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Convergence analysis

1. Introduction

In this work, the numerical approximation to the solution of the 4th-order problem of the type

YW =fxy.y.y'.y"), a<x<b, (1)
subject to the following boundary conditions
ya)=ao, yb)=p, y@=a, Yb)=5p, (2)

where a, b, o, B, i = 0, 1, are given real numbers, is considered. We assume that the function f is continuous in [a, b] x R*
and verifies Lipschitz conditions on the variable y = (y,y’,y”,y"), that is, it holds that for any y;,y, € R* there exist
constants L; > 0,j =0, ..., 3, such that

3
F(x.y1) = Fx. 2l < > Lly? =31
=0

This assumption guarantees the existence and uniqueness of a solution for problem (1)-(2) in a certain subset of [a, b] xR*
(see [1]). We also assume that f and its derivatives up to the third order with respect to the independent variable are
differentiable, in order to address the convergence analysis of the method.

It is noteworthy to state here that the block hybrid method developed in this paper can be extended to solve (1) with
any of the following boundary conditions

ya)=a,  YIb) =81, ya)=ay, YIb)=p, withO<i<j<T1,...,4,
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as can be seen in the numerical examples.

Problems arising from engineering and other sciences, just to mention but few have been modelled into higher order
linear and nonlinear initial and boundary value problems. Fourth order problem finds its application in the static deflection
of a uniform beam. The deflection curve of each set of boundary conditions is such that the beam with both ends embedded
gives rise to Neumann and Dirichlet (first order) boundary conditions. A simply supported beam gives rise to Neumann
and Dirichlet (second order) boundary conditions, and cantilever beam (left end embedded, right end free), gives rise to
different conditions (see [2,3]). The theorem and proof for the general conditions concerning the existence and uniqueness
of the solution of (1)-(2) have been given by Keller [4].

Numerical approaches for the solution of fourth order boundary value problems are numerous in the literature. Some
of those methods intended for obtaining the approximate solution of fourth order BVPs include, but are not limited to,
Variational Iteration Method (VIM) by Noor and Mohyud-Din [5,6], Quintic Spline method by Siddigi and Akram [7],
Spline-based methods by Kasi et al. [8], the Least Value Method by Huanmin and Minggen [9]. Other approaches are
based on collocation methods, Variation of Parameter methods, Adomian Decomposition methods, Differential Transform
Methods, just to mention a few (see [10,11] among others).

In this work, we consider linear multistep hybrid formulas with four intra-step grid points. These formulas are
constructed using a collocation approach, and later are put together to form a Block Hybrid Method (see [12-15]). The
derivation of the method is presented in the following section. In Section 3 the convergence analysis is presented. The
numerical examples presented in Section 4 confirm the good performance of the new method over other approaches in
literature.

2. Derivation of the method

This section describes the derivation of a continuous implicit four intra-step hybrid block method for approx-
imating the solution of the BVP in (1)-(2). Consider the grid points on the interval of integration [a, b], iy =
{a=x <x3 <--- <xy_1 <Xy = b}, with h the constant step size, h = x; — xj_1,j = 1,2, ..., N. The method relies
on the approximation of the exact solution y(x) at the grid points of four adjacent subintervals and the corresponding
intermediate points, by the polynomial p(x) given by

12
YR ~px) =Y pix, (3)
i=0
which yields the successive derivative approximations, and in particular

12
Y00 2 p) =Y (i — 1)1 — 2)(i — 3 (4)
i=4
Here, the p; are real unknown coefficients to be determined. In order to simplify the derivation of the method we
will consider a generic block interval, [x,, X,14], since the formulas thus obtained may be easily shifted to the all the
successive blocks for n = 0,4, ..., N — 4. Thus, we consider the points X, j =X+ %h,j =0,1,...,8, in the four-step
2

scheme for approximating the solution on [x,, X,.4]. After considering the approximation in (3) applied to the points

Xn, Xn+1, Xn+2, Xnt3, and the fourth derivative in (4) applied to the points xn+l,j =0,1,...,8, we obtain a system of 13
2
equations with 13 unknowns (the p;, i = 0, 1, ..., 12). This system may be written in matrix form as
1 % % x  x X x8 X! X2
T X1 X X4 X Xni1 Xni1 Xni1 Xnt1
1 X2 X X0, Xpp Xoia X e Xpha X 00 yy "1
n+
1 Xni3 Xoy3 Xoy3 Xnys Xni3 X3 e Xpha X2a P1 Vni2
0 o0 0 0 24  120x, 360x2 ... 7920/ 11880x8 ‘;2 Yni3
0 o0 0 0 24 120x .1 360x> , ... 7920x’ , 11880x% | o fn
n+3 n+ 3 n+5 ntd 4 fora
P5 2
0 0 0 0 24 120x,41 360x2,, 7920x],, 118803, e | = fi
2 7 8
0 0 0 0 24 120, 360xn+% 7920xn+% 1 1880xn+% 07 th,:+%
P8 n+2
0 0 0 0 24 120X, 360x2,, 7920x) , 11880x%,, 0o Fuos
2 7 8
0 0 0 0 24 120x,s 360xn+% s 7920xn+% 11880xn+% /;10 fois
11
0 0 0 0 24 120x,3 360x2,, ... 7920x],, 11880x%_, P12 ];';L%l
0 0 0 0 24 120x_.; 360x* , ... 7920x’ , 11880x% , "
3 n+7 n+4 n+%
0 0 0 0 24 120x,4 360x2,, 7920x) ., 11880x%,,
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where the approximate values are given by y,1 i YD (%nti) and fori = fXngi, Ynris Vnair Ynsis Voyi)-

Solving the above system using a CAS like Mathematica we can obtain the values of the coefficients p;,i =0, 1, ..., 12,
which are not worth to include here as they are cumbersome expressions. After simplification, the approximate values
obtained through the polynomial in (3) adopt the form

+J —Zal])’n+1+h Zﬁyfnﬂ/L j=1,3,5,7,8. (5)

i=0

where the o} and ] are the coefficients of the main formulas, which are given in Table 7 in the Appendix.
The additional methods are obtained by evaluating the successive derivatives of p(x) to give

ry) Zauyn+l+h Zﬁ,]fnﬂ/z, =123 j=0(1)8 (6)

i=0

1

where the a and ﬂ are the coefficients appearing in Tables 8-10 in Appendix. The notations y“) . stand for the
n+3

approx1matlon of the Ith order derivative of y(x) at x_ +i

In order to get the main formulas in (5), we evaluate p(x) at the points x = Xy i i=1,3,5,7,8, and after some
simplifications, we obtain the formulas whose coefficients appear in Table 7 in Appendlx

Then, evaluating p’(x) at the points x = x, e i =0,1,...,8, we obtain the formulas for approximating the first
derivatives whose coefficients are given in Table B in Appendlx

Similarly, evaluating p”(x) at the pointsx = x,_ 1,i =0, 1,..., 8, we obtain the formulas for approximating the second
derivatives whose coefficients are in Table 9 in Appendix.

