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Abstract

An a posteriori verification method is proposed for the generalized real-symmetric eigenvalue problem and is applied

to densely clustered eigenvalue problems in large-scale electronic state calculations. The proposed method is real-

ized by a two-stage process in which the approximate solution is computed by existing numerical libraries and is

then verified in a moderate computational time. The procedure returns intervals containing one exact eigenvalue in

each interval. Test calculations were carried out for organic device materials, and the verification method confirms

that all exact eigenvalues are well separated in the obtained intervals. This verification method will be integrated

into EigenKernel (https://github.com/eigenkernel/), which is middleware for various parallel solvers for the

generalized eigenvalue problem. Such an a posteriori verification method will be important in future computational

science.
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1. Introduction

A crucial issue in verification methods is application to large-scale scientific or industrial computations on super-

computers. Many numerical solvers have been proposed for modern massively parallel supercomputers, and applica-

tion researchers would like to compare solvers both in terms of computational speed and reliability. The concept of a

posteriori verification methods is proposed in order to meet the needs of application researchers.

A posteriori verification methods have the workflow shown in Fig. 1. An approximate solution is first obtained

and then verified. The former and latter procedures are referred to as a solver and a verifier, respectively. The goal of

the present study is to integrate the verifier routine, as an optional function, to existing numerical solver libraries.

Solver
(in existing 
 numerical  library)

       Verifier
(present work) 

Approximate
 solution

Verified
 solution

Figure 1: Schematic diagram of the workflow with an a posteriori verification method.

The present research is motivated by large-scale electronic state calculation, a major field in computational ma-

terial science and engineering. As explained in Appendix A, a mathematical model is used for the fundamental

Schrödinger-type equation, and the problem is reduced to the generalized real-symmetric matrix eigenvalue problem

Axk = λkBxk (1)
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under the generalized orthogonality condition

xT
i Bx j =

{

1 if i = j

0 otherwise
, (2)

where both A and B are real-symmetric n × n matrices, with B being positive definite. Here, we assume that

λ1 ≤ λ2 ≤ · · · ≤ λn.

Applying our results to problems with complex Hermitian matrices is straightforward.

For large-scale electronic state calculation, many eigenvalues are densely clustered or almost degenerate, and

distinguishing them numerically may be difficult. In order to obtain reliable results, we consider verification methods

for generalized eigenvalue problems. For the sake of completeness as verification methods, we also need to take into

account all numerical errors that occur when matrices A and B are generated from the fundamental Schrödinger-type

equation. Although we do not consider the fundamental Schrödinger-type equation in detail herein, we briefly discuss

this equation in Appendix A.

One of the authors (T. H.) developed a middleware EigenKernel [1, 2, 3] with various parallel solvers for gener-

alized eigenvalue problems and plans to add a verifier routine. The total elapsed time Ttot is the sum of the times for

solver Tsol and verifier Tveri (Ttot = Tsol + Tveri). We attempt to construct the verifier algorithm so that the time for

the verifier gives a moderate fraction (Tveri ≤ Tsol). Since the verifier can use the highly optimized routines of matrix

multiplication, the verifier is suitable for high-performance computing on supercomputers.

In the solver procedure, approximate solutions (λ̂k, x̂k), k = 1, 2, . . . , n, such that

Ax̂k ≈ λ̂kBx̂k (3)

are obtained by any numerical solver algorithm. A verifier procedure gives the difference between the exact and

approximate solutions, such as |λk − λ̂k | or ‖xk − x̂k‖. If the relation |λk − λ̂k | ≤ rk is obtained with a given positive

number rk, for example, this indicates that the exact solution (λk) lies in a disk having a center and radius of λ̂k and

rk, respectively. For this purpose, a number of enclosure methods have been developed, e.g., [4, 5, 6]. In the present

paper, we propose a method of enclosing all eigenvalues that is straightforward, efficient, and easy to implement on

supercomputers. The proposed method is based on Yamamoto’s theorem [7] and is essentially the same as the method

proposed in a previous paper [6]. In other words, we specialize the previous method [6] for generalized real-symmetric

eigenvalue problems. Note that it is not possible in general to state that a method is better or worse than other methods

because this depends on the purpose. We compare the advantages and disadvantages of these enclosure methods in

Section 3.

The a posteriori verification strategy is important mainly with regards to three aspects. First, numerical methods

for the densely clustered eigenvalue problem have potential difficulties in computing reliable numerical solutions,

as explained above. Second, various numerical algorithms have been proposed for efficient parallel computations

that are suitable for current and next-generation supercomputers. Application researchers would like to compare these

methods with respect to both computational speed and numerical reliability. Third, the emergence of machine learning

has enhanced the design of computer architecture for the acceleration of low-precision (single- or half-precision)

calculation. The efficient use of low-precision calculation, typically in mixed-precision calculation, will be important

in any high-performance computational science field [8, 9]. A posteriori verification methods guarantee satisfactory

numerical reliability when low-precision calculation is used.

The remainder of the present paper is organized as follows. Section 2 explains the physical and mathematical

backgrounds. The proposed verification method and numerical examples are presented in Sections 3 and 4, respec-

tively. Section 5 presents a summary and an outlook for future research.

