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1 Introduction

Regime-switching frameworks have been extensively used in the literature for studying
various financial problems; one may model business cycles in the market by means of
a Markov process whose states represent the different regimes of the economy. More
precisely, whenever the state of the underlying Markov process (i.e. the regime in the
market) changes, the model parameters are modulated according to the new state.
When concentrating on option pricing, the price of the risky asset involved is often
modelled as the exponential of a Markov-modulated Brownian motion (MMBM). We
refer to Elliott et al. [12] for a good overview of the literature and financial applications
of regime-switching models.

The main focus of this paper is the pricing of path-dependent options like digital
options and down-and-out call options in a Markov modulated Brownian motion
framework in the presence of two-sided phase-type jumps. This regime-switching
Lévy model possesses nice features as a security-price model, because it includes
the short-run behaviour captured by the jump-diffusion component and the long-
run market cycle by the Markov chain component. Furthermore, this rich structure
remains analytically tractable when one studies the first passage time problem, i.e. the
first time a stochastic process crosses a constant upper or lower threshold. Therefore,
the model turns out to be very useful for other applications as well, such as credit
risk issues and derivatives; these applications however are beyond the scope of this
paper.

Many numerical techniques have been developed to price exotic options in a
regime-switching environment, although they mainly concentrate upon a Markov
modulated Black & Scholes model. We present here a short, incomplete overview
only, and refer to the references within the papers mentioned below.

In a geometric Brownian motion (GBM) model with regime-switching, Boyle and
Draviam [6] derive coupled Black & Scholes-type partial differential equations that
govern the dynamics of several exotic options like European, Asian and lookback
options. Hieber and Scherer [19] present in a Markov-switching Black & Scholes
framework an efficient algorithm for the pricing of barrier options, named the Brown-
ian bridge algorithm. Elliott et al. [14] use both probabilistic and partial differential
equation (PDE) approaches to price barrier options in a Markovian Black & Scholes
economy. Chan and Zhu [9] present an explicit analytic solution in infinite series
form for the price of a European-style barrier option in a two-state regime-switching
Black & Scholes economy. Kim et al. [24] study a regime-switching model by using
PDE techniques for calculating individual and joint default probabilities in a Markov
modulated GBM model.

A very useful method to derive barrier option prices is based upon first passage
times. In a regime-switching model, this first passage time problem can be reduced
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to a quadratic matrix equation, the solutions of which are called matrix Wiener-Hopf
factors (see e.g. Rogers [28] or Asmussen [1]) and which generally have to be solved
numerically. However, in the case of 2 or 3 regimes or in the case of a zero drift term,
the matrix Wiener-Hopf factorization can be derived analytically (see e.g. Hieber
[17]) and Hieber [18] studies in such a regime-switching Black & Scholes setting the
valuation of digital, barrier and lookback options.

Jiang and Pistorius [21] consider the problem of pricing a perpetual American
put option in an exponential regime-switching phase-type jump diffusion framework.
Their solution is based upon the Laplace transform of first passage times and follows
from a fluid embedding technique, a matrix Wiener-Hopf factorization result and a
Laplace inversion.

Kijima and Siu [22] study the first passage time problem under a regime-switching
double exponential jump-diffusion process. Following the fluidization technique, as
explained in Jiang and Pistorius [21] for instance, they first turn the original model
into an augmented regime-switching diffusion model whose sample paths are con-
tinuous and then use probabilistic arguments to formulate the first passage time
problem as a solution to a system of linear equations. Therefore, in the case of
a regime-switching double exponential jump-diffusion process, their methodology is
based upon solving a system of linear equations and the numerical inversion of the
Laplace transform.

Kim et al. [23] provide an iterative algorithm for solving the matrix equations
of Jiang and Pistorius [21] with complex parameters and obtain in this way the
corresponding Laplace transform of the first passage times. They use some numerical
inversion algorithms such as the Euler method to invert this Laplace transform. As
an application, they compute the prices of defaultable bonds under a structural model
with regime-switching and double phase-type jumps.

As far as we know, there are no papers in the literature providing numerical al-
gorithms for obtaining (approximate) prices of path-dependent options like digital
options and down-and-out call options when the risky asset is modelled as the ex-
ponential of a Markov-modulated Brownian motion with phase-type jumps. This
papers intends to fill this gap by concentrating upon approximations obtained by Er-
langization. This randomization method was originally developed in Carr [8] for the
valuation of American put options. Whereas the technique is known in risk theory
as Erlangization (see e.g. Asmussen and Albrecher [2], Ch. IX.8), in finance, it is
also referred to as the “Canadization” method, see e.g. Mijatović et al. [25] for an
overview. The method has already been used for both American-type and barrier
option pricing in a no regime-switching framework, see e.g. Avram et al. [3] and
Boyarchenko and Levendorskǐi [5].

When using an Erlangization of the MMBM in order to obtain an approximation
of the prices, one replaces the maturity date T by an Erlang random variable q. The
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expectation of q is chosen equal to T and its variance may be taken arbitrarily close to
zero, so that the approximation may be made as precise as desired. Our analysis then
relies on the use of matrix analytic methods to obtain explicit expressions for different
quantities related to the path properties of the MMBM up to time q, from which
the approximating option prices follow. Compared to other existing methods, this
approach does not require the inversion of Laplace (or Fourier) transforms. Moreover,
by choosing a number of Erlangization intervals large enough, the obtained precision
turns out to be very high, notwithstanding a relatively short calculation time.

In some circumstances, the restriction to phase-type jumps may be seen as a
drawback of the model. This is due to the exponential asymptotic decay of their
density functions that might not fit the observed reality well enough. However, it
is possible to construct phase-type distributions which mimic fat tail behavior. We
illustrate this with a numerical example in which the jumps distribution is inspired
from Robert and Le Boudec [27].

This article is organized as follows: Section 2 introduces the regime-switching
model and presents the path-dependent options we will study. The Erlangization
technique is introduced in Section 3. Section 4 gives details on the first passage
transform and Section 5 concentrates upon the transient distribution. The main
theoretical results on the pricing of path-dependent options under regime-switching
in the presence of phase-type jumps are summarized in Section 6. Finally, Section 7
presents several numerical illustrations.

2 Barrier option pricing framework

2.1 MMBMs with phase-type jumps

An MMBM with two-sided phase-type jumps may be seen as a stochastic process
(X,ϕ, ξ) where the level X is modulated by two Markov processes ϕ and ξ:

• The process ϕ governs the phase transitions in the absence of jumps. It is
defined on a finite phase space Sσ. When ϕ = j, the level X evolves like a
Brownian motion with drift dj ∈ R and variance σ2

j > 0.

• The process ξ determines the size of the jumps. The upward jumps have phase-
type distribution represented by a generator R+ on a state space S+, and the
downward jumps have phase-type distribution represented by a generator R−
on the state space S−.

