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Abstract

Systems of differential equations which consist of subsystems with widely dif-
ferent dynamical behaviour can be integrated by multirate time integration
schemes to increase the efficiency. These schemes allow the usage of inherent
step sizes according to the dynamical properties of the subsystem. In this pa-
per, we extend the multirate implicit Euler method to semi-explicit differential-
algebraic equations of index-1 where the algebraic constraints only occur in the
slow changing subsystem. We discuss different coupling approaches and show
that consistency and convergence order 1 can be reached. Numerical experi-
ments validate the analytical results.

Keywords: Numerical Analysis, Differential Algebraic Equations, Multirate
Time Integration

1. Motivation and Introduction

The mathematical modelling of a technical or physical problem often leads to
a system of differential equations, where different components provide a widely
spread dynamical behaviour: some components of the system are changing much
faster than others. In time domain simulation, the fastest component will define
the maximal step size of the integration scheme. Therefore the simulation of the
complete system will be very costly and inefficient. To overcome this problem, a
multirate time integration scheme can be applied. These schemes use inherent
step sizes for the components according to their dynamical behaviour: fast
components are integrated with a small step size and slower ones with a larger
step size. The crucial part is the coupling between the components: how can
the values of the fast components be approximated during the integration of the
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slow components and vice versa. For systems of ordinary differential equations
(ODEs) multirate schemes with different coupling approaches have been widely
discussed in e.g. [1, 2, 3, 4, 5].

In many applications (e.g. circuit simulation, electro-magnetic field simula-
tion), the system cannot be modelled as a system of ODEs since algebraic con-
straints occur due to an automated modelling approach. Such systems are called
differential-algebraic equations (DAEs). The numerical treatment of DAEs dif-
fers from the classical ODE time integration framework and is already for a
global time stepping (single-rate) method more challenging [6, 7, 8].

Multirate time integration for DAEs has been discussed in [9] for mixed-
multirate methods based on ROW schemes. In [10] multirate schemes for DAEs
based on BDF-methods are presented using a specialized stability analysis. In
this work, we extend the multirate implicit Euler method to semi-explicit DAEs
of index-1, where the algebraic constraints only occur in the slow changing
variables. We present different coupling strategies between the subsystems:
Decoupled-Slowest-First analogue to the slow-fast method in [10], Coupled-
Slowest-First which is similar to compound-fast in [10] and Coupled-First-Step
which coincides with the mixed-multirate approach in [9]. We provide a di-
rect convergence analysis and show that convergence order 1 can be reached.
Numerical results verify the theoretical results. The methods applied can be
extended to higher-order one-step methods which will be part of future work.

The paper is organised as follows: In Section 2, we briefly introduce the
multirate implicit Euler method for ODEs and extend the scheme to DAEs.
Thereby we discuss three different coupling approaches. A detailed consistency
analysis for all coupling approaches follows (Section 3). The convergence of
the schemes is addressed in Section 4 and numerical results are presented in
Section 5.

2. Multirate Implicit Euler Method

After introducing the multirate implicit Euler-method for ODEs, we extend
the integration method to semi-explicit DAEs of index-1 and present three dif-
ferent coupling approaches.

2.1. Multirate Implicit Euler Method: ODE-Case
We consider the set of coupled initial value problems (IVP) of ODEs:

yr(t) = fr(t,yr,vys), yr(to) = yro, (1)
Us(t) = fs(t,ys,ys), ys(to) = ys,o, (2)

for time t € [to, tend], @ fast (F') changing variable yr(t) € R™" and a slow (S)
changing variable yg(t) € R™S. The multirate implicit Euler method (mrIRK1
for multirate Implicit Runge-Kutta method of order 1) integrates the fast
changing subsystem (1) with a small micro-step size h and the slow changing
subsystem (2) with a large macro-step size H. We assume a fixed multirate
factor, i.e., m = H/h for an integer m € N. Given approximations yr., ysn



at t,, the integration over the macro-step ¢, — t,+1 = t,, + H with micro grid
points ty4y/m = tn +1h (1 =0,1,...,m — 1) reads:

YFnt(+1)/m = YFn+i/m + RFF (b (141) fm YF et (191) /o TS me(141) /m)
(1=0,1,....m—=1), (3)
YSn+1 = YSn + Hfs (tn+17 gF,n+17 yS,n+1)a
where yg, ys denote the coupling variables to the other subsystem. There are

different strategies to define the values of the coupling variables. We discuss
important coupling terms after the extension to DAEs.

