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Abstract

In this paper, we investigate tensor recovery problems within the tensor singular value decompo-

sition (t-SVD) framework. We propose the partial sum of the tubal nuclear norm (PSTNN) of a

tensor. The PSTNN is a surrogate of the tensor tubal multi-rank. We build two PSTNN-based mini-

mization models for two typical tensor recovery problems, i.e., the tensor completion and the tensor

principal component analysis. We give two algorithms based on the alternating direction method

of multipliers (ADMM) to solve proposed PSTNN-based tensor recovery models. Experimental

results on the synthetic data and real-world data reveal the superior of the proposed PSTNN.

Keywords: tensor singular value decomposition (t-SVD), tubal multi-rank, tubal nuclear norm

(TNN), partial sum of the tubal nuclear norm (PSTNN), tensor completion, tensor robust principal

component analysis.

1. Introduction

The tensor, a multi-dimensional extension of the matrix, is an important data format and has

been applied in lots of real-world applications, for example, the video data recovery [1], the hy-

perspectral data recovery and fusion [2, 3], the personalized web search [4], and seismic data
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reconstruction [5]. Among these applications, how to accurately characterize and rationally utilize

the inner structure of these multi-dimensional data is of crucial importance [6].

In the matrix processing, low-rank models can robustly and efficiently handle two-dimensional

data of various sources, and the solutions are generally theoretically guaranteed in many applica-

tions [7, 8]. However, how to extend the low-rank definition from matrices to tensors is still an

open problem. The most two popular tensor rank definitions in the past decade are the CANDE-

COMP/PARAFAC (CP)-rank, which is related to the CANDECOMP/PARAFAC decomposition

[9], and Tucker-rank (or denoted as “n-rank” in [10]), which is corresponding to the Tucker de-

composition [11, 12].

In this paper, we fix our attention on a newly emerged tensor decomposition paradigm, the

tensor singular value decomposition (t-SVD), and the notion of the tensor rank derived from t-

SVD, i.e., the tubal multi-rank. The t-SVD was been initially proposed in [13, 14] and it allows

new extensions of familiar matrix analysis to the tensor while avoiding the loss of information

inherent in matricization or flattening of the tensor [15]. The tubal nuclear norm, which is a convex

surrogate of the tubal multi-rank, is utilized to handle the tensor completion problem by Zhang et

al. [16] and the tensor completion from sparsely corrupted observations by Jiang et al. [17].

The t-SVD is defined based on the tensor-tensor product (t-prod). Owing to its particular struc-

ture, the t-prod is equivalent to the matrix-matrix product after the Fourier transform. Meanwhile,

according to the definition, the TNN is equivalent to the matrix nuclear norm of the block diagonal

unfolding of the Fourier transformed tensor (See Eq. (31) in the Appendix for details). However, in

the matrix case, minimizing the nuclear norm would cause some unavoidable biases [18, 19]. For

example, the variance of the estimated data would be smaller than the original data when equally

shrink every singular value. Similarly, the estimated results may be lower-rank than the original

data. Therefore, following the research path in [19–21], we consider minimizing the proposed

partial sum of the tubal nuclear norm (PSTNN), which only consists of the small singular values.

On the one hand, minimizing the PSTNN would directly shrink the small singular values without

any actions on the large ones, resulting in low tubal multi-rank estimations without rank deficiency
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situations. On the other hand, the corresponding minimization problem is easy to optimize with

the proposed solver.

The main contributions are the following three aspects. First, we propose a surrogate of the

tensor tubal multi-rank, i.e., the PSTNN. Second, to optimize the PSTNN-based minimization

Problem, we extend the partial singular value thresholding (PSVT) operator, which was primarily

proposed in [18], for the matrices in the complex field, and demonstrate that it is the exact solution

to the PSTNN-based minimization problem. Third, we propose two PSTNN-based models to solve

the typical tensor recovery problems, i.e., the tensor completion and the tensor robust principal

component analysis. Afterward, two alternating direction method of multipliers (ADMM) algo-

rithms using the PSVT solver are developed to optimize two PSTNN based models. Moreover,

we conduct experiments on synthetic data and real-world data. The results illustrate that proposed

methods can effectively handle tensor recovery problems.

The organization of this paper is organized as follows. Section 2 presents some preliminaries.

In Section 3, we give the main results. Section 4 reports the experimental results. Finally, in Section

5, some conclusions are drawn.

2. Notation and preliminaries

Before giving the main results, we briefly introduce the basic tensor notations and exhibit the

t-SVD algebraic framework. The notations and definitions in this section are referred to [14–

16, 22, 23].