Finally, evaluating p”’(x) at the points x = xn%, i=20,1,...,8, we obtain the formulas for approximating the third
derivatives whose coefficients are given in Table 10 in Appendix.

All the formulas in (5)-(6) considered together form the block method, which will be named BHM for short. If we had to
solve an IVP with this method, it should be applied sequentially on block of intervals of the form [x,, X,14], n = 0, 4, N —4,
where N, the number of subintervals, must be a multiple of 4 in order to reach the final point xy = b. But we want to use
them to solve a BVP. In this case, we consider all the formulas in (5)-(6) for n = 0(4)N — 4 at the same time. This results
in a system of 8N equations, which altogether with the four boundary conditions leads to a system of 8N + 4 equations
in the 8N + 4 unknowns {yj, Vi ¥y y]”’} for j = 0(1/2)N.

3. Analysis of the method

3.1. Local truncation error and order

Given a sufficiently differentiable function z(x), the linear difference operators associated with the formulas in (5)-(6)
are given as follows

£ ,lz(x); h] =h'z"(x + h |:Z afiz(x + ih) + h* Z Bz ™ (x + h)] (7)

i=0

forl=0andj=1,3,5,7,8,orfor=1,2,3 and j = 0(1)8.

The local truncation error of each of the formulas in (5)-(6) is the amount by which the exact solution of the ODE fails
to satisfy the corresponding difference operator. Thus, after expanding (7) in Taylor series around x we get that each of
the local truncation errors is of the form

Ljlz(x); ] = Coz(x) + C1hz/(x) + CR*Z"(x) + - - - + Cgh?zV(x) + O(h'TD) (8)
where the C’s are constants. If we have that
C0:C1:C2:"':Cp+u—l:07 and CIH’H 7+—0

where u is the order of the differential equation, then it is said that the formula is consistent of order p (see [16]), and
Gy is called the principal error constant. In this case it is © = 4 and the local truncation errors of the main formulas
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are given respectively by

41171875

~ 3313090972090368
36671875

~ 1104363657363456
—621296875

~ 3313090972090368

225390625
_ (12) h'2 L ('3
67614101471232" ()= + O(h ™)

2640625
(12) h'2 1 o(h'3).
2022150251527 ()™= + O(h™)

For the formulas in (6) the local truncation errors are similarly obtained. Consequently, from the above results, the
order of the block method is p = 8.

Yy (x)h'? 4+ 0o(h')

c"% [y(Xn); h]

y(12)(xn)h12 + O(hl3)

EO% [y(xa): h]

yP(x)h'™ + 0(h") (9)

L% [y(xn); hl
cg [Y(Xn); h]

L30y(n); h]l =

3.2. Convergence analysis

We first assume that the following boundary conditions in (2)

/

Yo = o, YN = Bo, Yo =1, yy = B

are given. Thus, the vector of unknowns Y is given by

Y = (yi2. 51320 - In-172: Va2 Yo Vi - Y e

o mo ///)T

yg,y/{/z,y/{,yg/z, ces 7y;\/1a}’0 s Y12:Y1:Y3/20 -5 YN

This makes a total of (2N — 1) + (2N — 1) + (2N + 1) 4+ (2N + 1) = 8N unknowns.

On the other hand, we have five formulas in Table 7 which for n = 0(4)N — 4 make a total of 5N /4 formulas. Similarly,
we have in Table 8 nine formulas. If we take n = 0(4)N — 4 we obtain 9N /4 formulas more. With the formulas in Tables 9
and 10 we proceed similarly, that is, we get 9N /4 4+ 9N /4 formulas more. In this way, the total number of equations will
be 5N/4 +9N/4+9N/4+ 9N /4 = 8N.

We have then, a system with 8N equations and 8N unknowns, whose solution provides a set of approximate values
of the BVP. This system, obtained from the formulas corresponding to the coefficients in Tables 7-10, can be written
compactly as

PY+h'QF+R=0, (10)
where
F = (f07f1/2yf1,f3/27---7fN7f0/,f1//27f1/,f3//27---7f1\/17
4 1" " 4 4 " " 11 11 1" T
0!1/2’1’3/2!"'!N’0’1/2’1’3/2!""N) )

P, Q are constant matrices formed by the coefficients of the formulas, and R is a (8N)-vector containing the known values
in the formulas, that is,

R = (a0, 0g3Y0, 205V, @g7Y0, tsYo, 0, ..., 0, —yn,
agoYo — Y, 1Yo, gyYos - - - gy, 0, ..., 0, —hy},
C\léoyo, Olg]yo, Olgzy(), PN Olgsyo, 0, ey O,

Clgoy(), Olgly(), Olgzyo, ey Olgsyo, 0, ey O)T

Specifically, P is a (8N x 8N)- matrix of coefficients formed by submatrices, as
Pi1 P2 P13 Ppg
P =