2.2. Multirate Implicit Euler Method: DAE-Case
We consider the following index-1 DAE-IVP in semi-explicit form

yr(t) = fr(yr,ys, zs), yr(to) = Yro,
Us(t) = fs(yr, s, zs), ys(to) = Ys.,0s 4)
OZQS(?JF;Z/&ZS)a zS(tO) = Z5,0

for t € [to, tend], fast differential variable yr(t) € R"F | slow differential variable
ys(t) € R™s and slow algebraic variable zg(t) € R"Z. The initial values (IVs)
shall consistent and index-1 be guaranteed by the assumption

det <8gs) #0

8z5

in a neighbourhood of the analytic solution. We point out that the algebraic
constraints only occur in the slow subsystem but may depend on the solution of
the fast subsystem. Such a coupling structure may arise field/circuit problems,
where a slowly changing electro-magnetic field is coupled with fast changing,
regularised electric circuit model.

By the index-1 condition, we can solve the algebraic constraint (locally) for
the algebraic variable zg using the implicit function theorem:

25 = G(yr,ys)- (5)

A DAE of index-1 can be integrated with an implicit Euler method in single-
rate. Thereby, the ODE convergence properties are be maintained, since the
method is stiffly accurate [6].

To exploit the multirate behaviour of the DAE (4), we propose the following
integration method based on the mrIRK1 method (3) and the classical single-
rate implicit Euler method for DAEs of index-1 [6]. The integration of system
(4) over the macro-step t, — t,+1 = t, + H reads:

YFn+(41) /m = YFnti/m + PIF YR nt41) /ms USint-(141) fm> 28t (1+1) /m)  (6)
(1=0,1,...,m—1)

Ysn+1 = YSn + H fs(Urn+1,YS,n+1s 28,n+1) (1)

0= gs(UFn+1:YS,n+1:28,n+1)- (8)

The coupling variables are denoted by yr,ys,Zs. We refer to this method as
mrIRK1-DAE.



2.8. Multirate Implicit Euler Method: Coupling Strategies

We briefly introduce three different strategies how the coupling terms can
be realised (on the macro step t, — t, + H).

Decoupled-Slowest-First. For an approximation at t,, + H, the slow subsystem
is first solved via (7-8). Thereby, the coupling variable gy is fixed by constant
extrapolation yrp+1 = yrn. Then, for the integration of the fast subsytem
via (6), the slow differential coupling variable gg is linearly interpolated on the
micro-step level:

m—1 l
ySm + E:‘/S,nle' (9)

gS,n+l/m =

Analogously, the algebraic coupling variable Zg ,,4/m can be interpolated. An-
other approach for Zg is the implicit definition via the non-linear equation

YFnt(141)/m = YFnti/m + NfF (yF,n+(l+1)/m7 YS n+(1+1)/m> 25,17,+(l+1)/m)a (10)

0= g(YF n+@+1)/m> US;nt(1+1)/m> ZS,n+(1+1)/m)-
‘We show that both realisations of the algebraic-to-fast coupling lead to the same
consistency order of the integration method.

Coupled-Fastest-First. We remark that starting the computation with the fast
subsystem and extrapolating the slow variables is conceivable. However, the
slowest-first approach fits better to a step-size control on the macro-step level
and, thus, is more relevant for practical applications [1]. Therefore, this strategy
is not further address here.

Coupled-Slowest-First. This approach was introduced in [4] based on a #-method.
The idea is the following: the complete system (4) is solved on the macro-step
level

y},n+l = Yrn + - fF (y;’,n+la YSn+1, ZS,n+1)

Ysim+1 =Ysm T H - fsWrni1:Ysint1: 2s,nt1) (11)
0=gs (y;‘,n+1a YS,n+1, zS,n+1)-

The step-size H is chosen according to the dynamical properties of yg and zg.
Thus, the approximation yj.,, . ; is not accurate and therefore refused. The inte-
gration of the fast subsytem is re-computed using micro-steps (6) and coupling
variables §g, Zg are linearly interpolated (9). Alternatively, Zg can be computed
via the non-linear algebraic constraint, see (10).