When ϕ = j ∈ Sσ, two kinds of transitions are possible: instantaneous transitions
from j to a different state v ∈ Sσ at a rate Qjv, or jumps; the rate at which a jump
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occurs and the process ξ begins in state k ∈ S+∪S− is equal to Wjk. When the jump
process ξ is in state k ∈ S+ ∪ S−, Vkj is the rate at which the jump terminates and
the phase j ∈ Sσ is chosen to regain control over the fluid level.

We introduce the matrices W , V and R, decomposed as follows:

W =
[
Wσ+ Wσ−

]
, V =

[
V+σ

V−σ

]
, R =

[
R+ 0
0 R−

]
.

In particular, the matrices W and V contain the transition rates Wjk and Vkj (j ∈ Sσ
and k ∈ S+ ∪ S−). The rates Qjv (j 6= v ∈ Sσ) are collected in the subgenerator
matrix Q, whose diagonal elements are determined such that [Q W ]1 = 0, where 1
and 0 are column vectors with each component equal to 1 and 0, respectively. Finally,
we define D = diag(dj)j∈Sσ and Σ = diag(σj)j∈Sσ .

In other words, (X,ϕ, ξ) can be seen as a Markov-modulated Lévy process with
two-sided phase-type jumps, in which the jumps can (but are not forced to) trigger
a phase transition. When ϕ = j ∈ Sσ, the continuous part of X is a Brownian
motion with drift dj and variance σ2

j . An upward jump occurs at rate (Wσ+1)j and
a downward jump occurs at rate (Wσ−1)j. If J+

j and J−j represent the absolute size
of an upward and downward jump that occurred in phase j, then for all k ∈ Sσ and
x ≥ 0,

P
(
J+
j ∈ dx, ϕ = k after the jump

)
=

1

(Wσ+1)j

(
Wσ+e

R+xV+σ

)
jk
dx,

P
(
J−j ∈ dx, ϕ = k after the jump

)
=

1

(Wσ−1)j

(
Wσ−e

R−xV−σ

)
jk
dx.

2.2 Risk-neutral option pricing

In this paper, we study the pricing of path-dependent options in the case where the
underlying risky asset prices are determined by the following dynamics

S(t) = S0 e
X(t),

where S0 ∈ R+ is fixed and (X,ϕ, ξ) is a MMBM with two-sided phase-type jumps
as described in Section 2.1. We assume that X(0) = 0 and that ϕ(0) has initial
distribution α ∈ R|Sσ |, where |Sσ| stands for the cardinal number of Sσ. The interest
rate process {r(t)} depends on the phase occupied by ϕ in the following way

r(t) =
∑
j∈Sσ

rj1ϕ(t)=j,
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with the coefficients rj being constant. The integrated interest rate process {C(t)} is
defined by

C(t) =

∫ t

0

r(s) ds. (2.1)

We assume that the model is defined under a risk neutral measure. Note that
the risk neutral measure associated to a regime switching model is not unique in
general. When starting from the real-world probability measure, one of the most
common approaches is to use the regime switching random Esscher transform to
determine a risk neutral measure. This transform has the advantages of preserving
the (Markov-modulated) Lévy nature of the model and of minimising the conditional
relative entropy with respect to the historical measure (see e.g. Elliott et al. [12] for
details).

To ensure that the model is defined under a risk neutral measure, we impose the
following constraint on the parameters:

Lemma 2.1. If the relation(
D −Θ +

1

2
Σ2 +Q−Wσ+(I +R+)−1V+σ +Wσ−(I −R−)−1V−σ

)
1 = 0 (2.2)

holds, where Θ = diag(rj)j∈Sσ , then the model is defined under a risk neutral measure.

Proof. We look for a condition on the parameters which implies that the process
{e−C(t)S(t)} is a martingale under a risk-neutral measure Q, which boils down to
finding a sufficient condition such that

E
[
e−C(t)+X(t)

]
= 1 ∀t ≥ 0, (2.3)

where E [·] is the expectation under Q. It is easy to show that

E
[
e−C(t)+X(t)

]
= αE

[
eBt
]

1

where B = D−Θ + 1
2
Σ2 +Q−Wσ+(I +R+)−1V+σ +Wσ−(I −R−)−1V−σ. If B1 = 0,

then αE
[
eBt
]
1 = 1 for all t and thus (2.3) is satisfied. This yields the announced

condition.

In the sequel, we assume that (2.2) holds and that the matrix I+R+ is invertible.
First, we consider a vanilla call option with maturity date T and strike price K. Its
price at time 0 is

PV(S0, K, T ) = E
[
e−C(T )

(
S(T )−K

)
+

]
. (2.4)
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We also examine a simple digital option that pays one unit of currency if S(t) goes
below a fixed level B < S0 before T . Denoting the first passage time of the process
{S(t)} to the level B by τB, the price at time 0 of this option is

PDG(S0, B, T ) = E
[
e−C(T ) 1τB<T

]
. (2.5)

Finally, we study down-and-out call (DOC) options, which pay the same amount as
a vanilla option, namely (S(T ) − K)+, under the constraint that the value of the
process {S(t)} does not go below a fixed barrier B < S0 before T . Its price at time
0 is

PDOC(S0, B,K, T ) = E
[
e−C(T ) (S(T )−K)+ 1τB>T

]
. (2.6)

To determine approximations of these prices (2.4), (2.5) and (2.6), we replace the
maturity T by a random variable q ∼ Erlang(N, N

T
) where N ∈ N0. The expectation

of q equals T and its variance T 2/N goes to zero as N goes to infinity. So, for large
values of N , the variable q provides a good approximation of T . Observe that if
N = 1, Erlangization gives us the Laplace transform of the prices with respect to the
maturity: if q ∼ Exp(µ) and P (t) denotes one of the three expectations (2.4), (2.5)
and (2.6) with maturity t,

P (q) = µ

∫ ∞
0

e−µTP (T ) dT.

The advantage of dealing with q instead of T is that we can partition the time
horizon into N successive periods of exponential duration with parameter µ = N/T ,
which will be called Erlangization intervals in the sequel. The behaviour of (X,ϕ, ξ)
up to time T is approximated by the behaviour of an absorbing MMBM (Y, ζ) that
we present in detail in the next section.

3 Erlangization

Using a combined approach of fluidization (see e.g. [21], [22] or [28]) and of Erlangiza-
tion (see e.g. [2], Ch. IX.8), we define as follows a very useful approximating absorb-
ing MMBM without jumps (Y, ζ): ζ is a bivariate Markov process ζ(t) = (φ(t), e(t))
where φ ∈ Sσ ∪ S+ ∪ S− indicates the phase and e ∈ {1, · · · , N} refers to the Er-
langization interval. When ζ has gone through all the Erlangisation intervals, it is
sent to an absorbing state ? and the MMBM (Y, ζ) ceases to evolve. We denote
by τ? = inf{t > 0 | ζ(t) = ?} the absorbing time of (Y, ζ). The state space of ζ is
therefore

E = {?} ∪ E (1)
σ ∪ · · · ∪ E (N)

σ ∪ E (1)
+ ∪ · · · ∪ E

(N)
+ ∪ E (1)

− ∪ · · · ∪ E
(N)
− , (3.1)
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where ? is the absorbing state and where for 1 ≤ k ≤ N ,

E (k)
σ = {(j, k) | j ∈ Sσ},
E (k)

+ = {(j, k) | j ∈ S+},
E (k)
− = {(j, k) | j ∈ S−}.