The submatrix P;; corresponds to the first 5N /4 formulas, obtained from (5) for n = 0(4)N — 4 (after passing all the
terms to the right hand side). The first row of Pq; is the coefficients of the first formula corresponding to the terms
Y12, Y1, Y3725 - - - » Yn—1/2. The second row of Py is the coefficients of the second formula corresponding to the same terms
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Y1/2: Y1, Y3/25 - - - » Yn—1/2, and so on. Thus, Pq; is a matrix of size 5N /4 x (2N — 1) of the form

by 0O 0 0O -~ 0

0 pp O o .- 0

Py = e e e
0 0 0 --- 0 pwan

4 4

where each of the N/4 submatrices pj; is given by

) -1 % 0 o) 0 o 0 O

@y 0 ofy —1 o) 0 a3 0
Pi=| a5 0 a5 0 ap -1 o o 1,

af, 0 % 0 o) 0 o -1 0

ag 0 % 0 o) 0 oY 0 -1

except for p;; where the first column is missing, and py x where the last column is missing. Furthermore, in the
triangular arrangement of the p;; in P;q, the first column of each pii is placed below the last column of each p;_1;_; for
i=2,3,...,N/4
The submatrix P;; corresponds again to the first 5N /4 formulas, obtained from Table 7 for n = 0(4)N — 4 (after
passing all the terms to the right hand side). The first row of Py, is formed by the coefficients of the first formula
corresponding to the terms y) 5, 1,35, - - -, Yy_1/2- The second row of Py; is formed by the coefficients of the second
formula corresponding to the terms Y} ,, ¥;, Y55, - - -, ¥y_1/5» and so on. Thus, Py, is a null matrix of size 5N /4 x (2N —1).
The submatrix Py3 contains the coefficients of the first 5N /4 formulas corresponding to the terms yg, y7 5, Y1, V3 PIRERS
¥n- Thus, Py3 is also a null matrix of size 5N /4 x (2N + 1).
The submatrix P14 contains the coefficients of the first 5N /4 formulas corresponding to the terms y;’, y’l”/z, vy, yg”/z, .
yn- Thus, P14 is also a null matrix of size 5N/4 x (2N + 1).
The submatrices Pj,j = 1,2, 3,4, contain the coefficients of the next 9N/4 formulas obtained from Table 8 for
n = 0(4)N — 4 and have respectively sizes of 9N/4 x (2N — 1),9N/4 x (2N — 1),9N/4 x (2N + 1) and 9N/4 x (2N + 1).
The submatrix P,; contains the coefficients of these formulas corresponding to the terms y,2, Y1, ¥3/2, - - -» Yn—1/2, and is
written
pn 0 0 O
=] 0o 00 D
0 0 0 -~ 0 pwnn
73

where each of the N/4 submatrices p;; is given by

[ aly 0 aly 0 o) 0 aly 0 07
“(1)1 0 oz}l 0 05%1 0 a;] 0 0
b, 0 o, 0 ), 0 a, 0 O
ot53 0 a}3 0 0553 0 a;3 0 0

pi=| oy 0 af, 0 a 0 aj, O O |,

otgs 0 allS 0 Dé;s 0 O‘;s 0 0
alg 0 alg 0 ) 0 aj 0 O
ab, 0 o, 0 ), 0 @), 0 O

L agg 0 ajg 0 ajg 0 a3y O O |

except for p1; where the first column is missing, and py n Where the last column is missing. Furthermore, in the triangular
~ . . 4 4 ~ . ~

arrangement of the submatrices p;; in Py, the first column of each p;; is placed below the last column of each p;_1;_; for

i=2,3,...,N/4
The submatrix P, contains the coefficients of these formulas corresponding to the terms y| /20 A PIREEE YN-1 /20 and

is written as
pnn O o o .- 0
0 7 o o0 .-

Ppo=h| . p22
0 0 0 -+ 0 paxn
173
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where each of the N/4 submatrices pj is given by

-1 0 0 O 0O 0 0 0 0 T
0 -1 0 0 0 0 0 0 O
0 0 -1 0 0 0 0 0 O
0 0 0 -1 0 0 0 0 O
pi=| 0 o o o -1 o o O O |,
0 0 0 0O 0 -1 0 0 O
0 0 0 0O 0O 0 -1 0 O
0 0 0 O O 0 0 -1 0
. o o o 0o O O O 0 -1

except for p; where the first column is missing, and py v where the last column is missing. Furthermore, in the triangular
arrangement of the submatrices p; in Py, the first col‘{n‘}m of each p;; is placed below the last column of each p;_;_; for
i=2,3,...,N/4

Finally, P,3 and P,4 are null matrices.

For the submatrices Psj, P4j, j = 1, 2, 3, 4, the situation is similar as the previous one. The submatrices P3; and P4; have
a similar structure as that of matrix P,q, given as

pu 0 0 0 --- 0

0 pp 0 0 --- 0

Pao=| .. O . .
0 0 0 -+ 0 pnxn

13

where each of the N/4 submatrices p;; is given by

f a2y 0 o) 0 a 0 o 0 O
“51 0 ozf] 0 a%l 0 ozg] 0 0
o, 0 o2, 0 a2 0 o 0 O
a2, 0 a2 0 a2 0 o 0 0

pi=| afy 0 o}, 0 o 0 o 0 0 |,
ads 0 ol 0 a3 0 o 0 O
O(SG 0 oz%s 0] a%S 0 0(%6 0 0
a, 0 o2 0 o2 0 a2 0 0
Loy 0 afy 0 a3 0 of 0O O |

and similarly,

pu 0 0 0 -~ 0

I IO §

0 0 0 -+ 0 Py
where each of the N /4 submatrices pj; is given by

Tady 0 ) 0 a3y 0 @3 0 0]
af 0 o}, 0 o3 0 o3 0 O
o 0 o3, 0 o3, 0 a3, 0 O
o 0 o33 0 a3; 0 a; 0 O

pi=| o, 0 o}, 0 o 0 o, 0 0O
0 0 ol 0 a3 0 a3 0 O
gy 0 a3y 0 a3 0 a3 0 O
a 0 o}, 0 a3, 0 a3 0 0
Lol 0 o3, 0 o 0 o3 0 0 |

where there is valid a similar comment as for P,; concerning the placement of the submatrices p;; and p;; in the triangular
arrays.
The matrices P33 and Py4 are similar to Py, after changing h by h? and h? respectively. Finally, P3; = P34 = Pyy = P43 = 0.
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Thus, the structure of matrix P is

Py
Py
P34
Py

P =

On the other hand, matrix Q has size 8N x (8N + 4) and the entries correspond to the coefficients of the 8N equations

0
Py,
0
0

0
0
P33
0

0

0

0
Pyy

in the terms of F. It can be written as

Qi1 Qi Qi3 Qu
0= Q1 Q2 Q3 Q4
Q31 Q3x2 Q33 Q34
Qi Qe Qs Qu
where the submatrices Qj,j = 1, ..., 4 have dimension 5N /4 x (2N 4+ 1), while the rest of submatrices have dimension

