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Abstract

Digital nets are among the most successful methods to construct low-discre-
pancy point sets for quasi-Monte Carlo integration. Their quality is tradi-
tionally assessed by a measure called the t-value. A refinement computes the
t-value of the projections over subsets of coordinates and takes a weighted
average (or some other function) of these values. It is also of interest to
compute the t-values of embedded nets obtained by taking subsets of the
points. In this paper, we propose an efficient algorithm to compute such
measures and we compare our approach with previously proposed methods
both empirically and in terms of computational complexity.
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1. Introduction

The Monte Carlo method (MC) simulates random variables from arbi-
trary distributions by uniform sampling of independent random points from
the s-dimensional unit hypercube [0, 1)s for some integer s, followed by an ap-
propriate transformation to achieve the target distribution [2]. Quasi-Monte
Carlo (QMC) replaces these independent points by deterministic point sets
that are carefully constructed to cover the hypercube much more evenly than
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i.i.d. points [4, 11, 12, 20, 21]. The most popular construction methods are
lattice rules and digital nets. This paper concerns the latter.

An s-dimensional digital net in base b is a construction that defines n = bk

points in [0, 1)s for some integer k > 0, via a linear mapping, as detailed in
Section 2. A traditional measure of quality for these constructions is the
so-called t-value, which measures in some sense the lack of uniformity of the
points. Bounds on the integration error in terms of the t-value of the net
have been derived, as well as bounds on the variance when the digital net is
randomized in specific ways [4, 20, 22]. More refined error or variance bounds
can be obtained if we rewrite the integrand as a sum of lower-dimensional
components, e.g., via an ANOVA decomposition, and bound the error or
variance of each term. Doing this using t-values involves bounding a weighted
sum of the t-values of the 2s − 1 projections of the point set over subsets
of coordinates. This motivates figures of merit defined by such sums, to
evaluate the quality of digital nets and select good ones for QMC integration.
To compute these figures, one must compute the t-value for each projection,
which may take excessive computing time, given that calculating a single t-
value already requires testing the rank of a combinatorial number of matrices.

It is also useful to construct and test sequences of embedded digital nets
for which each net is a subset of the next one and such that each net in the
sequence has good quality. Generally, if the cardinality of a net is bk, the
cardinality of the next one will be bk+1. One then wants to compute the figure
of merit for each net in the sequence, and perhaps take the worst-case as a
global measure of quality of the sequence. This is useful when the required
number of points is unknown in advance and one wishes to increase n until
reaching the desired accuracy [4, 7].

The aim of this paper is to propose a new algorithm to compute the t-value
of a given digital net, or the t-values of an arbitrary choice of its projections
on subsets of coordinates, and do this for sequences of embedded nets as
well. Our algorithm outperforms previously known methods when n is large
or when we want the t-values of many projections. We provide an open-source
software that implements our algorithm as well as three previously-proposed
ones from [3, 23, 24], and we provide a detailed comparison in terms of both
empirical performance and computational complexity. For now, the software
is implemented only for basis b = 2, which is by far the most widely used
basis in practice, for efficiency reasons.

In Section 2, we recall the notions of digital net, t-value, as well as error
bounds and figures of merit based on t-values. The new algorithm is intro-

2



duced in Section 3. A time complexity comparison is presented in Section 4.
In Section 5, we present empirical performance comparisons.

2. Digital nets and t-values

2.1. Definitions
Let b ≥ 2 be a prime number and let Fb denote the finite field of cardinality

b. We identify the elements of Fb with {0, 1, . . . , b − 1} where 1 is the unit
element and the operations correspond to the arithmetic modulo b. Let s ≥ 1,
k ≥ 1 and r ≥ k be integers. Let C1, . . . , Cs be s matrices of size r × k over
Fb. For i = 0, . . . , bk − 1, let i = (a0, . . . , ak−1)

T ∈ Fkb be the column vector
that contains the k digits of the base-b expansion of i =

∑k−1
`=0 a`b

`. For each
coordinate j = 1, . . . s, let

(yi,j,1, . . . , yi,j,r)
T = Cj · i and xi,j =

r∑
`=1

yi,j,`b
−`.

and let xi = (xi,1, . . . , xi,s)
T . The point set P = {x0, . . . ,xn−1} is called

a digital net in base b. It contains n = bk points laying in the half-open
s-dimensional unit hypercube [0, 1)s. The matrices C1, . . . , Cs are called the
generator matrices of P . Niederreiter [19, 20] introduced the notion of digital
net with a more general definition, in which the operations are in a general
finite commutative ring and an arbitrary bijection can be used between the
elements of this ring and the ring Zb. Popular constructions that are special
cases of the above definition were introduced earlier by Sobol’ [26] (in base
2) and Faure [6] (in prime base b ≥ 2).

In our definition, each coordinate has r digits, but only the first k digits
will matter for the properties examined in this paper, so we can assume
that r = k and ignore the extra rows of the generator matrices. We also
always assume that the first k rows of Cj are linearly independent. Then,
the digital net is fully projection-regular, which means that for each j the one-
dimensional projection of P over the jth coordinate is the set {0, 1/n, . . . , (n−
1)/n}. These numbers are enumerated in a different order for the different
coordinates, i.e., the matrices Cj implement permutations of this set, and the
choice of these permutations is crucial for the uniformity of the projections
of P over subspaces in two or more dimensions.

This uniformity of P can be assessed as follows [4, 14, 20]. We can select
s non-negative integers q1, . . . , qs such that q := q1 + · · ·+ qs ≤ k, and divide
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axis j in bqj equal parts, for j = 1, . . . , s. This defines a partition of [0, 1)s
into bq identical rectangular boxes which are shifted copies of [0, b−q1)×· · ·×
[0, b−qs). If each of those boxes contains exactly the same number of points
from P , which has to be bk−q points in each box, we say that P is (q1, . . . , qs)-
equidistributed in base b.