Throughout this paper, lowercase letters, e.g., x, boldface lowercase letters, e.g., x, boldface

upper-case letters, e.g., X, and boldface calligraphic letters, e.g., X , are respectively used to denote

scalars, vectors, matrices, and tensors. The (i1, i2, · · · , iN )-th element of an N -mode tensor is

denoted as xi1i2···iN . The inner product of two tensors X and Y , of the same size, is defined

as 〈X ,Y〉 :=
∑

i1,i2,··· ,iN
xi1i2···iN · yi1i2···iN . Then, the tensor Frobenius norm of X is defined as

‖X‖F :=
√
〈X ,X〉 =

√∑
i1,··· ,iN x

2
i1i2···iN .

We denote the Fourier transform along the third mode of a third-order tensor X ∈ Rn1×n2×n3
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as X̂ = fft(X , [], 3). Meanwhile, the inverse transformation is denoted asX = ifft(X̂ , [], 3). As

shown in [23], ‖X‖F = 1√
n3
‖X̂ ‖F . To save space, the definitions related to the t-SVD framework

are given in Appendix 6.1. We list all the notations in Table 2.

Table 1: Tensor notations

Notation Explanation

X ,X,x, x Tensor, matrix, vector, scalar.

xi1i2···iN The (i1, i2, · · · , iN )-th element of an N -mode tensor X .

〈X ,Y〉 The inner product of two same-sized tensors X and Y .

‖X‖F The Frobenius norm of a tensor X .

Â The Fourier transformed tensor of A.

A The block-diagonal form unfolding of Â. (Definition 6.5)

rankr(A) The tubal multi-rank of a tensor A ∈ Rn1×n2×n3 . (Definition 6.7)

‖A‖TNN The tubal nuclear norm (TNN) of a tensor A ∈ Rn1×n2×n3 . (Definition 6.8)

3. Main results

Minimizing the rank surrogate to enhance the low-dimensionality of the underlying target data

is an effective way to recover the multidimensional imaging data, which is naturally in the tensor

format, from incomplete or corrupted observed data. The tubal nuclear norm (TNN) is minimized

to enhance the low tubal multi-rank property of the multi-dimensional visual data for the tensor

completion problem in [16, 24]. The tensor nuclear norm, which is similar to the TNN but defined

with a factor 1
n3

in [23], is also minimized to promote the low-rankness for handling the RPCA

problem [23] and the outlier-RPCA problem [25].

In this section, the definition of the PSTNN is given at first. Then the PSVT-based solver for the

PSTNN-based minimization problem is presented. Subsequently, we propose the PSTNN-based

tensor completion model and Tensor RPCA model and their corresponding algorithms, respec-

tively.
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3.1. Partial sum of the tubal nuclear norm (PSTNN)

Our PSTNN is extended from the partial sum of singular values (PSSV) [18, 19]. The PSTNN

of a three way tensor A ∈ Rn1×n2×n3 is given as

‖A‖PSTNN ,
n3∑
i=1

‖Â(i)‖p=N . (1)

In (1), ‖·‖p=N is the PSSV [18, 19], which is defined as ‖X‖p=N =
∑min(m,n)

i=N+1 σi(X) for a matrix

X ∈ Cn1×n2 , where σi(X) (i = 1, . . . ,min(m,n)) denotes its i-th largest singular value. It can

be observed from Figure 1 that the proposed PSTNN is a high order extension of PSSV and the

definition of PSTNN maintains an explicit meaning within the t-SVD algebraic framework, i.e., the

sum of the red tubes in Figure 1.
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Figure 1: The illustration of the distinction and the connection between PSSV of a matrix (fisrt row) and PSTNN of a

tensor (second row).

It noteworthy that, according to Definition 6.7, the i-th element of the tubal multi-rank of a

tensor A is rank(Â(i)), and Definition 6.5 implies
∑n3

i=1 rank(Â(i)) = rank(A). Thus the l1 norm

(sum of the absolute values of a vector) of A’s tubal multi-rank equals to the rank of its block-

diagonal unfolding of A. That is

‖rankr(A)‖1 = rank(A). (2)

More precisely, the TNN (defined in Definition 6.8) is a convex relaxation of the l1 norm of a three

order tensor’s tubal multi-rank. Thus, the proposed PSTNN is also a surrogate of ‖rankr(A)‖1.
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3.2. The PSTNN-based minimization problem

In this subsection, we introduce the general solving scheme for the PSTNN-based minimization

problem, which is fundamental for solving the PSTNN-based tensor completion and PSTNN-based

robust principal component analysis problems in the subsequent two subsections. The PSTNN-

based minimization problem aims at restoring a tensor from its observation under PSTNN regular-

ization. For an observed tensor Y , the PSTNN-based minimization problem is:

X ∗ = arg

{
min
X

(
λ‖X‖PSTNN +

1

2
‖X − Y‖2F

)}
, (3)

where X and Y ∈ Rn1×n2×n3 , and λ is non-negative parameter, which controls the balance be-

tween the PSTNN regularization and the distance to the observation.