9N/4 x (2N + 1). It is clear from the formulas corresponding to the coefficients in Tables 7-10 that the Q;,i > 1,j =
1,..., 4, are null matrices, while

gqu O 0 0 - 0
0 g» O o .- 0
Qu=1| ... .. ... ... ... ..
0 0 0 -~ 0 qgmwn
4 4
where each of the N/4 submatrices g;; is given by
0 0 0 0 0 0 0 0 0
Bor Bii B Bsi Ba Bsi Ber B Pai
0 0 0 0 0 0 0 0 0
Bozs Bz Pz Bz Bz Bss Pes Pz Pas
o — 0 0 0 0 0 0 0 0 0
Gi = | Bos Bis Bas Pss Pas Pss Bes Brs  Pas
0 0 0 0 0 0 0 0 0
Bor Bz Bu Bz By Bs; Ber P B
0 0 0 0 0 0 0 0 0
Bos Pis P Pz Bus Bss Pes Pz Pas
The matrices Q;, i = 2, 3, 4, have a similar structure
q; 0 Odot O --- 0
i
_ 0 ¢, 0 0o - 0
Qu=| ... .70 ... .. .. .. ;
i
0 0 0 e 0 Iy
73
where each of the N/4 submatrices qjlj is given by
r pi-1 i-1 i—1 i-1 i—1 i-1 i-1 i-1 i—1 7
00 10 20 30 40 50 60 70 80
i—1 i-1 i—1 i-1 i—1 i-1 i-1 i-1 i-1
01 11 21 31 41 51 61 71 81
i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1
02 12 22 32 42 52 62 72 82
i—1 i-1 i—1 i-1 i-1 i-1 i-1 i—1 i-1
03 13 23 33 43 53 63 73 83
i i-1 i—1 i-1 i-1 i—1 i-1 i-1 i-1 i-1
9 = 04 14 24 34 44 54 64 74 84
i—1 i-1 i—1 i-1 i—1 i—1 i-1 i—1 i-1
05 15 25 35 45 55 65 75 85
i—1 i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1
06 16 26 36 46 56 66 76 86
i—1 i-1 i—1 i-1 i—1 i—1 i-1 i-1 i-1
07 17 27 37 47 57 67 77 87
i—1 i-1 i—1 i-1 i—1 i—1 i-1 i-1 i—1
L Pos 18 28 38 48 58 68 78 88

As before, in the triangular arrangement of the ¢;; in Q;1, and the q]i.]. in Q;; the first column of each q]i.]. is placed below

the last column of each qjl;”.q forj=2,...,N/4.
Now let Y be the vector of true values corresponding to the approximated values in Y, that is,

Y = (¥(x1/2), Y(x1), Y(X372), -, Y(Xn—172), Y (X172), Y (%1), ¥ (X32), - .. ¥ (*n—12),

V' (x0), Y (%172, ¥ (x1), ¥ (X312), - . -

Y (xn), ¥ (%o

)y

ua

(x12), " (x1), " (X32), - ... ¥ (xn))

T

and let F be the vector of true values corresponding to the approximated values in F, that is,

F= (f(X07 y(X()), y/(x()), y”(XO)s yW(XO))5 v 7f(XN# y(xN)5 y,(XN)7 .y”(XN)7 y”/(XN))v

e (%0, Y(%0), Y (%0), ¥ (%0), ¥ (%0)), - - - f7 (ks Y(XND) Y (%), Y (X ), ¥ (%))

T
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We have that for the true values it is

PY +h*Q F+R = L(h) (11)
where L(h) is a (8N)-vector containing the local truncation errors of the formulas, whose terms are of order O(h!?)
(SeTf (V%L)‘denote the errors between the true values and the approximated ones by

e=yx)—yi, e=yx) -y, &=Yx)-y, & =y"(x)-y,
fori=0,1/2,1,3/2,..., N, we consider the vector of errors as

E = (e12,€1,... €N 12, €3, €}s -, e 112,

eg. €\, €, ... eN,eg/,e/{’/z,e/{/,...,e}(/)T

We note that E is a (8N)-vector that contains the errors of the unknowns in Y, while in view of the boundary conditions
we have that

eo=Yx0)—Yo=0, ex=yxn)—yn=0, e =yY(x)—yy=0, ey=y(x)—yy=0. (12)

Using the notations above we state the main result of this section in the following theorem.

Theorem 3.1. Let Y and F be defined as above. Let Y be an approximation of the solution vector Y of the system formed by
combining the methods corresponding to Table 7 through Table 10 for n = 0(4)N — 4, and E the vector of errors as defined
above, assuming that the exact solution y(x) of the BVP in (1)—(2) verifies that y(x) € C™[a, b] for m as large as necessary.
Then, the BHM is a convergent method of eighth order, that is, ||E|| < K h8.

Proof. The proof follows the guidelines in [17]. In order to make more understandable the following analysis, we will
include in the matrix equations subscripts indicating the corresponding dimensions. Thus, the exact equation in (11)
adopts the form

PsnxsnYan + h*Qsnx(sn+a) Fenra + Rey = L(h)gw., (13)
while the approximate equation in (10) is rewritten as
Pgy s Yan + h*Qan(ana) Fanta + Ry = 0. (14)

On subtracting (14) from (13) we get
Psnxsn (Ysv — Yan) + h*Qsn(sn+4) (Fsnsa — Fanea) = L()sy.
that is,
PsnxsnEsy + h*Qsnxsn-a) (F — 1:')8,\,+4 = L(h)sn - (15)

Assuming that f, f', f”, " are smooth enough, by using the Mean-Value Theorem we can write for j = 0, 1, 2, 3 and
i =0(1/2)N that