The digital net P is said to be a (t, k, s)-net in base b if it is (q1, . . . , qs)-
equidistributed for any (q1, ..., qs) such that q = q1 + · · · + qs ≤ k − t. The
t-value of a digital net is the smallest t for which it is a (t, k, s)-net. We
denote it by t(S) where S = (C1, . . . , Cs) to emphasize that it is a function
of the vector of generator matrices. We want the t-value to be as small
as possible, ideally 0, although it is known that t = 0 is impossible unless
b ≥ s− 1 [20, Corollary 4.21], and much tighter lower bounds on the best
possible t for any given values of b, k, and s can also be computed via linear
programming [18].

If u = {j1, . . . , jd} ⊆ {1, . . . , s} is a nonempty subset of coordinates,
the projection Pu of P over the coordinates in u is also a digital net, in
d = |u| dimensions, with vector of generator matrices Su = (Cj1 , . . . , Cjd). We
are also interested in computing the t-values t(Su) for these projected point
sets Pu. The assumption of full projection-regularity implies that t(Su) = 0
whenever u = {j}, i.e., when the projection is over a single coordinate.

A sequence of embedded digital nets of cardinalities bm0 , bm0+1, . . . , bk,
for two arbitrary integers 1 ≤ m0 ≤ k, can be obtained as follows. Let
S = (C1, . . . , Cs) denote the vector of generator matrices of the largest net,
withm = k. For j = 1, . . . , s andm = m0, . . . , k, let Cj,m be the k×mmatrix
formed by the first k rows and m columns of Cj. Then Sm = (C1,m, . . . , Cs,m)
is the vector of generator matrices of a digital net which is the restriction of
the largest net to its first bm points. Each Cj,m is assumed to be non-singular
so that this digital net is also fully projection-regular. We denote by Su,m
the vector of generator matrices for the projection u, restricted to their first
k rows and m columns. In this context, we are interested in computing the
t-values t(Su,m) for all m ∈ {m0, . . . , k} and a large set of projections u.
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2.2. Figures of merit based on t-values of projections
For a given vector of generator matrices S, we are interested in computing

figures of merit of the following general form:

D
(q)

t̃,γ
(S) =

 ∑
∅6=u⊆{1,...,s}

(
γu t̃(Su)

)q1/q

if q <∞, (1)

D
(∞)

t̃,γ
(S) = max

∅6=u⊆{1,...,s}
γu t̃(Su) if q =∞, (2)

where q ∈ [1,∞], γ = {γu, ∅ 6= u ⊆ {1, . . . , s}} is a set of non-negative
weights given to the projections [5] and t̃ is a real-valued function of the
t-value and other parameters of the net (some examples are given below).

For two integers 1 ≤ m0 ≤ k and a vector S of generator matrices of size
k × k, we also want to compute the figure of merit for embedded nets:

D
(q)

t̃,γ,m0:k
(S) = max

m0≤m≤k
D

(q)

t̃,γ
(Sm). (3)

These general forms leave a lot of freedom for the choice of the function t̃
and the weights γ. Certain choices of t̃, γ and q in (1) or (2) yield bounds
on the integration error for a large class of integrands; see Subsection 2.3.
The weights γ should reflect the importance of having good uniformity in the
corresponding projections: the more relevant the projections, the greater the
weights. This is discussed in [4] for digital nets and studied in [15, 16, 17]
for lattice rules. The choice of q determines the norm used to combine the
values for the different projections. This choice does not affect our algorithm.
The most common values are q = 2 and q =∞. The max in (3) can also be
replaced by a weighted sum or a more general norm.

2.3. Discrepancy-based error bounds
An important special case of the figure of merit (2) gives a bound on

the weighted star discrepancy of P , which in turns provides a bound on
the integration error for a large class of integrands, via the Koksma-Hlawka
inequality [4, 10]. For any z ∈ [0, 1]s, let zu be the projection of z on the
coordinates in u and (zu,1) be the point z in which the coordinates whose
indices are not in u have been replaced by 1. For positive weights γu, we can
define the weighted Hardy-Krause variation of a function f : [0, 1)s → R by

VHK,γ(f) =
∑

∅6=u⊆{1,...,s}

γ−1u

∫
[0,1]|u|

∣∣∣∣∂|u|∂zu
f(zu,1)

∣∣∣∣ dzu, (4)
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assuming that the partial derivatives exist and are integrable. Moreover,
when the integral is 0 for some u, one can take γu = 0. We also define the
weighted star-discrepancy of P as

D∗n,γ(P) = sup
z∈[0,1]s

max
∅6=u⊆{1,...,s}

γu

∣∣∣∣vol[0u, zu)−
|Pu ∩ [0u, zu)|

n

∣∣∣∣ ,
where [0u, zu) is the box [0, z) projected to the coordinates in u, vol[0u, zu) is
the volume of that box, and |Pu ∩ [0u, zu)|/n is the proportion of the points
that are in that box.

