ELSEVIER

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Block Hybrid Method for the Numerical solution of Fourth order Boundary Value Problems

Mark I. Modebei^{a,*}, S.N. Jator^b, Higinio Ramos^{c,d}

^a Department of Mathematics Programme, National Mathematical Centre, Abuja, Nigeria

^b Department of Mathematics and Statistics, Austin Peay State University, Clarksville, TN 37044, United States of America

^c Department of Applied Mathematics, University of Salamanca, Salamanca, Spain

^d Escuela Politécnica Superior de Zamora, Campus Viriato, 49022 Zamora, Spain

ARTICLE INFO

Article history: Received 11 June 2019 Received in revised form 13 March 2020

Keywords: Fourth-order Boundary Value Problem Block method Multistep method Hybrid method Convergence analysis

ABSTRACT

A linear Multistep Block Hybrid Method with four off-grid points is presented for the direct approximation of the solution of fourth order Boundary Value Problems. Multiple Finite Difference formulas are derived and grouped into a unique block to form a numerical integrator to solve directly the fourth order problem, without the need to reduce it previously to a first-order system. The convergence of the proposed method is discussed. The superiority of this method over existing methods is established numerically considering different problems that have appeared in the literature.

© 2020 Elsevier B.V. All rights reserved.

(1)

1. Introduction

In this work, the numerical approximation to the solution of the 4th-order problem of the type

$$y^{(iv)} = f(x, y, y', y'', y'''), \quad a < x < b,$$

subject to the following boundary conditions

$$y(a) = \alpha_0, \quad y(b) = \beta_0, \quad y'(a) = \alpha_1, \quad y'(b) = \beta_1,$$
(2)

where $a, b, \alpha_i, \beta_i, i = 0, 1$, are given real numbers, is considered. We assume that the function f is continuous in $[a, b] \times \mathbb{R}^4$ and verifies Lipschitz conditions on the variable $\mathbf{y} = (y, y', y'', y''')$, that is, it holds that for any $\mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^4$ there exist constants $L_i > 0, j = 0, ..., 3$, such that

$$|f(x, \mathbf{y}_1) - f(x, \mathbf{y}_2)| \le \sum_{j=0}^{3} L_j |y_1^{(j)} - y_2^{(j)}|$$

This assumption guarantees the existence and uniqueness of a solution for problem (1)–(2) in a certain subset of $[a, b] \times \mathbb{R}^4$ (see [1]). We also assume that f and its derivatives up to the third order with respect to the independent variable are differentiable, in order to address the convergence analysis of the method.

It is noteworthy to state here that the block hybrid method developed in this paper can be extended to solve (1) with any of the following boundary conditions

$$y^{(i)}(a) = \alpha_1, \qquad y^{(i)}(b) = \beta_1, \qquad y^{(j)}(a) = \alpha_2, \qquad y^{(j)}(b) = \beta_2, \quad \text{with } 0 \le i < j \le 1, \dots, 4$$

* Corresponding author.

https://doi.org/10.1016/j.cam.2020.112876 0377-0427/© 2020 Elsevier B.V. All rights reserved.

E-mail address: gmarc.ify@gmail.com (M.I. Modebei).

as can be seen in the numerical examples.

Problems arising from engineering and other sciences, just to mention but few have been modelled into higher order linear and nonlinear initial and boundary value problems. Fourth order problem finds its application in the static deflection of a uniform beam. The deflection curve of each set of boundary conditions is such that the beam with both ends embedded gives rise to Neumann and Dirichlet (first order) boundary conditions. A simply supported beam gives rise to Neumann and Dirichlet (second order) boundary conditions, and cantilever beam (left end embedded, right end free), gives rise to different conditions (see [2,3]). The theorem and proof for the general conditions concerning the existence and uniqueness of the solution of (1)-(2) have been given by Keller [4].

Numerical approaches for the solution of fourth order boundary value problems are numerous in the literature. Some of those methods intended for obtaining the approximate solution of fourth order BVPs include, but are not limited to, Variational Iteration Method (VIM) by Noor and Mohyud-Din [5,6], Quintic Spline method by Siddiqi and Akram [7], Spline-based methods by Kasi et al. [8], the Least Value Method by Huanmin and Minggen [9]. Other approaches are based on collocation methods, Variation of Parameter methods, Adomian Decomposition methods, Differential Transform Methods, just to mention a few (see [10,11] among others).

In this work, we consider linear multistep hybrid formulas with four intra-step grid points. These formulas are constructed using a collocation approach, and later are put together to form a Block Hybrid Method (see [12–15]). The derivation of the method is presented in the following section. In Section 3 the convergence analysis is presented. The numerical examples presented in Section 4 confirm the good performance of the new method over other approaches in literature.

2. Derivation of the method

This section describes the derivation of a continuous implicit four intra-step hybrid block method for approximating the solution of the BVP in (1)–(2). Consider the grid points on the interval of integration [a, b], $\pi_N \equiv \{a = x_0 < x_1 < \cdots < x_{N-1} < x_N = b\}$, with h the constant step size, $h = x_j - x_{j-1}$, $j = 1, 2, \ldots, N$. The method relies on the approximation of the exact solution y(x) at the grid points of four adjacent subintervals and the corresponding intermediate points, by the polynomial p(x) given by

$$y(x) \simeq p(x) = \sum_{i=0}^{12} \rho_i x^i$$
, (3)

which yields the successive derivative approximations, and in particular

$$y^{(iv)}(x) \simeq p^{(iv)}(x) = \sum_{i=4}^{12} \rho_i i(i-1)(i-2)(i-3)x^{i-4}.$$
(4)

Here, the ρ_i are real unknown coefficients to be determined. In order to simplify the derivation of the method we will consider a generic block interval, $[x_n, x_{n+4}]$, since the formulas thus obtained may be easily shifted to the all the successive blocks for $n = 0, 4, \ldots, N - 4$. Thus, we consider the points $x_{n+\frac{j}{2}} = x_n + \frac{j}{2}h$, $j = 0, 1, \ldots, 8$, in the four-step scheme for approximating the solution on $[x_n, x_{n+4}]$. After considering the approximation in (3) applied to the points $x_{n, x_{n+1}, x_{n+2}, x_{n+3}$, and the fourth derivative in (4) applied to the points $x_{n+\frac{j}{2}}$, $j = 0, 1, \ldots, 8$, we obtain a system of 13 equations with 13 unknowns (the ρ_i , $i = 0, 1, \ldots, 12$). This system may be written in matrix form as

(1	x_n	x_n^2	x_n^3	x_n^4	x_n^5	x_n^6	•••	x_{n}^{11}	x_n^{12})			
	1	x_{n+1}	x_{n+1}^2	x_{n+1}^{3}	x_{n+1}^{4}	x_{n+1}^{5}	x_{n+1}^{6}		x_{n+1}^{11}	x_{n+1}^{12}				
	1	x_{n+2}	x_{n+2}^2	x_{n+2}^{3}	x_{n+2}^{4}	x_{n+2}^{5}	x_{n+2}^{6}		x_{n+2}^{11}	x_{n+2}^{12}	(ρ_0)		$\begin{pmatrix} y_n \\ y_n \end{pmatrix}$	
	1	x_{n+3}	x_{n+3}^2	x_{n+3}^{3}	x_{n+3}^{4}	x_{n+3}^{5}	x_{n+3}^{6}		x_{n+3}^{11}	x_{n+3}^{12}	ρ_1		y_{n+1} y_{n+2}	
	0	0	0	0	24	$120x_n$	$360x_n^2$		$7920x_n^7$	$11880x_n^8$	ρ_2		y_{n+3}	
	0	0	0	0	24	$120x_{n+\frac{1}{2}}$	$360x_{n+\frac{1}{2}}^2$		$7920x_{n+\frac{1}{2}}^{7}$	$11880x_{n+\frac{1}{2}}^{8}$	ρ_4		f_n	
	0	0	0	0	24	$120x_{n+1}$	$360x_{n+1}^2$		$7920x_{n+1}^7$	$11880x_{n+1}^8$	ρ_5	=	f_{n+1}	
	0	0	0	0	24	$120x_{n+\frac{3}{2}}$	$360x_{n+\frac{3}{2}}^2$		$7920x_{n+\frac{3}{2}}^{7}$	$11880x_{n+\frac{3}{2}}^{8}$	ρ ₀ ρ ₇		$f_{n+\frac{3}{2}}$	
	0	0	0	0	24	$120x_{n+2}$	$360x_{n+2}^2$		$7920x_{n+2}^7$	$11880x_{n+2}^8$	ρ_8 ρ_9		\int_{n+2}^{n+2}	
	0	0	0	0	24	$120x_{n+\frac{5}{2}}$	$360x_{n+\frac{5}{2}}^2$		$7920x_{n+\frac{5}{2}}^{7}$	$11880x_{n+\frac{5}{2}}^{8}$	ρ_{10}		f_{n+3}	
	0	0	0	0	24	$120x_{n+3}$	$360x_{n+3}^2$		$7920x_{n+3}^7$	$11880x_{n+3}^8$	$\left \left(\begin{array}{c} \rho_{11} \\ \rho_{12} \end{array} \right) \right $)	$J_{n+\frac{7}{2}}$	
	0	0	0	0	24	$120x_{n+\frac{7}{2}}$	$360x_{n+\frac{7}{2}}^2$		$7920x_{n+\frac{7}{2}}^{7}$	$11880x_{n+\frac{7}{2}}^{8}$			∖ Jn+4	/
	0	0	0	0	24	$120x_{n+4}$	$360x_{n+4}^2$		$7920x_{n+4}^7$	$11880x_{n+4}^{8}$	/			

where the approximate values are given by $y_{n+i}^{(j)} \simeq y^{(j)}(x_{n+i})$ and $f_{n+i} = f(x_{n+i}, y_{n+i}, y_{n+i}', y_{n+i}'', y_{n+i}'')$.