Coupled-First-Step. Here, the first micro-step of the fast subsystem is computed
together with macro-step of the slow subsystem. This technique was introduced
for Runge-Kutta based schemes in [3]. The compound-step reads:

YFnt1/m = YFn + R F(YFnt1/m> YSnt1y 2S,n+1)
Ysn+1 = Ys;m + Hfs(Yrnt1/m> Ysnt1, 25,n+1) (12)
0= gS(yF,n+1/m7 YsS.n+1, ZS,TL+1)'



The remaining micro-steps of the fast subsystem are computed according to (6)
forl =1,...,m — 1. Here, the slow coupling variables g, Zs can be obtained
by linear interpolation (9) or, alternatively, Zg via the algebraic constraint (10).

3. Consistency Analysis

We estimate the error that is made during one macro-step ¢, — tp41 =
t, + H caused by the mrIRK1-DAE method (based on m micro-steps; i.e.,
H =m - h). We discuss the three introduced coupling strategies.

3.1. Preliminaries

Let z : [to, tena] — R* denote some set of variables (of the above DAE) and
let exact initial values x(t,,) be given for the macro-step [t,,{n+1]. At the end
of the macro-step (t = t,+1), we have a numerical approximation x,41 of an
analytic solution x(¢,41) and the error notation:

AZpi1 = Tpt1 — T(tpy1). (13)
Hence, we assume at ¢ = ¢,,: (for any vector norm || - ||)
[AYFnll = [Aysnll = [[Azsnll = 0. (14)

For simplicity of notation, we introduce the following sloppy short-hand on the
nth macro-step:

x = max |z(7)].

le®ll = __max a(r)]

The following assumption is valid for the whole section.

Assumption 1. For some ¢ > 0 and the analytic solution (yr(.),ys(.),zs(.))
of the DAE (4), we define the neighbourhood at time T

E(1):={(yr,ys, 2s) € R* "5 [lyp —yp ()|, lys —ys (1) ||, |25 =25 (1) || < €}
and assume the following:

(i) The right-hand sides of DAE (4) fr, fs, gs are sufficiently smooth and
all first and second partial derivatives are (locally) uniformly bounded. The
Lipschitz constant of fr with respect to ys reads

(yr,ys, 2s)| (15)

LFS = ‘
dys

max
TE[tn tnt1], E(T)
and Lrp,Lpz, Lsp, Lss, Lsz are defined analogously.

(i) For DAE (4), the implicit function G (5) shall exists globally on [ty tni1].
G shall be sufficiently smooth and the partial derivatives shall be uniformly
bounded. The corresponding Lipschitz constant reads:

‘ oG

L = 1
Gs s (yr,ys) (16)

max
Te[tn,fn+1 E(T)

and Lar analogously.



Except for the first step in the coupled-first-step strategy, the computation
of the fast components is the same. Thus, we start the error estimation for the
fast subsystem.

3.2. Accuracy of the Fast Components
For a macro-step [t,,tn+1], we have:

Lemma 1. Let be given an index-1 DAE-IVP on [ty tni1] (4), which ful-
fils Ass. 1. Let the approximation Yrmn+1, YSn+i, 2Sn+1 be computed by the
mrIRK1-DAE scheme (6-8) with macro-step size H and micro-step size h =
H/m (m € N). If the micro-step size is restricted to 0 < 1 —hLpp < 1, then
the error in the fast subsystem after one macro-step t, — t,+H can be bounded

by

2 .
1AyEns1l < C[2 e 0]l
m—1 (17)
+h Z (Lrsl| ATsn+ (k1) /mll + Lozl AZs n4 (k1) /mll) }
k=0

m
. 1 . _
with a constant C' > (khLFF) > 0 and the coupling errors Aijg ,y(k41)/ms
ABS,n+(k+1)/’m'

Proof. We estimate Ayp 4 (141)/m 11 ONE MIcro-step tni/m — tng(141)/m:

AyF,nJr(l~|»1)/m = yF,n+l/m y yF(tn+l/m) +(_yF(tn+(l+1)/m) + yF(tn+l/m))