Using the notation Eσ = E (1)
σ ∪· · ·∪E (N)

σ , E+ = E (1)
+ ∪· · ·∪E

(N)
+ and E− = E (1)

− ∪· · ·∪E
(N)
− ,

and the ordering E = {?} ∪ Eσ ∪ E+ ∪ E−, we define the generator G of ζ as follows

G =


0 0 0 0
v
0 M
0

 (3.2)

with

M =

I ⊗ (Q− µI) + J ⊗ µI I ⊗Wσ+ I ⊗Wσ−

I ⊗ V+σ I ⊗R+ 0

I ⊗ V−σ 0 I ⊗R−

 , (3.3)

where ⊗ is the Kronecker product, and v and J are the vector of |Eσ| components
and the N ×N matrix:

v =


0
0
...
0
µ1

 , J =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

 .
Informally stated, the process (Y, ζ) evolves until the ringing of an Erlang dis-

tributed clock that only ticks when φ ∈ Sσ, and then it is absorbed. The jumps of
(X,ϕ, ξ) are replaced in (Y, ζ) by a linear variation of the level, at absolute rate 1
during an interval with length determined by the size of the corresponding jump in
(X,ϕ, ξ). During these intervals, there is no change of Erlangization interval in (3.3),
that is, the clock in (Y, ζ) is stopped. As a consequence, the replacement of jumps
by linear variation does not affect the state of the process at the time of absorption:
(Y (τ?), φ(τ?)) is equal to (X(q), ϕ(q)) in distribution. More generally, when defining

T (t) =

∫ t

0

1φ(s)∈Sσ ds,

the equality [Y (T −1(t)), ζ(T −1(t))] = [X(t), ϕ(t)] holds in distribution for all t < q.
In particular, the levels crossed by Y on [0, τ?[ are the same as the ones crossed by
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X on [0, q[: for any level b, denoting by τb(X) and τb(Y ) the first time b is crossed by
X and Y respectively, we have that P

(
τb(X) < q

)
= P

(
τb(Y ) < τ?

)
when X and Y

start from the same level in the same phase.

4 First passage transforms

We start by introducing the process γ(θ; t) as the following weighted occupation time
of (Y, ζ) in the phases of Sσ up to time t

γ(θ; t) =
∑
j∈Sσ

θj

∫ t

0

1φ(u)=j du,

for general weights θj summarized in the vector θ. Note that when θj = rj for all j ∈
Sσ, then γ(θ; q) is an approximation of C(T ), the integrated interest rate process until
T defined in (2.1). Let us now define the first passage time τ = inf{t > 0 |Y (t) = 0}.
We are interested in the first passage transform matrices Ψ and eUx such that

Ψ(i,k);(j,l) = E
[
e−γ(θ;τ)1ζ(τ)=(j,l) |Y (0) = 0, ζ(0) = (i, k)

]
(4.1)

for k, l ∈ {1, . . . , N}, i ∈ Sσ ∪ S+, j ∈ Sσ ∪ S−, and(
eUx
)

(i,k);(j,l)
= E

[
e−γ(θ;τ)1ζ(τ)=(j,l) |Y (0) = x, ζ(0) = (i, k)

]
(4.2)

for k, l ∈ {1, . . . , N}, i, j ∈ Sσ ∪ S− and x ≥ 0. In view of the state space decompo-
sition (3.1), the matrices Ψ and U have the structure

Ψ =



Iσ 0 · · · 0 0 0 · · · 0
0 Iσ · · · 0 0 0 · · · 0
...

...
...

...
...

...
0 0 · · · Iσ 0 0 · · · 0

Ψ
(1)
+σ Ψ

(2)
+σ · · · Ψ

(N)
+σ Ψ

(1)
+− Ψ

(2)
+− · · · Ψ

(N)
+−

0 Ψ
(1)
+σ · · · Ψ

(N−1)
+σ 0 Ψ

(1)
+− · · · Ψ

(N−1)
+−

...
...

...
...

...
...

0 0 · · · Ψ
(1)
+σ 0 0 · · · Ψ

(1)
+−
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and

U =



U
(1)
σσ U

(2)
σσ · · · U

(N)
σσ U

(1)
σ− U

(2)
σ− · · · U

(N)
σ−

0 U
(1)
σσ · · · U

(N−1)
σσ 0 U

(1)
σ− · · · U

(N−1)
σ−

...
...

...
...

...
...

0 0 · · · U
(1)
σσ 0 0 · · · U

(1)
σ−

U
(1)
−σ U

(2)
−σ · · · U

(N)
−σ U

(1)
−− U

(2)
−− · · · U

(N)
−−

0 U
(1)
−σ · · · U

(N−1)
−σ 0 U

(1)
−− · · · U

(N−1)
−−

...
...

...
...

...
...

0 0 · · · U
(1)
−σ 0 0 · · · U

(1)
−−


.

Note that the four corners of Ψ and U are block-Toeplitz submatrices, and we make
use of this special structure below. We also introduce the notation

Ψ(1) =

[
Iσ 0

Ψ
(1)
+σ Ψ

(1)
+−

]
, Ψ(k) =

[
0 0

Ψ
(k)
+σ Ψ

(k)
+−

]
(k = 2, . . . , N),

U (k) =

[
U

(k)
σσ U

(k)
σ−

U
(k)
−σ U

(k)
−−

]
(k = 1, . . . , N).

(4.3)

We deal in the sequel with different combinations of sub-matrices and for that reason,
we introduce the subsets Sd = Sσ ∪ S−, and Su = Sσ ∪ S+.

Proposition 4.1. The matrices Ψ(1) and U (1) satisfy the equation

1

2

Σ2 0
0 0
0 0

(U (1)
)2

+

[
D

I+
−I−

] Iσ 0

Ψ
(1)
+σ Ψ

(1)
+−

0 I−

U (1)

+

[
Q− µIσ −Θ Wσ+ Wσ−

V+σ R+ 0
V−σ 0 R−

] Iσ 0

Ψ
(1)
+σ Ψ

(1)
+−

0 I−

 = 0,

(4.4)

where Θ = diag(θ). For k ≥ 2, U
(k)
−d = 0. The matrix Z(2) =

[
U

(2)
σd

Ψ
(2)
+d

]
is the unique

solution of the Sylvester equation[
U

(1)
σσ + 2Σ−2D 2Σ−2Wσ+

Ψ
(1)
+σ R+

]
Z(2) + Z(2)U (1) +

[
2µΣ−2 0

0 0

]
= 0, (4.5)
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and finally, for k ≥ 3, the matrix Z(k) =

[
U

(k)
σd

Ψ
(k)
+d

]
is the unique solution of the Sylvester

equation[
U

(1)
σσ + 2Σ−2D 2Σ−2Wσ+

Ψ
(1)
+σ R+

]
Z(k) + Z(k)U (1) +

k−1∑
l=2

Z(l)
uσU

(k−l+1)
σd = 0. (4.6)

Proof. Before its absorption, the process (Y, ζ) behaves as a classical MMBM with
generator M in (3.3) and drift and variance matrices

C =

Iσ ⊗D I+

−I−

 , S =

Iσ ⊗ Σ2

0
0

 .
It follows from Ivanovs [20, Equation (2.2)] that

1

2
SΠU2 + CΠU +MΠ = 0,

where Π =

[
Ψ

[0 I−]

]
. The announced result can then be obtained by re-writing this

system according to the block decomposition (4.3).