Solving the above system using a CAS like Mathematica we can obtain the values of the coefficients ρ_i , i = 0, 1, ..., 12, which are not worth to include here as they are cumbersome expressions. After simplification, the approximate values obtained through the polynomial in (3) adopt the form

$$y_{n+\frac{j}{2}} = \sum_{i=0}^{3} \alpha_{ij}^{0} y_{n+i} + h^{4} \sum_{i=0}^{8} \beta_{ij}^{0} f_{n+i/2}, \quad j = 1, 3, 5, 7, 8.$$
(5)

where the α_{ij}^0 and β_{ij}^0 are the coefficients of the main formulas, which are given in Table 7 in the Appendix.

The additional methods are obtained by evaluating the successive derivatives of p(x) to give

$$h^{l} y_{n+\frac{j}{2}}^{(l)} = \sum_{i=0}^{3} \alpha_{ij}^{l} y_{n+i} + h^{4} \sum_{i=0}^{8} \beta_{ij}^{l} f_{n+i/2}, \quad l = 1, 2, 3, \quad j = 0(1)8$$
(6)

where the α_{ij}^{l} and β_{ij}^{l} are the coefficients appearing in Tables 8–10 in Appendix. The notations $y_{n+\frac{j}{2}}^{(l)}$ stand for the approximation of the *l*th order derivative of y(x) at $x_{n+\frac{j}{2}}$.

In order to get the main formulas in (5), we evaluate p(x) at the points $x = x_{n+\frac{i}{2}}$, i = 1, 3, 5, 7, 8, and after some simplifications, we obtain the formulas whose coefficients appear in Table 7 in Appendix.

Then, evaluating p'(x) at the points $x = x_{n+\frac{1}{2}}$, i = 0, 1, ..., 8, we obtain the formulas for approximating the first derivatives whose coefficients are given in Table 8 in Appendix.

Similarly, evaluating p''(x) at the points $x = x_{n+\frac{i}{2}}$, i = 0, 1, ..., 8, we obtain the formulas for approximating the second derivatives whose coefficients are in Table 9 in Appendix.

Finally, evaluating p'''(x) at the points $x = x_{n+\frac{i}{2}}$, i = 0, 1, ..., 8, we obtain the formulas for approximating the third derivatives whose coefficients are given in Table 10 in Appendix.

All the formulas in (5)–(6) considered together form the block method, which will be named BHM for short. If we had to solve an IVP with this method, it should be applied sequentially on block of intervals of the form $[x_n, x_{n+4}]$, n = 0, 4, N-4, where N, the number of subintervals, must be a multiple of 4 in order to reach the final point $x_N = b$. But we want to use them to solve a BVP. In this case, we consider all the formulas in (5)–(6) for n = 0(4)N - 4 at the same time. This results in a system of 8N equations, which altogether with the four boundary conditions leads to a system of 8N + 4 equations in the 8N + 4 unknowns $\{y_j, y'_j, y''_j, y''_j\}$ for j = 0(1/2)N.

3. Analysis of the method

3.1. Local truncation error and order

Given a sufficiently differentiable function z(x), the linear difference operators associated with the formulas in (5)–(6) are given as follows

$$\mathcal{L}_{j/2}^{l}[z(x); h] \equiv h^{l} z^{(l)}(x + \frac{j}{2}h) - \left[\sum_{i=0}^{3} \alpha_{ij}^{l} z(x + ih) + h^{4} \sum_{i=0}^{8} \beta_{ij}^{l} z^{(iv)}(x + \frac{i}{2}h)\right]$$
(7)

for l = 0 and j = 1, 3, 5, 7, 8, or for l = 1, 2, 3 and j = 0(1)8.

The local truncation error of each of the formulas in (5)-(6) is the amount by which the exact solution of the ODE fails to satisfy the corresponding difference operator. Thus, after expanding (7) in Taylor series around x we get that each of the local truncation errors is of the form

$$\mathcal{L}_{j/2}^{l}[z(x); h] = C_0 z(x) + C_1 h z'(x) + C_2 h^2 z''(x) + \dots + C_q h^q z^{(q)}(x) + O(h^{(q+1)})$$
(8)

where the C_i 's are constants. If we have that

$$C_0 = C_1 = C_2 = \dots = C_{p+\mu-1} = 0$$
, and $C_{p+\mu} \neq 0$

where μ is the order of the differential equation, then it is said that the formula is consistent of order p (see [16]), and $C_{p+\mu}$ is called the principal error constant. In this case it is $\mu = 4$ and the local truncation errors of the main formulas

are given respectively by

$$\mathcal{L}_{\frac{1}{2}}^{0}[y(x_{n}); h] = \frac{41171875}{3313090972090368} y^{(12)}(x_{n})h^{12} + O(h^{13})$$

$$\mathcal{L}_{\frac{3}{2}}^{0}[y(x_{n}); h] = \frac{36671875}{1104363657363456} y^{(12)}(x_{n})h^{12} + O(h^{13})$$

$$\mathcal{L}_{\frac{5}{2}}^{0}[y(x_{n}); h] = \frac{-621296875}{3313090972090368} y^{(12)}(x_{n})h^{12} + O(h^{13})$$

$$\mathcal{L}_{\frac{7}{2}}^{0}[y(x_{n}); h] = \frac{225390625}{67614101471232} y^{(12)}(x_{n})h^{12} + O(h^{13})$$

$$\mathcal{L}_{\frac{4}{4}}^{0}[y(x_{n}); h] = \frac{2640625}{202215025152} y^{(12)}(x_{n})h^{12} + O(h^{13}).$$
(9)

For the formulas in (6) the local truncation errors are similarly obtained. Consequently, from the above results, the order of the block method is p = 8.

3.2. Convergence analysis

We first assume that the following boundary conditions in (2)

$$y_0 = \alpha_0, \qquad y_N = \beta_0, \qquad y'_0 = \alpha_1, \qquad y'_N = \beta_1$$

are given. Thus, the vector of unknowns \overline{Y} is given by

$$\begin{split} \bar{Y} &= \begin{pmatrix} y_{1/2}, y_1, y_{3/2}, \dots, y_{N-1/2}, y_{1/2}', y_1', y_{3/2}', \dots, y_{N-1/2}', \\ y_0'', y_{1/2}'', y_1'', y_{3/2}'', \dots, y_N'', y_0''', y_{1/2}'', y_{1/2}'', y_{3/2}''', \dots, y_N'' \end{pmatrix}^T \:. \end{split}$$

This makes a total of (2N - 1) + (2N - 1) + (2N + 1) + (2N + 1) = 8N unknowns.

On the other hand, we have five formulas in Table 7 which for n = 0(4)N - 4 make a total of 5N/4 formulas. Similarly, we have in Table 8 nine formulas. If we take n = 0(4)N - 4 we obtain 9N/4 formulas more. With the formulas in Tables 9 and 10 we proceed similarly, that is, we get 9N/4 + 9N/4 formulas more. In this way, the total number of equations will be 5N/4 + 9N/4 + 9N/4 = 8N.

We have then, a system with 8N equations and 8N unknowns, whose solution provides a set of approximate values of the BVP. This system, obtained from the formulas corresponding to the coefficients in Tables 7–10, can be written compactly as

$$P\bar{Y} + h^4 Q \,\bar{F} + R = 0\,, \tag{10}$$

where

$$\bar{F} = \left(f_0, f_{1/2}, f_1, f_{3/2}, \dots, f_N, f'_0, f'_{1/2}, f'_1, f'_{3/2}, \dots, f'_N, f''_0, f''_{1/2}, f''_1, f''_{3/2}, \dots, f''_N, f'''_0, f'''_1, f'''_{3/2}, \dots, f''_N\right)^T$$

P, Q are constant matrices formed by the coefficients of the formulas, and R is a (8N)-vector containing the known values in the formulas, that is,

$$R = \left(\alpha_{01}^{0}y_{0}, \alpha_{03}^{0}y_{0}, \alpha_{05}^{0}y_{0}, \alpha_{07}^{0}y_{0}, \alpha_{08}^{0}y_{0}, 0, \dots, 0, -y_{N}, \alpha_{00}^{1}y_{0} - hy'_{0}, \alpha_{01}^{1}y_{0}, \alpha_{02}^{1}y_{0}, \dots, \alpha_{08}^{1}y_{0}, 0, \dots, 0, -hy'_{N}, \alpha_{00}^{2}y_{0}, \alpha_{01}^{2}y_{0}, \alpha_{02}^{2}y_{0}, \dots, \alpha_{08}^{2}y_{0}, 0, \dots, 0, \alpha_{00}^{3}y_{0}, \alpha_{01}^{3}y_{0}, \alpha_{02}^{2}y_{0}, \dots, \alpha_{08}^{3}y_{0}, 0, \dots, 0\right)^{T}.$$

Specifically, *P* is a $(8N \times 8N)$ - matrix of coefficients formed by submatrices, as

$$P = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix}.$$

The submatrix P_{11} corresponds to the first 5N/4 formulas, obtained from (5) for n = 0(4)N - 4 (after passing all the terms to the right hand side). The first row of P_{11} is the coefficients of the first formula corresponding to the terms $y_{1/2}, y_1, y_{3/2}, \ldots, y_{N-1/2}$. The second row of P_{11} is the coefficients of the second formula corresponding to the same terms

 $y_{1/2}, y_1, y_{3/2}, \dots, y_{N-1/2}$, and so on. Thus, P_{11} is a matrix of size $5N/4 \times (2N-1)$ of the form

	\dot{p}_{11}	.0	0	0	• • •	0
$P_{11} =$	0	p ₂₂	0	0	· · · · · · ·	0
	0	0	0		0	<u>, </u>

where each of the N/4 submatrices \dot{p}_{ii} is given by

$$\dot{p}_{ii} = \begin{bmatrix} \alpha_{01}^0 & -1 & \alpha_{11}^0 & 0 & \alpha_{21}^0 & 0 & \alpha_{31}^0 & 0 & 0 \\ \alpha_{03}^0 & 0 & \alpha_{13}^0 & -1 & \alpha_{23}^0 & 0 & \alpha_{33}^0 & 0 & 0 \\ \alpha_{05}^0 & 0 & \alpha_{15}^0 & 0 & \alpha_{25}^0 & -1 & \alpha_{35}^0 & 0 & 0 \\ \alpha_{07}^0 & 0 & \alpha_{17}^0 & 0 & \alpha_{27}^0 & 0 & \alpha_{37}^0 & -1 & 0 \\ \alpha_{08}^0 & 0 & \alpha_{18}^0 & 0 & \alpha_{28}^0 & 0 & \alpha_{38}^0 & 0 & -1 \end{bmatrix},$$

except for \dot{p}_{11} where the first column is missing, and $\dot{p}_{\frac{N}{4}\frac{N}{4}}$ where the last column is missing. Furthermore, in the triangular arrangement of the \dot{p}_{ii} in P_{11} , the first column of each \dot{p}_{ii} is placed below the last column of each \dot{p}_{i-1i-1} for i = 2, 3, ..., N/4.