The generalized Koksma-Hlawka inequality [25] states that∣∣∣∣∣
∫
[0,1]s

f(z)dz− 1

n

n−1∑
i=0

f(xi)

∣∣∣∣∣ ≤ VHK,γ(f) ·D∗n,γ(P). (5)

The weighted star discrepancy can in turn be bounded as follows [4, Theorems
5.12 and 5.26]:

D∗n,γ(P) ≤ D
(∞)

t̃,γ,k
(S) (6)

with

t̃(Su) = bt(Su)−k
|u|−1∑
`=0

(
k − t(Su)

`

)
(b− 1)` (7)

where b is the base of the digital net and k the size of the generator matrices
in Su. As another special case, [8] made searches for good direction numbers
for Sobol’ sequences using a heuristic figure of merit that turns out to be a
special case of (3) with

t̃(Su) =
t(Su)p

k − t(Su) + 1
and γu =

{
0.9999min(j1,j2)−1 if u = {j1, j2},
0 otherwise,

where k denotes the size of the generator matrices in Su and p > 0 is a
real-valued parameter. Only the two-dimensional projections matter for this
measure, and those whose coordinates are both large matter less.
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3. Computing t-values for digital nets and their projections

Computing the t-value is a combinatorial problem: one must verify the
equidistribution for a large number of possibilities of (q1, . . . , qs), especially
if k and/or s are large. Computing the t-value for all or many projections,
and for several embedded subnets, as required in (1), (2), and (3), is even
more challenging.

When s is large, it can be impractical to use positive weights for all the
2s − 1 non-empty subsets u of coordinates. In the rest of the paper, we
assume finite-order weights of maximal order dmax ≤ s, which means that
γu = 0 whenever |u| > dmax [4, page 95]. Note that when dmax = s, there is
actually no restriction at all on the weights. The choice of dmax is related to
the computation budget: the higher the budget, the larger dmax can be.

In this section, we start by explaining the reduction of the computation
of the t-value to a simpler combinatorial linear algebra problem, linked to the
determination of the ranks of a large number of matrices. After reviewing
how this problem has already been tackled in the literature, we describe
our proposed method. First we focus on the non-embedded setting, starting
from the computation of the t-value of the net and then generalizing to the
computation of the t-value over many projections. Finally, we extend our
method to an embedded setting where we aim at computing the t-values of
many projections for embedded nets.

3.1. Computing the linear independence parameter and the t-value of the net
Given a digital net P of bk points with vector of generator matrices S =

(C1, . . . ,Cs), we aim at computing t(S). In other words, we search for the
largest q such that P is (q1, . . . , qs)-equidistributed for all tuples (q1, . . . , qs)
of non-negative integers that sum to q. This q is denoted ρ(S), and is called
the linear independence parameter of the vector of generator matrices S. We
have the relation t(S) = k − ρ(S).

As detailed in [4], P is (q1, . . . , qs)-equidistributed if and only if the q× k
composition matrix

C =

 C
(q1)
1
...

C
(qs)
s


formed by the first q1 rows of C1, the first q2 rows of C2, . . . , the first qs rows
of Cs, has full rank q. To find ρ(S), we need to find the largest value of q

7



for which all the composition matrices of size q× k have full rank q. For any
given q, there are

(
q+s−1
s−1

)
such composition matrices [9]. Thus, in the worst

case, we have to compute the rank of
∑k

q=1

(
q+s−1
s−1

)
matrices. We can do this

either by increasing or decreasing values of q ∈ {1, . . . , k}, and stop as soon
as we find ρ(S). The best choice of direction depends on the actual value of
t. Proposition 5 gives exact expressions for the number of vector additions
for each direction.

The algorithms reported in the literature compute the ranks of the com-
position matrices independently (without reusing the computations from one
composition matrix to another), until the t-value can be determined. For the
special case of base b = 2, Schmid [24] visits the composition matrices by
increasing value of q. For each composition matrix, he visits all linear com-
binations of the rows to check if they are nonzero, by using a Gray code
so only one row is changed at each step. Pirsic and Schmid [23] proposed
a different method that applies Gaussian elimination [1] independently to
each composition matrix to compute its rank. They found that this second
method is typically faster than the first for large b and when k − t is not
too large, and the first method was usually faster otherwise. We will denote
these two methods by S and PS, respectively.

These two approaches are fine to compute a single t-value, but they do
not scale well when dealing with the figures of merit in (1) to (3). The latter
involve several t-values, one for each of

∑dmax

d=1

(
s
d

)
projections u such that |u| ≤

dmax. All in all, we have to compute the rank of up to
∑dmax

d=1

∑k
q=1

(
s
d

)(
q+d−1
d−1

)
matrices. For k = 10 and s = dmax = 5, this represents over 1.2×104 matrices,
cumulating 9.1× 104 rows. In use cases, k and s easily go up to 20. In this
case, the number of matrices equals 2.6×1014, cumulating 4.9×1015 rows. In
the following, we explain how to optimize such a daunting computation, first
on a single projection (optimizing the sum over q), then on many projections
(optimizing the sum over d).

Our strategy takes advantage from the fact that one can enumerate the
set of composition matrices in a way that any two consecutive composition
matrices differ by exactly one row. This relies on the enumeration of weak
compositions as proposed in [9]. We build upon the algorithm of Pirsic and
Schmid [23], but instead of computing from scratch the Gaussian elimina-
tion for each composition matrix, we reuse computations. We detail this
algorithm in the following subsection.

8



3.2. Efficient computation of the rank of all composition matrices
We now explain the reduction used to compute the rank of the composi-

tion matrices, which is weaker than the reduction in row echelon form [1]. We
call it a reduction in almost row echelon form (RAREF). Then, we describe
how a RAREF can be efficiently computed for a matrix C ′ which differs by
exactly one row from a matrix C for which a RAREF is already known.

Definition 1. In Fb, given a matrix C of size q×k such that q ≤ k, a triplet
(L, T,p) where L is a q × q matrix, T is a q × k matrix and p is a subset of
{1, . . . , k}, is said to be a RAREF of C if the following properties hold:

(a) L is a non-singular matrix such that L · C = T ;

(b) The columns of T whose indexes are in p are distinct vectors of the
canonical base of Fqb. The nonzero coefficients of these columns are
called pivots;

(c) The cardinality of p equals the rank of T .