=AYF nti/m
+ hfr(Yr (tnt 41)/m)s Ys (s 1) m) s 28 (bt (141) /m)
+ W fEWUrnt(141) /ms USn4141) fm> 2S,n+(1+1) /m)
= hfr(yr(tnr a1y /m)s Ys(Ent ey m)s 28 (Eng (1) /m))-

The local truncation error of the single-rate implicit Euler method is defined as
Onyijm = YF(tnyiym) + hIE(YF (s 41)/m)s Ys Ens@r1)/m)s 28 (Eng (141) /m)
- yF(thr(lJrl)/m)'

Applying the mean-value theorem, we get

1
of
AyF.,n—b—(l—',-l)/m, = AyF,n—',-l/’m + 5n+l/m + hA ﬁ(@(g))Ava”+(l+l)/m do

Yofr _ Yofr _
s (0(0)) Afsntar1y/mdo +h [ ——(0(0))AZs i (i1)/m do

+h
o Ozs

with evaluation at

YF (tnt-(141) /m) + OAYF it (141) /m
O(0) == | ys(tnsrasr1)/m) + CATS i (141)/m
25(tng-(141)/m) T OAZS iy (141) /m



Applying norms and using Lipschitz continuity, we can estimate:
2 ..
IAYE s (1) /mll NAYEp1/mll + 25 i ()]0 + h(LFF||AyF,n+(z+1)/m||
+ Lrs||Aysnt+1)/mll + L. \|Azs,n+(z+1)/m|\>~

Summing all micro-steps (I = 0,1,...,m — 1), using exact IVs at ¢ = ¢, (14)
and the bound of the local truncation error d, 4/, (for the implicit Euler)

h2
6nt1/ml < max i ()],
ntt/m 2 T€ltnti/mitnrarty/m
we arrive at the statement of the lemma. O
It remains to estimate Ags p41/m» AZsnti/m for alll =0,1,...,m—1. The

following lemma gives a corresponding bound:

Lemma 2. Under the same settings and assumptions as in Lemma 1, the cou-
pling errors can be bounded by

a) |AGsnri/mll < 510 (m=Dlis (D) + 7 | Aysneall for some 7€ [t tnia],

b) |1AZsmii/mll < 5103 (m =D Zs(T)| + S| Azs it for some 7€ [tn, tni]
if Zs,nt1/m s achieved by linear interpolation (9),

C) ”AESJH»l/m” < LGF”AyFﬂhLl/mH + LG5'||AgS,n+l/mH
if the formulation based on the algebraic constraint (10) is used.

Proof.  a) It holds:
AgS,'rH»l/m = yS(tn+l/m) - (%ys,n + %yS,th)
= yS(tn+l/m) a (%ys,n + %yS(t'rH»l)) - %AySJH»L

Then, an error estimation for linear interpolation yields a).
b) Analogous to a).
¢) We have

||AZS,n+l/m|| = ||G(yF,n+l/mayS,n+l/m) - G(yF(tn+l/m)vyS(tn+l/m))||'

Applying the mean value theorem and using the Lipschitz condition for G
(16), we obtain c). O

To estimate Aypp+1 in terms of Aygn+1 and Azgp,y1, we combine the
previous lemmas and have as direct consequence:

Proposition 1. Under the same settings and assumptions as in Lemma 1, the
error Ayp 41 can be bounded (using linear interpolation for yg):



i) for Zg obtained by linear interpolation (9)

2., 2.
1Ayl < C - [ (0o + £55 (H + 1) (B2l (D)ll + | Aysinsa )

2 ..
o+ L52 (H 4+ 1) |zs(1) oo + 1 A2sin 1] ) |

i) for Zg computed by the non-linear equation (10) and h restricted to
0<1—h(Lpr — LrzLgr) < 1, then we have the bound

2 ..
|8yl < D [ lji(t)

+ Les=healas (B 4+ h) (32 s(0) oo + | Aysinsall)]

with constant D > <1*h(LFF*1LFZLGF)) > 0.

Next, we provide estimations for [|Ayg 11|l and ||Azg,+1/. We present the
result for each coupling approach in a separate subsection.