2. Background

2.1. Large-scale electronic state calculation and densely clustered eigenvalue problem

The present electronic state calculation is briefly introduced in Appendix A. The matrix size n is approximately

proportional to the number of the atoms, molecules, or electrons in the material. An eigenvalue (λk) or an eigenvector

(xk) indicates the energy and the wavefunction, respectively, of an electron.
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The present research is motivated, in particular, by a previous study [10], in which we focused on the participation

ratio [11, 12] defined for a vector v ≡ (v1, v2, ...., vn), as

P ≡ P(v) =

















n
∑

j=1

|v j|4
















−1

. (4)

The participation ratio is a measure of the spatial extension of the electronic wavefunction and governs the electronic

device properties. A dense eigenvector, i.e., a vector that has only a few components that are negligible in terms

of absolute value, has a large participation ratio. The corresponding electronic wavefunction is extended through the

material and can contribute to electrical current. A sparse eigenvector, i.e., a vector that has only a few components that

are large in terms of absolute value, indicates a small participation ratio. The corresponding electronic wavefunction

is localized in the material and cannot contribute to electrical current. An interesting research target in a large-scale

problem is an ‘intermediate’ electronic wavefunction or a wavefunction that shows intermediate properties between

extended and localized wavefunctions. Such ‘intermediate’ wavefunctions appear, for example, in Fig. 1 of Ref. [12]

or Fig. 3 of Ref. [10].

The densely clustered eigenvalue problem in (1) appears among large-scale calculations and is illustrated in Fig. 2.

In the problem, the difference of sequential eigenvalues δk ≡ λk+1 − λk, k = 1, 2, . . . , n − 1, tends to be proportional to

1/n (δk ∝ 1/n). Consequently, many eigenvalues are densely clustered or almost degenerate (δk → 0) in a large-matrix

problem (n→ ∞) and distinguishing these eigenvalues numerically may be difficult.

It is crucial to distinguish each eigenvalue numerically among densely clustered eigenvalues, because the partici-

pation ratio and other physical quantities are defined for each eigenvector. If two calculated eigenvalues λ̂k and λ̂k+1

cannot be distinguished in the numerical calculation, or if the two eigenvalues are recognized, unphysically, to be

degenerate, then the corresponding eigenvectors x̂k and x̂k+1 cannot be defined uniquely. In this case, the participation

ratio values P(x̂k) and P(x̂k+1) are not defined uniquely and any discussion of these values will be meaningless.

(a)

(b)

n = (small)

n = (large)

(c) n = (small)

(d) n = (large)

Figure 2: Schematic diagram of a densely clustered eigenvalue problem in large-scale electronic state calculations. (a), (b) Eigenvalue distribution

in (1) with (a) small or (b) large matrix size n. A cross indicates an eigenvalue on the real axis. The difference of sequential eigenvalues tends to be

proportional to 1/n. (c), (d) Materials with (c) small or (d) matrix size n. Ovals indicate molecules. The matrix size n is proportional to the size of

the molecules nmol (n ∝ nmol).

2.2. Numerical solvers for the generalized eigenvalue problem

Here, an overview is given for the parallel dense-matrix solver of the generalized eigenvalue problem of (1), in

particular, for the variety of used algorithms. The solver algorithm for (1) consists of four procedures: (i) Cholesky

decomposition of B

B = R⊤R, (5)

with an upper triangular matrix R, (ii) reduction to the standard eigenvalue problem (SEP)

A′yk = λkyk, (6)

with

A′ ≡ R−⊤AR−1, (7)
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(iii) solution of the standard eigenvalue problem (6), and (iv) transformation of the eigenvectors

xk = R−1yk. (8)

The set of procedures (i), (ii), and (iv) is referred to as reducer, and procedure (iii) is referred to as the SEP solver.

Although ScaLAPACK [13, 14] is the de facto standard parallel numerical library, this library was developed

mainly in the 1990s, and several routines exhibit severe bottlenecks on modern massively parallel supercomputers.

Novel solver libraries of ELPA [15, 16] and EigenExa [17, 18] were proposed in order to overcome the bottlenecks.

The ELPA code was developed in Europe under tight collaboration between computer scientists and material science

researchers, and its main target application is FHI-aims [19, 20], which is a well-known electronic state calculation

code. The EigenExa code, on the other hand, was developed at RIKEN in Japan. Importantly, the ELPA code has

routines optimized for x86, IBM Blue-Gene, and AMD architectures, whereas the EigenExa code was developed to

be optimal mainly on the K computer, which is a Japanese flagship supercomputer. Both ScaLAPACK and ELPA

provide the reducer routines, and all of ScaLAPACK, ELPA, and EigenExa provide the SEP solver routines.

Since the computational performance depends both on the problem and the architecture, it is, in principle, possible

to construct a ‘hybrid’ workflow in which the reducer routine is chosen from one library and the SEP solver routine

is chosen from another library, so as to realize optimal performance. The middleware EigenKernel was developed

in order to realize such hybrid workflows. An obstacle to realizing the hybrid workflow is the difference of matrix

distribution schemes between different libraries. EigenKernel provides data conversion routines between libraries and

surmounts this obstacle.

Figure 3 shows the possible workflows for a future version of EigenKernel with the a posteriori verification routine.

The SEP solvers and the reducers in Fig. 3 are briefly explained. The SEP solver and the two reducers in ScaLAPACK

are the traditional routines. The SEP solvers of ‘ELPA1’ and ‘Eigen_s’ are also based on the traditional algorithm

with tridiagonalization. The other two solvers ‘ELPA2’ and ‘Eigen_sx’ and the reducer in ELPA are based on non-

traditional algorithms for better performance in massive parallelism. The detailed algorithms for these routines are

found in Ref. [3].