Algorithm 1 Computing a RAREF

Let L be the identity matrix of size q × q, T = C and p = ∅.
For each row i of T , from the first to the last:

1. Use transvections to zero all the elements of the ith row of T which
belong to columns in p. Apply the same transvections to L.

2. Locate the first nonzero coefficient of the ith row of T , say in the
jth column of T , and multiply this row so that this leading nonzero
coefficient equals 1. This coefficient is a new pivot. Let p = p ∪ {j}.
Apply the same multiplication to L. If such a coefficient does not exist,
skip the row.

3. Otherwise, use transvections to zero all the elements of the jth column
of T other than the pivot. Apply the same transvections to L.

Return (L, T,p).

Given a matrix C, one finds a RAREF by applying row operations on each
row i of C from the first to the last, as described in Algorithm 1, which is a
variation of the Gauss-Jordan elimination [1]. We refer to this as pivoting.
Since L is non-singular, the rank is invariant to a left-multiplication by L, so
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the rank of C must equal the number of pivots in T , i.e., the cardinality of
p. The following proposition proves the correctness of Algorithm 1.

Proposition 1. For every matrix C, Algorithm 1 returns a RAREF.

Proof. We check each of the RAREF properties:

(a) L is non-singular as a product of elementary row-operation matrices.
Because we apply the same operations to L and to T , we have L·C = T .

(b) The columns of T indexed by p belong to the canonical base of Fqb
thanks to step 3. They are distinct because at most one pivot is selected
on each row.

(c) At the end of the algorithm, each row of T contains exactly one pivot
or is all-zero, hence the rank of T equals the number of pivots.

Algorithm 2 Updating the RAREF

Let L′ = L, T ′ = T and p′ = p.

1. Locate a nonzero coefficient in the ith column of L′. Such a coefficient
exists as L′ is non-singular. Say it is located in the jth row of L′ and
it equals a ∈ Fb. Using a row permutation, exchange the ith and jth
rows, both in L′ and T ′.

2. Using the nonzero coefficient a at position (i, i) of L′ and row transvec-
tions, zero all the other coefficients in the ith column of L′. Apply the
same transvections to T ′.

3. Remove from p′ the pivot in the ith row of T ′. Set to zero all the
coefficients of the ith row of L′, except for (i, i) which remains equal
to a. The element (i, i) of L′ is now completely isolated. Thus, it is
now straightforward to update T ′ = L′ ·C into T ′ = L′ ·C ′: one has to
replace the ith row of T ′ by a times the ith row of C ′.

4. Pivot on the ith row by applying Algorithm 1.

Return (L′, T ′,p′).

Given two composition matrices C and C ′ of size q × k which differ by
exactly one row, we explain how to derive a RAREF (L′, T ′,p′) of C ′ by
reusing a known RAREF (L, T,p) of C. We can assume that C has full
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rank, because otherwise P would not be (q1, . . . qs)-equidistributed for the
tuple (q1, . . . qs) that corresponds to the composition matrix C.

As stated by Proposition 2, Algorithm 2, whose operations are illustrated
in Figure 1, updates the RAREF so that all the properties listed in Definition
1 hold. The key advantage of this algorithm is that it requires only one row
pivoting (step 4), whereas a full recomputation would require q pivotings.

Proposition 2. If C and C ′ are two matrices of the same shape that differ
only by one row, C has full rank, and (L, T,p) is a RAREF of C, then the
triplet (L′, T ′,p′) returned by Algorithm 2 is a RAREF of C ′.

Proof. Let i be the index of the row that differs between C and C ′. We check
each of the RAREF properties:

(a) Steps 1, 2 and 4 perform only row operations, so they preserve prop-
erty (a). At step 3, the ith column of L′ is all-zero except for the
(i, i) coefficient. This ensures that replacing the ith row of L′ by
(0, · · · , 0, a, 0, · · · , 0) preserves the non-singularity of L′. It is then
clear that replacing the ith row of T ′ by ac′i implies L′ · C ′ = T ′.

(b) Row permutations leave the canonical base invariant so step 1 preserves
property (b). After step 2, the only column indexed by p′ which may
not belong to the canonical base must have its pivot on the ith row.
As we remove this column from p′ at step 3, property (b) is verified
after step 3. Step 4 preserves property (b), due to step 3 of Algorithm
1. The distinctness stems from the fact that we may only add a single
pivot on the ith row, which had no pivot before step 4.

(c) Steps 1 and 2 change neither the rank of T ′ nor the cardinality of p′.
Because C has full rank, the removal of the ith row in step 3 amounts
to decreasing by 1 the number of pivots and the rank. After adding
back the new row, a new pivot is added during step 4 iff the row is
linearly independent from the others (i.e., C ′ has full rank).

3.3. Computing the t-values over many projections
In this section, we extend our proposed methodology to the computation

of the t-values of all or many projections. More precisely, given a vector
S of s generator matrices of size k × k, we aim at computing t(Su) (or
equivalently ρ(Su)) for all projections u such that |u| ≤ dmax. We propose

11



Step 1: Find a row with a nonzero coefficient a in column i of L′, and exchange this row
(blue row j) with row i, in L′ and in T ′.

l11 · · · l1i · · · l1q
...

...
...

lj1 . . . a 6= 0 . . . ljq

...
...

...
li1 . . . lii . . . liq

...
...

...
lq1 . . . lqi . . . lqq





L : q rows, q columns

c1
...
ci
...
cq





C : q rows {c1, . . . , cq}

× =

...
tj
...
ti
...