Considering the linearity of the Fourier transform and the property that ‖A‖2F = 1
n3
‖Â‖2F

for any X ,Y ∈ Rn1×n2×n3 , we have 1
2‖X − Y‖

2
F = 1

2n3
‖X̂ − Ŷ‖2F = 1

2n3

n3∑
k=1

‖X̂ (k) − Ŷ(k)‖2F .

Meanwhile, since ‖X‖PSTNN =
n3∑
i=1
‖X̂ (i)‖p=N and X = ifft(X̂ , [], 3), the minimization problem

in Eq. (3) is equivalent to

{X̂ (1)∗,X̂ (2)∗, · · · , X̂ (n3)∗}

= arg

{
min

X̂ (1),X̂ (2),··· ,X̂ (n3)

(
λ

n3∑
i=1

‖X̂ (i)‖p=N +
1

2n3

n3∑
k=1

‖X̂ (k) − Ŷ(k)‖2F

)}
.

(4)

Thus, the minimization problem in (4) can be decoupled into n3 matrix minimization problems

with respect to , i.e.,

X̂ (k)∗ = arg

{
min
X̂ (k)

(
λ‖X̂ (k)‖p=N +

β

2
‖X̂ (k) − Ŷ(k)‖2F

)}
, (5)

where X̂ (k), Ŷ(k) ∈ Cn1×n2 , β = 1/n3, and k = 1, 2, · · · , n3. The tensor optimization problem

(3) is herein transformed to n3 matrix optimization problems in (5) in the Fourier transform domain.

It should be note that, Oh et al. have proposed the exact solution of (5), which is indeed a PSSV-

based minmization problem, in [18, 19] for real matrices. Hence, the solving scheme in [18, 19]

should be generalized to the complex matrices.

Before extending the PSVT operator for the matrices in the complex field, we first restate the

von Neumann’s lemma [26–28].

6



Lemma 3.1 (von Neumann [26]). If A,B are complex m× n matrices with singular values

σA1 ≥ · · · ≥ σAmin(m,n), σB1 ≥ · · · ≥ σBmin(m,n)

respectively, then

|〈A,B〉| = |Tr(AHB)| ≤
min(m,n)∑
r=1

σAr σ
B
r . (6)

Moreover, equality holds in (6) ⇐⇒ A and B maintains the same right and left singular vectors,

i.e.,

A = Udiag(σ(A))VH and B = Udiag(σ(B))V H, (7)

where σ(A) = [σX1 , · · · , σAmin(m,n)] and σ(B) = [σB1 , · · · , σBmin(m,n)].

Then, we restate the corresponding theorem, which utilized the von Neumann’s lemma, in

[18, 19] and extend it to the complex matrices case in the meantime.

Theorem 3.1 (PSVT). Let A,B ∈ Cn1×n2 , which are two complex matrices, τ > 0, and l =

min(n1, n2). B can be written as the linear superposition of two items, i.e., B = B1 + B2 =

UB1DB1V
H
B1

+ UB2DB2V
H
B2

, where UB1 ,VB1 are the singular vector matrices corresponding

to the N largest singular values, and UB2 , VB2 from the (N + 1)-th to the last singular values. A

complex matrix PSSV minimization problem is

A∗ = arg

{
min
A

(
λ‖A‖p=N +

β

2
‖A−B‖2F

)}
. (8)

Then, the matrix PSSV minimization in (8) can be optimized by the PSVT operator as

A∗ = PN,τ (B) = UB(DB1 + Sτ [DB2 ])VH
B = B1 + UB2Sτ [DB2 ])VH

B2
, (9)

where DB1 = diag(σB1 , · · · , σBN , 0, · · · , 0), DB2 = diag(0, · · · , 0, σBN+1, · · · , σBl , ), and Sτ [·] =

sign(·) ·max(| · | − τ, 0) (τ = λ
β ) is the soft-thresholding operator.

The proof of Theorem 3.1 is exhibited in Appendix 6.2. Then, the solution of (5) can be

obtained as

X̂ ∗
(k)

= PN,τ
(
Ŷ(k)

)
. (10)

7



Algorithm 1 Solving (3) using PSVT
Input: B ∈ Rn1×n2×n3 , λ, the given tubal multi-rank rankr

Initialization: Â = zeros(n1 × n2 × n3), β = 1
n3

1: B̂ ← fft(B, [], 3), τ ← λ
β

2: for k = 1 : n3 do

3: N ← the k-th element of rankr

4: Â(k) ← PN,τ
(
B̂(k)

)
5: end for

6: A ← ifft(Â, [], 3)

Output: A ∈ Rn1×n2×n3

We summarize the steps to solve (3) in Algorithm 1.