FO%, y(x), ¥y (%), y (), ¥ (%)) — fU (x,,yz,y,,y,,y,’”)

ofv f
= ((xi) — yl)f(éj) + () -y ) - (&)
/! i 8f /1 /// af '
+ (%) — ) V7 &)+ (" (x) — ) Iz GIR
where for each i the éf,j = 0,1,2,3, are intermediate points on the line segment joining (x;,y:, ¥, y{,y") to
(xi, ¥(x:), Y (%), ¥'(x:), ¥ (x;)). Thus, the vector F — F may be expressed as
F-F=U'E
where UF is a matrix of size (8N + 4) x (8N + 4) and E is a vector with 8N + 4 terms containing all the errors,
E = (eo. €12, €1, ..., €N, €), €] 5. €], ..., €Y,
eg. €. €. e ep ey el eﬁ/)T ,

and

Un Up Us Uy
Uyt Uxp Uy Uy
U31 U32 U33 U34
Usn Uz Usz Uy

uf =
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whose entries Uj; are (2N + 1) x (2N + 1) diagonal matrices written as

% (56*1) 0 0 0
0 pas ( ;'721) 0 0
Uj = : : . : :
0 0 e gﬁ%i < ziz_—ll/z) 0
0 o - 0 L &)

Now, having in mind that some of the errors in E are null (see (12)) we can put

(F - I_:)SN+4 = (UF)(8N+4)><(8N+4) E(8N+4> = (UF)(8N+4)><(8N) Egn)

where UF is obtained from UF after eliminating the first and last columns in the matrices Uy, Uy fori = 1, ..., 4 (that
is, we eliminate in UF the columns in the positions 1, 2N + 1, 2N + 2 and 4N + 2).
Then, the equation in (15) becomes

P sn Esn + h*Qsn(sna) (UF)(SN+4)><8N Esn = L(h)sn (16)
which, regardless of sizes, can be written simply as
(P +h*Q UME = L(h). (17)
Now, consider the matrix
k=P +h*Q UF (18)
It is claimed that « is invertible for sufficiently small h. First, we claim that P is invertible. To see this, since

nonzero : i=1,2,3,4, j=1
P=[Pj]=1 nonzero : i=j=2,34
0 : otherwise

then, P is a lower triangular matrix containing nonzero diagonal submatrices, therefore its determinant exists, hence it is
nonsingular. It is known that a matrix with nonzero main diagonal is invertible, hence P~ exists.
Now, (18) can be written as

k| = [P+ h*Q U"| = |P||I — C| (19)
where C = —h*Q UFP~!, then |¢I — C| = 0 is the characteristic polynomial of C, so that

I =Cl=(¢ — &)+ (& — Can)
where ¢; are eigenvalues of the matrix C. When ¢ = 1, we have

I =Cl=(1=&) - (1—&an)

for |l — C| # 0, then each ¢; # 0. If fi is an eigenvalue of C, so is h*z;, thus we need h*z; # 1. So we choose h such that
h* ¢ !41 ¢; are nonzero eigenvectors of QUFP~}. For such h, |I — C| # 0, so that

el = |P|Il — h*Q UF| # 0 (20)
hence « is invertible. Then we have that

k E = L(h)
E =« 'L(h)

IEN = [l L(h)]|

[l =1 L)

= O(h=0(h'?)

<Kh,

IA

which completes the proof. O
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3.3. Existence and uniqueness of the discrete solution

The following result establishes the existence and uniqueness of the solution provided by the system of equations
in (10).
Theorem 3.2. Assuming that f(x,y) verifies a Lipschitz condition on the variabley = (y,y’,y”,y"), it holds that the system

in (10) has a unique solution whenever h ———— where L= max {Lj}, a= max Aii|}, with
" ! ~ La@8N +4)72 {i:0,1,2¢3}{ 1} i=1,..., 8N;j=l,m,8N+4]{| i)
A= P_1Q|h:1'

Proof. Let us consider the function G : R®%" — R8N where the i-component of G(£) is given by
(G(§))i = (=P 'R — h*P'QF(&)),

where £ = (&1, ..., &) € R®V,

Note that for &€ = Y the system in (10) adopts the form & = G(&), so that the existence and uniqueness of the solution
of system (10) is equivalent to that of the equation & = G(&).

We consider in R®" the maximum norm ||£| = max;;<gy {|4]}. We have that

IG(€)i — G(£¥)i| = |h* [P'Q (F(§) — F(£"))]. |

8N+4
<ha ) Lig&—&.
j=1
where L= max {L},anda= max {|Aj]}, being A= P71Q|, ..
(i=0,1,2,3) {i=1,....8N;j=1,...8N+4} h=1

Taking into account the above inequalities and using the Cauchy-Schwartz inequality we can put
1G(§) — G(E™) = max {[IG(§); — G(§™)ill}
{1<i<8N}
< haL(8N +4)"?|l§ —*|| =k |l§ — &*||

with k = haL(8N + 4)"/2.
As long as k < 1 we will have that G is a contraction. Hence, by Banach’s Fixed-Point Theorem the proof is
completed. O

For solving the system in (10) we could use a Newton-type method, as they are probably the most widely used methods
in applications (see [18-22]). As it is well-known, the classical Newton’s method is quadratically convergent from good
starting guesses provided that the Jacobian is nonsingular. There are many results from the Kantorovich’s theorem [23]
about the balls of convergence [24-26]. There are also modified Newton’s methods which are convergent even if the
Jacobian is singular [27]. Nevertheless, those are limited theoretical results and out of the balls one can get convergence
too. From a practical point of view what is important is to choose an initial guess sufficiently close to the root. For the
problem in hand we have considered as initial guesses averaged values of the variables given by

(v(a@) +jhy'(a)) + (v(b) — (2N — j)4y'(b))

Yijz = 2 , j=1,...,2N -1
y(@+y(b) .

Vp=""F—— j=1....2N—1

7 y/(b)_y/(a) .

yj‘/zzT, j=0,...,2N

/1"

Yjh=1 j=0,....2N.
The stopping criteria used in the Newton’s method are
Yo — Yoq]l < 1071°  and  |F(Y,)| < 10719,

or when the number of iterations exceeds 50.
3.4. Computational procedure

The proposed method is implemented in a block form. We solve the system given by all the formulas corresponding
to Tables 7-10 simultaneously using the system Mathematica, enhanced by the feature NSolve[] for linear problems while
nonlinear problems were solved by Newton’s method enhanced by the feature FindRoot[], as summarized in the algorithm
below.

