete gradient [15], given
by

∇AVFH̃(x, y, z) = 2
∫ 1

0
∇x H̃(ξx + (1−ξ)z, y)dξ,

where ∇x H̃(x, y) is the gradient of H̃(x, y) with respect to its first argument. Provided that the
spatial discretization is performed in the same way, these two approaches lead to the same scheme
for an H̃ quadratic in each of its arguments, as does a generalisation of the midpoint discrete
gradient of Gonzalez [16]. Based on this, we present the most straightforward approach for
finding this specific PDG for the cases we are studying in this paper:

Proposition 2. Given an H̃(x, y) that is at most quadratic in each of its arguments, define
∇x H̃(x, y) as the gradient of H̃ with respect to its first argument. Then a PDG for H̃ is given by

∇H̃(x, y, z) = 2∇x H̃(
x + z

2
, y). (2.3)

Proof. We may write
H̃(x, y) = xT A(y)x +b(y)T x + c(y),

for some symmetric A :Rd →Rd ×Rd , b :Rd →Rd and c :Rd →R. Then

∇x H̃(x, y) = 2A(y)x +b(y),

and

∇x H̃(
x + z

2
, y)T (z −x) = (2A(y)

x + z

2
+b(y))T (z −x)

= zT A(y)z +b(y)T z −xT A(y)x −b(y)T x

= H̃(y, z)− H̃(x, y).
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Furthermore,
∇H̃(x, x, x) = 2∇x H̃(x, x) =∇H(x).

As remarked in Theorem 4.5 of [3]: if the polarised energy H̃(x, y) is at most quadratic in
each of its arguments, the scheme (2.2) with the PDG (2.3) is linearly implicit.

An alternative to (2.3) could be a generalisation of the Itoh–Abe discrete gradient [17],
defined by its i -th component

∇IAH̃(x, y, z)i = 2

{
∂̄H̃(x, y, z)i if xi 6= zi ,
∂H̃
∂xi

((z1, . . . , zi−1, xi , . . . , xd ), y) if xi = zi ,

where

∂̄H̃(x, y, z)i = H̃((z1, . . . , zi , xi+1, . . . , xd ), y)− H̃((z1, . . . , zi−1, xi , . . . , xd ), y)

zi −xi
.

A symmetrized variant of this, given by ∇SIAH̃(x, y, z) := 1
2 (∇IAH̃(x, y, z)+∇IAH̃(z, y, x)) is again

identical to (2.3), whenever H̃ is quadratic in each of its arguments.

2.2 A general framework and Kahan’s method

For ODEs of the form (1.1), consider the two-step schemes of the form

xn+2 −xn

2∆t
= S

3∑
i , j=1

αi j (H ′′(xn−1+i )xn−1+ j +β(xn−1+i )), (2.4)

where H ′′ :Rd →Rd ×Rd is the Hessian matrix of H and β(x) := 2∇H(x)−H ′′(x)x. For cubic H ,
this scheme is linearly implicit if and only if α33 = 0.

In this section, we first consider the case when the Hamiltonian is a cubic homogeneous
polynomial, in which case the term β(x) in (2.4) will disappear, and then generalise the results
to the non-homogeneous case.

Theorem 1. The scheme (2.4) with α21 =α23 = 1
4 , αi j = 0 otherwise, i.e.

xn+2 −xn

2∆t
= 1

4
SH ′′(xn+1)(xn +xn+2), (2.5)

where x1 is found from x0 by Kahan’s method, is equivalent to Kahan’s method over two consec-
utive steps, when applied to ODEs of the form (1.1) with homogeneous cubic H .

Proof. As shown in [7], Kahan’s method can be written into a Runge–Kutta form

xn+1 −xn

∆t
=−1

2
f (xn)+2 f (

xn +xn+1

2
)− 1

2
f (xn+1). (2.6)
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Two steps of this can be written as

xn+2 −xn

2∆t
=−1

4
f (xn)− 1

2
f (xn+1)− 1

4
f (xn+2)+ f (

xn +xn+1

2
)+ f (

xn+1 +xn+2

2
). (2.7)

Using that for a homogeneous cubic H we have ∇H(x) = 1
2 H ′′(x)x, H ′′(x)y = H ′′(y)x and

H ′′(x + y) = H ′′(x)+ H ′′(y), and inserting f (x) = S∇H(x) in (2.7), we get (2.5). On the other
hand, if we have found xn+1 by Kahan’s method and xn+2 by (2.7), we see that by subtracting
(2.6) from (2.7) we get (2.6) with n replaced by n +1.