3.8. Accuracy of the Slow Components: Decoupled-Slowest-First

The derivation of an error bound for the slow components is done in two
steps: we start with an estimation for the algebraic variables, then the slow
differential variables are estimated.

Lemma 3. Let be given an index-1 DAE-IVP (4) fulfilling Ass. 1. Let the
approzrimation ysp41, 2sn+1 is computed by the mrIRK1-DAE scheme (6-
8) with macro-step size H with constant extrapolation for the coupling term
YFn+1 = Yrn- LThen the error in zs can be bounded by

1Azsniall < H - Larle(T) + Lasl| Ays il (18)
with T € [ty,t, + H] and Lipschitz constants L, Las.
Proof. Solving the algebraic constraint (5), we can write for the local error
Azg i1 = G(Yrmnsysm+1) — G(yp(tns1), ys(tns1))-

Applying the mean value theorem, Lipschitz continuity of G and norms (similar
to Lemma 1), we obtain

[Azsnill < Lapllyrn = yr(tan) | + Los || Ays nial

Then using yg,, = yr(t,) and the mean value theorem, the proof is completed.
O

Next, we estimates the error in the yg.



Proposition 2. Under the same settings and assumptions as in Lemma 3 and
a restricted macro-step size H, such that 0 < 1 — H(Lss+ LszLas) < 1 holds,
the error in ys is bounded by

2

1Ays il € rrstiresrasy | (Bss + DszLos) s (0l

(19)
+2LszLarlir (®)l + Slis (0l

Proof. By Taylor expansion of ygs(t,+1) with expansion point ¢,,, we obtain

2 ..
AYsnt1 = H[fsWrn: Ysint1, 28,n+1) — fsUrns Ysims 2s,n) ] — Z-ijs(T)

for some 7 € [ty,t, + H]. Applying norms and Lipschitz continuity, we get

[Aysnt1ll < H[LSS”AZIS,n+1H + Lssllys(tnt1) =ys(tn) | + Lsz[|Azsni |
2 ..
+ Lszllzs(tnsn) = 2s(ta)ll] + 2150l

Again, mean value theorem and Lemma 3 lead to

[AYsniall < H|:LSSHAyS,n+1|| + HLss|lys ()| + HLszLar|ljr(S)|l
+ Lz Lo Bus | ¥ HLsal 0] + 2 150)
for 6,&,p € [tn,tn + H|. By using Ass. 1(ii), we have ||25(t)|| < Ler|yr(t)] +
Les||lys(t)]]. Inserting this, we can finally solve for ||Ayg pt1]- O
Summing up, we have:

Corollary 1. Under the same settings and assumptions as in Prop. 2, the
decoupled-slowest-first, mrIRK1-DAE method (6-8) has consistency order 1 in
the differential variables and the error in the algebraic variables is O(H) (under
the above step size restrictions).

3.4. Accuracy of the Slow Components: Coupled-Slowest-First

Here, ys,n+1 and zg,,+1 depend on the auxiliary variable y}‘,’n +1- The next
two lemmas give estimates for the algebraic and differential variables:

Lemma 4. We consider an index-1 DAE-IVP (4) fulfilling the Ass. 1. We
apply the coupled-slowest-first (11), mrIRK1-DAE method. Then, the error in
the slow changing, algebraic variable can be estimated by

1825 ni1ll < Lar|AYp il + Lasl|Ays na -

The proof is similar the deduction of Lemma 3.



Lemma 5. Under the same settings and assumptions as in Lemma 4, the error
in the differential variables in the coupled-slowest-first approach can be bounded
as follows:

|Ay; |> 22 i (£) |
M(H,H ) < | 2 , 20
( )(uAysynHl =V s (6) o 2

: 1= H\(Lpp+ LrzLcr) —Hi(Lrs+ LrzLlcs)

th M(Hy, Hs) :=
o (Hy, H) ( —Hy(Lsr + LszLgr) 1— H2(Lss+ LszLcs)
The inequality in (20) has to be understood componentwise.