Various numerical procedures are available in the literature to solve (4.4) and
obtain Ψ(1) and U (1) numerically, see for instance Asmussen [1], Breuer [7] and Nguyen
and Poloni [26]. Once the matrices Ψ(1) and U (1) are known, the other blocks of Ψ
and U are easily obtained by solving the linear equations (4.5) and (4.6), which can
be made numerically in a very efficient way (see e.g. Gardiner et al. [15]).

Let Ũ be the matrix obtained by permuting the rows and columns of U so that the
states are arranged in lexicographic order with respect to the Erlangization intervals:

Ũ =


U (1) U (2) U (3) · · · U (N)

0 U (1) U (2) · · · U (N−1)

0 0 U (1) · · · U (N−2)

...
...

...
. . .

...
0 0 0 · · · U (1)

 ,
In the following, we will use the blocks E(k)(x) that constitute the matrix

E(x) = eŨx =


E(1)(x) E(2)(x) E(3)(x) · · · E(N)(x)

0 E(1)(x) E(2)(x) · · · E(N−1)(x)
0 0 E(1)(x) · · · E(N−2)(x)
...

...
...

. . .
...

0 0 0 · · · E(1)(x)

 .
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These blocks are given by

E
(k)
ij (x) = E

[
e−γ(θ;τ)1ζ(τ)=(j,k) |Y (0) = x, ζ(0) = (i, 1)

]
for k ∈ {1, · · · , N}, i, j ∈ Sσ ∪S− and x ≥ 0. They may be computed numerically in
an efficient way by using the block-triangular structure of Ũ (see e.g. Bini et al. [4]).

We also define the matrices Ψ∗ and U∗ related to first passage times to higher
levels and defined in a manner similar to Ψ and U :

Ψ∗(i,k);(j,l) = E
[
e−γ(θ;τ)1ζ(τ)=(j,l) |Y (0) = 0, ζ(0) = (i, k)

]
(4.7)

for k, l ∈ {1, · · · , N}, i ∈ Sσ ∪ S−, j ∈ Sσ ∪ S+, and(
eU

∗x
)

(i,k);(j,l)
= E

[
e−γ(θ;τ)1ζ(τ)=(j,l) |Y (0) = −x, ζ(0) = (i, k)

]
(4.8)

for k, l ∈ {1, · · · , N}, i, j ∈ Sσ∪S+ and x ≥ 0. These matrices have a block-structure
similar to Ψ and U :

Ψ∗(1) =

[
I 0

Ψ
∗(1)
−σ Ψ

∗(1)
−+

]
, Ψ∗(k) =

[
0 0

Ψ
∗(k)
−σ Ψ

∗(k)
−+

]
(k = 2, ..., N),

U∗(k) =

[
U
∗(k)
σσ U

∗(k)
σ+

U
∗(k)
+σ U

∗(k)
++

]
(k = 1, ..., N)

(4.9)

and these blocks can be derived from analogous equations as those stated in Propo-
sition 4.1. As for the exponential of U , we use the blocks E∗(k)(x) constituted by the
elements of eU

∗x:

E
∗(k)
ij (x) = E

[
e−γ(θ;τ)1ζ(τ)=(j,k) |Y (0) = −x, ζ(0) = (i, 1)

]
for k ∈ {1, · · · , N}, i, j ∈ Sσ ∪ S+ and x ≥ 0.

5 Transient distribution

In this section, we analyse the time τ? of absorption of (Y, ζ). Inspired by the results
of Latouche and Dendievel [11] in the absence of jumps and for θ = 0, we introduce
the vectors Fk(y, x) such that(

Fk(y, x)
)
i

= E
[
e−γ(θ;τ?)1Y (τ?)≤x |Y (0) = y, ζ(0) = (i, N − k + 1)

]
, (5.1)
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for k ∈ {1, · · · , N} and i ∈ Sσ ∪ S+ ∪ S−, and the vectors gk, hk and νk such that

(gk)i = E
[
e−γ(θ;τ?)1Y (τ?)≤0 |Y (0) = 0, ζ(0) = (i, N − k + 1)

]
,

(hk)i = E
[
e−γ(θ;τ?)1Y (τ?)≥0 |Y (0) = 0, ζ(0) = (i, N − k + 1)

]
,

(νk)i = E
[
e−γ(θ;τ?) | ζ(0) = (i, N − k + 1)

]
.

Note that the vectors νk do not depend on Y (0) since γ(θ; τ?) does not depend on
Y (0). A first proposition expresses the vectors Fk(y, x) in function of these vectors
gk, hk and νk:

Proposition 5.1. For x ≤ y,

Fk,d(y, x) =
k∑
l=1

E(l)(y − x)gk−l+1,d, (5.2)

Fk,u(y, x) =
k∑
l=1

Ψ(l)Fk−l+1,d(y, x). (5.3)

For x ≥ y,

Fk,u(y, x) = νk,u −
k∑
l=1

E∗(l)(x− y)hk−l+1,u, (5.4)

Fk,d(y, x) = νk,d −
k∑
l=1

k−l+1∑
m=1

Ψ∗(l)E∗(m)(x− y)hk−l−m+2,u. (5.5)

Proof. Equation (5.2) is proved as follows: starting from level y in Su with k remaining
Erlangization intervals before absorption, the process Y must reach the level x in l
intervals, for 1 ≤ l ≤ k. This justifies the factor E(l)(y − x). Next, starting from x,
the process must be below x at the end of the k − l + 1 remaining intervals, which
yields the factor gk−l+1,d.

Equation (5.3) is obtained in a similar way: starting from level y in S+ when there
remain k Erlangization intervals before absorption, the process Y must first return to
y in Sd, and then must be below x at the end of the remaining Erlangization intervals.

To prove (5.4) and (5.5), it suffices to remark that

E
[
e−γ(θ;τ?)1Y (τ?)≤x |Y (0) = y, ζ(0) = (i, N − k + 1)

]
= νk − E

[
e−γ(θ;τ?)1Y (τ?)≥x |Y (0) = y, ζ(0) = (i, N − k + 1)

]
,

and to use a similar arguments as above to determine the second term in the right-
hand side.