Remark 1. The scheme (2.5) with the first step computed by Kahan’s method preserves the
polarised invariant H̃(xn , xn+1) = 1

6 (xn)T H ′′( xn+xn+1

2 )xn+1, since Kahan’s method preserves this
polarised invariant [7]. We note that the scheme (2.5) satisfies

(xn)T H ′′(xn)xn+1 = (xn+1)T H ′′(xn+2)xn+2,

independent of how x1 is found, following from the skew symmetry of the matrix S. However, it
preserves the polarised invariant 1

6 (xn)T H ′′( xn+xn+1

2 )xn+1 only if Kahan’s method or an equiva-
lent scheme is used to calculate x1 from x0.

A special case of the PDG method which preserves the same polarised Hamiltonian as Ka-
han’s method, can also be written on the form (2.4):

Theorem 2. For a homogeneous cubic H and the polarised energy given by

H̃(x, y) = 1

6
xT H ′′(

x + y

2
)y,

the scheme (2.2) with the PDG (2.3) applied to (1.1) is equivalent to (2.4) with α21 =α22 =α23 =
1
6 , αi j = 0 otherwise, i.e.

xn+2 −xn

2∆t
= 1

6
SH ′′(xn+1)(xn +xn+1 +xn+2). (2.8)

Proof.

∇x H̃(x, y) = 1

6
H ′′(

x + y

2
)y + 1

6
H ′′(

y

2
)x = 1

12
H ′′(2x + y)y,

and thus

∇H̃(x, y, z) = 2∇x H̃(
x + z

2
, y) = 1

6
H ′′(x + y + z)y = 1

6
H ′′(y)(x + y + z).

It can be shown that many well known Runge–Kutta methods performed over two consecutive
steps are methods in the class (2.4) when applied to (1.1) with H cubic. As two examples, the
implicit midpoint method over two steps is (2.4) withα11 =α33 = 1

16 ,α21 =α22 =α23 = 1
8 , αi j = 0

otherwise, while the trapezoidal rule is (2.4) with α11 =α33 = 1
8 ,α22 = 1

4 , αi j = 0 otherwise. The
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integral-preserving average vector field method [18] over two steps is (2.4) with α11 = α21 =
α23 =α33 = 1

12 ,α22 = 1
6 , αi j = 0 otherwise.

Now, in the cases where H is non-homogeneous, one can use the technique employed in
[7], i.e. adding one variable x0 to generate an equivalent problem to the original one, for a
homogeneous Hamiltonian H̄ :Rd+1 →R defined such that H̄(1, x1, . . . , xd ) = H(x1, . . . , xd ). Also
constructing the (d +1)×(d +1) skew-symmetric matrix S̄ by adding a zero initial row and a zero
initial column to S, we get that solving the system

˙̄x = S̄∇H̄(x̄), x̄ ∈Rd+1

x̄(0) = (1, x0),
(2.9)

is equivalent to solving (1.1). Following the above results for the homogeneous H̄ and (2.9), we
can generalise Theorem 1 and Theorem 2 for all cubic H . Generalisations of the preservation
properties follow directly; e.g., Kahan’s method and the PDG method can preserve the perturbed
energy H̃(xn , xn+1) := 1

6 (x̄n)T H̄ ′′( x̄n+x̄n+1

2 )x̄n+1 also for non-homogeneous cubic H .

3 Numerical experiments

To have a better understanding of the above methods, we will apply them to systems of two
different PDEs: the Korteweg–de Vries (KdV) equation and the Camassa–Holm equation. We
will compare our methods to the midpoint method, which is a symplectic, fully implicit method.
We solve the two PDEs by discretizing in space to obtain a Hamiltonian ODE system of the type
(1.1) and then applying the PDG method (denoted by PDGM), Kahan’s method (Kahan) and the
midpoint method (MP) to this.