In the following subsections, based on the proposed rank approximation, we can easily give

our proposed tensor completion model and tensor RPCA model.

3.3. Tensor completion using PSTNN

A tensor completion model using PSTNN is given as

min
X

‖X‖PSTNN

s.t. PΩ(X ) = PΩ(O),

(11)

where O,X ,Ω ∈ Rn1×n2×n3 are respectively the observed data and the underlying recover result,

a binary support indicator tensor. Zeros in Ω indicate the missing entries in the observed tensor.

PΩ(O) = Ω � O is the elementwise multiplication (Hardamard product) between the support

tensor Ω and the observed tensor Y . The constraint implies that the estimated tensor X agrees with

the observed tensor O in the observed entries.

Let

IΦ(X ) =


0, if X ∈ Φ,

∞, otherwise,
(12)
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where Φ := {X ∈ Rn1×n2×n3 : PΩ(X ) = PΩ(O)}. Thus, the tensor completion model in (11)

can be rewritten as:

min
X

IΦ(X ) + ‖X‖PSTNN. (13)

After introducing a auxiliary tensor, the problem (13) is equivalent to

min
X

IΦ(Y) + ‖X‖PSTNN

s.t. Y = X .
(14)

The augmented Lagrangian function of (14) is given as:

Lβ(X ,Y,M) =IΦ(Y) + ‖X‖PSTNN + 〈M,X − Y〉+
β

2
‖X − Y‖2F

=IΦ(Y) + ‖X‖PSTNN +
β

2
‖X − Y +

M
β
‖2F + C,

(15)

whereM is the Lagrangian multiplier, β is the Lagrange penalty parameter, and C = −β
2 ‖
M
β ‖

2
F is

constant with respect to X and Y . Following the framework of ADMM [29], which has shown its

effectiveness for solving large scale optimization problems [30–32], we then iteratively update the

variables X , Y by solving corresponding subproblems and the multiplierM.

Step 1: updating X . The X -subproblem is

X k+1 = arg

{
min
X

(
‖X‖PSTNN +

β

2
‖X − Yk +

Mk

β
‖2F
)}

, (16)

the solution of which can be exactly calculated by Algorithm 1.

Step 2: updating Y . The Y-subproblem is

Yk+1 = arg

{
min
Y

(
IΦ(Y) +

β

2
‖X k+1 − Y +

Mk

β
‖2F
)}

. (17)

By minimizing the Y-subproblem, we have 1Φ(Y) = 0, i.e., Y ∈ Φ. Thus, the solution of the

Y-subproblem is given as follows:
PΩ(Yk+1) = PΩ(O),

PΩC (Yk+1) = PΩC (X k+1 +
Mk

β
),

(18)

where ΩC denotes the complementary set of Ω.
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Step 3: updating multiplier. According to the standard ADMM, the multiplier is updated as fol-

lows:

Mk+1 =Mk + β(X k+1 − Yk+1). (19)

Finally, Algorithm 2 presents the pseudocode for solving the proposed PSTNN-based tensor

completion (TC) model.

Algorithm 2 The pseudocode for solving the PSTNN-based TC model (11) by ADMM
Input: The observed tensor O ∈ Rn1×n2×n3 , the support of the observed entries Ω, the given

tubal multi-rank rankr, stopping criterion ε, the Lagrange penalty parameter β.

Initialization: X 0 = rand(n1 × n2 × n3), PΩ(X 0) = PΩ(O), Y0 = X 0, M0 = zeros(n1 ×

n2 × n3).

1: while not converged do

2: update X k+1 with
(
Yk − Mk

β

)
and τ = n3

β by algorithm 1

3: Yk+1 ← PΩ(O) + PΩC (X k+1 + Mk

β )

4: Mk+1 ←Mk + β(X k+1 − Yk+1)

5: Check the convergence conditions ‖X k+1 − X k‖∞ ≤ ε, ‖Yk+1 − Yk‖∞ ≤ ε, ‖X k+1 −

Yk+1‖∞ ≤ ε

6: end while

Output: The completed tensor X ∈ Rn1×n2×n3 .

3.4. Tensor RPCA using PSTNN

As mentioned previously, the goal of the tensor RPCA problems is to recover the low-rank ten-

sors from sparsely corrupted observations. A tensor RPCA model using PSTNN can be formulated

as
min
L,E

‖L‖PSTNN + λ‖E‖1

s.t. O = L+ E ,
(20)

where O,L, E ∈ Rn1×n2×n3 are the observed data, the low-rank part, and the sparse corruptions,

respectively, and λ is a non-negative parameter. Here, we minimize ‖E‖1, which is the `1 norm of
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E , i.e., the sum of absolute values of entries in E , to enhance the sparsity of E .