All codes were written in Mathematica 12.0 and run on a PC with an Intel i7 2.00 GHz CPU processor, 8 GB memory
and 64-bit Windows 10 operating system.
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Table 1
Comparison of the absolute errors obtained for Problem 1.
X BHM (N = 8) X BHM (N = 20) VIM [5] HBVP [28]
0.000 0.00 0.1 9.83E—20 7.78E—8 4.45E—10
0.125 1.99E—16 0.2 3.25E—19 2.72E-7 5.54E—10
0.250 6.30E—16 0.3 5.85E—19 8.24E—7 8.95E—11
0.375 1.04E—15 0.4 7.98E—19 7.77E-7 2.03E—-10
0.500 1.22E—15 0.5 9.00E—19 9.71E-7 3.32E-11
0.625 1.17E—15 0.6 8.63E—19 1.05E—6 1.53E—10
0.750 6.95E—16 0.7 6.84E—19 9.63E—7 9.48E—11
0.875 2.39E—16 0.8 4.12E—-19 6.84E—7 5.18E—10
1.000 0.00 0.9 1.33E—19 2.71E-7 4.15E—10
CPU(s.) 0.0312 0.218 - -
Table 2
Maximum absolute errors and ROC obtained for Problem 1.
N Max Abs Err ROC
4 5.152E—12 -
8 1.133E-14 8.82
16 3.772E-17 8.23
32 1.461E—19 8.01
64 5.809E—22 7.97
128 1.419E—-25 7.98

Algorithm.

Data: a, b (integration interval), N (number of steps), yq, ¥;, ¥», ¥, (boundary values), f
Result: sol, discrete approximate solution of the BVP (1)-(2)
1letn=0,4,....N—4, xo=a,xy=b, h="22
2 Let Yo = ya. Yo = Yo IN = Yo Yy = V}s
3 Solve equations in (5)-(6) to get Y
4 Let sol = {(xi, ¥i)}i=0,1.2....N-
5 End

4. Numerical examples

Here, some numerical examples are presented to show the accuracy of the new developed method, BHM. In the
examples considered, we have calculated the absolute errors at different points, which were obtained as err(x;) =
|y(x;) — yi|. The computational time in seconds used by the proposed method is denoted as CPU(s.). It can be seen in
the provided tables that the proposed method is very efficient.

Example 1. We consider the following nonlinear boundary value problem [28]
Y x) = sin(x) + sin*(x) — (v'(0))°,  x € [0, 1], 21)
y(0)=0, y(0)=1, y(1)=sin(1), y'(1)= cos(1)

with solution y(x) = sin(x).

Table 1 shows the absolute errors obtained with the proposed method, the variational iteration method in [5] (which
considers an approximating polynomial of degree 11), and the Hermite based collocation method in [28] (using an
approximating polynomial of degree 8). Note that we have considered different number of mesh points with the BHM,
N =8 and N = 20 (as N must be an integer multiple of 4, N = 20 is the lowest value to get the same grid points as in [5]
and [28]). Table 2 shows the maximum absolute errors at the grid points on the integration interval, and the approximate
order of convergence, ROC, obtained through the formula
max=1,...2n} [Y(Xi) —J’i|)
maxi—1,...ny [y(xi) —yil )’
showing the good agreement with the theoretical results.

p:—log2<

Example 2. We consider the following boundary value problem [28]

Y(X) = (1+c)y'(x) — cy(x) + 3ex* — 1, x € [0, 1], (22)
y(0) =0, y'(0) =0, y(1) = 1.5 4 sinh (1), Y (1) =1+ cos(1)
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Table 3
Comparison of the absolute errors obtained for Problem 2.
X BHM* HBVP* BHM** HBVP*™* BHM*** HBVP***
0.1 1.09E-19 5.44E—10 9.72E-20 1.84E—-10 7.52E-20 3.18E-9
0.2 3.64E—19 6.71E—-10 3.19E—19 6.43E—-9 241E-19 1.28E—8
0.3 6.57E—19 9.72E—11 5.74E—19 2.39E-9 4.27E—-19 2.54E—8
0.4 9.00E—19 2.49E-10 7.84E—19 3.67E—9 5.81E—19 3.55E—-8
0.5 1.02E—-18 1.85E—11 8.91E—-19 3.78E—-9 6.61E-19 3.89E-8
0.6 9.85E—-19 2.03E-10 8.63E-19 3.18E-9 6.47E—-19 3.49E-8
0.7 7.86E—19 1.65E—10 6.94E—19 2.60E-9 5.30E—19 2.56E—-8
0.8 4.76E—-19 7.51E-10 4.25E—-19 2.04E-9 3.33E-19 1.42E-8
0.9 1.55E—-19 5.90E—10 1.40E—-19 9.49E—-10 1.13E-19 4.31E-9
CPU(s.) 0.140 - 0.125 - 0.156 -
*for c = —1/2.
**for ¢ = 5.
***for ¢ = 20.
Table 4
Comparison of the absolute errors obtained for Problem 3.
X BHM HBVP [28]
0.1 0.00E00 7.35E—-16
0.2 1.39E-17 2.34E-15
0.3 2.78E17 4.11E—-15
0.4 0.00E00 5.83E—15
0.5 0.00E00 5.99E—-15
0.6 0.00E00 5.55E—15
0.7 0.00E00 5.21E-15
0.8 1.11E-16 3.10E—15
0.9 1.11E-16 5.55E—16
CPU(s.) 0.187 -
with solution y(x) = 1 + %xz + sinh(x). Here the solution is independent of c. The absolute errors for c = —1/2, 5, 20,

obtained with the BHM approach taking N = 20 and with the method in [28], named as HBVP, which uses an
approximating Hermite polynomial of degree 8, are presented in Table 3. We can see that the proposed method provides
great accuracy.

Example 3. We consider the following nonlinear boundary value problem [28]

Yi(x) = y(x)? — x10 + 4x% — 4x® — 4x7 +8x5 — 4x* 4+ 120x — 48, «x € [0, 1],
y0)=0, y@O=0 y1)=1, y1)=1

with exact solution y(x) = x> — 2x* + 2x2.

(23)

Table 4 shows the errors obtained for Problem (23) using the BHM, and the HBVP method in [28] using an
approximating Hermite polynomial of degree 6. The BHM was implemented for N=20. We note that for this problem
the method BHM is exact for any appropriate value of N and the errors are in fact due to accumulated roundoff errors.