The submatrix P_{12} corresponds again to the first 5N/4 formulas, obtained from Table 7 for n = 0(4)N - 4 (after passing all the terms to the right hand side). The first row of P_{12} is formed by the coefficients of the first formula corresponding to the terms $y'_{1/2}, y'_1, y'_{3/2}, \ldots, y'_{N-1/2}$. The second row of P_{21} is formed by the coefficients of the second formula corresponding to the terms $y'_{1/2}, y'_1, y'_{3/2}, \ldots, y'_{N-1/2}$, and so on. Thus, P_{12} is a null matrix of size $5N/4 \times (2N-1)$. The submatrix P_{13} contains the coefficients of the first 5N/4 formulas corresponding to the terms $y'_0, y''_{1/2}, y''_{3/2}, \ldots, y'_{N-1/2}$, and so on. Thus, P_{12} is a null matrix of size $5N/4 \times (2N-1)$.

The submatrix P_{13} contains the coefficients of the first 5N/4 formulas corresponding to the terms $y_0, y_{1/2}, y_1, y_{3/2}, \ldots, y_N''$. Thus, P_{13} is also a null matrix of size $5N/4 \times (2N + 1)$.

The submatrices P_{2j} , j = 1, 2, 3, 4, contain the coefficients of the next 9N/4 formulas obtained from Table 8 for n = 0(4)N - 4 and have respectively sizes of $9N/4 \times (2N - 1)$, $9N/4 \times (2N - 1)$, $9N/4 \times (2N + 1)$ and $9N/4 \times (2N + 1)$. The submatrix P_{21} contains the coefficients of these formulas corresponding to the terms $y_{1/2}, y_1, y_{3/2}, \dots, y_{N-1/2}$, and is written

D	\tilde{p}_{11} 0	$\begin{array}{c} 0 \\ ilde{p}_{22} \end{array}$	0 0	0 0	· · · · · ·	0 0	
$P_{21} =$	· · · 0	 0	 0	 	 0	$\tilde{p}_{rac{N}{4}rac{N}{4}}$	

where each of the N/4 submatrices \tilde{p}_{ii} is given by

$$\tilde{p}_{ii} = \begin{bmatrix} \alpha_{00}^1 & 0 & \alpha_{10}^1 & 0 & \alpha_{21}^1 & 0 & \alpha_{30}^1 & 0 & 0 \\ \alpha_{01}^1 & 0 & \alpha_{11}^1 & 0 & \alpha_{21}^1 & 0 & \alpha_{31}^1 & 0 & 0 \\ \alpha_{02}^1 & 0 & \alpha_{12}^1 & 0 & \alpha_{22}^1 & 0 & \alpha_{32}^1 & 0 & 0 \\ \alpha_{03}^1 & 0 & \alpha_{13}^1 & 0 & \alpha_{23}^1 & 0 & \alpha_{33}^1 & 0 & 0 \\ \alpha_{04}^1 & 0 & \alpha_{14}^1 & 0 & \alpha_{24}^1 & 0 & \alpha_{34}^1 & 0 & 0 \\ \alpha_{05}^1 & 0 & \alpha_{15}^1 & 0 & \alpha_{25}^1 & 0 & \alpha_{35}^1 & 0 & 0 \\ \alpha_{06}^1 & 0 & \alpha_{16}^1 & 0 & \alpha_{27}^1 & 0 & \alpha_{37}^1 & 0 & 0 \\ \alpha_{08}^1 & 0 & \alpha_{18}^1 & 0 & \alpha_{28}^1 & 0 & \alpha_{38}^1 & 0 & 0 \end{bmatrix}$$

except for \tilde{p}_{11} where the first column is missing, and $\tilde{p}_{\frac{N}{4}\frac{N}{4}}$ where the last column is missing. Furthermore, in the triangular arrangement of the submatrices \tilde{p}_{ii} in P_{21} , the first column of each \tilde{p}_{ii} is placed below the last column of each \tilde{p}_{i-1i-1} for i = 2, 3, ..., N/4.

The submatrix P_{22} contains the coefficients of these formulas corresponding to the terms $y'_{1/2}, y'_1, y'_{3/2}, \ldots, y'_{N-1/2}$, and is written as

$$P_{22} = h \begin{bmatrix} \hat{p}_{11} & 0 & 0 & 0 & \cdots & 0 \\ 0 & \hat{p}_{22} & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \hat{p}_{\frac{N}{4} \frac{N}{4}} \end{bmatrix}$$

where each of the *N*/4 submatrices \hat{p}_{ii} is given by

except for \hat{p}_{11} where the first column is missing, and $\hat{p}_{\frac{N}{4}\frac{N}{4}}$ where the last column is missing. Furthermore, in the triangular arrangement of the submatrices \hat{p}_{ii} in P_{22} , the first column of each \hat{p}_{ii} is placed below the last column of each \hat{p}_{i-1i-1} for i = 2, 3, ..., N/4.

Finally, P_{23} and P_{24} are null matrices.

For the submatrices P_{3j} , P_{4j} , j = 1, 2, 3, 4, the situation is similar as the previous one. The submatrices P_{31} and P_{41} have a similar structure as that of matrix P_{21} , given as

$$P_{31} = \begin{bmatrix} \bar{p}_{11} & 0 & 0 & 0 & \cdots & 0 \\ 0 & \bar{p}_{22} & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \bar{p}_{\frac{N}{4} \frac{N}{4}} \end{bmatrix}$$

where each of the N/4 submatrices \bar{p}_{ii} is given by

$$\bar{p}_{ii} = \begin{bmatrix} \alpha_{00}^2 & 0 & \alpha_{10}^2 & 0 & \alpha_{20}^2 & 0 & \alpha_{30}^2 & 0 & 0 \\ \alpha_{01}^2 & 0 & \alpha_{11}^2 & 0 & \alpha_{21}^2 & 0 & \alpha_{31}^2 & 0 & 0 \\ \alpha_{02}^2 & 0 & \alpha_{12}^2 & 0 & \alpha_{22}^2 & 0 & \alpha_{32}^2 & 0 & 0 \\ \alpha_{03}^2 & 0 & \alpha_{13}^2 & 0 & \alpha_{23}^2 & 0 & \alpha_{33}^2 & 0 & 0 \\ \alpha_{04}^2 & 0 & \alpha_{14}^2 & 0 & \alpha_{24}^2 & 0 & \alpha_{34}^2 & 0 & 0 \\ \alpha_{05}^2 & 0 & \alpha_{15}^2 & 0 & \alpha_{25}^2 & 0 & \alpha_{35}^2 & 0 & 0 \\ \alpha_{06}^2 & 0 & \alpha_{16}^2 & 0 & \alpha_{26}^2 & 0 & \alpha_{36}^2 & 0 & 0 \\ \alpha_{07}^2 & 0 & \alpha_{17}^2 & 0 & \alpha_{27}^2 & 0 & \alpha_{37}^2 & 0 & 0 \\ \alpha_{08}^2 & 0 & \alpha_{18}^2 & 0 & \alpha_{28}^2 & 0 & \alpha_{38}^2 & 0 & 0 \end{bmatrix}$$

and similarly,

$$P_{41} = \begin{bmatrix} \ddot{p}_{11} & 0 & 0 & 0 & \cdots & 0 \\ 0 & \ddot{p}_{22} & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \ddot{p}_{\frac{N}{2} \frac{N}{2}} \end{bmatrix},$$

where each of the N/4 submatrices \ddot{p}_{ii} is given by

$$\ddot{p}_{ii} = \begin{bmatrix} \alpha_{00}^3 & 0 & \alpha_{10}^3 & 0 & \alpha_{20}^3 & 0 & \alpha_{30}^3 & 0 & 0 \\ \alpha_{01}^3 & 0 & \alpha_{11}^3 & 0 & \alpha_{21}^3 & 0 & \alpha_{31}^3 & 0 & 0 \\ \alpha_{02}^3 & 0 & \alpha_{12}^3 & 0 & \alpha_{22}^3 & 0 & \alpha_{32}^3 & 0 & 0 \\ \alpha_{03}^3 & 0 & \alpha_{13}^3 & 0 & \alpha_{23}^3 & 0 & \alpha_{33}^3 & 0 & 0 \\ \alpha_{04}^3 & 0 & \alpha_{14}^3 & 0 & \alpha_{24}^3 & 0 & \alpha_{34}^3 & 0 & 0 \\ \alpha_{05}^3 & 0 & \alpha_{15}^3 & 0 & \alpha_{25}^3 & 0 & \alpha_{35}^3 & 0 & 0 \\ \alpha_{06}^3 & 0 & \alpha_{16}^3 & 0 & \alpha_{26}^3 & 0 & \alpha_{36}^3 & 0 & 0 \\ \alpha_{07}^3 & 0 & \alpha_{17}^3 & 0 & \alpha_{27}^3 & 0 & \alpha_{37}^3 & 0 & 0 \\ \alpha_{08}^3 & 0 & \alpha_{18}^3 & 0 & \alpha_{28}^3 & 0 & \alpha_{38}^3 & 0 & 0 \end{bmatrix}$$

where there is valid a similar comment as for P_{21} concerning the placement of the submatrices \bar{p}_{ii} and \ddot{p}_{ii} in the triangular arrays.