The augmented Lagrangian function of (20)is

Lβ(L, E ,M) =‖L‖PSTNN + λ‖E‖1 + 〈M,O − L− E〉+
β

2
‖O − L − E‖2F

=‖L‖PSTNN + λ‖E‖1 +
β

2
‖O − L − E − M

β
‖2F + C,

(21)

where β is the Lagrange parameter,M is the Lagrangian multiplier, and C = −β
2 ‖
M
β ‖

2
F is constant

with respect to L and E .

Similar to the updating scheme in the previous section, we then iteratively update the variables

X , Y by solving corresponding subproblems and the multiplierM, using ADMM [29].

Step 1: updating L. The L-subproblem is exhibited as follows:

Lk+1 = arg

{
min
L

(
‖L‖PSTNN +

β

2
‖O − L − Ek +

Mk

β
‖2F
)}

. (22)

Again, we utilize Algorithm 1 to solve this subproblem.

Step 2: updating E . The E-subproblem is

Ek+1 = arg

{
min
E

(
λ‖E‖1 +

β

2
‖O − Lk+1 − E − M

k

β
‖2F
)}

. (23)

The solution of (23) can be obtained with the soft-thresholding operator as:

Ek+1 = Sλ
β

[
O − Lk+1 +

Mk

β

]
. (24)

Step 3: updating multiplier. The multiplier is updated as follows:

Mk+1 =Mk + β(O − Lk+1 − Ek+1). (25)

Algorithm 3 shows the pseudocode for solving the proposed PSTNN-based tensor robust com-

ponent analysis (TRPCA) model.
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Algorithm 3 The pseudocode for solvingthe PSTNN-based TRPCA model (20) by ADMM
Input: The observed tensor O ∈ Rn1×n2×n3 , the given tubal multi-rank rankr, parameter λ, stop-

ping criterion ε, the Lagrange penalty parameter β.

Initialization: L0 = O, E0 =M0 = zeros(n1 × n2 × n3).

1: while not converged do

2: update X k+1 with
(
O − L− Ek − Mk

β

)
and τ = n3

β by algorithm 1

3: Ek+1 ← Sλ
β

[
O − Lk+1 + Mk

β

]
4: Mk+1 ←Mk + β(O − Lk+1 − Ek+1)

5: Check the convergence conditions ‖Lk+1 − Lk‖∞ ≤ ε, ‖Ek+1 − Ek‖∞ ≤ ε, ‖Lk+1 +

Ek+1 −O‖∞ ≤ ε

6: end while

Output: The low PSTNN tensor L and the sparse tensor E

4. Experiments

To examine the performance of the proposed methods, we compare the proposed methods 1

with the TNN-based methods 2on the simulated data and different real-world data 3 We adopt two

quantitative assessments to accurately measure the quality of the reconstructions. The first one is

the peak signal-to-noise ratio (PSNR), which can be computed by PSNR is defined as

PSNR = 10 log10

Ȳ2
GT

1
n2 ‖Y − YGT‖2F

,

where YGT, ȲGT, and Y are respectively the ground truth tensor, the maximum pixel value of the

ground truth tensor, and the reconstructed tensor. The second one is the structural similarity index

1Our Matlab code is available at https://github.com/TaiXiangJiang/PSTNN.
2Corresponding codes can be downloaded at https://sites.google.com/site/canyilu/ and https://sites.google.com/site/

jamiezeminzhang/.
3In this paper, we only conduct experiments on the third-order tensors. However, as the t-SVD framework, which is

originally suggested for third-order tensors, has been extended for tensors with arbitrary dimensions [33, 34]. Therefore,

the proposed methods can be generalized for high order tensors.
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(SSIM) [35]. The larger values of PSNR and SSIM are corresponding to the higher quality of the

results. All the numerical experiments are conducted on a PC with a 3.30 GHz CPU and 16 GB

RAM.

Throughout our experiments, we assume that theN in (1) is known. We directly use the ground

truth N in the synthetic experiments, while we estimate N by counting the number of the largest

1% singular values of the first slice of the clean tensor after fast Fourier transform along the third

direction. When the clean data is unavailable, we recommend the heuristic strategies proposed in

[36], i.e., the rank-decreasing scheme and the rank-increasing scheme. These two strategies start

to form an overestimated or an underestimated N , and then dynamically adjust the estimation by

QR decomposition. The effectiveness of these two strategies has also been validated in [37, 38].

4.1. Synthetic data

To synthesize the ground-truth tensor, we perform a t-prod A = P ∗ Q, where P ∈ Rn1×r×n3

andQ ∈ Rr×n2×n3 are independently sampled from an i.i.d. Gaussian distributionN (0, 1√
n1×n3

).

Then, the tubal multi-rank of tensor A ∈ Rn1×n2×n3 is [r, r, · · · , r]>.