ELPA

 Eigen_sx
(EigenExa)

  Eigen_s
(EigenExa)

ELPA2
(ELPA)

ELPA1
(ELPA)ScaLAPACK

Reducer

SEP solver

    ScaLAPACK
(with pdsyngst)

  ScaLAPACK
(with pdsygst)

Verifier (present work)

Figure 3: Schematic diagram of the possible hybrid workflows for a future version of EigenKernel with the a posteriori verification routine. Two

routines in ScaLAPACK and one routine in ELPA are available for the reducer, whereas one routine in ScaLAPACK, two routines in ELPA, and

two routines in EigenExa are available for the SEP solver. The a posteriori verification routine is commonly used among the workflows.
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2.3. Verified numerical computations

We briefly explain how to obtain mathematically rigorous numerical results using floating-point arithmetic. Let F

and IF be sets of floating-point numbers and intervals, respectively. We use bold-faced letters for interval matrices, the

elements of which are intervals. For an interval matrix C, Cinf and Csup denote the left and right endpoints, respectively,

such that C = [Cinf ,Csup], i.e., Ci j = [(Cinf)i j, (Csup)i j] for all (i, j) pairs, which is known as “inf-sup” form. In addition,

Cmid and Crad denote the midpoint and the radius of C, respectively, such that C = [Cmid − Crad,Cmid + Crad], which

is known as “mid-rad” form. Let fl(·), fl▽(·), and fl△(·) be computed results by floating-point arithmetic as defined

in IEEE 754 with rounding to the nearest (roundTiesToEven), rounding downwards (roundTowardNegative), and

rounding upwards (roundTowardPositive), respectively. For a given matrix C = (ci j) ∈ Rn×n, the notation |C| indicates

|C| = (|ci j|) ∈ Rn×n, and the same applies to vectors, i.e., the absolute value is taken componentwise.

Next, we review basic interval matrix multiplication (cf. [21]). For two point matrices P,Q ∈ F
n×n, the matrix

product PQ ∈ Rn×n can be enclosed as

PQ ∈ [fl▽(PQ), fl△(PQ)], (9)

where two matrix multiplications are required. For a point matrix P ∈ F
n×n and an interval matrix Q ∈ IF

n×n, the

product PQ can efficiently be enclosed using mid-rad form of Q as

PQ ⊂ [fl▽(PQmid − T ), fl△(PQmid + T )], T = fl△(|P|Qrad), (10)

which involves three matrix multiplications. Although the inf-sup form can also be used for calculating the enclosure

of PQ, the inf-sup form cannot be written with products of point matrices simply, so that it is much more difficult for

the inf-sup form to achieve high-performance in practice, as compared to the mid-rad form [21]. If Q is given by the

inf-sup form [Qinf ,Qsup], we can easily transform Q into the mid-rad form, for example, by

Qmid = fl△((Qinf + Qsup)/2), Qrad = fl△(Qmid − Qinf),

which satisfies [Qinf ,Qsup] ⊂ [Qmid − Qrad,Qmid + Qrad].

There exist several implementations of the above interval arithmetic for matrix multiplication, e.g., C-XSC [22],

a C++ library, and INTLAB [23], a Matlab/Octave toolbox for verified numerical computations. Both C-XSC and

INTLAB share the common feature that they use Basic Linear Algebra Subprograms (BLAS) routines. In other words,

we can efficiently implement interval matrix multiplication using PBLAS, the parallel version of BLAS, on distributed

computing environments, as long as directed rounding in floating-point operations is available in BLAS routines for

matrix multiplication and the reduction operation of summation.

3. A posteriori verification methods

3.1. Possible verification methods

Possible verification methods are discussed here. In order to measure the accuracy of the computed solution

(λ̂k, x̂k), application researchers often compute a norm of the residual vector, such as

‖Ax̂k − λ̂kBx̂k‖2
‖x̂k‖2

.

Although this quantity usually suffices to check whether the solver works correctly, it does not verify the accuracy of

the computed eigenvalue. The following inequality is a known residual bound [5]:

min
1≤ j≤n

|λ j − λ̂k | ≤
√

‖B−1‖2
‖Ax̂k − λ̂kBx̂k‖2

√

x̂⊤
k

Bx̂k

, (11)

which is straightforwardly derived from Wilkinson’s bound [24] for the standard eigenvalue problem. From the bound

(11), we can confirm that some eigenvalue of (A, B) exists in the neighborhood of λ̂k satisfying (11). However, we

cannot determine whether λ̂k is an approximation of the k-th eigenvalue of (A, B). In order to understand the electronic

state of the problems correctly, it is crucial to determine the order of eigenvalues [25].

To our knowledge, we have the following two approaches to determine the order of eigenvalues of symmetric

matrices:
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(a) Compute all eigenpairs (pairs of eigenvalues and eigenvectors) and verify the error bounds of all computed

eigenvalues (cf., e.g. [5, 6]).

(b) Compute an approximation λ̂k of a target eigenvalue using Sylvester’s law of inertia with LDL⊤ decomposition

[25], and verify that λ̂k is an approximation of the k-th eigenvalue with an error bound (cf., e.g. [4]).