13



Next, we determine the vectors νk:

Proposition 5.2. For 1 ≤ k ≤ N ,

νk,σ = µk
[
Θ + µI −Q−Wσ+(−R+)−1V+σ −Wσ−(−R−)−1V−σ

]−k
1, (5.6)

νk,+ = (−R+)−1V+σ νk,σ, (5.7)

νk,− = (−R−)−1V−σ νk,σ. (5.8)

Proof. The vector νk,σ contains the transform of the occupation times γ(θ; τ?) of
(Y, ζ) starting from Sσ with k remaining Erlangization intervals. Equivalently, νk,σ
contains the transform of the occupation times γ̃(θ; tk) up to time tk ∼ Erlang(k, µ)
for the Markov process ϕ̃, obtained by considering φ in the local time of the phase of
Sσ. The generator of this process is

L = Q+Wσ+(−R+)−1V+σ +Wσ−(−R−)−1V−σ,

and, for t ≥ 0 fixed, it is well-known that

E
[
e−γ̃(θ;t)

]
= e(L−Θ)t1,

see e.g. Elliott and Osakwe [13, Proposition 2]. So, by conditioning on tk, we have

νk,σ =

∫ ∞
0

e(L−Θ)tµke−µt
tk−1

(k − 1)!
1 dt

= µk
∫ ∞

0

tk−1

(k − 1)!
e−(Θ+µI−L)t1 dt. (5.9)

For k = 1, the equality (5.9) coincides with (5.6). For k > 1, integrating by parts in
(5.9), one easily finds the recursion

νk,σ = µ(Θ + µI − L)−1νk−1,σ,

which yields (5.6). The relations (5.7) and (5.8) are immediate since by definition,
there is no contribution made to γ(θ; τ?) when the phase process is in S+ and S−.

Let us now turn to the vectors gk. The Brownian trajectories make the analysis
of these vectors more complicated than in [11], and we need to proceed by a limiting
argument. Before stating the results, we introduce the functions χr1,...,rh , for integers
r1, ..., rh, equal to zero if r1 = r2 = · · · = rh = 1 and equal to one otherwise. We first
concentrate upon the vectors gk,d.
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Proposition 5.3. For 1 ≤ k ≤ N ,

gk,d = Ω−1ωk (5.10)

where

Ωσd =
(
U∗(1)
σu + U

(1)
σd Ψ∗(1)

)
Ψ(1),

Ω−d = [0 I−]−Ψ
∗(1)
−u Ψ(1),

ωk,σ =
k∑
l=1

U∗(l)σu νk−l+1,u +
k−l+1∑
m=1

U
(l)
σdΨ∗(m)νk−l−m+2,u


−

k∑
l=1

U
(l)
σdνk−l+1,d −

k∑
l=1

k−l+1∑
m=1

U∗(l)σu Ψ(m)gk−l−m+2,d χl,m

−
k∑
l=1

k−l+1∑
m=1

k−l−m+2∑
n=1

U
(l)
σdΨ∗(m)Ψ(n)gk−l−m−n+3,d χl,m,n,

and

ωk,− = νk,− −
k∑
l=1

Ψ
∗(l)
−u νk−l+1,u

+
k∑
l=1

k−l+1∑
m=1

Ψ
∗(l)
−u Ψ(m)gk−l−m+2,d χl,m.

Proof. The vector gk,− satisfies the relation

gk,− = νk,− −
k∑
l=1

Ψ
∗(l)
−u νk−l+1,u +

k∑
l=1

k−l+1∑
m=1

Ψ
∗(l)
−u Ψ(m)gk−l−m+2,d.

Indeed, the term (νk,− −
∑k

l=1 Ψ
∗(l)
−u νk−l+1,u) is the probability that, starting from

zero, the process never comes back to zero thereafter. In the third term, Ψ
∗(l)
−u Ψ(m) is

the probability that, starting from zero, the process comes back to zero while there
remain k − l −m+ 2 Erlangization intervals before the absorption. This yields

Ω−d gk,d = ωk,−. (5.11)

To obtain an expression for gk,σ, we fix ε > 0 and define the vectors gk,d(ε)
analogously to gk,d but with the additional constraint that when level zero is reached
before absorption, the process must also attain the level −ε before the absorption:

gk,i(ε) = E
[
e−γ(θ;τ?)1Y (τ?)≤0 1δ−ε>δ0 |Y (0) = 0, ζ(0) = (i, N − k + 1)

]
15



for i ∈ Sd, where δy is the last passage time to level y before τ?. When the process
starts in Sσ, the vectors gk,σ(ε) are determined by

gk,σ(ε) =
k∑
l=1

E
(l)
σd(ε)

νk−l+1,d −
k−l+1∑
m=1

k−l−m+2∑
n=1

Ψ∗(m)E∗(n)(ε)νk−l−m−n+3,u


+

k∑
l=1

k−l+1∑
m=1

k−l−m+2∑
n=1

k−l−m−n+3∑
p=1

E
(l)
σd(ε)Ψ

∗(m)E∗(n)(ε)Ψ(p)gk−l−m−n−p+4,d(ε).

Indeed, the first term in the right-hand side covers the event that, when starting from
zero, the process reaches −ε and never returns to zero thereafter. In the second term,
the matrices E

(l)
σd(ε)Ψ

∗(m)E∗(n)(ε)Ψ(p) cover the event that, when starting from zero,
the process reaches −ε and attains zero before τ?. Reorganizing the last equality
leads to(

[Iσ 0]− E(1)
σd (ε)Ψ∗(1)E∗(1)(ε)Ψ(1)

)
gk,d(ε)

=
k∑
l=1

E
(l)
σd(ε)

νk−l+1,d −
k−l+1∑
m=1

k−l−m+2∑
n=1

Ψ∗(m)E∗(n)(ε)νk−l−m−n+3,u

 (5.12)

+
k∑
l=1

k−l+1∑
m=1

k−l−m+2∑
n=1

k−l−m−n+3∑
p=1

E
(l)
σd(ε)Ψ

∗(m)E∗(n)(ε)Ψ(p)gk−l−m−n−p+4,d(ε)χl,m,n,p.

Now, since E(ε) = eŨε and E∗(ε) = eŨ
∗ε, the following relations clearly hold

E(k)(ε) = Iδk,1 + εU (k) + o(ε),

E∗(k)(ε) = Iδk,1 + εU∗(k) + o(ε).
(5.13)

Using (4.3), (4.9) and the relations (5.13), one notices that

[Iσ 0]− E(1)
σd (ε)Ψ∗(1)E∗(1)(ε)Ψ(1) = −εΩσd + o(ε), (5.14)

as well as that the right-hand side of (5.12) is equal to −εωk,σ + o(ε). Therefore,
equality (5.12) may be rewritten as

Ωσd gk,d(ε) = ωk,σ + o(ε). (5.15)

As limε→0+ gk,d(ε) = gk,d for all k, taking the limit in (5.15) and combining the result
with (5.11) yield the announced result (5.10).

Finally, we determine the vectors gk,+ and hk.
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Proposition 5.4. For 1 ≤ k ≤ N ,

gk,+ =
k∑
l=1

Ψ
(l)
+dgk−l+1,d, (5.16)

hk = νk − gk. (5.17)

Proof. The first result (5.16) is easily obtained by considering that when starting from
the level zero in S+, the process must come back to zero from above after l intervals,
say. Next it must be below the level zero at the end of the k−l+1 remaining intervals.