Proof. For Ays ni1, we add £ [ys(tn) —H fs (yr (tnt1), s (tns1), 25 (tns1)) |- By
the mean value theorem, we deduce

|Aysins1ll € H|LsplAyf il + Lss | Aysntll + LszllAzsnrall]
+ HfOHT;U(tn—I—T)dTH .
Employing Lemma 4 for ||Azg 1] and again the mean value theorem, we find

[1-H(Lss+LszLas)] [ Ays n1 |- H(Lsr+ Ls 2L r) | Ayl < 2[5 ()| oo
Analogously, one can deduce the estimate for Ayg,, 4. O

To solve the estimate (20) for the error in the differential variables, we need
that M (Hy, Hy) is an M-matrix in R?*2 (later we will need this more general
version). In fact, for Hy, Hy > 0 small enough, the diagonal entries are positive
(off-diagonals are always negative). Thus, we have

Proposition 3. Let the same settings and assumptions apply as in Lemma 4
(coupled-slowest-first). And the step-size H be restricted such that holds:

H(Lpp+ LrpzLgr) <1 and H(Lss+ LszLgs) < 1. (21)
Then we have

3 .
|AYs nt1ll < W {HT(LSF + LszLar)|ir(t)| s

+ (0 H(Lpr + Loz Lar) s (0]

Ay’ <1 VB (Lps+ LrzLes)|li
185l < oty 5 (s + LrzLas)lis ()

+22(1 - H(Lss + LSZLGS))||2?F(T)||<><>]
The last results give the consistency:

Corollary 2. Under the same settings and assumptions as in Prop. 3, the
coupled-slowest-first, mrIRK1-DAE method (6-8) has consistency order 1 when
applied to semi-explicit DAFEs of index-1.

10



3.5. Accuracy in Compound Step (Coupled-First-Step)
We consider (12) and address first the algebraic variable and then the dy-
namic variables:

Lemma 6. We consider the DAE-IVP (4) fulfilling Ass. 1 and apply the coupled-
first-step (12), mrIRK1-DAE method. We find for ||Azg n+1]|:

1825 nt1ll < Lap|Ayrniall + Las|Aysniill + HLarllgr®llo- (22)
Proof. Using the implicit function for zg (5), we can estimate (cf. Lemma 3)
1Azs i1l < Lasl|Aysmtill + Larlypnt1/m — Ur(tng1)]l-

In the second summand we add and subtract yr(t,41/m). Applying the mean
value theorem leads to the statement of the lemma. O

Similar as the deduction of Lemma 5, we can obtain:

Lemma 7. Under the same settings and assumptions as in Lemma 6, the error
in the differential variables (coupled-first-step) can be estimated as

A | Rp
M(h. H || yF,n+1/nL <
¢ )( 1aysastl )= R

with M (h, H) given in (20) and

Rp = L (Lps + LrzLas) s ()]s + 2 (LrzLar) |50 (lloo + 5 11ir (1)]loo,
Rs = H*(Lsrirssrap) |97 (0]l + 515 (1)l oo-

Again, the M-matrix property of M (h, H) (h, H small enough) leads to: (cf.
Prop. 3)

Proposition 4. Under the same settings and assumptions as in Lemma 6 and
step-size restrictions

H(Lss+ LszLas) <1 and h(Lpp+ LrpzLgr) <1, (23)

the coupled-first-step, mrIRK1-DAFE scheme applied DAE-IVP (4) is of con-
sistency order 1 in the differential variables yrp and ys. The error in the slow
changing, algebraic variable is in O(H).

3.6. Summary
We conclude for Section 3:

Theorem 1. For all versions of the mrIRK1-DAFE method applied to the DAE-
IVP (4) the differential variables (yr, ys) have consistency order 1. The alge-
braic variable (zs) reach order 1 only in the coupled-slowest-first approach. For
the other coupling approaches, the error ||Azg|| is always in O(H). Under the
additional assumption

0
G = 24
dyr (yr ys) =0 (24)

fort € [to, tend] we have order 1 also in the algebraic variable (zg) in all coupling
approaches.

11



Proof. 1t only remains to show order 1 in zg for Decoupled-Slowest-First and
Coupled-First-Step: Since (24), we have Lgr = 0 in (18) and (22) and we end
up with

[Azs| = O(|Ays]).

O

Remark: The slow changing variables (ys, zs) of a multirate DAE-IVP

depends only weakly on yg, therefore ’ %G(yp7 yS)H is small and can be ne-

glected in most cases.
Next, it is shown that the reduced consistency order in the algebraic variable
does not influence the convergence of the scheme.