4.1.1. Tensor completion

For the tensor completion task, we try to recover A from the partial observation which is

randomly sampled m entries of A. To verify the robustness of the TNN-based TC method and the

proposed PSTNN-based TC method, we conducted the experiments with respect to data sizes, the

tubal multi-rank rankr, the sampling rate, i.e. m
n1×n2×n3

, respectively. We examine the performance

by counting the number of successes. If the relative square error of the recovered Â and the ground

truthA, i.e. ‖A−Â‖
2
F

‖A‖2F
, is less than 10−3, then the recovery is counted as a successful one. We repeat

each case 10 times, and each cell in Figure 2 reflects the success percentage, which is computed by

the successful times dividing 10. Figure 2 illustrates that the proposed PSTNN-based TC method

is more robust than the TNN- based TC method, because of bigger brown areas.
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Figure 2: Success ratio for synthetic data of two different size and varying tubal multi-ranks with varying sampling rate.

The left figures illustrate the empirical recovery rate by minimizing the TNN while the right figures by minimizing the

PSTNN. Each entry in the figures reflects the proportion of the successful recoveries when conducting 10 independent

experiments. The white dashed lines are placed on the diagonal line for easier comparison.
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Figure 3: The exact recovery results when sparsity and the tubal multi-rank are varying. Each entry in the figures reflects

the proportion of the successful recoveries when conducting 10 independent experiments. The white dashed lines are

placed on the diagonal line for easier comparison.
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4.1.2. Tensor robust principal components analysis

For the tensor robust principal components analysis task, A is corrupted by a sparse noise

with sparsity ρs and uniform distributed values. We try to recover A using Algorithm 3 and the

TNN-based tensor completion method. The setting of the experiments in this part is similar to

that in Section 4.1.1. We conducted the experiments with respect to data sizes, the tubal multi-

rank, sparsity ρs, respectively. We report the exact recovery results in Figure 3. We repeat each

case 10 times, and each cell in Figure 3 reflects the success percentage, which is computed by the

successful times dividing 10. From Figure 3, we can find that our PSTNN TC method is more

robust than the TNN-based TC method, because of the smaller blue areas.

4.1.3. Sensitivity to initialization

Figure 4: The histogram of rooted relative squared errors when the initializations are randomly set for the TC task.

The converged solution may be different with different initializations, on account of that the

proposed objective function is non-convex. It is necessary to examine the sensitivity of the pro-

posed method against different initializations. In this subsection, to recover a 25× 25× 30 tensor

with tubal multi-rank 5 and with 10% missing entries in the TC task, we randomly initialize the

tensor for 1000 times. The distribution of the rooted relative squared errors is shown in Figure 4.

Although the convergence the proposed algorithms has not been proved with the theoretical guaran-

tee, we can observe from Figure 4 that the distribution of the solutions with different initializations

concentrates on the near region of the ground truth.
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4.2. Tensor completion for the real-world data

In this subsection, we conduct experiments on the real-world data, including three video data

(“pedestrian”4, “news”, and “hall”5), the MRI data6 and the multispectral image (MSI) data7. The

compared methods consist of HaLRTC [6], the TNN-based TC method [16], and our PSTNN-based

TC method. The ratio of the missing entries is set as 80%. Figure 5 exhibits one frame/band/slice

of the completion results. From Figure 5, we can conclude that the visual quality of the results

obtained by our PSTNN-based TC method is higher than those by HaLRTC and TNN. The quan-

titative comparisons are shown in Table 2, our method obtained the best results with respect to

PSNR and SSIM. The outstanding performance of the PSTNN method on varied real-world data

illustrates that the PSTNN is a more precise characterization of the low tubal multi-rank structure.

Table 2: Quantitative comparisons of the completion results by HaLRTC, TNN and PSTNN on the real-world data.

Data Size Index Observed HaLRTC TNN PSTNN

Video

“pedestrian” 158× 238× 24
PSNR 7.1475 22.6886 26.2793 26.7292
SSIM 0.0459 0.6786 0.8187 0.8288

“news” 158× 238× 24
PSNR 9.7447 29.9569 31.9288 32.7566
SSIM 0.0618 0.9100 0.9236 0.9296

“hall” 158× 238× 24
PSNR 5.5882 31.6016 33.4691 34.0856
SSIM 0.0244 0.9585 0.9605 0.9744

MRI 181× 217× 40
PSNR 10.3162 24.3162 26.9626 27.9680
SSIM 0.0887 0.7175 0.8144 0.8236

MSI 256× 256× 31
PSNR 13.8113 24.0003 28.9523 30.8586
SSIM 0.1353 0.6703 0.8695 0.9026

4http://www.changedetection.net
5http://trace.kom.aau.dk/yuv/index.html
6http://brainweb.bic.mni.mcgill.ca/brainweb/selection normal.html
7http://www1.cs.columbia.edu/CAVE/databases/multispectral
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Original Observed HaLRTC TNN PSTNN

Figure 5: Results for the tensor completion for the real-world data. From top to bottom: one frame of the video data

(“pedestrian”, “news”, and “hall”), one slice of the MRI data, one band of the MSI data.
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4.3. Tensor robust principal components analysis for the color image recovery

In this subsection, we test the TRPCA methods on the task of the color image recovery. Each

image is corrupted by the sparse noise with sparsity 0.2. We compare our PSTNN-based TRPCA

method with the sum of nuclear norm [6](SNN)-based TRPCA method and TNN-based TRPCA

method [39] on the 4 high quality color images from the Kodak PhotoCD Dataset 8 and the home-

page9 of the author of [39].