T = L·C : q rows {t1, . . . , tq}

Step 2: Use the nonzero element a in L′ to zero all coefficients on column i of L′, using transvections.

l11 · · · l1i · · · l1q
...

...
...

li1 . . . lii . . . liq

...
...

...
lj1 . . . a . . . ljq

...
...

...
lq1 . . . lqi . . . lqq




×

c1
...
ci
...
cq




=

t1
...
tj
...
ti
...
tq




Step 3: Set all coefficients of row i of L′ to 0, except the diagonal coefficient. Replace row i of T ′ with
the new row ac′i (in green). Since the ith row of C ′ (green row) interacts only with the green column
of L′ in the matrix multiplication, we have L′ · C ′ = T ′.
Step 4 (not shown): Pivot on row i of T ′ to obtain the RAREF T ′.

l11 . . . 0 . . . l1q

...
...

...
0 0 a 0 0

...
...

...
lq1 . . . 0 . . . lqq




L′ : q rows, q columns

c1
...
c′i
...
cq




C ′ : q rows, k columns

× =

t1
...

ac′i
...
tq




T ′ = L′·C ′ : q rows, k columns

Figure 1: Procedure to update a reduced almost row echelon form when row i changes
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a dynamic programming method that achieves this much more efficiently
than computing the t-values independently across all the projections. It
exploits a recurrence that expresses ρ(Su) in terms of the linear independence
parameters of all strict subvectors Sv, with v ⊂ u.

We define the partial linear independence parameter ρ̃(S) of a vector of
d generator matrices S as the maximum integer q ≥ d such that for every
tuple of positive integers (q1, ..., qd) that sum to q, the composition matrix

C =

 C
(q1)
1
...

C
(qd)
d


formed by the first q1 rows of C1, the first q2 rows of C2, . . . , the first qd rows
of Cd, has full rank q. By convention, we set ρ̃(S) = d − 1 whenever there
is no such q. The difference with the linear independence parameter is that
we consider here only tuples of strictly positive integers (q1, ..., qd) and not
non-negative integers as before. Note that

0 ≤ ρ(S) ≤ ρ̃(S) ≤ k.

With these ingredients, we can formulate the computation of ρ(S) as a dy-
namic programming problem, as follows.

Proposition 3. For each subset u ⊆ {1, . . . , s} of cardinality greater than 2

ρ(Su) = min

(
ρ̃(Su), min

∅6=v⊂u
ρ(Sv)

)
= min

(
ρ̃(Su), min

j∈u
ρ(Su\{j})

)
. (8)

Proof. The first equality stems from the definition of ρ and ρ̃, the second
equality comes from the fact that ρ(Sv′) ≥ ρ(Sv) when v′ ⊆ v.

To compute ρ(Su), for every u such that |u| ≤ dmax, we first compute
ρ(S{j}) for each j ∈ {1, . . . , s}. Thanks to the assumption of full projection
regularity, we already know that ρ(S{j}) = k. Then, we use the recurrence
(8) in the following manner: enumerate the subsets of {1, . . . , s} by increas-
ing cardinality until reaching cardinality dmax. For each subset u, we first
compute qmax = minj∈u ρ(Su\{j}). We know that ρ(Su) ≤ qmax. If qmax < |u|,
we know that ρ(Su) = qmax as ρ̃(Su) ≥ |u| − 1. Otherwise, we test by de-
creasing values of q ∈ {qmax, . . . , |u|} whether ρ̃(Su) ≥ q, by adapting the
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procedure described in the two previous subsections. The main technicality
is that we need to modify the enumeration of composition matrices to stay
in the subset of composition matrices which contain at least one row from
each generator matrix of Su. To update the RAREF when the composition
matrix changes by a single row, we use the same method as before.

We visit the values of q in decreasing order, from qmax to |u|, because this
turns out to be faster when computing figures of merit that involve a large
number of low-dimensional projections: for low-dimensional projections, the
chances are that t is small, so ρ(Su) is nearer to qmax than to |u|. Another
reason is that we implement an early stopping criterion: for a given q, as
soon as we encounter a composition matrix which does not have full-rank,
we stop and move on to q− 1. This does not work in the increasing order, as
we have to check that all matrices are full-rank for a given q before moving
on to q + 1.

3.4. Computation of the t-values for embedded nets
We now extend our proposed methodology to the case of embedded nets.

More precisely, for given integers 1 ≤ m0 ≤ k and a vector S of s generator
matrices of size k× k, we aim at computing t(Su,m) for all projections u such
that |u| ≤ dmax and all m0 ≤ m ≤ k.

The procedure described in the paragraph that follows Proposition 3 can
be adapted as follows. For a given q ∈ {qmax, . . . , |u|}, let lq be the minimal
number of columns such that all the composition matrices of shape q×m for
lq ≤ m ≤ k have full rank. By convention, if such a number does not exist,
we set lq = k + 1. The composition matrices of interest to compute t(Su,m)
are the restrictions to their first m columns of the composition matrices used
to compute t(Su,k). Thus, for any m ∈ {m0, . . . , k}, ρ̃(Su,m) ≥ q iff m ≥ lq.
Thus computing lq for decreasing values of q ∈ {qmax, . . . , |u|} yields the
linear independence parameter for all m, hence solving the problem.