The advantages and disadvantages of each approach from a practical point of view are as follows:

• Approach (a) is simpler, numerically more stable, and easier to implement than Approach (b).

• Approach (a) can straightforwardly use highly optimized routines for matrix multiplication and eigenvalue

decomposition.

• Approach (a) cannot exploit the sparsity of A and B, whereas Approach (b) can to a certain extent.

In the present paper, we adopt Approach (a) from the aspect of simplicity and efficiency of code development on

supercomputers.

3.2. Proposed method

We attempt to obtain componentwise error bounds for computed eigenvalues λ̂k, k = 1, 2, . . . , n. Let X,D ∈
R

n×n denote a matrix comprising all generalized eigenvectors of (A, B) and a diagonal matrix of the corresponding

generalized eigenvalues such that

X = [x1, x2, . . . , xn], D = diag(λ1, λ2, . . . , λn).

Let I denote the n × n identity matrix. Then, we have

{

AX = BXD,

X⊤BX = I.

Let X̂ = [x̂1, x̂2, . . . , x̂n] ∈ R
n×n and D̂ = diag(λ̂1, λ̂2, . . . , λ̂n) ∈ R

n×n be approximations of X and D, respectively.

Suppose X̂ is nonsingular. Then,

AX̂ ≈ BX̂D̂, X̂⊤BX̂ ≈ I ⇒ X̂−1B−1AX̂ ≈ D̂, (BX̂)−1 ≈ X̂⊤.

Since X̂−1B−1AX̂ is a similarity transformation of B−1A, the eigenvalues of X̂−1B−1AX̂ are the same as those of B−1A,

and thus the generalized eigenvalues of (A, B).

Here, we attempt to compute an inclusion of X̂−1B−1AX̂. To this end, we introduce Yamamoto’s theorem for

verified solutions of linear systems. For given matrices P = (pi j),Q = (qi j) ∈ R
n×n, the notation P ≤ Q indicates

pi j ≤ qi j for all (i, j), and the same applies to vectors, i.e., the inequality holds componentwise. Moreover, define

e ≡ (1, 1, . . . , 1)⊤ ∈ Rn.

Theorem 1 (Yamamoto [7]). Let A and C be real n × n matrices, and let b and x̂ be real n-vectors. If ‖I −CA‖∞ < 1,

then A is nonsingular, and

|A−1b − x̂| ≤ |C(b − Ax̂)| + ‖C(b − Ax̂)‖∞
1 − ‖I −CA‖∞

|I −CA|e.

In practice, we adopt an approximate inverse of A as C in Theorem 1.

In order to apply Yamamoto’s theorem to componentwise error bounds for computed eigenvalues with the Gersh-

gorin circle theorem, we present a variant of Yamamoto’s theorem.

Theorem 2. Let A, B, C, and X̂ be real n × n matrices. If ‖I −CA‖∞ < 1, then A is nonsingular, and

|A−1B − X̂|e ≤ |C(B − AX̂)|e + ‖C(B − AX̂)‖∞
1 − ‖I −CA‖∞

|I −CA|e.
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Figure 4: Schematic diagram of verified solution when all of the disks are separated, and each disk contains precisely one eigenvalue (λk ∈
[λ̂k − rk, λ̂k + rk]).

Proof. In a similar manner to the derivation of Yamamoto’s theorem, and noting that for P ∈ Rn×n, |P|e ≤ ‖P‖∞e, we

have

|A−1B − X̂|e = |(CA)−1C(B − AX̂)|e
≤ |(CA)−1| · |CR|e, R ≡ B − AX̂

= |(I − (I − CA))−1| · |CR|e = |I +G +G2 + · · · | · |CR|e, G ≡ I −CA

≤ |CR|e + |G|(I + |G| + |G|2 + · · · )|CR|e
≤ |CR|e + ‖CR‖∞|G|(I + |G| + |G|2 + · · · )e

≤ |CR|e + ‖CR‖∞
1 − ‖G‖∞

|G|e,

which proves the theorem.

We now consider a linear system (BX̂)Y = AX̂ for Y. Then, we can regard D̂ as its approximate solution and X̂⊤

as an approximate inverse of BX̂. Let Y, R, and G be defined as

{

R ≡ X̂⊤(AX̂ − BX̂D̂),

G ≡ X̂⊤BX̂ − I.
(12)

If ‖G‖∞ < 1, applying Theorem 2 to the linear system (BX̂)Y = AX̂ yields

|X̂−1(B−1A)X̂ − D̂|e = |(BX̂)−1(AX̂) − D̂|e ≤ |R|e + ‖R‖∞
1 − ‖G‖∞

|G|e ≡ r. (13)

Recall that λi, i = 1, 2, . . . , n, are the eigenvalues of B−1A. For Λ ≡ {λ1, λ2, . . . , λn}, the Gershgorin circle theorem

implies

Λ ⊆
n

⋃

k=1

[λ̂i − ri, λ̂i + ri]. (14)

If all the disks [λ̂i − ri, λ̂i + ri] are isolated, then all of the eigenvalues are separated, i.e., each disk contains precisely

one eigenvalue of B−1A [26, pp. 71ff], as shown schematically in Fig. 4. If several disks are overlapped such that

|λ̂k+1 − λ̂k | > rk + rk+1 for some k, then some of the eigenvalues are degenerate or nearly degenerate. Moreover, if B is

ill-conditioned, then the B-orthogonality of X̂ may break down such that ‖G‖∞ ≥ 1. In such a case, Theorem 2 cannot

be applied, and the verification procedure must end in failure. Therefore, we need to check whether ‖G‖∞ < 1 in code

development from the verification method.