The matrices P_{33} and P_{44} are similar to P_{22} after changing h by h^2 and h^3 respectively. Finally, $P_{32} = P_{34} = P_{42} = P_{43} = \mathbf{0}$.

Thus, the structure of matrix *P* is

$$P = \begin{bmatrix} P_{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ P_{21} & P_{22} & \mathbf{0} & \mathbf{0} \\ P_{31} & \mathbf{0} & P_{33} & \mathbf{0} \\ P_{41} & \mathbf{0} & \mathbf{0} & P_{44} \end{bmatrix}$$

On the other hand, matrix Q has size $8N \times (8N + 4)$ and the entries correspond to the coefficients of the 8N equations in the terms of \overline{F} . It can be written as

$$Q = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} & Q_{14} \\ Q_{21} & Q_{22} & Q_{23} & Q_{24} \\ Q_{31} & Q_{32} & Q_{33} & Q_{34} \\ Q_{41} & Q_{42} & Q_{43} & Q_{44} \end{bmatrix}$$

where the submatrices Q_{1j} , j = 1, ..., 4 have dimension $5N/4 \times (2N + 1)$, while the rest of submatrices have dimension $9N/4 \times (2N + 1)$. It is clear from the formulas corresponding to the coefficients in Tables 7–10 that the Q_{ij} , i > 1, j = 1, ..., 4, are null matrices, while

$$Q_{11} = \begin{bmatrix} \dot{q}_{11} & 0 & 0 & 0 & \cdots & 0 \\ 0 & \dot{q}_{22} & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \dot{q}_{\frac{N}{4} \frac{N}{4}} \end{bmatrix}$$

where each of the N/4 submatrices \dot{q}_{ii} is given by

$$\dot{q}_{ii} = \begin{bmatrix} \beta_{01}^{0} & \beta_{11}^{0} & \beta_{21}^{0} & \beta_{31}^{0} & \beta_{41}^{0} & \beta_{51}^{0} & \beta_{61}^{0} & \beta_{71}^{0} & \beta_{81}^{0} \\ \beta_{03}^{0} & \beta_{13}^{0} & \beta_{23}^{0} & \beta_{33}^{0} & \beta_{43}^{0} & \beta_{53}^{0} & \beta_{63}^{0} & \beta_{73}^{0} & \beta_{83}^{0} \\ \beta_{05}^{0} & \beta_{15}^{0} & \beta_{25}^{0} & \beta_{35}^{0} & \beta_{45}^{0} & \beta_{55}^{0} & \beta_{65}^{0} & \beta_{75}^{0} & \beta_{85}^{0} \\ \beta_{07}^{0} & \beta_{17}^{0} & \beta_{27}^{0} & \beta_{37}^{0} & \beta_{47}^{0} & \beta_{57}^{0} & \beta_{67}^{0} & \beta_{77}^{0} & \beta_{87}^{0} \\ \beta_{08}^{0} & \beta_{18}^{0} & \beta_{28}^{0} & \beta_{38}^{0} & \beta_{48}^{0} & \beta_{58}^{0} & \beta_{68}^{0} & \beta_{78}^{0} & \beta_{88}^{0} \end{bmatrix}.$$

The matrices Q_{i1} , i = 2, 3, 4, have a similar structure

$$Q_{i1} = \begin{bmatrix} \dot{q}_{11}^i & 0 & 0 dot & 0 & \cdots & 0 \\ 0 & \dot{q}_{22}^i & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \dot{q}_{\underline{N}, \underline{N}, \underline{N}}^i \end{bmatrix}$$

where each of the N/4 submatrices \dot{q}^i_{ij} is given by

$$\dot{q}_{jj}^{i} = \begin{bmatrix} \beta_{00}^{i-1} & \beta_{10}^{i-1} & \beta_{20}^{i-1} & \beta_{30}^{i-1} & \beta_{40}^{i-1} & \beta_{50}^{i-1} & \beta_{60}^{i-1} & \beta_{70}^{i-1} & \beta_{80}^{i-1} \\ \beta_{01}^{i-1} & \beta_{11}^{i-1} & \beta_{21}^{i-1} & \beta_{31}^{i-1} & \beta_{41}^{i-1} & \beta_{51}^{i-1} & \beta_{61}^{i-1} & \beta_{71}^{i-1} & \beta_{81}^{i-1} \\ \beta_{02}^{i-1} & \beta_{12}^{i-1} & \beta_{22}^{i-2} & \beta_{32}^{i-2} & \beta_{42}^{i-1} & \beta_{53}^{i-1} & \beta_{63}^{i-1} & \beta_{72}^{i-1} & \beta_{82}^{i-1} \\ \beta_{03}^{i-1} & \beta_{13}^{i-1} & \beta_{24}^{i-1} & \beta_{43}^{i-1} & \beta_{53}^{i-1} & \beta_{63}^{i-1} & \beta_{74}^{i-1} & \beta_{83}^{i-1} \\ \beta_{04}^{i-1} & \beta_{14}^{i-1} & \beta_{24}^{i-1} & \beta_{45}^{i-1} & \beta_{55}^{i-1} & \beta_{65}^{i-1} & \beta_{74}^{i-1} & \beta_{84}^{i-1} \\ \beta_{05}^{i-1} & \beta_{15}^{i-1} & \beta_{25}^{i-1} & \beta_{45}^{i-1} & \beta_{55}^{i-1} & \beta_{65}^{i-1} & \beta_{75}^{i-1} & \beta_{85}^{i-1} \\ \beta_{06}^{i-1} & \beta_{16}^{i-1} & \beta_{26}^{i-1} & \beta_{35}^{i-1} & \beta_{45}^{i-1} & \beta_{55}^{i-1} & \beta_{65}^{i-1} & \beta_{76}^{i-1} & \beta_{86}^{i-1} \\ \beta_{07}^{i-1} & \beta_{16}^{i-1} & \beta_{27}^{i-1} & \beta_{37}^{i-1} & \beta_{47}^{i-1} & \beta_{57}^{i-1} & \beta_{67}^{i-1} & \beta_{76}^{i-1} & \beta_{87}^{i-1} \\ \beta_{08}^{i-1} & \beta_{18}^{i-1} & \beta_{28}^{i-1} & \beta_{38}^{i-1} & \beta_{58}^{i-1} & \beta_{58}^{i-1} & \beta_{68}^{i-1} & \beta_{78}^{i-1} & \beta_{88}^{i-1} \\ \beta_{08}^{i-1} & \beta_{18}^{i-1} & \beta_{28}^{i-1} & \beta_{38}^{i-1} & \beta_{68}^{i-1} & \beta_{58}^{i-1} & \beta_{68}^{i-1} & \beta_{78}^{i-1} & \beta_{88}^{i-1} \\ \beta_{08}^{i-1} & \beta_{18}^{i-1} & \beta_{28}^{i-1} & \beta_{38}^{i-1} & \beta_{68}^{i-1} & \beta_{58}^{i-1} & \beta_{68}^{i-1} & \beta_{78}^{i-1} & \beta_{88}^{i-1} \\ \beta_{08}^{i-1} & \beta_{18}^{i-1} & \beta_{28}^{i-1} & \beta_{38}^{i-1} & \beta_{68}^{i-1} & \beta_{68}^{i-1} & \beta_{78}^{i-1} & \beta_{88}^{i-1} \\ \beta_{08}^{i-1} & \beta_{18}^{i-1} & \beta_{28}^{i-1} & \beta_{38}^{i-1} & \beta_{68}^{i-1} & \beta_{68}^{i-1} & \beta_{78}^{i-1} & \beta_{88}^{i-1} \\ \beta_{08}^{i-1} & \beta_{18}^{i-1} & \beta_{28}^{i-1} & \beta_{38}^{i-1} & \beta_{68}^{i-1} & \beta_{68}^{i-1} & \beta_{78}^{i-1} & \beta_{88}^{i-1} \\ \beta_{08}^{i-1} & \beta_{18}^{i-1} & \beta_{28}^{i-1} & \beta_{38}^{i-1} & \beta_{58}^{i-1} & \beta_{68}^{i-1} & \beta_{78}^{i-1} & \beta_{88}^{i-1} \\ \beta_{10}^{i-1} & \beta_{10}^{i-1} & \beta_{10}^{i-1} & \beta_{28}^{i-1} & \beta_{28}^{i-1} & \beta_{28}^{i-1} & \beta_{28}^{i-1} & \beta$$

As before, in the triangular arrangement of the \dot{q}_{ii} in Q_{11} , and the \dot{q}_{jj}^i in Q_{i1} the first column of each \dot{q}_{jj}^i is placed below the last column of each \dot{q}_{j-1j-1}^i for j = 2, ..., N/4.

Now let Y be the vector of true values corresponding to the approximated values in \overline{Y} , that is,

$$Y = (y(x_{1/2}), y(x_1), y(x_{3/2}), \dots, y(x_{N-1/2}), y'(x_{1/2}), y'(x_{1}), y'(x_{3/2}), \dots, y'(x_{N-1/2}), y''(x_0), y''(x_{1/2}), y''(x_1), y''(x_{3/2}), \dots, y''(x_N), y'''(x_0), y'''(x_{1/2}), y'''(x_{1}), y'''(x_{3/2}), \dots, y'''(x_N))^T$$

and let *F* be the vector of true values corresponding to the approximated values in \overline{F} , that is,

$$F = \left(f(x_0, y(x_0), y'(x_0), y''(x_0), y'''(x_0)), \dots, f(x_N, y(x_N), y'(x_N), y''(x_N), y'''(x_N)), \dots, f'''(x_0, y(x_0), y'(x_0), y''(x_0), y''(x_0)), \dots, f'''(x_N, y(x_N), y'(x_N), y''(x_N), y'''(x_N)) \right)^T.$$

We have that for the true values it is

$$PY + h^4 Q F + R = L(h) \tag{11}$$

where L(h) is a (8N)-vector containing the local truncation errors of the formulas, whose terms are of order $O(h^{12})$ (see (9)).