3.1 Camassa–Holm equation

In this section, we consider the Camassa–Holm equation

ut −uxxt +3uux = 2ux uxx +uuxxx

defined on the periodic domain S :=R/LZ. It has the conserved quantities

H1 [u] = 1

2

∫
S

(u2 +u2
x )dx, H2 [u] = 1

2

∫
S

(
u3 +uu2

x

)
dx.

Here we consider the variational form of the Hamiltonian H2:

(1−∂2
x )ut =−∂x

δH2

δu
,

δH2

δu
= 3

2
u2 + 1

2
u2

x − (uux )x . (3.1)

We follow the approach presented in [13] and semi-discretize the energy H2 of (3.1) as

H2(u)∆x = 1

2

K∑
k=1

(
u3

k +uk
(δ+x uk )2 + (δ−x uk )2

2

)
∆x, (3.2)
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where the difference operators δ+x and δ−x are defined by

δ+x uk := uk+1 −uk

∆x
, δ−x uk := uk −uk−1

∆x
.

For later use, we here also introduce the notation

δ〈1〉x uk := uk+1 −uk−1

2∆x
, δ〈2〉x uk := uk+1 −2uk +uk−1

(∆x)2 ,

µ+
x uk := uk+1 +uk

2
, µ−

x uk := uk +uk−1

2
,

and the matrices corresponding to the difference operators δ+x , δ−x , δ〈1〉x , δ〈2〉x , µ+
x and µ−

x , which are
denoted by D+, D−, D〈1〉, D〈2〉, M+ and M−. Denoting the numerical solution U = [u1, . . . ,uK ]T ,
and by using the properties of the above difference operators, we thus get

∇H2(U ) = 3

2
U 2

· +
1

2
M−(D+U )2

· −
1

2
D〈2〉U 2

· ,

where U 2· is the elementwise square of U . Then the semi-discretized system for the Camassa–
Holm equation becomes

U̇ = S∇H2(U ) =−(I −D〈2〉)−1D〈1〉∇H2(U ). (3.3)

The above-mentioned schemes applied to (3.3) give us

(I −D〈2〉)
U n+1 −U n

∆t
=−D〈1〉∇H2(

U n+1 +U n

2
), (MP) (3.4)

(I −D〈2〉)
U n+1 −U n

∆t
=−1

2
D〈1〉H

′′
2 (U n)U n+1, (Kahan) (3.5)

(I −D〈2〉)
U n+2 −U n

2∆t
=−D〈1〉∇H̃2(U n ,U n+1,U n+2), (PDGM) (3.6)

where H
′′
2 (U ) = 3diag(U )+M−diag(D+U )D+−D〈2〉diag(U ) is the Hessian of H2(U ) and

∇H̃2(U n ,U n+1,U n+2) is the PDG of Proposition 2 with polarised discrete energy

H̃2(U n ,U n+1)∆x :=1

2

K∑
k=1

(
un

k un+1
k

un
k +un+1

k

2
+a(µ+

x

un
k +un+1

k

2
)(δ+x un

k )(δ+x un+1
k )

+ (1−a)
(µ+

x un
k )(δ+x un+1

k )2 + (µ+
x un+1

k )(δ+x un
k )2

2

)
∆x,

for some a ∈R, typically between −1 and 2.

Remark 2. We performed numerical experiments for finding a good choice of the parameter a
in PDGM (3.6) and based on these set a = 1

2 in the following.
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3.1.1 Numerical tests for the Camassa–Holm equation