Table 3: Quantitative comparisons of the image recovery results of SNN, TNN and PSTNN on the image data.

Image Size Index Observed SNN TNN PSTNN

“starfish” 481× 321× 3
PSNR 14.8356 25.8286 26.411 28.8492
SSIM 0.5085 0.9440 0.9495 0.9596

“door” 256× 256× 3
PSNR 14.9029 27.9449 31.4588 33.4505
SSIM 0.6200 0.9777 0.9882 0.9918

“hat1” 256× 256× 3
PSNR 15.7203 23.7104 26.3266 28.5517
SSIM 0.4649 0.8993 0.9498 0.9559

“hat2” 256× 256× 3
PSNR 15.3731 28.1310 31.4964 32.1626
SSIM 0.4086 0.9654 0.9789 0.9810

The results are shown in Figure 6. From Figure 6, we can find the results obtained by our

PSTNN-based TRPCA method is of higher visual quality, considering the preservation of the im-

age details and textures. The SNN-based TRPCA method tends to output blurry results. As for

quantitative comparisons exhibited in Table 3, our method obtained the best results with respect

to PSNR and SSIM while The TNN-based TRPCA method achieves the second-best place. The

comparison in this subsection illustrates that our PSTNN-based TRPCA method is more efficient

and robust than the SNN-based and TNN-based TRPCA methods.

Meanwhile, as the objective function in Eq. (20) is non-convex, our algorithm based on ADMM

8http://r0k.us/graphics/kodak/
9https://github.com/canyilu/LibADMM

19

http://r0k.us/graphics/kodak/
https://github.com/canyilu/LibADMM


Original Observed SNN TNN PSTNN

Figure 6: Results for the image recovery task.

Figure 7: The objective function value in Eq. (20) and the value of the augmented Lagrangian function in Eq. (21)

with respect to iterations when dealing with the image “starfish”. (Parameters: β = 1, λ = 1/
√

max(n1, n2) ∗ n3 =

0.0263, and ε = 10−7.)
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should be considered as a local optimization method [29]. To show its effectiveness of minimizing

the objective function, we exhibit the changing of the objective function value, as well as the value

of the augmented Lagrangian function in Eq. (21), with respect to iterations in Figure 7. The

decaying curves illustrate that our algorithm effectively minimizes the objective function value.

5. Conclusions

In this paper we propose a novel surrogate of the tensor tubal multi-rank, i.e., PSTNN, within

the t-SVD framework. We extend the PSVT operator for the matrices in the complex field to solve

the proposed PSTNN-based minimization problem, which is fundamental for solving the subse-

quent PSTNN-based tensor recovery models. Two PSTNN-based minimization models for tensor

completion and tensor robust principal component analysis are proposed. Two efficient ADMM

algorithms, using the PSVT solver, have been developed to solve the models. The effectiveness of

the proposed PSTNN-based methods is illustrated by the experiments on the data of various types.
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6. Appendix

6.1. The definitions in the t-SVD framework

Definition 6.1 (t-product [14]). The t-product C = A∗B ofA ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3

is a tensor of size n1 × n4 × n3, where the (i, j)-th tube cij: is given by

cij: = C(i, j, :) =

n2∑
k=1

A(i, k, :)~ B(k, j, :) (26)

where ~ denotes the circular convolution between two tubes of same size.

Interpreted in another way, a 3-D tensor of size n1×n2×n3 can be viewed as a n1×n2 matrix

with treating the basic units as a tube. In the t-prod of two tensors, the interaction of the two basic

units is the circular convolution instead of the multiplication.

Definition 6.2 (tensor conjugate transpose [14]). The conjugate transpose of a tensorA ∈ Rn2×n1×n3

is tensor AH ∈ Rn1×n2×n3 obtained by conjugate transposing each of the frontal slice and then

reversing the order of transposed frontal slices 2 through n3:(
AH)(1)

=
(
A(1)

)H
and(

AH)(i) =
(
A(n3+2−i)

)H
, i = 2, · · · , n3.

Definition 6.3 (identity tensor [14]). The identity tensor I ∈ Rn1×n1×n3 is defined as a tensor

whose first frontal slice is the n1×n1 identity matrix, and the other frontal slices are zero matrices.