If we denote the errors between the true values and the approximated ones by

$$e_i = y(x_i) - y_i,$$
 $e'_i = y'(x_i) - y'_i,$ $e''_i = y''(x_i) - y''_i,$ $e'''_i = y'''(x_i) - y'''_i,$

for $i = 0, 1/2, 1, 3/2, \dots, N$, we consider the vector of errors as

$$E = (e_{1/2}, e_1, \dots, e_{N-1/2}, e'_{1/2}, e'_1, \dots, e'_{N-1/2}, \\ e''_0, e''_{1/2}, e''_1, \dots, e''_N, e'''_0, e'''_{1/2}, e'''_1, \dots, e''_N)^T.$$

We note that *E* is a (8*N*)-vector that contains the errors of the unknowns in \overline{Y} , while in view of the boundary conditions we have that

$$e_0 = y(x_0) - y_0 = 0,$$
 $e_N = y(x_N) - y_N = 0,$ $e'_0 = y'(x_0) - y'_0 = 0,$ $e'_N = y'(x_N) - y'_N = 0.$ (12)

Using the notations above we state the main result of this section in the following theorem.

Theorem 3.1. Let Y and F be defined as above. Let \overline{Y} be an approximation of the solution vector Y of the system formed by combining the methods corresponding to Table 7 through Table 10 for n = O(4)N - 4, and E the vector of errors as defined above, assuming that the exact solution y(x) of the BVP in (1)-(2) verifies that $y(x) \in C^m[a, b]$ for m as large as necessary. Then, the BHM is a convergent method of eighth order, that is, $||E|| \leq K h^8$.

Proof. The proof follows the guidelines in [17]. In order to make more understandable the following analysis, we will include in the matrix equations subscripts indicating the corresponding dimensions. Thus, the exact equation in (11) adopts the form

$$P_{8N\times8N}Y_{8N} + h^4 Q_{8N\times(8N+4)}F_{8N+4} + R_{8N} = L(h)_{8N},$$
(13)

while the approximate equation in (10) is rewritten as

$$P_{8N\times8N}Y_{8N} + h^4 Q_{8N\times(8N+4)}F_{8N+4} + R_{8N} = 0.$$
⁽¹⁴⁾

On subtracting (14) from (13) we get

$$P_{8N\times 8N}\left(Y_{8N}-\bar{Y}_{8N}\right)+h^4Q_{8N\times (8N+4)}\left(F_{8N+4}-\bar{F}_{8N+4}\right)=L(h)_{8N},$$

that is,

$$P_{8N\times8N}E_{8N} + h^4 Q_{8N\times(8N+4)} \left(F - \bar{F}\right)_{8N+4} = L(h)_{8N} \,. \tag{15}$$

Assuming that f, f', f'', f''' are smooth enough, by using the Mean-Value Theorem we can write for j = 0, 1, 2, 3 and i = 0(1/2)N that

$$\begin{split} f^{(j)}(x_i, y(x_i), y'(x_i), y''(x_i), y'''(x_i)) &- f^{(j)}(x_i, y_i, y'_i, y''_i, y''_i'') \\ &= (y(x_i) - y_i) \frac{\partial f^{(j)}}{\partial y} (\xi_i^j) + (y'(x_i) - y'_i) \frac{\partial f^{(j)}}{\partial y'} (\xi_i^j) \\ &+ (y''(x_i) - y''_i) \frac{\partial f^{(j)}}{\partial y''} (\xi_i^j) + (y'''(x_i) - y''_i') \frac{\partial f^{(j)}}{\partial y'''} (\xi_i^j) \end{split}$$

where for each *i* the ξ_i^j , j = 0, 1, 2, 3, are intermediate points on the line segment joining $(x_i, y_i, y'_i, y''_i, y''_i)$ to $(x_i, y(x_i), y''(x_i), y''(x_i), y''(x_i))$. Thus, the vector $F - \bar{F}$ may be expressed as

$$F - \overline{F} = U^F \overline{E}$$

where U^F is a matrix of size $(8N + 4) \times (8N + 4)$ and \overline{E} is a vector with 8N + 4 terms containing all the errors,

$$\bar{E} = \left(e_0, e_{1/2}, e_1, \dots, e_N, e'_0, e'_{1/2}, e'_1, \dots, e'_N, \\ e''_0, e''_{1/2}, e''_1, \dots, e''_N, e'''_0, e'''_{1/2}, e'''_1, \dots, e''_N\right)^T$$

and

$$U^{F} = \begin{pmatrix} U_{11} & U_{12} & U_{13} & U_{14} \\ U_{21} & U_{22} & U_{23} & U_{24} \\ U_{31} & U_{32} & U_{33} & U_{34} \\ U_{41} & U_{42} & U_{43} & U_{44} \end{pmatrix}$$

whose entries U_{ii} are $(2N + 1) \times (2N + 1)$ diagonal matrices written as

$$U_{ij} = \begin{pmatrix} \frac{\partial f^{(i-1)}}{\partial y^{(j-1)}} \begin{pmatrix} \xi_0^{i-1} \end{pmatrix} & 0 & \cdots & 0 & 0 \\ 0 & \frac{\partial f^{(i-1)}}{\partial y^{(j-1)}} \begin{pmatrix} \xi_{1/2}^{i-1} \end{pmatrix} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{\partial f^{(i-1)}}{\partial y^{(j-1)}} \begin{pmatrix} \xi_{N-1/2}^{i-1} \end{pmatrix} & 0 \\ 0 & 0 & \cdots & 0 & \frac{\partial f^{(i-1)}}{\partial y^{(j-1)}} \begin{pmatrix} \xi_N^{i-1} \end{pmatrix} \end{pmatrix}$$

Now, having in mind that some of the errors in \overline{E} are null (see (12)) we can put

$$(F - \bar{F})_{8N+4} = (U^F)_{(8N+4)\times(8N+4)} \bar{E}_{(8N+4)} = (\bar{U}^F)_{(8N+4)\times(8N)} E_{(8N)}$$

where \overline{U}^F is obtained from U^F after eliminating the first and last columns in the matrices U_{i1} , U_{i2} for i = 1, ..., 4 (that is, we eliminate in U^F the columns in the positions 1, 2N + 1, 2N + 2 and 4N + 2).

Then, the equation in (15) becomes

$$P_{8N\times8N} E_{8N} + h^4 Q_{8N\times(8N+4)} \left(\bar{U}^F \right)_{(8N+4)\times8N} E_{8N} = L(h)_{8N}$$
(16)

which, regardless of sizes, can be written simply as

$$(P + h^4 Q \ \bar{U}^F)E = L(h) \,. \tag{17}$$

Now, consider the matrix

$$\kappa = P + h^4 Q \, \bar{U}^F \tag{18}$$

It is claimed that κ is invertible for sufficiently small h. First, we claim that P is invertible. To see this, since

1

$$P = [P_{ij}] = \begin{cases} \text{nonzero} : i = 1, 2, 3, 4, j = \\ \text{nonzero} : i = j = 2, 3, 4 \\ 0 : \text{otherwise} \end{cases}$$

then, *P* is a lower triangular matrix containing nonzero diagonal submatrices, therefore its determinant exists, hence it is nonsingular. It is known that a matrix with nonzero main diagonal is invertible, hence P^{-1} exists.

Now, (18) can be written as

$$|\kappa| = |P + h^4 Q \ U^F| = |P||I - C| \tag{19}$$

where $C = -h^4 Q \ \bar{U}^F P^{-1}$, then $|\zeta I - C| = 0$ is the characteristic polynomial of *C*, so that

$$|\zeta I - C| = (\zeta - \zeta_1) \cdots (\zeta - \zeta_{4N})$$

- -

where ζ_i are eigenvalues of the matrix *C*. When $\zeta = 1$, we have

$$|I - C| = (1 - \zeta_1) \cdots (1 - \zeta_{4N})$$

for $|I - C| \neq 0$, then each $\zeta_i \neq 0$. If $\hat{\zeta}_i$ is an eigenvalue of *C*, so is $h^4 \zeta_i$, thus we need $h^4 \zeta_i \neq 1$. So we choose *h* such that $h^4 \notin \left\{ \frac{1}{\zeta_i} | \hat{\zeta}_i \text{ are nonzero eigenvectors of } Q \bar{U}^F P^{-1} \right\}$. For such *h*, $|I - C| \neq 0$, so that

$$|\kappa| = |P||I - h^4 Q \ \bar{U}^F| \neq 0$$
(20)

hence κ is invertible. Then we have that

$$\begin{split} \kappa \ E &= L(h) \\ E &= \kappa^{-1} L(h) \\ \|E\| &= \|\kappa^{-1} L(h)\| \\ &\leq \|\kappa^{-1}\| \|L(h)\| \\ &= O(h^{-4}) O(h^{12}) \\ &\leq K \ h^8 \ , \end{split}$$

which completes the proof. \Box

3.3. Existence and uniqueness of the discrete solution

The following result establishes the existence and uniqueness of the solution provided by the system of equations in (10).

Theorem 3.2. Assuming that $f(x, \mathbf{y})$ verifies a Lipschitz condition on the variable $\mathbf{y} = (y, y', y'', y'')$, it holds that the system Theorem 3.2. Assuming that j(x, y) verifies a Lipschitz condition on the element J (10) has a unique solution whenever $h < \frac{1}{La(8N+4)^{1/2}}$, where $L = \max_{\{i=0,1,2,3\}} \{L_i\}, a = \max_{\{i=1,...,8N:j=1,...,8N+4\}} \{|A_{ij}|\}$, with $A = P^{-1}Q\big|_{h=1}.$

Proof. Let us consider the function $G : \mathbb{R}^{8N} \longrightarrow \mathbb{R}^{8N}$ where the *i*-component of $G(\xi)$ is given by

$$(G(\xi))_i = (-P^{-1}R - h^4 P^{-1} Q \bar{F}(\xi))_i,$$

where $\xi = (\xi_1, \dots, \xi_{8N}) \in \mathbb{R}^{8N}$. Note that for $\xi = \overline{Y}$ the system in (10) adopts the form $\xi = G(\xi)$, so that the existence and uniqueness of the solution of system (10) is equivalent to that of the equation $\xi = G(\xi)$.