Algorithm 2 yields lq as the index of the rightmost column where a pivot
is placed when cycling through all composition matrices, or k + 1 if it is not
possible to add a new pivot at some RAREF update. Let l′q be the latter
quantity and let us prove that lq = l′q. First, lq = k+1 iff l′q = k+1, because
all composition matrices have full rank (lq ≤ k) iff we add one pivot at each
RAREF update (l′q ≤ k). Next we focus on the case where we achieve to
add one pivot at each update. If a submatrix contains all the pivots, it has
full rank, hence lq ≤ l′q. During the update where a pivot was placed for
the first time on column l′q, because we choose the pivot as the first nonzero
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coefficient of the new row, the restriction of the matrix to its first l′q − 1
columns contains an all-zero row, so it does not have full rank. Hence we
cannot have lq < l′q. Thus, computing the figure of merit (3) for embedded
nets does not add significant overhead compared to computing the simpler
figures (1) or (2), as we only have to keep tab on the right-most column
where a pivot has been placed.

4. Complexity analysis

In this section, we perform a time complexity analysis of our method
(MGL) and compare it with methods S and PS from [24] and [23].

For each method, we obtain formulas that provide bounds on the total
number of vector additions in Fkb required to perform any of the following
three computations, given a vector S of s generator matrices of size k×k: (a)
computing the t-value of the net, as described in Subsections 3.1 and 3.2; (b)
computing the t-value over many projections, as described in Subsection 3.3;
and (c) computing the t-value over several projections for embedded nets, as
described in Subsection 3.4. For b > 2, scalar multiplications are also used in
some algorithms (PS and MGL). We do not count them as it would compli-
cate the formulas without adding further insight and because the number of
scalar multiplications is normally less than the number of vector additions.

We also compare our method with the one of Dick and Matsumoto (DM)
in [3]. The latter uses weight enumerator polynomials to compute the t-
value. The authors also outline an extension to compute the t-values over all
projections by using multivariate polynomials, but we do not consider this
extension in this paper because we do not have an implementation and it
appears non-trivial to implement in practice. Due to the different nature of
their method, they express its complexity in terms of integer operations.

For b = 2, if we assume that k does not exceed the computer word length,
which is usually the case in the context of QMC, then vector additions in
Fkb can be implemented as XOR operations between two integers. In this
case, it makes sense to compare the complexity of DM to the others, because
the elementary operation is the same. However, for b > 2, comparing vector
additions in Fkb and integer operations does not really make sense. Moreover,
vector additions must be computed as k independent additions in Fb, so they
are essentially k times slower than for b = 2.

The memory space required by our method is not at all an issue, as the
most significant overhead is to store at each step two matrices of size k × k.
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Therefore we only study time complexity and not space complexity.

4.1. Computing the t-value of the net
We first look at the number of additions needed to compute or to update

the RAREF:

Proposition 4. For general b and a matrix of size q×k, with q ≤ k, comput-
ing the RAREF by Algorithm 1 requires at most 4q2 vector additions, whereas
updating the RAREF by Algorithm 2 requires at most 6q vector additions.

Proof. For Algorithm 1, at most 4q vector additions are done for each of the
q pivotings (2q at step 1 and 2q at step 3), for a total of 4q2 operations. For
Algorithm 2, 6q vector additions are needed (2q at step 2 and 4q at step 4),
for a total of 6q operations.

Next we bound the total number of vector additions required to compute
a single t-value, for each method. For MGL, we give two bounds, depending
on the enumerating order (q increasing or q decreasing), as explained in
Subsection 3.1. We also provide simplified asymptotic expressions for the
bounds when k tends to infinity with s fixed.

Proposition 5. The number of operations to compute a t-value with the four
methods considered is bounded as follows:

S
s∑

d=1

k−t∑
q=d

(
s
d

)(
q−1
d−1

)
(b− 1)dbq−d = O((b+ 1)k−t+s−1))

PS
k−t∑
q=1

(
q+s−1
s−1

)(
q
2

)
= O

(
(k−t)s+2

s!

)
DM O(ksbk)

MGL (q decreasing)
k∑

q=k−t

[
4q2 +

[(
q+s−1
s−1

)
− 1
]
6q
]
= O

(
ks+1

s!

)
MGL (q increasing)

k−t∑
q=1

[
4q2 +

[(
q+s−1
s−1

)
− 1
]
6q
]
= O

(
(k−t)s+1

s!

)
Proof. The upper bounds for S and PS are derived in [23], in terms of the
number of vector additions. The bound for DM can be found in [3].
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To prove the bounds for MGL, we first note from Subsection 3.1 that
the number of composition matrices whose ranks are to be computed is at
most

∑k
q=k−t

(
q+s−1
s−1

)
if we choose to visit the values of q in decreasing order.

For each q ∈ {k, . . . , k − t}, the first RAREF is computed entirely, followed
by
(
q+s−1
s−1

)
− 1 updates, which takes

∑k
q=k−t

[
4q2 +

[(
q+s−1
s−1

)
− 1
]
6q
]
vector

additions in total, according to Proposition 4. By using the fact that q ≤(
q+s−1
s−1

)
in the first inequality, this expression simplifies as:

k∑
q=k−t

[
4q2 +

[(
q + s− 1

s− 1

)
− 1

]
6q

]

≤ 10
k∑

q=k−t

(
q + s− 1

s− 1

)
q = 10

k∑
q=k−t

[(
q + s

s

)
−
(
q + s− 1

s

)]
q

≤ 10
k∑

q=k−t

[(
q + s

s

)
q −

(
q + s− 1

s

)
(q − 1)

]
= 10k

(
k + s

s

)
− 10(k − t− 1)

(
k − t− 1 + s

s

)
.

If the values of q are visited in increasing order, the computation above
can be updated as follows:

k−t∑
q=1

[
4q2 +

[(
q + s− 1

s− 1

)
− 1

]
6q

]
≤ 10(k − t)

(
k − t+ s

s

)
The asymptotic expressions come from(

k + s

s

)
=

(k + s)(k + s− 1)...(k + 1)

s!
∼ ks

s!
when k →∞.