Example 4. We consider the following linear boundary value problem [8]

y(x) — y(x) = —4(2x cosx + 3sinx), x € [0, 1],

YO =y(1)=0, y'(0)=0, y'(1)=2sin1+4cos1. (24)

The problem has exact solution y(x) = (x> — 1)sinx.

Table 5 shows the numerical results for Problem (24) with the BHM, and the Galerkin method that uses quintic splines
in [8]. The maximum absolute error obtained by the method in [8] is 5.275 x 107 for N = 10 subintervals on the domain
[0, 1], while the maximum error obtained with the BHM is 1.77719 x 107'°, for N = 4 and 9.35329 x 10713, for N = 8
subintervals on the domain [0, 1]. It is worth noting that the number of subintervals N must be a multiple of 4 in order
to reach the final point of the domain xy = 1. For comparison to obtain the global errors at the grid points 0.1(0.1)0.9,
we set N = 20.

Example 5. We consider the following nonlinear boundary value problem [8,29]

Y(x) — 6e~ X = —12(14+x)"%, x€[0,1],
y0)=0, y1)=Im2, y(0)=1,  y(1)=05.
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Table 5
Comparison of errors obtained for Problem 4.
X BHM Galerkin method [8]
0.1 2.08438E—16 2.16812E—06
0.2 3.98916E—16 3.88920E—06
0.3 5.54491E—16 5.21541E—06
0.4 6.60577E—16 5.21541E—06
0.5 7.05643E—16 5.21541E—06
0.6 6.83231E—16 5.27501E—06
0.7 5.91857E—16 4.58956E—06
0.8 4.37534E—16 2.98023E—06
0.9 2.32878E—16 1.38581E—06
CPU(s.) 0.127 -
Table 6
Comparison of errors obtained for Problem 5.
X BHM (N = 8) X BHM (N = 8) Galerkin method [8] BM [29]
0 0.00 0.1 7.85372E—13 2.235174E—-08 7.47213E-9
0.125 1.11E-9 0.2 2.11953E—12 7.599592E—07 3.38799E—8
0.250 3.39E-9 0.3 3.03829E—12 2.026558E—06 7.82674E—8
0.375 5.23E-9 0.4 3.37647E—12 2.413988E—06 1.41700E—7
0.500 5.65E—-9 0.5 3.17196E—12 3.129244E—06 2.26096E—7
0.625 4.52E—9 0.6 2.57178E—12 4.917383E—06 3.19801E—7
0.750 2.61E-9 0.7 1.75371E—12 4.887581E—06 3.84959E—7
0.875 8.04E—10 0.8 9.17155E—-13 3.099442E—-06 3.80675E—
1.00 0.00 0.9 2.63345E—13 2.324581E—06 2.66007E—7
CPU(s.) 0.062 0.203 - -
Table 7
Coefficients of main formulas for y,j/.
e B B B & B P Py B B B P
1 5 15 =5 1 867593 —533994833 — 45804085 —259363987  —472251067 —17391 —96983981 8713259 111343
6 16 16 16 539240067072 168512520960 2853122048 19258573824 77034295296 356640256 385171476480 ~ 134810016768 14978890752
3 =1 9 9 =1 6467093 3350219 240113233 117720139 127667567 232353 10247443 —5073967 5073967
6 16 16 16 599155630080 6241204480 12796830720 10699207680 21398415360 1783201280 42796830720 74394453760 599155630080
5 1 =5 15 5 —22206487 —7851623 —170484485 —24839819 —1452326597 —1312179 —32565011 50091379 —8464657
16 6 16 16 49366722560 33702504192 25678098432 2139841536 77034295296 1783201280 25678098432 134810016768 179746689024
7 =5 21 =35 35 18840599 —2545829 307001783 72905329 54387101 666435 378701281 —95397103 705171
16 16 16 16 22009798656 687806208 6113832960 2751224832 343903104 50948608 11004899328 13756124160 815177728
8 -1 4 6 4 11813507 —11102912 22361461 178464 427169213 178464 22361461 —11102912 11813507
3510677520 658252035 125381340 3482815 752288040 3482815 125381340 658252035 3510677520

Problem (25) has the exact solution y(x) = In(x+ 1). Table 6 shows the numerical results for Problem (25). The maximum
absolute errors obtained by the Galerkin method in [8] and the (m 4+ 1)th-step block BM method in [29] are 4.917 x 10~°
and 3.84959 x 10~ respectively for N = 10 subintervals on the domain [0, 1], while the maximum error obtained with
the BHM is 2.06366 x 1077, for N = 4 subintervals on the domain [0, 1]. For comparison purposes, we set N = 20 to
obtain the global errors at the grid points 0.1(0.1)0.9.

5. Conclusion

A block hybrid method (BHM) based on continuous linear multistep formulas has been developed and applied to solve
fourth order linear and non linear BVPs in ordinary differential equations. It was shown that the method is very flexible,
easy to derive and can be applied to solve diverse kinds of fourth order BVPs, with either Neumann or Dirichlet boundary
conditions as seen in the examples presented. The method shows a very high accuracy when compared to the exact
solution and hence it is competitive with existing methods in the literature cited.
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Appendix. Coefficients of main and additional formulas