4. Convergence

Now, we investigate the error propagation over several macro-steps. For the
index-1 DAE-IVP (4), (yrn,Ysn, 2s,n) denotes the mrIRK1-DAE approxima-
tion at t, after n macro-steps. For any components z = x(t) of the unknowns,
the global error reads

e(x,ty) = xy — a(ty).
We show that e(yr,tn), e(ys,tn), e(zs,t,) are in O(H). To this end, we

recall the following theorem from [11]: given a semi-explicit DAE-IVP of index-1
(4), we apply a general one-step method

Yk+1 = Yk SIS il N ‘I)(ykvzk: il’)a
zks1 = U(yp, 2k, h)

with yT = (y;, y;—), a constant step size ﬁ, a differential update function ® and
an algebraic update function ¥. We remark that ® and ¥ are only formally
explicit. If the method has consistency order p for the differential variables y,
as well as p — 1 for algebraic variables z and if the algebraic update function
satisfies the following perturbation condition

H 0¥ (y, z,0)

o Hga<1 (25)

in a neighbourhood of the solution, then the one-step method has convergence
order p.
For p = 1 this statement holds for the mrIRK1-DAE method:

Theorem 2. We apply the mrIRK1-DAE method to the index-1 DAE-IVP (4)
fulfilling Ass. 1. We may choose any coupling variant: coupled-slowest-first,
decoupled-slowest-first, coupled-first-step. H and m are chosen such that (21)
and (23) are fulfilled. Then we get for the global error

e(yF7tn) = O(H)> €(ys,tn) = O(H)’ C(Zs,tn) = O(H)

12



Proof. We check the assumptions of the theorem from [11] (mentioned above):

One-Step Method. All discussed formulations of the mrIRK1-DAE scheme
define the approximations yg n41,ysn+1 and zs 41 at t,41 after one macro
step as functions of the approximations yr y,ys,, and zg, at t,.

Consistency. Theorem 1 showed that we have consistency order 1 for the
differential variables and at least order O(H) for the algebraic variables (for any
variant).

Perturbation Condition (25). We discuss the coupled-first-step approach.
Using (5), we have z,411 = G(y}7n+1,ys7n+1). Inserting y%,, 1 and ysni1, we
get

Zn41 = G(Z/F,n'i_HfF(y;,n—}—lv YS.n+1, ZS,n+1)» yS,n+HfS (yj:‘.n—o—la YS,n+1, ZS,W:+1))'

Hence z,41 does not depend on z, and the estimate on ¥ is fulfilled. In a
similar way, we can deduce this result for the other coupling approaches. O

The following numerical simulations confirm this analytical result.

5. Numerical Results

For the numerical verification, we consider two DAE-systems.

5.1. Extended Prothero-Robinson Equation

An extended Prothero-Robinson test equation for semi-explicit DAEs [12]
reads in our settings as follows

(6) = (e=pk p) () (Mo o) oo

with y(t) = (ys(t),yr(t))T € R? and 2(t) = z5(t) = (251(t), 252(t)) T € R? and
given functions 77 and {. For the simulation we choose the following data:

4 2 2 0 1 0 2 0 1 0
A= 3) =) o= 1) 2= 2) = o)
n(t) = (sin(2710%), 2cos(27107t))",  (¢(t) = (2cos(t), 7t)".
Since D is regular (26) is of index-1 and consistent initial values are given by
(y5(0),yr(0), 251(0), 252(0)) T = (0,2,2,0) ". Notice that the solution of (26) is
y(&) =n(t),  2(t) = Fn(t) + (@)

We apply the mrIRK1-DAE method to the DAE (26) on [tg, tend] = [0, 1075s]
using all three coupling approaches. We use different macro-step sizes H =
2271.10% for i = 0,...,7, multirate factor m = 10 and m = 20. We investigate
the absolute value of e(x,tend) for all four components, that is the algebraic
components are treated separately.

13
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Figure 1: Order of convergence for the decoupled-slowest-first approach (m=10): a)-c) order
1, d) order 2.

Fig. 1 shows the convergence order for the decoupled-slowest-first strategy.
We observe order 1 apart from zgo, where the simulation indicates order 2, see
Fig. 1d). This phenomenon is caused by the coupling structure and data in the
DAE (26).