We consider in \mathbb{R}^{8N} the maximum norm $\|\xi\| = \max_{1 \le i \le 8N} \{|\xi_i|\}$. We have that

$$\begin{aligned} |G(\xi)_{i} - G(\xi^{*})_{i}| &= |h^{4} \left[P^{-1} Q \left(\bar{F}(\xi) - \bar{F}(\xi^{*}) \right) \right]_{i} |\\ &\leq h \, a \, \sum_{j=1}^{8N+4} L \left| \xi_{j} - \xi_{j}^{*} \right|, \end{aligned}$$

where $L = \max_{\{i=0,1,2,3\}} \{L_i\}$, and $a = \max_{\{i=1,\dots,8N; j=1,\dots,8N+4\}} \{|A_{ij}|\}$, being $A = P^{-1}Q|_{h=1}$. Taking into account the above inequalities and using the Cauchy–Schwartz inequality we can put

$$|G(\xi) - G(\xi^*)|| = \max_{\{1 \le i \le 8N\}} \{ ||G(\xi)_i - G(\xi^*)_i|| \}$$

$$\leq h a L (8N + 4)^{1/2} ||\xi - \xi^*|| = k ||\xi - \xi^*||$$

with $k = h a L (8N + 4)^{1/2}$.

As long as k < 1 we will have that G is a contraction. Hence, by Banach's Fixed-Point Theorem the proof is completed.

For solving the system in (10) we could use a Newton-type method, as they are probably the most widely used methods in applications (see [18–22]). As it is well-known, the classical Newton's method is quadratically convergent from good starting guesses provided that the Jacobian is nonsingular. There are many results from the Kantorovich's theorem [23] about the balls of convergence [24-26]. There are also modified Newton's methods which are convergent even if the Jacobian is singular [27]. Nevertheless, those are limited theoretical results and out of the balls one can get convergence too. From a practical point of view what is important is to choose an initial guess sufficiently close to the root. For the problem in hand we have considered as initial guesses averaged values of the variables given by

$$\begin{aligned} y_{j/2} &= \frac{(y(a) + j\frac{n}{2}y'(a)) + (y(b) - (2N - j)\frac{n}{2}y'(b))}{2}, \quad j = 1, \dots, 2N - 1\\ y_{j/2}' &= \frac{y'(a) + y'(b)}{2}, \quad j = 1, \dots, 2N - 1\\ y_{j/2}'' &= \frac{y'(b) - y'(a)}{Nh}, \quad j = 0, \dots, 2N\\ y_{j/2}'' &= 1, \quad j = 0, \dots, 2N. \end{aligned}$$

The stopping criteria used in the Newton's method are

 $|\bar{Y}_n - \bar{Y}_{n-1}| < 10^{-10}$ and $|F(\bar{Y}_n)| < 10^{-10}$,

or when the number of iterations exceeds 50.

3.4. Computational procedure

The proposed method is implemented in a block form. We solve the system given by all the formulas corresponding to Tables 7-10 simultaneously using the system Mathematica, enhanced by the feature NSolve[] for linear problems while nonlinear problems were solved by Newton's method enhanced by the feature **FindRoot**[], as summarized in the algorithm below.

All codes were written in Mathematica 12.0 and run on a PC with an Intel i7 2.00 GHz CPU processor, 8 GB memory and 64-bit Windows 10 operating system.

Comparison of the absolute errors obtained for Problem 1.											
х	BHM $(N = 8)$	х	BHM (N $= 20$)	VIM [5]	HBVP [28]						
0.000	0.00	0.1	9.83E-20	7.78E-8	4.45E-10						
0.125	1.99E-16	0.2	3.25E-19	2.72E-7	5.54E-10						
0.250	6.30E-16	0.3	5.85E-19	8.24E-7	8.95E-11						
0.375	1.04E-15	0.4	7.98E-19	7.77E-7	2.03E-10						
0.500	1.22E-15	0.5	9.00E-19	9.71E-7	3.32E-11						
0.625	1.17E-15	0.6	8.63E-19	1.05E-6	1.53E-10						
0.750	6.95E-16	0.7	6.84E-19	9.63E-7	9.48E-11						
0.875	2.39E-16	0.8	4.12E-19	6.84E-7	5.18E-10						

0.9

Table 2 Maximum ab	solute errors and ROC obtained	for Problem 1
N	Max Abs Err	ROC
4	5.152E-12	_
8	1.133E-14	8.82
16	3.772E-17	8.23
32	1.461E-19	8.01
64	5.809E-22	7.97
128	1.419E-25	7.98

1.33E-19

0.218

Algorithm.

Data: a, b (integration interval), N (number of steps), y_a, y'_a, y_b, y'_b (boundary values), f**Result**: sol, discrete approximate solution of the BVP (1)-(2) 1 Let n = 0, 4, ..., N - 4, $x_0 = a, x_N = b$, $h = \frac{b-a}{N}$; 2 Let $y_0 = y_a, y'_0 = y'_a, y_N = y_b, y'_N = y'_b$; 3 Solve equations in (5)–(6) to get \overline{Y} 4 Let $sol = \{(x_i, y_i)\}_{i=0,1,2,\dots,N}$. 5 End

4. Numerical examples

Table 1

1.000

CPU(s.)

0.00

0.0312

Here, some numerical examples are presented to show the accuracy of the new developed method, BHM. In the examples considered, we have calculated the absolute errors at different points, which were obtained as $err(x_i)$ = $|y(x_i) - y_i|$. The computational time in seconds used by the proposed method is denoted as CPU(s.). It can be seen in the provided tables that the proposed method is very efficient.

Example 1. We consider the following nonlinear boundary value problem [28]

$$y^{(iv)}(x) = \sin(x) + \sin^2(x) - (y''(x))^2, \quad x \in [0, 1], y(0) = 0, \quad y'(0) = 1, \quad y(1) = \sin(1), \quad y'(1) = \cos(1)$$
(21)

with solution $y(x) = \sin(x)$.

Table 1 shows the absolute errors obtained with the proposed method, the variational iteration method in [5] (which considers an approximating polynomial of degree 11), and the Hermite based collocation method in [28] (using an approximating polynomial of degree 8). Note that we have considered different number of mesh points with the BHM, N = 8 and N = 20 (as N must be an integer multiple of 4, N = 20 is the lowest value to get the same grid points as in [5] and [28]). Table 2 shows the maximum absolute errors at the grid points on the integration interval, and the approximate order of convergence, ROC, obtained through the formula

$$p \simeq -\log_2\left(\frac{\max_{\{i=1,...,2N\}}|y(x_i)-y_i|}{\max_{\{i=1,...,N\}}|y(x_i)-y_i|}\right),$$

showing the good agreement with the theoretical results.

Example 2. We consider the following boundary value problem [28]

$$y^{(iv)}(x) = (1+c)y''(x) - cy(x) + \frac{1}{2}cx^2 - 1, \quad x \in [0, 1], y(0) = 0, \quad y'(0) = 0, \quad y(1) = 1.5 + \sinh(1), \quad y'(1) = 1 + \cos(1)$$
(22)

4.15E-10

_

2.71E-7

_

simparison of the absolute errors obtained for froblem 2.											
х	BHM*	HBVP*	BHM**	HBVP**	BHM***	HBVP***					
0.1	1.09E-19	5.44E-10	9.72E-20	1.84E-10	7.52E-20	3.18E-9					
0.2	3.64E-19	6.71E-10	3.19E-19	6.43E-9	2.41E-19	1.28E-8					
0.3	6.57E-19	9.72E-11	5.74E-19	2.39E-9	4.27E-19	2.54E-8					
0.4	9.00E-19	2.49E-10	7.84E-19	3.67E-9	5.81E-19	3.55E-8					
0.5	1.02E-18	1.85E-11	8.91E-19	3.78E-9	6.61E-19	3.89E-8					
0.6	9.85E-19	2.03E-10	8.63E-19	3.18E-9	6.47E-19	3.49E-8					
0.7	7.86E-19	1.65E-10	6.94E-19	2.60E-9	5.30E-19	2.56E-8					
0.8	4.76E-19	7.51E-10	4.25E-19	2.04E-9	3.33E-19	1.42E-8					
0.9	1.55E-19	5.90E-10	1.40E-19	9.49E-10	1.13E-19	4.31E-9					
CPU(s.)	0.140	-	0.125	-	0.156	-					

Comparison of the absolute errors obtained for Problem 2

*for c = -1/2.

** for c = 5.

Table 3

*** for c = 20.

Table 4		
Compariso	n of the absolute errors obtair	ned for Problem 3.
х	BHM	HBVP [28]
0.1	0.00E00	7.35E-16
0.2	1.39E-17	2.34E-15
0.3	2.78E17	4.11E-15

5 83F-15

5.99E-15

5.55E-15

5.21E-15 3 10E-15

5.55E-16

0.00E00

0.00E00

0.00E00

0.00E00

1.11E - 16

1.11E-16

0.187

with solution $y(x) = 1 + \frac{1}{2}x^2 + \sinh(x)$. Here the solution is independent of <i>c</i> . The absolute errors for $c = -1/2, 5, 20, -1/2, 5, 20$.
obtained with the BHM approach taking $N = 20$ and with the method in [28], named as HBVP, which uses an
approximating Hermite polynomial of degree 8, are presented in Table 3. We can see that the proposed method provides
great accuracy.

Example 3. We consider the following nonlinear boundary value problem [28]

0.4

0.5

0.6

0.7

08

0.9

CPU(s.)

$$y^{(iv)}(x) = y(x)^2 - x^{10} + 4x^9 - 4x^8 - 4x^7 + 8x^6 - 4x^4 + 120x - 48, \quad x \in [0, 1],$$

$$y(0) = 0, \quad y'(0) = 0, \quad y(1) = 1, \quad y'(1) = 1$$
(23)

with exact solution $y(x) = x^5 - 2x^4 + 2x^2$.

Table 4 shows the errors obtained for Problem (23) using the BHM, and the HBVP method in [28] using an approximating Hermite polynomial of degree 6. The BHM was implemented for N=20. We note that for this problem the method BHM is exact for any appropriate value of *N* and the errors are in fact due to accumulated roundoff errors.