See Tables 7-10.
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Table 8
Coefficients of additional formulas for hy; ..
P 11 1 gl 1 1 1 1 1 1 1 1
Joay oy oy ay By By Boj B3 By Bs; Bsj B3 Bs;
0 =11 3 =3 1 —50448799 —43207204 —544432879 —11165306 —1027916543 —2352 —584479 377738 —1040471
6 2 3 47286676800 1034396055 5516778960 147770865 33100673760 2487725 472866768 1034396055 22067115840
102 7 1 -1 518995537 239222998933 7063594199 6507924329 62481285047 —86813 79303727 —52075097 131071
24 8 8 24 177949222133760  27804565958400 353073853440 794416170240 12710658723840 445800320 496510106400 2780456595840 6590711930880
9 =l 1 —1 17465663 66502421 330790549 2126281 1524953173 1486 3699029 —43380361 11893159
3 6 463409432640 21722317155 11821669200 59108346 99302021280 3482815 5516778960 217223171550 463409432640
3 1 9 -1 _—496767163 — 123564389 —228641783 —521578507 3842422291 —11007 28507505 —2958553 73538077
24 8 24 59316407377920 370727546112 58845642240 1324026950400 847377248256 445800320 211844312064 115852358160  32953559654400
4 1 1 1 —285896147 — 146849558 —416954521 —76547177 —3046673843 —10916 —322316441 39132763 —34242907
6 2 3 6951141489600 108611585775 27583894800 2216562975 99302021280 17414075 248255053200 108611585775 772349054400
5 1 =1 =7 23 —40710074833 3819938693 —7860240547 —635601419 —353757522817 —4527137 —25014937 86428031 —1502575853
24 8 8 24 296582036889600 5560913191680 1059221560320 264805390080  12710658723840 2229001600 7355705280 86889268620 1863281475584
6 =1 3 -3 11 276963649 —51987389 247289899 92187563 4602143233 31398 1449300077 —68021927 18092743
3 2 6 463409432640 36203861925 5516778960 2068792110 33100673760 3482815 82751684400 14481544770 30893962176
7 =23 31 47 71 15797883989 —12079166569 49272768719 6342337547 6749625424349 3024991 67011585461  —47322469987 1753684073
24 8 8 24 5084263489536 794416170240 294228211200 113488024320 12710658723840 63685760 453952097280 1986040425600 564918165504
g =1l 7 =19 13 673093717 —861439924 5916680327 187789298 22745989835 77264 2509840733 53843858 19190084621
6 2 3 92681886528 21722317155 16550336880 5171980275 19860404256 696563 5516778960 21722317155 2317047163200
Table 9
Coefficients of additional formulas for h?y// i
: 2 2 2 2 2 2 2 2 2 2 2 2 2
Joay oy ey ey By By Bs; B3 B Bs; Bs; B3; B3
0 2 5 4 _q 125156183 818786078 2250585863 42631697 201297517 214724 769933 —1749317 5800455
7801505600 3291260175 7522880400 156726675 3009152160 17414075 278625200 1097086725 210640651200
1 3 -7 -1 _—309230083 79321033 31188338921 12705279997 162276931 —96419 71366329 —45799489 43601021
2 2 2 561708403200 15603011200 240732172800 120366086400 3209762304 557250400 34390310400 93618067200 842562604800
2 1 ) 0 5943493 —37318171 —153270907 —9855983 —274373 7286 —479177 —104101 41221
70213550400 3291260175 2507626800 940360050 334350240 17414075 7522880400 6582520350 7801505600
3 1 -1 1 —612147041 —593261461 —5514026299  —184248483 —4679875943  _—288697  —16201043 447758173 —447758173
2 2 2 6740500838400 140427100800 120366086400 17195155200 96292869120 278625200 8597577600 842562604800 6740500838400
4 0 1 1 —5049397 618736 —33156581 —6568 —215258051 —6568 —33156581 618736 —5049397
30091521600 470180025 7522880400 2487725 3009152160 2487725 7522880400 470180025 30091521600
5 -1 5 =7 3 61808423 80232979 3661827577 12987031441 1578882883 141769 137019779 —91077403 5562929
2 2 2 181464345600 20061014400 80244057600 120366086400 ~ 12036608640 79607200 80244057600 120366086400 53496038400
6 -1 4 5 9 677735887 —51543173 1309020983 56625599 111601333 858818 849687439 —177618587 694453399
210640651200 3291260175 7522880400 940360050 200610144 17414075 7522880400 6582520350 210640651200
7 = 1 Z13 5 44363036453 —15860557283 18722975027 —760580869 96876124951 3462247 17596779121  —27025583383 40303467289
2 2 2 2 6740500838400 421281302400 60183043200 120366086400 96292869120 34828150 40122028800 842562604800 6740500838400
s 2 7 8 3 2242500397 —212136446 1157012837 —13958849 4385526221 2971148 814405169 203965861 618190309
210640651200 3291260175 2507626800 156726675 3009152160 17414075 1074697200 1097086725 23404516800
Table 10
Coefficients of additional formulas for h3yy, .
; 3 3 3 3 3 3 3 3 3 3 3 3 3
Jooag ooy oy ooy By B B B3 By Bs; B B3 By
0 -1 3 -3 1 —1467997511 —1467115409 —99355337 —1635773617 138688129 —1389102 1125583 105036829 —5491103
9873780525 1974756105 1253813400 2821080150 1128432060 17414075 322409160 19747561050 4388346900
1 -1 3 -3 1 97781931881 —111251338171  —43613710037  —769837307 —41928306083 7463313 3062279881 —245443991 66649141
20221502515200 631921953600 80244057600 5158546560 288878607360 557250400 722196518400 1263843907200 449366722560
2 -1 3 -3 1 —2055743 248368817 —12293131 —871809643 —29671325 —31218 —25562519 39095743 —2675059
1579804884 9873780525 89558100 2821080150 451372824 3482815 5642160300 19747561050 8776693800
3 —1 3 -3 1 9559098569 3335799077 1765193807 1906410671 —36609495107 1569777 —1870306153 46653269 4111549
20221502515200 631921953600 16048811520 180549129600 288878607360 557250400 722196518400 252768781440 2246833612800
4 —1 3 -3 1 —2243329 23800157 71713639 902095151 137896441 24354 92735011 9090331 288443
2821080150 1410540075 1253813400 2821080150 1128432060 2487725 11284320600 2821080150 626906700
5 -1 3 -3 1 65480917097 —2045343551 14275275307 9840387887 28349661307 26057361 9434690059 —26891767319 6254650889
20221502515200 126384390720 80244057600 180549129600 41268372480 557250400 144439303680 1263843907200 2246833612800
6 -1 3 -3 1 311092063 —518396239 188493071 —98953391 2094473639 2171334 2445342373 —1494434369 15575461
39495122100 9873780525 626906700 564216030 2256864120 17414075 5642160300 19747561050 1755338760
7 -1 3 -3 1 4446069809 —22062362587 19774383499 —16219117777 50413288025 8113149 81061508849 178132507177 1818780521
808860100608 631921953600 80244057600 180549129600 57775721472 111450080 103170931200 1263843907200 2246833612800
8 -1 3 -3 1 114804103 —772851157 93073163 —105426823 1055854753 4152786 5121885773 2646097721 697976281
9873780525 9873780525 250762680 403011450 1128432060 17414075 11284320600 3949512210 4388346900
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