Example 1 (Single peakon solution): In this numerical test, we consider the same experiment
as in [19], where multisymplectic schemes are considered for the Camassa–Holm equation with

u(x,0) = cosh(|x − L
2 |− L

2 )

cosh(L/2)
,

x ∈ [0,L], L = 40, t ∈ [0,T ], T = 5, spatial step size ∆x = 0.04 and time step size ∆t = 0.0002. All
our methods keep a shape close to the exact solution except some small oscillatory tails, also
observed in [19], resulting from the semi-discretization, see Figure 2 (the right two plots). The
numerical simulations show that the global error is mainly due to the shape error1, see Figure
1. In Figure 2 (the left plot), we can see that the numerical energy for all the methods oscillate,
but it appears to be bounded. Here we consider also coarser grids. We observe that there appear
some small wiggles for both PDGM and Kahan’s method for ∆t = 0.02 and long time integration
T = 100. However, the wiggles in the solution by PDGM are much more evident than those in the
solution of Kahan’s method, see Figure 3 (the left two plots). We keep on increasing ∆t to 0.15
and 0.2; we observe that the numerical solution obtained with the PDG method with ∆t = 0.15
suffers from evident numerical dispersion, while Kahan’s method seems to keep the shape well
when comparing to the exact wave. Spurious oscillations appear also in Kahan’s method when
the time-step is increased to the value ∆t = 0.2, see Figure 3 (right).
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Figure 1: In this experiment, space step size ∆x = 0.04 and time step size ∆t = 0.0002. Left:
shape error, middle: phase error, right: global error.

1 Shape error is defined by εshape := min
τ

∥ U n −u(· − τ) ∥2
2, and phase error is defined by εphase := |argmin

τ
∥

U n −u(·−τ) ∥2
2 −ctn |, [3].
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Figure 2: In this experiment, ∆x = 0.04, ∆t = 0.0002. Left: relative energy errors. middle:
propagation of the wave by PDGM. right: propagation of the wave by Kahan’s method.
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Figure 3: In this experiment, space step size ∆x = 0.04. Left: propagation of the wave by PDGM,
∆t = 0.02, middle: propagation of the wave by Kahan’s method, ∆t = 0.02, right: propagation
of the wave by Kahan’s method, ∆t = 0.15.

Example 2 (Two peakons solution): Now we consider the initial condition

u(x,0) = cosh(|x − L
4 |− L

2 )

cosh(L/2)
+ 3

2

cosh(|x − 3L
4 |− L

2 )

cosh(L/2)
,

where x ∈ [0,L], L = 40, t ∈ [0,T ], T = 5, and ∆x = 0.04, ∆t = 0.0002. We observe that all
the methods keep the shape of the exact solution very well and the numerical energy appears
bounded, see Figure 5. The numerical simulation shows that the global error is mainly due to the
shape error, see Figure 4. When a coarser time grid and longer time integration is considered,
∆t = 0.02 and T = 100, small wiggles appear in the solution of PDGM and Kahan’s method, see
Figure 6 (the left two figures). We increase ∆t to 0.2, and observe that PDGM fails to preserve
the shape of the solution, while Kahan’s method can still keep a shape close to the exact solution
even though also for this method the numerical dispersion increases, see Figure 6 (right).
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Figure 4: In this experiment, space step size ∆x = 0.04, time step size ∆t = 0.0002. Left: shape
error, middle: phase error, right: global error.
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Figure 5: In this experiment, ∆x = 0.04, ∆t = 0.0002. Left: relative energy errors, middle:
propagation of the wave by PDGM, right: propagation of the wave by Kahan’s method.
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Figure 6: In this experiment, ∆x = 0.04. Left: propagation of the wave by PDGM, ∆t = 0.02,
middle: propagation of the wave by Kahan’s method, ∆t = 0.02, right: propagation of the wave
by Kahan’s method, ∆t = 0.2.

3.2 Korteweg–de Vries equation

For the Camassa–Holm equation, the vector field of the semi-discretized system is a homoge-
neous quadratic polynomial. In this section, we deal with the KdV equation, for which the vector
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field of the semi-discretized equation is a non-homogeneous quadratic polynomial. Kahan’s
method has also previously been used for the temporal discretization of this equation, see [8].

The KdV equation
ut +6uux +uxxx = 0 (3.7)

on the periodic domain S :=R/LZ has the conserved Hamiltonians

H1(u(t )) = 1

2

∫
S

u2 dx, H2(u(t )) =
∫
S

(
−u3 + 1

2
u2

x

)
dx.