Fig. 2 gives the simulation results of the coupled-slowest-first strategy for
the differential variables, which are quite similar to the decoupled-slowest-first
case (Fig. 1). The convergence of the algebraic variable are the same in both
coupling approaches so no figures are given.

Simulation results for the coupled-first-step strategy are given in Fig. 3. The
behaviour of the slow variables is the same as for the other coupling approaches,
again we skip figures for the algebraic variable.

The fast variable yr shows overall convergence, but its behaviour is slightly
more irregular than the others (Fig. 3a). Moreover, we compare with a higher
multirate factor of m = 20. The decoupled-slowest-first and coupled-slowest-first
show the same convergence properties as for m = 10 (no figures given).

For the coupled-first-step case with m = 20, we observe order 1, see Fig. 4.
We remark that only in this coupling approach the consistency on the macro-
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Figure 2: Convergence order of 1 of for the coupled-slowest-first approach for yp, ys (m = 10)

step depends on both H, h and thus on m (23).
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107 107 107% 1077 1071 1072 107% 1077

Macro-Step Size H Macro-Step Size H
(a) e(yr,tena) in O(H) (b) e(ys, tena) in O(H)

Figure 3: Convergence order of yp, yg for the coupled-first-step approach with m = 10.

5.2. Field-Clircuit Coupled System

We consider a field-circuit coupled system, a circuit diagram is given in
Figure 5, for details see [13]. The system equations are given by

Cé1(t) = Glea(t) = Uin(t)) — Ico(t) (27)
Fis(t) = Azs(t) + Bex (). (28)

The fast-changing subsystem (27) describes a node potential e; in an electri-
cal circuit with capacitance C' = 1nF, conductance G = 0.01S, input volt-
age Ui, (1) = 45.5 - 103 sin(9007t) + 103 sin(450007t) and coupling current I¢o.
The slow-changing subsystem (28) results from a finite-element disretisation
of a magneto-quasistatic equation, which describes the electric field of a 2D-
transformer with state space vector xg, system matrix A, input matrix B and
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Figure 4: Convergence order for the coupled-first-step approach with m = 20 for yr,ys.

G €1

Figure 5: Circuit diagram
H of the coupled systems with

lumped elements for the elec-
lo

tromagnetic effects (box).
mass matrix F with det(FE) = 0 [14]'. The consistency and convergence analysis
in the previous chapters can be easily adapted to linear DAEs with constant
coefficients like (27-28).

System (27-28) is integrated over [0s, 0.0022s] with the mrIRK-1 method
using the coupled-slowest-first approach with different macro-step sizes H €
{0.0003, 0.0006, 0.0011, 0.0022, 0.0044} and multirate factor m = 10. The ref-
erence solution is obtained by a single-rate implicit Euler method with constant
step-size H=55-10"".

Figure 6 shows the global error of the subsystems at t.,q = 0.0022s sep-
arately. The range of the solution of the fast subsystem e;(t) is between
+4.7 - 10*V, therefore we show in figure 6a the relative error. The simulation
shows a slightly better behaviour than order 1. The error of the slow subsystem
is also of order 1 which is illustrated in figure 6b.

UiT C

il

6. Conclusion

We extended the multirate implicit Euler method to semi-explicit DAEs of
index-1 where the algebraic variables only provide slow dynamical changes. We

IThe authors thank T. Stykel and J. Kerler-Back from the University of Augsburg for
providing the code of the magneto-quasisatic equation.
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Figure 6: Convergence order for the coupled-fastest-first approach for the field-circuit coupled
system

used three different strategies to realise the coupling between the slow and the
fast subsystems. We provided assumptions on the macro-step size and the micro-
step size that a consistency order 1 can be proven for all three coupling strategies
and respective differential variables. For semi-explicit DAEs, the usage of the
coupled slowest-first approach seems favourable, since it is the only coupling
strategy, where also for the algebraic variables consistency order 1 is derived.
Anyway, all discussed multirate implicit Euler method have convergence order 1
for semi-explicit DAEs of index-1 if the macro-step size is constant. Finally, nu-
merical results for all coupling strategies confirm the theoretical investigations.
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