The second result (5.17) follows immediately from the definition of hk:

hk = E
[
e−γ(θ;τ?)1Y (τ?)≥0 |Y (0) = 0, ζ(0) = (., N − k + 1)

]
= νk − E

[
e−γ(θ;τ?)1Y (τ?)≤0 |Y (0) = 0, ζ(0) = (., N − k + 1)

]
.

We conclude from the different propositions in this section that the vectors Fk(y, x),
defined in equation (5.1), are completely determined. In the following section, we ap-
ply the different results to option pricing.

6 Option pricing by Erlangization

In this section, we use the Erlangization method to obtain approximations for the
prices (2.4), (2.5) and (2.6) of digital, vanilla and down-and-out call options in the set-
tings of a regime-switching model with two-sided phase-type jumps. The approxima-
tion consists in replacing the maturity date T of the options with q ∼ Erlang(N, N

T
).

The integrated interest rate C(T ) defined in (2.1) then is approximated by C(q),
which is equal to the variable γ(r; τ?) defined for the Erlangized MMBM (Y, ζ) when
started in the first Erlangization period, and where rj represents the constant interest
rate in phase j ∈ Sσ.

6.1 Digital options

Proposition 6.1. The price at time 0 of a digital option as defined in (2.5), with
initial price S0, barrier level B < S0 and maturity q ∼ Erlang(N, N

T
) is given by

PDG(S0, B, q) = α

N∑
l=1

E
(l)
σd(s0 − b)νN−l+1,d, (6.1)

where s0 = ln(S0) and b = ln(B).
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Proof. Recall that τ? is the absorbing time of (Y, ζ) and that τ is the first passage
time below the level zero by Y . Applying the Erlangization technique, we have

PDG(S0, B, q) =
∑
i∈Sσ

αi E
[
e−γ(r;τ?)1τ<τ? |Y (0) = s0 − b, ζ(0) = (i, 1)

]
.

In order to have a non-zero value for the indicator function in this expectation, the
process must reach the level zero before τ?. Conditioning on the number of intervals
needed to achieve this first passage, leads to the following observation

E
[
e−γ(r;τ?)1τ<τ? |Y (0) = s0 − b, ζ(0) = (i, 1)

]
=

N∑
l=1

∑
j∈Sd

(
E(l)(s0 − b)

)
ij

E
[
e−γ(r;τ?) | ζ(0) = (j, l)

]
,

which proves (6.1).

6.2 Vanilla call options

In this section and the next, we use the vectors Π(S0, K, k) defined as follows:

Πj(S0, K, k) = E

[
e−γ(r;τ?)

(
eY (τ?) −K

)
+
|Y (0) = s0, ζ(0) = (j,N − k + 1)

]
(6.2)

for j ∈ Sσ∪S+∪S−, where s0 = ln(S0) as before. It gives the price of a vanilla option
when the risky asset is assumed to be the exponential of (Y, ζ), starting in phase j
with k remaining Erlangization intervals before the maturity date. So, the price of a
vanilla option as defined in (2.4) with maturity q is given by

PV(S0, K, q) = αΠσ(S0, K,N). (6.3)

The next proposition shows that the values of Πj(S0, K, k) depend on the starting
phase j and on the sign of S0−K. To present the formulae in a compact way, we use
the notation A(1,l) for the l-th block in the first (block) line of A (e.g. Ũ(1,l) = U (l)).

Proposition 6.2. Let κ = ln(K). If S0 ≥ K,

Πd(S0, K, k)

= (S0 −K)

gk,d +
k∑
l=1

Ψ∗(l)hk−l+1,u

+K
k∑
l=1

(
(I − Ũ)−1eŨ(s0−κ)

)
(1,l)

gk−l+1,d

− S0

k∑
l=1

(
(I − Ũ)−1

)
(1,l)

gk−l+1,d − S0

k∑
l=1

k−l+1∑
m=1

Ψ∗(l)
(

(I + Ũ∗)−1
)

(1,m)
hk−l−m+2,u
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and

Πu(S0, K, k)

= (S0 −K)

hk,u +
k∑
l=1

Ψ(l)gk−l+1,d

+K

k∑
l=1

k−l+1∑
m=1

Ψ(l)
(

(I − Ũ)−1eŨ(s0−κ)
)

(1,m)
gk−l−m+2,d

− S0

k∑
l=1

(
(I + Ũ∗)−1

)
(1,l)

hk−l+1,u − S0

k∑
l=1

k−l+1∑
m=1

Ψ(l)
(

(I − Ũ)−1
)

(1,m)
gk−l−m+2,d.

If S0 < K,

Πu(S0, K, k) =
k∑
l=1

E∗(l)(κ− s0)Πu(K,K, k − l + 1),

Πd(S0, K, k) =
k∑
l=1

Ψ∗(l)Πu(S0, K, k − l + 1).

Proof. Let us begin with the case S0 ≥ K and let us denote by f(u, x) the conditional
density vector of (γ(r; τ?), Y (τ?)) given the initial phase. Then

Πd(S0, K, k) =

∫ ∞
0

∫ ∞
κ

e−u(ex − eκ)f(u, x) dx du

=

∫ ∞
κ

(ex − eκ)
(∫ ∞

0

e−uf(u, x) du

)
dx

=

∫ ∞
κ

(ex − eκ) d
dx
Fk,d(s0, x) dx.

We use Proposition 5.1 and split the last integral into two parts to obtain

Πd(S0, K, k) =

∫ s0

κ

(ex − eκ) d
dx
Fk,d(s0, x) dx+

∫ ∞
s0

(ex − eκ) d
dx
Fk,d(s0, x) dx. (6.4)

Using (5.2), the first integral above may be rewritten as∫ s0

κ

(ex − eκ) d
dx
Fk,d(s0, x) dx

=
k∑
l=1

(∫ s0

κ

ex
d

dx
E(l)(s0 − x) dx−K

∫ s0

κ

d

dx
E(l)(s0 − x) dx

)
gk−l+1,d.

Since ∫ s0

κ

d

dx
E(l)(s0 − x) dx = Iδl,1 − E(l)(s0 − κ)
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and ∫ s0

κ

ex
d

dx
E(l)(s0 − x) dx =

(
−
∫ s0

κ

exeŨ(s0−x)Ũ dx

)
(1,l)

=

(
−es0

∫ s0−κ

0

e−(I−Ũ)xŨ dx

)
(1,l)

=
(
−es0(I − Ũ)−1Ũ(I − e−(I−Ũ)(s0−κ))

)
(1,l)

=
(

(I − (I − Ũ)−1)(S0I −KeŨ(s0−κ))
)

(1,l)
,

we find∫ s0

κ

(ex − eκ) d
dx
Fk,d(s0, x) dx =

k∑
l=1

(
(S0 −K)Iδl,1 − S0

(
(I − Ũ)−1

)
(1,l)

)
gk−l+1,d

+K
k∑
l=1

(
(I − Ũ)−1eŨ(s0−κ)

)
(1,l)

gk−l+1,d.

The second integral in the right hand side of (6.4) can be treated analogously by
using (5.5). The expression for Πu(S0, K, k) follows by a similar argument.