In the following we consider the variational form based on the Hamiltonian H2:

ut = ∂x
δH2

δu
,

δH2

δu
=−3u2 −uxx . (3.8)

3.2.1 Numerical schemes for the KdV equation

We discretize the energy H2 for the KdV equation (3.8) as

H2(U )∆x =
K∑

k=1

(
−u3

k +
(δ+x uk )2 + (δ−x uk )2

4

)
∆x.

From simple calculations, the corresponding gradient is given by

∇H2(U ) = (−3U 2
· −D〈2〉U

)
,

and thus we have the semi-discretized form for (3.8):

U̇ = D〈1〉 (−3U 2
· −D〈2〉U

)
. (3.9)

Applying the schemes under consideration to (3.9) gives

U n+1 −U n

∆t
=D〈1〉∇H2(

U n +U n+1

2
), (MP) (3.10)

U n+1 −U n

∆t
=− 1

2
D〈1〉(∇H(U n)+∇H(U n+1))

+2D〈1〉∇H(
U n +U n+1

2
),

(Kahan) (3.11)

U n+2 −U n

2∆t
=D〈1〉∇H̃2(U n ,U n+1,U n+2), (PDGM) (3.12)

where H
′′
2 (U ) =−6diag(U )−D〈2〉 is the Hessian of H2(U ) and ∇H̃2(U n ,U n+1,U n+2) is found as

in Proposition 2, with polarised discrete energy

H̃2(un
k ,un+1

k )∆x :=
K∑

k=1
(−un

k un+1
k

un
k +un+1

k

2
+ a

2
(δ+x un

k )(δ+x un+1
k )

+ 1−a

2

(δ+x un
k )2 + (δ+x un+1

k )2

2
)∆x.

Remark 3. We perform several numerical simulations to find a good choice of the parameter a,
and we take a =−1

2 for PDGM in the following numerical examples for the KdV equation.
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3.2.2 Stability analysis of the schemes

To analyse the stability of the above methods, we perform the von Neumann stability analysis
for the Kahan and PDGM schemes applied to the linearized form of the KdV equation (3.7)

ut +uxxx = 0. (3.13)

The equation for the amplification factor for Kahan’s method is

(1+ iλ(cosθ−1)sinθ)g + iλ(cosθ−1)sinθ−1 = 0,

and its root is

g = 1− iλ(cosθ−1)sinθ

1+ iλ(cosθ−1)sinθ
,

where λ := ∆t
∆x3 . Since g is a simple root on the unit circle, Kahan’s method is unconditionally

stable for the linearized KdV equation.
The equation for the amplification factor for PDGM is

g 2 −1+ iλ(3g 2 −2g +3)(cosθ−1)sinθ = 0. (3.14)

The two roots of the above equation are thus

g1 = 3b2 +
p

1+8b2 + i b(3
p

1+8b2 −1)

1+9b2 ,

g2 = 3b2 −
p

1+8b2 − i b(3
p

1+8b2 +1)

1+9b2 ,

where b = λ(1− cosθ)sinθ. We observe that |g1| = |g2| = 1, and g1 6= g2, therefore PDGM is
unconditionally stable for the linearized KdV equation.

3.2.3 Numerical tests for the KdV equation

Example 1 (One soliton solution): Consider the initial value

u(x,0) = 2sech2(x −L/2),

where x ∈ [0,L], L = 40. We apply our schemes over the time interval [0,T ], T = 100, with step
sizes ∆x = 0.05, ∆t = 0.0125. From our observations, all the methods behave well. The shape of
the wave is well kept by all the methods, also for long time integration, see Figure 7. The energy
errors of all the methods are rather small and do not increase over long time integration, see
Figure 8 (left). We then use a coarser time grid, ∆t = 0.035, and both methods are still stable, see
Figure 9 (left two). However we observe that the global error of PDGM becomes much bigger
than that of Kahan’s method. When an even larger time step-size, ∆t = 0.04, is considered, the
solution for PDGM blows up while the solution for Kahan’s method is rather stable. In this case,
the PDG method applied to the nonlinear KdV equation is unstable and the numerical solution
blows up at around t = 8. Even if we increase the time step-size to ∆t = 0.1, Kahan’s method
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Figure 7: Space step size ∆x = 0.05, time step size ∆t = 0.0125. Left: shape error, middle: phase
error, right: global error.
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Figure 8: With ∆x = 0.05, ∆t = 0.0125. Left: relative energy errors, right two: propagation of
the wave by PDGM and Kahan’s method.

still works well, see Figure 9 (middle). When ∆t = 0.15 is considered, we observe evident
signs of instability in the solution of Kahan’s method. The solution will blow up rapidly when
∆t = 0.2 À∆x.