Example 4. We consider the following linear boundary value problem [8]

$$y^{(iv)}(x) - y(x) = -4(2x\cos x + 3\sin x), \quad x \in [0, 1], y(0) = y(1) = 0, \qquad y''(0) = 0, \qquad y''(1) = 2\sin 1 + 4\cos 1.$$
(24)

The problem has exact solution $y(x) = (x^2 - 1) \sin x$.

Table 5 shows the numerical results for Problem (24) with the BHM, and the Galerkin method that uses quintic splines in [8]. The maximum absolute error obtained by the method in [8] is 5.275×10^{-6} for N = 10 subintervals on the domain [0, 1], while the maximum error obtained with the BHM is 1.77719×10^{-10} , for N = 4 and 9.35329×10^{-13} , for N = 8 subintervals on the domain [0, 1]. It is worth noting that the number of subintervals N must be a multiple of 4 in order to reach the final point of the domain $x_N = 1$. For comparison to obtain the global errors at the grid points 0.1(0.1)0.9, we set N = 20.

Example 5. We consider the following nonlinear boundary value problem [8,29]

$$y^{(iv)}(x) - 6e^{-4y(x)} = -12(1+x)^{-4}, \quad x \in [0, 1],$$

$$y(0) = 0, \quad y(1) = \ln 2, \quad y'(0) = 1, \quad y'(1) = 0.5.$$
(25)

Table 5Comparison of errors obtained for Problem 4.											
х	BHM	Galerkin method [8]									
0.1	2.08438E-16	2.16812E-06									
0.2	3.98916E-16	3.88920E-06									
0.3	5.54491E-16	5.21541E-06									
0.4	6.60577E-16	5.21541E-06									
0.5	7.05643E-16	5.21541E-06									
0.6	6.83231E-16	5.27501E-06									
0.7	5.91857E-16	4.58956E-06									
0.8	4.37534E-16	2.98023E-06									
0.9	2.32878E-16	1.38581E-06									
CPU(s.)	0.127	-									

Table 6

Comparison of errors obtained for Problem 5.

х	BHM $(N = 8)$	х	BHM $(N = 8)$	Galerkin method [8]	BM [29]
0	0.00	0.1	7.85372E-13	2.235174E-08	7.47213E-9
0.125	1.11E-9	0.2	2.11953E-12	7.599592E-07	3.38799E-8
0.250	3.39E-9	0.3	3.03829E-12	2.026558E-06	7.82674E-8
0.375	5.23E-9	0.4	3.37647E-12	2.413988E-06	1.41700E-7
0.500	5.65E-9	0.5	3.17196E-12	3.129244E-06	2.26096E-7
0.625	4.52E-9	0.6	2.57178E-12	4.917383E-06	3.19801E-7
0.750	2.61E-9	0.7	1.75371E-12	4.887581E-06	3.84959E-7
0.875	8.04E-10	0.8	9.17155E-13	3.099442E-06	3.80675E-
1.00	0.00	0.9	2.63345E-13	2.324581E-06	2.66007E-7
CPU(s.)	0.062		0.203	-	-

Table 7

Coefficients of main formulas for $y_{n+i/2}$.

j	α^0_{0j}	α^0_{1j}	α_{2j}^0	α_{3j}^0	β_{0j}^0	β_{1j}^0	β_{2j}^0	β_{3j}^0	β_{4j}^0	β_{5j}^0	β_{6j}^0	eta_{7j}^0	β^0_{8j}
1	$\frac{5}{16}$	15 16	$\frac{-5}{16}$	$\frac{1}{16}$	867593 539240067072	-533994833 168512520960	-45804085 2853122048	-259363987 19258573824	-472251067 77034295296	-17391 356640256	-96983981 385171476480	8713259 134810016768	111343 14978890752
3	$\frac{-1}{16}$	$\frac{9}{16}$	$\frac{9}{16}$	$\frac{-1}{16}$	6467093 599155630080	3350219 6241204480	240113233 42796830720	117720139 10699207680	127667567 21398415360	232353 1783201280	10247443 42796830720	-5073967 74894453760	5073967 599155630080
5	$\frac{1}{16}$	$\frac{-5}{16}$	15 16	$\frac{5}{16}$	$\frac{-22206487}{449366722560}$	-7851623 33702504192	$\frac{-170484485}{25678098432}$	<u>-24839819</u> 2139841536	-1452326597 77034295296	$\frac{-1312179}{1783201280}$	<u>-32565011</u> 25678098432	50091379 134810016768	<u>-8464657</u> 179746689024
7	$\frac{-5}{16}$	$\frac{21}{16}$	$\frac{-35}{16}$	35 16	18840599 22009798656	<u>-2545829</u> 687806208	307001783 6113832960	72905329 2751224832	54387101 343903104	666435 50948608	378701281 11004899328	<u>-95397103</u> 13756124160	705171 815177728
8	-1	4	-6	4	11813507 3510677520	-11102912 658252035	22361461 125381340	178464 3482815	427169213 752288040	178464 3482815	22361461 125381340	-11102912 658252035	11813507 3510677520

Problem (25) has the exact solution $y(x) = \ln(x+1)$. Table 6 shows the numerical results for Problem (25). The maximum absolute errors obtained by the Galerkin method in [8] and the (m + 1)th-step block BM method in [29] are 4.917×10^{-6} and 3.84959×10^{-7} respectively for N = 10 subintervals on the domain [0, 1], while the maximum error obtained with the BHM is 2.06366×10^{-7} , for N = 4 subintervals on the domain [0, 1]. For comparison purposes, we set N = 20 to obtain the global errors at the grid points 0.1(0.1)0.9.

5. Conclusion

A block hybrid method (BHM) based on continuous linear multistep formulas has been developed and applied to solve fourth order linear and non linear BVPs in ordinary differential equations. It was shown that the method is very flexible, easy to derive and can be applied to solve diverse kinds of fourth order BVPs, with either Neumann or Dirichlet boundary conditions as seen in the examples presented. The method shows a very high accuracy when compared to the exact solution and hence it is competitive with existing methods in the literature cited.

Acknowledgements

The authors are indebted to the unknown referees for their useful remarks, which helped them to improve the paper.

Appendix. Coefficients of main and additional formulas

See Tables 7–10.

I able 8					
Coefficients	of	additional	formulas	for	hy'_{n+j} .

j	α_{0j}^1	α^1_{1j}	α_{2j}^1	α_{3j}^1	β_{0j}^1	β^1_{1j}	β_{2j}^1	β^1_{3j}	β_{4j}^1	β_{5j}^1	β_{6j}^1	eta_{7j}^1	β^{1}_{8j}
0	$\frac{-11}{6}$	3	$\frac{-3}{2}$	$\frac{1}{3}$	<u>-50448799</u> 47286676800	-43207204 1034396055	-544432879 5516778960	-11165306 147770865	-1027916543 33100673760	$\frac{-2352}{2487725}$	$\frac{-584479}{472866768}$	377738 1034396055	-1040471 22067115840
1	$\frac{-23}{24}$	$\frac{7}{8}$	$\frac{1}{8}$	$\frac{-1}{24}$	518995537 177949222133760	239222998933 27804565958400	7063594199 353073853440	6507924329 794416170240	62481285047 12710658723840	$\frac{-86813}{445800320}$	79303727 496510106400	-52075097 2780456595840	131071 6590711930880
2	$\frac{-1}{3}$	$\frac{-1}{2}$	1	$\frac{-1}{6}$	17465663 463409432640	66502421 21722317155	330790549 11821669200	2126281 59108346	1524953173 99302021280	1486 3482815	3699029 5516778960	-43380361 217223171550	11893159 463409432640
3	$\frac{1}{24}$	$\frac{-9}{8}$	$\frac{9}{8}$	$\frac{-1}{24}$	-496767163 59316407377920	-123564389 370727546112	$\frac{-228641783}{58845642240}$	$\frac{-521578507}{1324026950400}$	3842422291 847377248256	$\frac{-11007}{445800320}$	28507505 211844312064	-2958553 115852358160	73538077 32953559654400
4	$\frac{1}{6}$	-1	$\frac{1}{2}$	$\frac{1}{3}$	-285896147 6951141489600	-146849558 108611585775	-416954521 27583894800	-76547177 2216562975	-3046673843 99302021280	$\frac{-10916}{17414075}$	-322316441 248255053200	39132763 108611585775	-34242907 772349054400
5	$\frac{1}{24}$	$\frac{-1}{8}$	$\frac{-7}{8}$	$\frac{23}{24}$	-40710074833 296582036889600	3819938693 5560913191680	-7860240547 1059221560320	<u>-635601419</u> 264805390080	<u>-353757522817</u> 12710658723840	-4527137 2229001600	<u>-25014937</u> 7355705280	86428031 86889268620	
6	$\frac{-1}{3}$	$\frac{3}{2}$	-3	$\frac{11}{6}$	276963649 463409432640	<u>-51987389</u> 36203861925	247289899 5516778960	92187563 2068792110	4602143233 33100673760	31398 3482815	1449300077 82751684400	<u>-68021927</u> 14481544770	18092743 30893962176
7	$\frac{-23}{24}$	$\frac{31}{8}$	$\frac{-47}{8}$	$\frac{71}{24}$	15797883989 5084263489536	-12079166569 794416170240	49272768719 294228211200	6342337547 113488024320	6749625424349 12710658723840	3024991 63685760	67011585461 453952097280	$\frac{-47322469987}{1986040425600}$	1753684073 564918165504
8	$\frac{-11}{6}$	7	$\frac{-19}{2}$	$\frac{13}{3}$	673093717 92681886528	<u>-861439924</u> 21722317155	5916680327 16550336880	187789298 5171980275	22745989835 19860404256	77264 696563	2509840733 5516778960	53843858 21722317155	19190084621 2317047163200

Table 9

Coefficients of additional formulas for $h^2 y_{n+j}''$.