In [6], a similar method has been proposed, which is essentially the same as the proposed method. The main

difference between the method in [6] and the proposed method is that the former focuses on the non-symmetric case

and is more general. On the other hand, the proposed method is specialized for the symmetric case, i.e., we can

avoid complex arithmetic including the verification procedure and compute an approximate inverse of BX̂ by utilizing

X̂⊤ ≈ (BX̂)−1.

3.3. Code development

We explain how to obtain an upper bound of the vector r in (13) using only floating-point arithmetic. We first

attempt to obtain upper bounds G′ and R′ of |R| = |X̂⊤(AX̂ − BX̂D̂)| and |G| = |X̂⊤BX̂ − I| in (12) such that |G| ≤ G′

and |R| ≤ R′ as follows:
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1. C← BX̂ % Two matrix multiplications based on (9)

2. F← X̂⊤C % Three matrix multiplications based on (10)

3. W← F − I % Negligible cost, Winf ≡ fl▽(Finf − I), Wsup ≡ fl△(Fsup − I)

4. |G| ≤ max(|Winf |, |Wsup|) ≡ G′

5. F← AX̂ % Two matrix multiplications based on (9)

6. C← CD̂ % Negligible cost because D̂ is a diagonal matrix

7. C← F − C % Negligible cost, Cinf is overwritten by fl▽(Finf −Csup), Csup is overwritten by fl△(Fsup −Cinf)

8. C← X̂⊤C % Three matrix multiplications based on (10)

9. |R| ≤ max(|Cinf |, |Csup|) ≡ R′

Note that the notation ‘←’ indicates enclosure of the result. Moreover, for given matrices P = (pi j),Q = (qi j) ∈ Fn×n,

the notation max(P,Q) indicates max(pi j, qi j) for all (i, j) pairs, i.e., the maximum is taken componentwise. Here, five

matrix multiplications are required for calculating G′ until Step 4, and an additional five matrix multiplications for

the remaining calculations. Thus, in total, 10 matrix multiplications are required for calculating G′ and R′. Therefore,

calculating G′ and R′ involves 20n3 + O(n2) floating-point operations if the symmetry of G is not taken into account.

We compute the upper bounds of ‖R‖∞ and ‖G‖∞ as

‖R‖∞ ≤ ‖R′‖∞ ≤ fl△(‖R′‖∞) ≡ α1, ‖G‖∞ ≤ ‖G′‖∞ ≤ fl△(‖G′‖∞) ≡ α2.

If α2 ≥ 1, then the verification failed. Hence, we check α2 < 1 or α2 ≥ 1 after Step 4. If α2 ≥ 1, then the computation

prematurely finishes without proceeding to Step 5. Otherwise, we proceed until Step 9 and obtain upper bound r′ of r

in (13) by

r ≤ fl△

(

R′e +
α1

fl▽(1 − α2)
G′e

)

≡ r′. (15)

The routine pdsygvx in ScaLAPACK produces computed eigenvalues λ̂i with λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂n. Therefore, if

λ̂i+1 − λ̂i > r′
i
+ r′

i+1
are satisfied for all i = 1, 2, . . . , n − 1, then we can separate all of the eigenvalues and determine

the order of the eigenvalues correctly.

The test code was developed in the C language with the parallel libraries PBLAS and ScaLAPACK. The solver

procedure uses a GEP solver routine (pdsygvx) in ScaLAPACK, whereas the verifier routine uses the matrix multipli-

cation routine (pdgemm) in PBLAS.

Note that the verifier procedure is based primarily on matrix multiplication, whereas the solver procedure consists

of complicated procedures, such as Cholesky decomposition, and tridiagonalization. Therefore, the verifier procedure

is expected to be moderate in terms of computational time and to be efficient in terms of parallelism, as compared to

the solver procedure.

4. Numerical example

4.1. Problem

Numerical examples are presented in this section. All matrix eigenvalue problems stem from the electronic-state

calculation software ELSES [27, 28, 29], and the matrix data files appear in the ELSES matrix library [30, 10]. Details

are explained in Appendix A. The problems calculated in this section are PPE354, PPE3594, PPE7194, PPE17994,

PPE107994, VCNT22500, VCNT225000, and NCCS430080 in the ELSES matrix library. The matrices are those of

systems having disordered atomic structures. Disordered systems are important for industrial applications because

most industrial materials are disordered, unlike ideal crystal or periodic structures. Consequently, eigenvalues are not

degenerate in all of the problems. The number in the problem name indicates the matrix dimension n. For example,

the system PPE354 contains n × n matrices A and B with n = 354. All of the matrices A and B in these systems are

real symmetric. The systems with the letters ‘PPE’ are systems of organic polymers of poly-(phenylene-ethynylene)

(PPE). The left-hand panel of Fig. 5(a) shows the structural formula of PPE, and the right-hand panel of Fig. 5(b)

shows a part of the polymer in a disordered structure. The difference of the matrix size stems from the length of the

polymer chain. The system of PPE354 is, for example, a polymer with Nm = 10 monomers and Natom = 12Nm = 120
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atoms. The system VCNT225000 is the system of vibrating carbon nanotube (VCNT). The system NCCS430080 is

the system of nano-composite carbon solid (NCCS) [31] and will be explained in the last paragraph of this section.