When S0 < K, the process Y starts at level s0 and must reach level κ before
the absorption. Assuming that κ is reached in phase j and that l is the number
of Erlangization intervals used to achieve the first passage to κ, one then further
concentrates upon the expectation of the discounted payoff starting from the level κ
and with N − k + l remaining Erlangization intervals:

E

[
e−γ(r;τ?)

(
eY (τ?) −K

)
+
|Y (0) = κ, ζ(0) = (j,N − k + l)

]
,

which leads to the announced formulae.

6.3 Down-and-out call options

Proposition 6.3. The price PDOC(S0, B,K, q) of a down-and-out call option as de-
fined in (2.6) with barrier B < S0 and maturity date q is given by

PDOC(S0, B,K, q) = PV(S0, K, q)−α
N∑
l=1

E
(l)
σd(s0 − b)Πd(B,K,N − l + 1), (6.5)

where PV(S0, K, q) and the vectors Πd(B,K,N − l + 1) are given in (6.3) and in
Proposition 6.2, respectively.
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Proof. Applying the same Erlangization methodology as above and denoting the first
passage time of Y to level b < Y (0) = s0 by τb, we have

PDOC(S0, B,K, q) =
∑
i∈Sσ

αi E

[
e−γ(r;τ?)

(
eY (τ?) −K

)
+
1τb>τ? |Y (0) = s0, ζ(0) = (i, 1)

]
=
∑
i∈Sσ

αi E

[
e−γ(r;τ?)

(
eY (τ?) −K

)
+
|Y (0) = s0, ζ(0) = (i, 1)

]
−
∑
i∈Sσ

αi E

[
e−γ(r;τ?)

(
eY (τ?) −K

)
+
1τb<τ? |Y (0) = s0, ζ(0) = (i, 1)

]
.

In the right hand side of the last equality, the first expectation equals the price of
a vanilla option given in (6.3). To compute the last expectation, we condition on
the number of Erlangization intervals needed to achieve the first passage to level b
in order to meet the condition in the indicator function. This leads to the following
equality

E

[
e−γ(r;τ?)

(
eY (τ?) −K

)
+
1τb<τ? |Y (0) = s0, ζ(0) = (i, 1)

]
=
∑
j∈Sd

N∑
l=1

(
E(l)(s0 − b)

)
ij

E

[
e−γ(r;τ?)

(
eY (τ?) −K

)
+
|Y (0) = b, ζ(0) = (j, l)

]
,

which yields the announced result.

The accuracy of the price approximations above can be made as high as desired by
increasing the value of N . We notice, however, that the dimension of the matrices in
the pricing formulas increases whenN increases, which implies a higher computational
cost. In the first two examples in the next section, we compare our approximations
with results from the literature and we illustrate how moderate values of N already
yield a good accuracy.

7 Numerical illustrations

Example 1. To show the precision of the option prices obtained by our approxima-
tions, we start with a simple example without jumps, taken from the literature. Here,
(X,ϕ) is characterized by the matrices

Q =

[
−q1 q1

q2 −q2

]
, Σ =

[
σ1 0
0 σ2

]
, D =

[
d1 0
0 d2

]
, (7.1)
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N = 150 N = 200 N = 400 N = 500 MC
S(0) = 98 8.0788 8.0800 8.0818 8.0822 8.0840± 2.4e−03
S(0) = 100 9.3339 9.3352 9.3372 9.3376 9.3387± 2.5e−03
S(0) = 102 10.6786 10.6799 10.6820 10.6824 10.6836± 2.6e−03

Table 1: Approximations of the price of a vanilla call option in the MMBM framework
with two phases, when r1 = r2 = 0.05, T = 1, K = 100, σ1 = 0.15, σ2 = 0.25 and
q1 = q2 = 0.5. The column “MC” refers to the Monte Carlo results in [18, Table 2].

N = 10 N = 20 N = 30 N = 40 N = 50 MC
K=B=0.6 0.4177 0.4177 0.4177 0.4177 0.4177 0.4177± 5.6e−06
K=B=0.8 0.2217 0.2219 0.2219 0.2219 0.2219 0.2220± 7.2e−05
K=B=0.9 0.1183 0.1185 0.1185 0.1185 0.1186 0.1187± 1.7e−04

Table 2: Approximations of the price of a DOC option in the MMBM framework with
two phases, when S(0) = 1, r1 = r2 = 0.03, T = 1, σ1 = 0.15, σ2 = 0.25, q1 = 0.8 and
q2 = 0.6. The column “MC” refers to the Monte Carlo results in [19, Table 2].

and with initial vector α = [1 0]. The interest rate is equal for both regimes and
denoted by r. In order to ensure that the model is defined under a risk neutral
measure, the drift parameters are determined by d1 = r − 1

2
σ2

1 and d2 = r − 1
2
σ2

2 to
satisfy the constraint (2.2).

In Table 1, we show the approximated price of a vanilla call option when r = 0.05,
T = 1, K = 100, σ1 = 0.15, σ2 = 0.25 and q1 = q2 = 0.5, for different values of N and
S(0). This parameter set has been used in Boyle and Draviam [6] as well as in Hieber
[18]. The last column contains Monte-Carlo estimates together with the intervals,
which are taken from Table 2 in [18]. We notice that the approximations based on
Erlangization fall inside the Monte-Carlo intervals for N = 400. If a precision of two
digits after the decimal point is enough, then prices can be obtained by using approx-
imately 150 Erlangization intervals. In Table 2, we show the approximated price of a
DOC option when S(0) = 1, r = 0.03, T = 1, σ1 = 0.15, σ2 = 0.25, q1 = 0.8, q2 = 0.6
and B = K, for different values of K and S(0). The prices in the column “MC”
are taken from the last column in Table 2 of [19] and have been obtained through
Monte Carlo simulations based upon both antithetic variables and control variables.
In this case, we observe that the prices obtained with as little as N=20 Erlangization
intervals are already very precise, in comparison with the benchmark of the Monte
Carlo results.
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N = 100 N = 150 N = 200 N = 300 MC
Digital 0.3644 0.3648 0.3650 0.3651 0.3647± 0.0009
Vanilla 19.412 19.417 19.420 19.422 19.43± 0.04
DOC 18.219 18.226 18.229 18.232 18.26± 0.04

Table 3: Approximated prices of digital, vanilla and DOC options in the MMBM
framework with two phases and exponential jumps, when q1 = 1, q2 = 4, σ1 = 0.15,
σ2 = 0.3, λ = 10, µ = 5, T = 1, K = 90, B = 80, S0 = 100 and r1 = r2 = 0.03. The
column “MC” refers to the Monte Carlo results obtained with 106 simulations.

Example 2. As in Example 1, the value of the asset evolves like the exponential
of an MMBM with two phases but, in addition, jumps occur whenever the phase
changes. When considering several assets at the same time, this kind of jumps are
called synchronous jumps and they are interesting in economic modelling as well as
in calibration issues, see e.g. Hainaut and Colwell [16] and Chourdakis [10].