j	α_{0j}^2	α_{1j}^2	α_{2j}^2	α_{3j}^2	β_{0j}^2	β_{1j}^2	β_{2j}^2	β_{3j}^2	β_{4j}^2	β_{5j}^2	β_{6j}^2	eta_{7j}^2	β_{8j}^2
0	2	-5	4	-1	125156183 7801505600	818786078 3291260175	2250585863 7522880400	42631697 156726675	201297517 3009152160	214724 17414075	769933 278625200	<u>-1749317</u> 1097086725	5800455 210640651200
1	$\frac{3}{2}$	$\frac{-7}{2}$	<u>5</u> 2	$\frac{-1}{2}$	<u>-309230083</u> 561708403200	79321033 15603011200	31188338921 240732172800	12705279997 120366086400	162276931 3209762304	<u>-96419</u> 557250400	71366329 34390310400	<u>-45799489</u> 93618067200	43601021 842562604800
2	1	-2	1	0	5943493 70213550400	-37318171 3291260175	-153270907 2507626800	-9855983 940360050	-274373 334350240	7286 17414075	-479177 7522880400	$\frac{-104101}{6582520350}$	41221 7801505600
3	$\frac{1}{2}$	$\frac{-1}{2}$	$\frac{-1}{2}$	$\frac{1}{2}$	$\frac{-612147041}{6740500838400}$	-593261461 140427100800	-5514026299 120366086400	-184248483 17195155200	-4679875943 96292869120	$\frac{-288697}{278625200}$	-16201043 8597577600	447758173 842562604800	$\frac{-447758173}{6740500838400}$
4	0	1	-2	1	-5049397 30091521600	618736 470180025	<u>-33156581</u> 7522880400	<u>-6568</u> 2487725	<u>-215258051</u> 3009152160	$\frac{-6568}{2487725}$	<u>-33156581</u> 7522880400	618736 470180025	-5049397 30091521600
5	$\frac{-1}{2}$	<u>5</u> 2	$\frac{-7}{2}$	$\frac{3}{2}$	61808423 481464345600	80232979 20061014400	3661827577 80244057600	12987031441 120366086400	1578882883 12036608640	141769 79607200	137019779 80244057600	<u>-91077403</u> 120366086400	5562929 53496038400
6	-1	4	-5	2	677735887 210640651200	-51543173 3291260175	1309020983 7522880400	56625599 940360050	111601333 200610144	858818 17414075	849687439 7522880400	-177618587 6582520350	694453399 210640651200
7	$\frac{-3}{2}$	$\frac{11}{2}$	$\frac{-13}{2}$	<u>5</u> 2	44363036453 6740500838400	-15860557283 421281302400	18722975027 60183043200	-760580869 120366086400	96876124951 96292869120	3462247 34828150	17596779121 40122028800	-27025583383 842562604800	40303467289 6740500838400
8	-2	7	-8	3	2242500397 210640651200	<u>-212136446</u> 3291260175	1157012837 2507626800	<u>-13958849</u> 156726675	4385526221 3009152160	2971148 17414075	814405169 1074697200	203965861 1097086725	618190309 23404516800

Table 10

Coefficients of additional formulas for $h^3 y_{n+i}^{\prime\prime\prime}$.

j	α_{0j}^3	α_{1j}^3	α_{2j}^3	α_{3j}^3	β_{0j}^3	β_{1j}^3	β_{2j}^3	β_{3j}^3	β_{4j}^3	β_{5j}^3	β_{6j}^3	β_{7j}^3	β_{8j}^3
0	-1	3	-3	1	-1467997511 9873780525	<u>-1467115409</u> 1974756105	<u>-99355337</u> 1253813400	-1635773617 2821080150	138688129 1128432060	<u>-1389102</u> 17414075	1125583 322409160	105036829 19747561050	<u>-5491103</u> 4388346900
1	-1	3	-3	1	97781931881 20221502515200	<u>-111251338171</u> 631921953600	<u>-43613710037</u> 80244057600	<u>-769837307</u> 5158546560	-41928306083 288878607360	7463313 557250400	<u>-3062279881</u> 722196518400	<u>-245443991</u> 1263843907200	66649141 449366722560
2	-1	3	-3	1	-2055743 1579804884	248368817 9873780525	-12293131 89558100	-871809643 2821080150	-29671325 451372824	<u>-31218</u> 3482815	-25562519 5642160300	39095743 19747561050	-2675059 8776693800
3	-1	3	-3	1	9559098569 20221502515200	3335799077 631921953600	1765193807 16048811520	1906410671 180549129600	-36609495107 288878607360	1569777 557250400	$\frac{-1870306153}{722196518400}$	46653269 252768781440	4111549 2246833612800
4	-1	3	-3	1	<u>-2243329</u> 2821080150	23800157 1410540075	71713639 1253813400	902095151 2821080150	137896441 1128432060	24354 2487725	92735011 11284320600	9090331 2821080150	288443 626906700
5	-1	3	-3	1	65480917097 20221502515200	<u>-2045343551</u> 126384390720	14275275307 80244057600	9840387887 180549129600	28349661307 41268372480	26057361 557250400	9434690059 144439303680	-26891767319 1263843907200	6254650889 2246833612800
6	-1	3	-3	1	311092063 39495122100	-518396239 9873780525	188493071 626906700	-98953391 564216030	2094473639 2256864120	2171334 17414075	2445342373 5642160300	-1494434369 19747561050	15575461 1755338760
7	-1	3	-3	1	4446069809 808860100608	-22062362587 631921953600	19774383499 80244057600	-16219117777 180549129600	50413288025 57775721472	8113149 111450080	81061508849 103170931200	178132507177 1263843907200	1818780521 2246833612800
8	-1	3	-3	1	114804103 9873780525	-772851157 9873780525	93073163 250762680	-105426823 403011450	1055854753 1128432060	4152786 17414075	5121885773 11284320600	2646097721 3949512210	697976281 4388346900

References

- [1] R.P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, World Scientific, Singapore, 1986.
- [2] D. Krajcinivic, Sandwich beam analysis, J. Appl. Mech. 39 (1972) 773-778.
- [3] R.R. Craig, A.J. Kurdila, Fundamentals of Structural Dynamics, Wiley, 2006.
- [4] H.B. Keller, Numerical Methods for Two-Point Boundary Value Problems, Dover Publications, New York, 1992.
- [5] M.A. Noor, S.T. Mohyud-Din, An efficient method for fourth order boundary value problems, Comput. Math. Appl. 54 (2007) 1101–1111.
- [6] M.A. Noor, S.T. Mohyud-Din, Variational iteration technique for solving higher order boundary value problems, Appl. Math. Comput. 189 (2007) 1929–1942.
- [7] S.S. Siddiqi, G. Akram, Quintic spline solutions of fourth order boundary-value problems, Int. J. Numer. Anal. Model. 5 (1) (2008) 101–111.
- [8] K.N.S. Kasi Viswanadham, P. Murali Krishna, Rao S. Koneru, Numerical solutions of fourth order boundary value problems by Galerkin method with quintic B-splines, Int. J. Nonlinear Sci. 10 (2) (2010) 222–230.
- [9] Huanmin Yao, Minggen Cui, Searching the least value method for solving fourth-order nonlinear boundary value problems, Comput. Math. Appl. 59 (2010) 677–683.
- [10] J. Niiranen, S. Khakalo, V. Balobanov, A.H. Niemi, Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems, Comput. Methods Appl. Mech. Engrg. (2016) http://dx.doi.org/10.1016/j.cma.2016.05.008.

- - - -

- [11] R. Vrabel, Formation of boundary layers for singularly perturbed fourth-order ordinary differential equations with the Lidstone boundary conditions, J. Math. Anal. Appl. 440 (2016) 65–73.
- [12] S.N. Jator, Solving second order initial value problems by a hybrid multistep method without predictors, Appl. Math. Comput. 217 (8) (2010) 4036–4046.
- [13] L.K. Yap, F. Ismail, N. Senu, An accurate block hybrid collocation method for third order ordinary differential equations, J. Appl. Math. 2014 (2014) 9, Article ID 549597.
- [14] R. Abdelrahim, Z. Omar, Solving third order ordinary differential equations using hybrid block method of order five, Int. J. Appl. Eng. Res. 10 (2015) 44307–44310.
- [15] H. Ramos, M.A. Rufai, A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems, Math. Comput. Simulation, https://doi.org/10.1016/j.matcom.2019.03.003.
- [16] J.D. Lambert, Computational Methods in Ordinary Differential Equations, John Wiley, New York, 1973.
- [17] S.N. Jator, V. Manathunga, Block Nyström type integrator for Bratu's equation, J. Comput. Appl. Math. 327 (2018) 341-349.
- [18] J.F. Traub, Iterative Method for the Solution of Equations, Prentice-Hall, Englewood Cliffs, 1964.
- [19] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
- [20] J.E. Dennis, R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, in: Classics in Applied Mathematics 16, SIAM, 1996, Reprint.
- [21] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.
- [22] M.S. Petković, B. Neta, L.D. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations, Elsevier, Amsterdam, 2013.
- [23] L.V. Kantorovich, The majorant principle and Newtons method, Dokl. Akad. Nauk SSSR 76 (1951) 1720.
- [24] O.P. Ferreira, Local convergence of Newton's method under majorant condition, J. Comput. Appl. Math. 235 (2011) 1515–1522.
- [25] J.A. Ezquerro, D. González, M.A. Hernández, On the local convergence of Newtons method under generalized conditions of Kantorovich, Appl. Math. Lett. 26 (2013) 566–570.
- [26] I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity 28 (2012) 364–387.
- [27] Y. Lin, L. Baob, X. Jia, Convergence analysis of a variant of the Newton method for solving nonlinear equations, Comput. Math. Appl. 59 (2010) 2121–2127.
- [28] F.A. Costabile, A. Napoli, Collocation for high order differential equations with two-points Hermite boundary conditions, J. Appl. Numer. Math. 87 (2015) 157–167.
- [29] O. Adeyeye, Z. Omar, Solving nonlinear fourth-order boundary value problems using a numerical approach: (m + 1)th-step block method, Int. J. Differ. Equ. Appl. (2017) 9, http://dx.doi.org/10.1155/2017/4925914, Article ID 4925914.