The characteristic of the eigenvalue distribution can be captured by the following two quantities. One is the

difference of sequential approximate eigenvalues δ̂k ≡ λ̂k+1 − λ̂k, k = 1, 2, ..., n − 1, and the other is the eigenvalue

count I(λ), which is defined on the eigenvalue axis λ as

I(λ) ≡
n

∑

k=1

θ(λk − λ) (16)

with the step function

θ(λ) ≡














1 (λ ≥ 0)

0 (λ < 0).
(17)

In other words, the eigenvalue count I(λ) is the number of the eigenvalues that are smaller than λ.

Here, we demonstrate the similarity and the size dependence of the eigenvalue distribution among the organic

polymer systems. The organic polymers of PPE354, PPE17994, and PPE107994 are selected. Figures 5(b) and 5(c)

show the normalized eigenvalue distribution I(λ)/n among these three systems. The three polymers exhibit quite

similar curves in Figs. 5(b) and 5(c), and, therefore, the difference δ̂k is nearly proportional to 1/n (δ̂k ∝ 1/n), as

explained in Section 1.
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Figure 5: (a) Structural formula (left) and a part of the atomic structure (right) of poly-(phenylene-ethynylene) (PPE). (b) Similarity of eigenvalue

distribution in PPE354 (circle), PPE17994 (square), and PPE107994 (diamond). The normalized eigenvalue counts I(λ)/n are plotted on the

eigenvalue axis λ. (c) Close-up of the local area indicated by the dotted line in (b).

4.2. Numerical results

Tables 1 and 2 show the calculation results on the K computer. First, we focus on the numerical results for the

approximate eigenvalues λ̂ and its upper bound r′. The routine pdsygvx in ScaLAPACK produces λ̂i, i = 1, 2, . . . , n

with λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂n. The vector r′ is obtained by (15). Here, we define the radius sum ρk ≡ r′
k+1
+ r′

k
for

k = 1, 2, . . . , n − 1. We find m such that δ̂m − ρm = min
1≤k≤n−1

(δ̂k − ρk). The items “Difference” and “Radius” in Table 1

show δ̂m and ρm, respectively. As shown in the table, δ̂m > ρm is satisfied in all of the problems, or all of the disks of

|λk − λ̂k | < r′
k

are separated as in Fig. 4. Thus, we can determine the order of eigenvalues in each problem. If δ̂k < ρk

is satisfied for some k, then the two disks of |λk − λ̂k | < r′
k

and |λk+1 − λ̂k+1| < r′
k+1

are overlapped and the two exact

eigenvalues of λk and λk+1 may degenerate.
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Figure 6(a) shows the eigenvalue difference {δ̂k} and the radius sum {ρk} as a function of the eigenvalue {λ̂k} in

the case of PPE107994. The radius sum satisfies ρk ≤ 10−10 and is smaller than the difference (ρk < δ̂k). We found

the minimality m = 49, 201 and λ̂49201 ≈ −0.488, δ̂49201 ≈ 6.42 × 10−11, and ρ49201 ≈ 9.17 × 10−12. Figure 6(b)

shows a close-up of Fig. 6(a) and contains the eigenvalue λ̂49201 ≈ −0.488. It is reasonable that the eigenvalue λ̂49201

appears in the region of −0.490 < λ < −0.485, because many eigenvalues are densely clustered, and the eigenvalue

count I(λ) increases rapidly in the region, as shown in Fig. 5(c). The same analysis was also carried out in the case

of NCCS430080, which is the largest problem among the present calculations, and the results are shown in Figs. 6(c)

and 6(d). The radius sum is smaller than the difference (ρk < δ̂k).

Table 1: Numerical example

Problem name Matrix dimension (n) Difference (δ̂m) Radius sum (ρm)

PPE354 354 6.61 × 10−5 4.90 × 10−13

PPE3594 3,594 1.03 × 10−7 1.33 × 10−12

PPE7194 7,194 5.55 × 10−8 1.18 × 10−12

PPE17994 17,994 5.32 × 10−11 2.56 × 10−12

PPE107994 107,994 6.42 × 10−11 9.17 × 10−12

VCNT22500 22,500 2.59 × 10−7 3.20 × 10−10

VCNT225000 225,000 1.97 × 10−9 1.64 × 10−9

NCCS430080 430,080 5.10 × 10−9 1.61 × 10−9

Table 2 shows the computational times. The item Tsol in Table 2 shows the computing time for pdsygvx in

ScaLAPACK. The item Tveri shows the computing time for the verification process, mainly, the time for matrix mul-

tiplications. Here, the verifier consumes a moderate cost (Tveri ≤ Tsol), as expected in Section 3.3. More intensive

benchmarks, including weak scaling, will be carried out in the future.

Table 2: Elapsed times among the problems. The number of used processor nodes P and the elapsed times for solver Tsol and verifier Tveri are

shown.

Problem name P Tsol Tveri

PPE354 4 0.32 0.12

PPE3594 4 20.74 4.73

PPE7194 4 118.84 31.74

PPE17994 16 217.91 105.75

PPE107994 600 1009.85 682.92

VCNT22500 64 105.75 59.06

VCNT225000 2025 2625.76 1775.09

NCCS430080 6400 8960.03 3496.56

In conclusion, the verification procedure delivers the intervals that contain the exact eigenvalues (|λk − λ̂k | < r′
k
)

with the approximate eigenvalues λ̂k and the radius r′
k
. We plan to upload the radius data files in ELSES matrix library,

as well as the input matrix data and the approximate eigenvalue data. Then, a graph similar to Fig. 6 can be drawn in

order to measure the accuracy of the computed solutions.