The above calculation can be adapted to prove the asymptotic expression
for PS, which is tighter than the one given in [23]:

k−t∑
q=1

(
q + s− 1

s− 1

)(
q

2

)
≤ (k − t)2

(
k − t+ s

s

)
= O

(
(k − t)s+2

s!

)
.

There is no uniform ranking between those methods, except that S is
exponential in both s and k, DM is exponential only in k, and PS and MGL
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are exponential only in s. For MGL, the best choice in the enumerating order
depends on the value of t: visiting the values of q by decreasing order is the
best choice when the t-value is small, whereas increasing order wins when
t is far from 0. For b = 2 and typical values of s and k, the threshold lies
around t = 2, so the decreasing order wins only when t is very close to 0.

4.2. Computing the t-value over many projections
We now compare the methods in terms of the computational effort to

obtain the t-value over all projections over no more than dmax coordinates.
This corresponds to the complexity of computing the figures of merit (1)–
(2). Here the values of q are enumerated by decreasing order, which is more
effective than increasing order when many low-order projections have to be
examined.

Proposition 6. The number of vector additions to compute the t-value of
all projections u such that |u| ≤ dmax is bounded as follows:

S
∑dmax

d=1

∑k
q=d

(
s
d

)(
q−1
d−1

)
(b− 1)dbq−d

PS k2
∑dmax

d=1

(
s
d

)(
k+d
d

)
DM O

(
kbk
∑dmax

d=1

(
s
d

)
d
)

MGL k
∑dmax

d=1

(
s
d

) [
4k(k − d+ 1) + 6

(
k
d

)]
Proof. For S, the complexity is very similar to that in Proposition 5, because
the algorithm to compute the t-value actually yields the t-value over all
projections. The outer sum is restricted to the projections of cardinality
d ≤ dmax.

For PS and DM, the complexity is the sum of the complexities of comput-
ing the t-values of each projection, which is respectively k2

(
k+d
d

)
and O(kdbk)

for a projection of size d (by Proposition 5).
For MGL, for general b, the algorithm described in Subsection 3.3 requires

at most
dmax∑
d=1

(
s

d

) k∑
q=d

[
4q2 +

[(
q − 1

d− 1

)
− 1

]
6q

]
(9)

vector additions, because for each projection u of cardinality d, we compute
by decreasing values of q ∈ {k, ..., d} the ranks of all composition matrices.
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As in Proposition 5, the cost of computing theses ranks is 4q2+
[(
q−1
d−1

)
− 1
]
6q,

hence the formula (9). It can be simplified as in the proof of Proposition 5:

k∑
q=d

[
4q2 +

[(
q − 1

d− 1

)
− 1

]
6q

]
≤ 4(k − d+ 1)k2 + 6

k∑
q=d

(
q − 1

d− 1

)
q

≤ 4(k − d+ 1)k2 + 6k

(
k

d

)
.

These expressions are difficult to compare in full generality for the pa-
rameters dmax, k and s. We can observe two benefits of MGL compared to
PS: the algorithm described in Subsection 3.2 replaces the k2 factor by k,
and the algorithm described in Subsection 3.3 replaces the

(
k+d
d

)
factor by

approximately k2 +
(
k
d

)
.

We give simplified expressions for three choices of dmax, namely dmax = 2,
3, and s. Small values of dmax can be used when the computational budget
is limited and s can be large, as in [8] for instance, where dmax = 2 was used.
Taking dmax = s is the other extreme, and would be doable only if s is small.

Corollary 7. For the special cases of dmax = 2, dmax = 3, and dmax = s, the
number of vector additions to compute the t-value of all projections u such
that |u| ≤ dmax is bounded as follows:

dmax = 2 dmax = 3 dmax = s

S O(s2bk) O(s3kbk)
∑s

d=1

∑k
q=d

(
s
d

)(
q−1
d−1

)
(b− 1)dbq−d

PS O(s2k4) O(s3k5) k2
∑s

d=1

(
s
d

)(
k+d
d

)
DM O(s2kbk) O(s3kbk) O(s2s−1kbk)
MGL O(s2k3) O(s3k4) k

[
4k22s + 6

(
s+k
s

)]
Proof. The expressions for dmax = 2 and 3 follow from Theorem 6. For the
case dmax = s, for DM, we use the identity

∑s
d=1

(
s
d

)
d = s2s−1. For MGL, we

use Vandermonde’s convolution
∑s

d=1

(
s
d

)(
k
d

)
=
(
s+k
s

)
.

We see that for dmax = 2 or 3, MGL has a better complexity than all
the other methods. For dmax = s, the formulas are not easy to compare. If
we take the limit as k →∞, we obtain similar asymptotic expressions as in
Proposition 5.
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4.3. Computing the t-values for embedded nets
Given two integers m0 ≤ k, we now consider the number of elementary

operations to compute t(Su,m) for all projections u such that |u| ≤ dmax and
all m0 ≤ m ≤ k. This represents the complexity of computing the figures of
merit (3). This may seem counter-intuitive, but for all four methods, consid-
ering embedded nets (m0 < k) does not increase the workload compared to
the non-embedded case (m0 = k). The reason is that the computations for
m = k include the computations for smaller values of m, by reordering some
computations or saving intermediate results if needed. The details for MGL
are given in Subsection 3.4.

5. Numerical implementation and experiments

Here we compare the average CPU times required to compute the t-value
of a random net, and to compute the t-values of all projections of order up
to dmax that are needed to obtain the figure of merit (1) or (2), using our
implementations of the four methods S, PS, DM, and MGL, discussed in
the previous sections, for digital nets in base b = 2. All these methods are
implemented efficiently in the LatNet Builder software [13]. All experiments
were run on an Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz processor.