Definition 6.4 (orthogonal tensor [14]). A tensor Q ∈ Rn1×n1×n3 is an orthogonal tensor if

QH ∗ Q = Q ∗ QH = I. (27)
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Definition 6.5 (block diagonal form [14]). A is used to denote the block-diagonal form unfolding

of the Fourier transformed tensor of A, i.e., Â. That is

A , blockdiag(Â)

,


Â(1)

Â(2)

. . .

Â(n3)

 ∈ Cn1n3×n2n3 .
(28)

It is not difficult to find that AH = AH, i.e., the block diagonal form of a tensor’s conjugate

transpose equals to the matrix conjugate transpose of the tensor’s block diagonal form. Further

more, for any tensor A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , we have

A ∗ B = C ⇔ A · B = C,

where · is the matrix product.

Definition 6.6 (f-diagonal tensor [14]). We call a tensor A ∈ Rn1×n2×n3 f-diagonal if all of its

frontal slices are the diagonal matrices.

Theorem 6.1 (t-SVD [14]). For A ∈ Rn1×n2×n3 , the t-SVD of A is as the following form

A = U ∗ S ∗ VH (29)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are both orthogonal tensors, and S ∈ Rn1×n2×n3 is

an f-diagonal tensor.

The t-SVD is illustrated in Figure 8 and can be efficiently computed by the frontal slice wise

singular value decomposition (SVD) after Fourier transform.

Definition 6.7 (tubal multi-rank [40]). For a three way tensor A ∈ Rn1×n2×n3 , its tubal multi-

rank, denoted as rankr(A), is defined as a vector, whose i-th (i = 1, 2, · · · , n3) element represents

the rank of the i-th frontal slice of Â i.e.,

rankr(A) = [rank(Â(1)), rank(Â(2)), · · · , rank(Â(n3))]>. (30)
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Figure 8: The t-SVD of an n1 × n2 × n3 tensor.

Definition 6.8 (tubal nuclear norm (TNN) [40]). The tubal nuclear norm of a tensorA ∈ Rn1×n2×n3 ,

denoted as ‖A‖TNN, is defined as the sum of singular values of all the frontal slices of A.

In particular,

‖A‖TNN , ‖A‖∗ =

n3∑
i=1

‖Â(i)‖∗. (31)

6.2. The proof to Theorem 3.1

Proof to Theorem 3.1 Lets consider A = UADAV
H
A =

∑l
i=1 σi(A)uiv

H
i , where UA =

[u1, · · · ,um] ∈ (U)m, VA = [v1, · · · ,vm] ∈ (V )n and DA = diag(σ(A)), where the singular

values σ(·) = [σ1(·), · · · , σl(·)] > 0 are sorted in a non-increasing order. Also we define the

function J(A) as the objective function of (8). The first term of (8) can be derived as follows:

1

2
‖A−B‖2F =

1

2

(
‖B‖2F − 2 < A,B > +‖A‖2F

)
=

1

2

(
‖B‖2F − 2

l∑
i=1

σi(A)uHi Bvi +

l∑
i=1

σi(A)2

) (32)

In the minimization of (32) with respect to A, ‖B‖2F is regarded as a constant and thus can be ig-

nored. For a more detailed representation, we change the parameterization of A to (UA,VA,DA)

and minimize the function:

J(UA,VA,DA) =
1

2

l∑
i=1

(
−2σi(A)uHi Bvi + σi(A)2

)
+ τ

l∑
i=N+1

σi(A) (33)

From von Neumann’s lemma, the upper bound of uHi Bvi is given as σi(B) = max{uHi Bvi}

for all i when UA = UB and VA = VB . Then (33) becomes a function depending only on DA as
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follows:

J(UB,VB,DA) =
1

2

l∑
i=1

(
−2σi(A)σi(B) + σi(A)2

)
+ τ

l∑
i=N+1

σi(A)

=
1

2

N∑
i=1

(
−2σi(A)σi(B) + σi(A)2

)
+

1

2

l∑
i=N+1

(
−2σi(A)σi(B) + σi(A)2 + 2τσi(A)

)
.

(34)

Since (34) consists of simple quadratic equations for each σi(A) independently, it is trivial to

show that the minimum of (34) is obtained at D̂A = diag (σ̂(A)) by derivative in a feasible domain

as the first-order optimality condition, where σ̂(A) is defined as

σ̂(A) =


σi(B), if i < N + 1,

max (σi(B)− τ, 0) , otherwise.
(35)

Hence, the solution of (8) is A∗ = UBD̂AV
H
B . This result exactly corresponds to the PSVT

operator where a feasible solution A∗ = UB(DB1 + Sτ [DB2 ])VH
B exists. �
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