Finally, the present numerical results are discussed in the context of computational physics. The matrix problem

of NCCS430080, the largest matrix problem in the present paper, appears in a previous paper on a nano-composite

carbon solid [31]. In general, carbon can form diamond and graphite crystals. The material is composed of graphite-

like and diamond-like domains. Figure 7 shows an example of the electronic wavefunction (the highest occupied

electronic wavefunction or the wavefunction of the electron that has the highest energy). The atomic structure of

Fig. 7 is that of Fig. 2(a) of Ref. [31]. (See Ref. [31] for details.) In the present context, Fig. 7 indicates that the

wavefunction is an intermediate wavefunction, as explained in Section 2.1, and lies in the boundary region between

graphite-like and diamond-like domains. The a posteriori verification procedure confirms that all of the eigenvalues
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Figure 6: (a) Plot of the eigenvalue difference {δ̂k} and the radius sum {ρk} as a function of the eigenvalue {λ̂k} in the case of PPE107994. The arrow

indicates δ̂m. (b) Close-up of (a). The arrow indicates δ̂m. (c) Plot of the eigenvalue difference {δ̂k} and the radius sum {ρk} as a function of the

eigenvalue {λ̂k} in the case of NCCS430080. The arrow indicates δ̂m. (d) Close-up of (c). The arrow indicates δ̂m.

are distinguished numerically, and the above physical discussion regarding each wavefunction is meaningful.

5. Summary and overview

The present paper proposes an a posteriori verification method for the generalized eigenvalue problems that appear

in large-scale electronic state calculations. The verification procedure gives a rigorous mathematical foundation of

numerical reliability. In particular, the present result guarantees that all of the approximate eigenvalues {λ̂k}k are

well separated and that the participation ratio value {P(x̂k)}k and any physical quantity defined for each eigenvector

are meaningful. Since the verification procedure consists of simple matrix multiplications, the computational cost is

moderate, as compared with that of the solver procedure. Therefore, application researchers can use the verification

function with only a moderate increase of the computational cost. Test calculations were carried out on the K computer

for real problems with a matrix size of up to n ≈ 4 × 105.

The next stage of research is the integration of the present verifier routine and solver routines in EigenKernel, in

which we can use various solver routines among ScaLAPACK and newer libraries and can compare their approximate

solutions in the verification procedure.

Future issues are realizing (i) the verification of eigenvectors and (ii) the refinement of approximate eigenpairs.

The refinement procedure will be crucial, in particular, when lower-precision arithmetic, such as half-precision or

single-precision arithmetic, is used for calculating an approximate solution as an initial guess. For example, refinement

algorithms for the symmetric eigenvalue problem have recently been proposed in [32, 33], which are based on matrix

multiplications. Such refinement algorithms enhance application researchers to use lower-precision arithmetic with
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17 nm

Figure 7: Example of an electronic wavefunction of a nano-composite carbon solid [31]. The wavefunction φ(r) is drawn by the two isosurfaces

painted green and yellow. The isovalues are φ(r) = ±C (C > 0). The wavefunction is ‘intermediate’, because it exhibits intermediate properties

between extended and localized wavefunctions.

satisfactory reliability of the computed results, which will be of great importance in next-generation architecture that

is optimized for lower-precision arithmetic.
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Appendix A. Generalized eigenvalue problems in electronic state calculations

This section introduces a generalized eigenvalue problem as a numerical foundation of large-scale electronic state

calculations. Details can be found in textbooks, such as Ref. [34]. The fundamental Schrödinger-type equation, which

is a linear partial differential equation, is written for an electronic wave function φ(r) in real space for a position vector

r = (x, y, z) as

Hφ(r) = λφ(r) (A.1)
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with the Hamilton operator

H ≡ − ~
2

2m
∆ + Veff(r). (A.2)

Here, ∆ = ∂2
x + ∂

2
y + ∂

2
z is the Laplacian, m is the mass of the electron, ~ (≈ 1.05−34 Js) is the Planck constant, and

Veff(r) is the effective potential, which is a scalar function. The normalization condition

∫

|φ(r)|2 = 1 (A.3)

is imposed and stems from the fact that the sum of the weight distribution of one electron should be unity.

An eigenvalue λ that indicates the energy of an electron in the material is called an eigenenergy. The k-th eigenpair

(λk, φk(r)) is defined for k = 1, 2, .., n in the order of λ1 ≤ λ2 ≤ · · · ≤ λn.

Now, we consider as a typical case that φ(r) is expressed as a linear combination of given basic functions

φ(r) =

n
∑

j

c jχ j(r), (A.4)

where the basis functions {χ j(r)} are normalized to be

∫

χ∗j(r)χ j(r)dr = 1. (A.5)

A typical basis function is called atomic orbital and is localized near the position of an atomic nucleus. Since each

basis function belongs to one atom, the basis index i is equivalent to the composite indices of an atom index I and

an orbital index α (i ≡ (I, α)). The orbital index α distinguishes the basis functions that belong to the same atom but

differ in shape. Usually, the number of basis functions n is nearly proportional to that of atoms natom (n ∝ natom).