5.1. Computing the t-value of a random net
Figure 2 compares the four methods in terms of the CPU time required

to compute the t-value of a random fully projection-regular net. For each
considered pair (s, k), between 20 and 105 fully projection-regular nets were
sampled uniformly, and the average CPU time to calculate the t-value was
obtained. The number of samples was smaller for longer execution times. In
the left panel of Figure 2, for each pair (s, k), the symbol indicates which
of the four methods is fastest on average, with our implementations. As
expected from Proposition 5, our strategy is the fastest for a large number of
points in low dimension, while DM performs better in large dimension with
a small number of points. Method S wins for easy cases (a small number of
points in small dimension). In 19 or more dimensions, S is never the fastest
method. PS never wins, as it is always slower than MGL.

In the right panel, we fix s = 12 and plot the execution time (in log scale)
as a function of k. We see that DM performs best for small point sets (when
the required CPU time is under about 0.01 seconds), S performs better for

20



Figure 2: Speed comparison for four methods (S, PS, DM, and MGL) to compute the
t-value of a digital net in base 2 with n = 2k points, in s dimensions. In the left panel, the
symbol indicates which method is fastest as a function of (s, k). In the right panel, we fix
s = 12 and plot the execution time as a function of k, in log-log scale.

point sets of moderate size (CPU time between 0.01 and 0.5 seconds), and
MGL performs better for large point sets (when it takes over 0.5 seconds).

5.2. Computing the t-values of low-dimensional projections
For large high-dimensional nets, e.g., if s ≥ 20 and k ≥ 20, looking at

the t-values of low-dimensional projections is more reasonable and also more
relevant than computing the t-value of the full net [8, 11]. For s = k = 20, for
example, it takes 100 seconds to compute the t-value of the full net and only
0.5 second to compute the figure of merit (2) for dmax = 3. Table 1 compares
all four methods in terms of the CPU time required to compute the figure of
merit (2) withm = k, t̃(|u|,m, t) = t (meaning we take the maximum of the t-
values of each projections), and weights γu = 1 for |u| ≤ dmax and 0 otherwise.
We look at projections up to order dmax = 2, 3 and 5, number of dimensions
s = 5, 20, 100, and number of points n from 210 to 230. Each experiment
was repeated for a sample of 20 random independent uniformly-distributed
fully projection-regular nets and we report the average CPU times. For each
combination of dmax, s, and k, the smallest value is in bold. For the entries
marked “> 106”, 1000 seconds were not sufficient on average. We see from the
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S method MGL method
dmax k s = 5 s = 20 s = 100 s = 5 s = 20 s = 100

10 0.4 4 76 1 13 305
15 34 58 1 522 2 31 790

2 20 95 1 766 47 159 5 60 1 585
25 3 538 71 554 > 106 7 101 2 552
30 106 048 > 106 > 106 10 153 4 002
10 0.6 12 1 334 1 45 5 023
15 4 221 25 832 3 186 23 188

3 20 147 7 869 > 106 8 556 70 215
25 5 495 306 162 > 106 17 1 286 168 941
30 182 193 > 106 > 106 30 2 478 336 843
10 0.5 81 > 106 1 237 > 106

5 15 5 1 110 > 106 4 2 013 > 106

20 168 59 586 > 106 12 16 936 > 106

PS method DM method
dmax k s = 5 s = 20 s = 100 s = 5 s = 20 s = 100

10 4 52 1 052 24 417 9 858
15 9 166 4 264 741 12 155 306 093

2 20 26 492 12 607 25 440 413 915 > 106

25 61 1 174 30 747 851 757 > 106 > 106

30 139 2 432 63 433 > 106 > 106 > 106

10 7 509 66 444 62 4 647 589 036
15 30 3 127 406 101 1 865 140 408 > 106

3 20 130 12 280 > 106 63 412 > 106 > 106

25 390 38 414 > 106 > 106 > 106 > 106

30 1 011 99 078 > 106 > 106 > 106 > 106

10 10 16 626 > 106 99 154 950 > 106

5 15 64 175 731 > 106 3 180 > 106 > 106

20 335 > 106 > 106 106 845 > 106 > 106

Table 1: Average CPU times (in milliseconds) for computing the figure of merit (2) for
dmax = 2, 3 and 5, various s and k, with methods S, PS, DM, and MGL.
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table that MGL performs best in all cases, except when the number of points
is small (n = 210), in which case S performs better. For such a small number,
the execution time is very small anyway. For large s and n (n ≥ 225), MGL
is more than ten times quicker than the second best algorithm (PS).

6. Conclusion

Being able to compute t-values efficiently is critical for the practitioner
who wants to find quickly (in real time) good digital nets with arbitrary
values of s and k, arbitrary weights, etc., and for the researcher who wants
to study numerically the properties of figures of merit based on t-values. We
offer in this paper a new efficient algorithm to compute the t-value of a net
and of its projections, and to do so for a series of embedded nets as well. We
compare the performance of our algorithm with three other ones, proposed in
[24], [3] and [23]. We also implement these four algorithms in the open-source
software LatNet Builder [13] for the most commonly used base, b = 2.

According to our numerical comparisons, the method of [24] is the best
performer when s and k are small, the method of [3] performs better when s
is large and k is small, and our new method is the best performer when k is
large and either s is small or we consider only the projections of relatively low
order. The latter case is very relevant for practical applications. For example,
we can easily compute a figure of merit that accounts for the t-values of all
projections of order 3 or less for a net with 225 points in s = 100 dimensions,
whereas with all others methods, the cost of doing this is prohibitive.
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