We interpret the first phase as a normal regime of the market, while the second
phase represents a bad regime of the market with a higher variance. A transition from
phase 2 to phase 1 is accompanied by an upward jump of X, which is exponentially
distributed with parameter λ. A transition from phase 1 to phase 2 is accompanied
by a downward jump of X, which is exponentially distributed with parameter µ. The
parameters of this example are

Q =

[
−q1 0

0 −q2

]
, W+ =

[
0
q2

]
, W− =

[
q1

0

]
,

together with the matrices Σ and D in (7.1), the initial vector α = [1 0] and R+ = −λ,
V+ = [λ 0 ], R− = −µ, V− = [ 0 µ ]. The parameters d1 and d2 are fixed so as to
satisfy the risk neutral condition (2.2).

For the numerical experiments, we set q1 = 1, q2 = 4, σ1 = 0.15, σ2 = 0.3,
λ = 10, µ = 5, T = 1, K = 90, B = 80, S0 = 100 and r1 = r2 = 0.03. In Table 3,
we show the prices obtained for increasing values of N , and in the last column, the
prices we obtained by performing Monte-Carlo estimates with 106 simulations (and
discretization interval of length 0.001). Again, we observe good agreement between
our approximation and Monte-Carlo simulations, even for moderate values of N .

Example 3. In this last example, we use phase-type distributions which mimic fat
tail behaviours. The numerical derivation of the approximate option prices follows
from the straightforward implementation of the closed form approximations obtained
in the previous section.
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The model is the same as in Example 2, except that the downward jumps hap-
pening together with a transition from phase 1 to phase 2 are now defined by a more
general phase-type distributed random variable J ∼ PH(e1, A), to take into account
the fact that downward jumps are usually larger than upward jumps, especially in
periods of crisis. We use a subgenerator A which is inspired by Robert and Le Boudec
[27] and has the following form:

A =



−(c+ sa) (1/a) (1/a)2 (1/a)3 · · · (1/a)n−1

b/a −b/a 0 0 · · · 0
(b/a)2 0 −(b/a)2 0 · · · 0
(b/a)3 0 0 −(b/a)3 · · · 0

...
...

...
...

...
(b/a)n−1 0 0 0 · · · −(b/a)n−1


, (7.2)

with n ∈ N0, a > 1, a > b, b, c > 0 and sa = 1
a

+ 1
a2

+ · · ·+ 1
an−1 . The other parameters

are the same as in Example 2, except for W−, R− and V− which are given by

W− =

[
q1 0 · · · 0
0 0 · · · 0

]
, R− = A, V− = [ 0 −A1 ].

The values of d1 and d2 are chosen in order to satisfy the risk neutral condition (2.2).
The jump size J is equal to the time before absorption in the process represented

by (7.2) and has the following interpretation: the process starts in phase one and has
two possibilities for the next step. With probability c/(c+sa) it goes to the absorbing
state. With the complementary probability sa/(c + sa) it begins an excursion, that
is, a visit in one of the states 2, 3, ..., n before returning to state 1. The duration of
an excursion is exponentially distributed with parameter (b/a)k if the state k + 1 is
chosen (k = 1, 2, ..., n− 1), which happens with a probability πk = (1/sa)(1/a)k. The
higher the state k where an excursion starts, the smaller the probability πk, but the
longer the duration of this excursion. It is clear from this interpretation that the size
J of the downward jumps is equal in distribution to

J =
M−1∑
i=1

(
τ(i) + τ

(i+1)
1

)
+ τ

(1)
1

where M ∼ geom(c/(c+ sa)) is the number of visits to state 1 before absorption, τ
(i)
1

is the duration of the i-th visit to state 1 and τ(i) is the duration of the i-th excursion.
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The mean and variance of J are easily shown to be determined by

E [J ] =
1

c

n−1∑
l=0

(
1

b

)l
,

Var [J ] = E [J ]2 +
2

c

n−1∑
l=1

(
a

b2

)l
.

It is interesting to note that the expectation of J does not depend on a and that
Var [J ] is an unbounded, increasing function in a. We may therefore fix the mean of
J for certain n, b and c and then choose a variance as large as desired by taking a
high enough.

For the numerical experiments, we set q1 = 1, q2 = 4, σ1 = 0.15, σ2 = 0.3, λ = 10,
T = 1, K = 90, B = 80, S0 = 100 and r1 = r2 = 0.03. The results presented in Tables
4 and 5 are obtained by using N = 100 Erlangization intervals since several tests
showed that augmenting N did no further change the approximations in a significant
way. Next, we have chosen several sets of values for n, b and c, in such a way that for
all cases E [J ] = 0.2 but that the values for the variance range from 0.2 to 1.3e+06.
We take n = 8, b = 3 and c = 7.5 in Table 4, and n = 7, b = 0.75 and c = 97.39
in Table 5. Finally, as E [J ] does not vary with a, we compute the different option
prices for various values of a, letting a increase so that the variance of J increases.

In these numerical experiments, we observe that as the variance increases, the
prices of digital options have the tendency to remain relatively stable, while the
prices for vanilla and down-and-out call options tend to decrease.

As mentioned before, this example was particularly chosen to show that phase-
type distributions can have important tails. The graphs in Figure 1 show the tails
for the distribution of J for parameters taken from Table 4, with a = 80, and from
Table 5, with a = 11, respectively.

Some Pareto-distributions are plotted as well, for comparison. The graphs show
that for the purpose of asset price modelling, this kind of phase-type distributions
clearly may have enough mass in their tails. These observations seem further promis-
ing and useful in other domains where more explicit heavy tails are necessary, like for
e.g. catastrophic option pricing or insurance linked issues.
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Figure 1: Tail of the PH distributions compared with the tail of two Pareto distribu-
tions. Left: n = 8, b = 3, c = 7.5 and a = 80. Right: n = 7, b = 0.75, c = 97.39 and
a = 11.

a = 6 a = 10 a = 17 a = 25 a = 40 a = 70 a = 80

Var [J ] 0.54 3 48 531 11786 526900 1.3e+06

Digital 0.3293 0.3301 0.3309 0.3313 0.3318 0.3321 0.3322
Vanilla 18.66 18.35 18.14 18.04 17.95 17.89 17.88
DOC 17.55 17.24 17.03 16.93 16.84 16.78 16.77

Table 4: Approximated prices of digital, vanilla and DOC options in the case where
n = 8, b = 3 and c = 7.5. The mean E [J ] = 0.2 does not vary with a.

a = 0.8 a = 1.15 a = 2 a = 3 a = 5 a = 10 a = 11

Var [J ] 0.54 2.94 57.7 582 11414 687000 1.2e+06

Digital 0.2516 0.2436 0.2481 0.2493 0.2500 0.2505 0.2505
Vanilla 19.50 17.34 16.28 16.08 15.97 15.91 15.90
DOC 18.85 16.67 15.58 15.38 15.27 15.20 15.20

Table 5: Approximated prices of digital, vanilla and DOC options in the case where
n = 7, b = 0.75 and c = 97.39. The mean E [J ] = 0.2 does not vary with a.
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