When (A.4) is used for (A.1), the generalized eigenvalue problem (1) appears with the real-symmetric n × n

matrices A and B, where

Ai j ≡
∫

χ∗i (r)Hχ j(r)dr (A.6)

Bi j ≡
∫

χ∗i (r)χ j(r)dr. (A.7)

The matrix B is positive definite and satisfies B j j = 1 and |Bi j| < 1(i , j). Hereafter, we consider that the basis

functions are real and the matrices A and B are real symmetric. The eigenvectors xk are real, and the normalization

condition of (A.3) is reduced to

xT
k Bxk = 1, (A.8)

which is called B-normalization.

Here, the simplest theory of the hydrogen molecule (H2) is demonstrated, as in many textbooks, such as Ref. [35].

The atomic nuclei of the first and second hydrogen atoms are located at r = R1 and R2, respectively. We consider a

given localized function f (r) with localization center located at r = 0. Two basis functions χ1(r) and χ2(r) are given

as

χ1(r) ≡ f (r − R1), χ2(r) ≡ f (r − R2). (A.9)

The generalized eigenvalue problem of (1) appears with the 2 × 2 real symmetric matrices of

A ≡
(

a −t

−t a

)

, B ≡
(

1 s

s 1

)

. (A.10)
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Now, we consider a typical case in which a, t, s are positive real numbers and s < 1. The off-diagonal element of t or

s is the function of the interatomic distance d ≡ |R1 − R2| (t = t(d), s = s(d)). The eigenvalues are

λ1 ≡
a − t

1 + s
, λ2 ≡

a + t

1 − s
(A.11)

and the eigenvectors are

x1 =
1

√
2(1 + s)

(

1

1

)

, x2 =
1

√
2(1 − s)

(

1

−1

)

. (A.12)

The matrix B has the eigenvalues 1 ± s and will be not positive definite in the limiting situation of s → 1. One may

suspect that the limiting situation can appear, when the distance between the nuclei of atoms is approximately zero

(d → 0) and that the two basis functions will be identical (χ1(r) − χ2(r)→ 0). Among real materials, fortunately, the

distance d is so large that the limiting situation does not occur.

In general, the matrix size n in generalized eigenvalue problem (1) is nearly proportional to that of the atoms

(n ∝ natom). For example, a typical model for the benzene molecule (C6H6), called the ‘sp’ model, gives one basis

function for each hydrogen atom (H) and four basis functions for each carbon atom (C). The total number of basis

functions or the matrix size n is n = 1 × 6 + 4 × 6 = 30.

Matrix data of A and B for various materials are stored in the ELSES matrix library [30, 10]. The matrix data

were generated by the electronic-state calculation software ELSES [27, 28, 29] with first-principles-based modeled

(tight-binding) electronic-state theory. The atomic unit is used for the energy among the data files. For example, the

matrix problem for a benzene molecule (C6H6) in the above model is stored as ‘BNZ30’. For many problems, the

approximate eigenvalues {λ̂k} are uploaded, as well as the matrix data of A and B, for the convenience of the researcher.

The sparsity of the stored matrix data of Ai j and Bi j is explained briefly. As explained above, the indices i and j are the

composite indices of the atom indices I and J and the orbital indices α and β, respectively (i ≡ i(I, α), j ≡ j(J, β))).

Therefore, an element of the matrices A and B is expressed by the four indices as AIα;Jβ and BIα;Jβ, respectively. Since

a matrix element value decreases quickly and monotonically as a function of the inter-atomic distance between the

I-th and J-th atoms (rIJ), a cutoff distance rcut can be introduced. A matrix element, AIα;Jβ or BIα;Jβ, is ignored, if

rIJ > rcut, which makes the matrices sparse. More information on the data file in the ELSES matrix library is found in

Ref. [10].

As a future issue, we should consider the numerical error in the input matrix data of A and B, because this error

may affect the final conclusion. The possible numerical error can be decomposed into the two terms

Aexact − A = δAcut + δAcal (A.13)

Bexact − B = δBcut + δBcal, (A.14)

where Aexact and Bexact are the exact (theoretical) matrix data. The error terms δAcut and δBcut are called cutoff errors

and stem from the cutoff procedure explained in the previous paragraph. The maximum element of δAcut or δBcut

is on the order of 10−4 in the case of PPE17994, for example. The cutoff error term will be eliminated when the

full matrix data are adopted in the input matrices. The full matrix data are not stored in the ELSES matrix library,

because these data consume a large amount of disk space. We intend to perform verification using the full matrix data

when we integrate the verifier routines into the simulation software (ELSES), which generates the matrix data and

includes the solver routine. The procedure with the full matrix data will not increase the computational cost, because

all of the procedures use the dense-matrix algorithms. The error terms δAcal and δBcal, on the other hand, are called

calculation errors and stem from the generating procedure of the matrices. The matrix B is defined as the integral

in (A.7). The three-dimensional numerical integral of (A.7) is obtained for the Slater-type functions {χi(r)}i [36] in

prolate spheroidal coordinates, which is reviewed in Section II of Ref. [37]. The matrix A is calculated from the

matrix B in a modeled (atom superposition and electron delocalization tight-binding) theory [38, 39, 28]. Evaluating

the calculation errors δAcal and δBcal is an interesting topic and will be discussed in the near future.
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