Example 2 (Two solitons solution): We choose initial value

u(x,0) = 6sech2x,

and consider periodic boundary conditions u(0, t ) = u(L, t ), where x ∈ [0,L], L = 40. We set the
space step size ∆x = 0.05 and apply the aforementioned schemes on time interval [0,T ] with
T = 100, ∆t = 0.001. All the methods behave stably. The profiles of Kahan’s method and the
midpoint method are almost indistinguishable, and the profiles for the midpoint method are thus
not presented here. Kahan’s method and PDGM preserve the modified energy, and accordingly
the energy error of all the methods are rather small over long time integration, see Figure 10 (left).
After a short while the solution has two solitons; one is tall and the other is shorter, see Figure
10 (the right two plots).

When we consider a coarser time grid, ∆t = 0.00375, both methods are still stable, see Figure
11 (the left two plots). However, there appear more small wiggles in the solution by PDGM
and we observe that the solution of PDGM will blow up rather soon, around t = 1, for an even
coarser time grid ∆t = 0.005. When we increase the time step size to ∆t = 0.0125 and consider
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T = 100, the shape of the exact solution is still well preserved by Kahan’s method, even though
there appear some small wiggles in the solution at around t = 100. We observe that the solution
of Kahan’s method will blow up when ∆t = 0.05 is considered. Similar experiments as in this
subsection, but for the multisymplectic box schemes, can be found in a paper by Ascher and
McLachlan [20]. However, here we consider even coarser time grid than there, and the numerical
results show that Kahan’s method is quite stable, even though it is linearly implicit.
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Figure 10: In this experiment, ∆x = 0.05, ∆t = 0.001. Left: relative energy errors, right two:
propagation of the wave by PDGM and Kahan’s method.

3.2.4 Dispersion analysis

We consider the traditional linear analysis of numerical dispersion relations for the numerical
schemes applied to the KdV equation, getting the dispersion relation of frequency ω and wave
number ξ to be

ω= ξ3, (exact solution) (3.15)

sinω=λ(1−cosξ)(3cosω−1)sinξ, (PDGM) (3.16)
sinω

1+cosω
=λ(1−cosξ)sinξ, (Kahan) (3.17)
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agations of the wave by Kahan’s method, ∆t = 0.00375, right: Propagations of the wave by
Kahan’s method, ∆t = 0.0125.

where λ= ∆t
∆x3 . The dispersion curve is displayed in Figure (9) (right). We observe that Kahan’s

method is better than PDGM at preserving the exact dispersion relation. This coincides with the
behaviour of the methods applied to the nonlinear KdV equation shown in Section 3.2.3.

4 Conclusion

In this paper we perform a comparative study of Kahan’s method and what we call the polarised
discrete gradient (PDG) method. To that end, we present a general form encompassing a class
of two-step methods that includes both a specific case of the PDG method and Kahan’s method
over two steps. We also compare the methods for two Hamiltonian PDEs: the KdV equation and
the Camassa–Holm equation. Both Kahan’s method and the PDG method are linearly implicit
methods, which will save computational cost. A series of numerical experiments has been
performed here, for the KdV equation with one and two solitons, and the Camassa–Holm equation
with one and two peakons. These experiments show that Kahan’s method is more stable than
the PDG method. They also indicate that Kahan’s method yields more accurate results, as we
have witnessed in the energy error and the shape and phase error when comparing to analytical
solutions. Based on our results, we would recommend the use of Kahan’s method if one seeks a
linearly implicit scheme for a Hamiltonian system with H cubic.
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