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Abstract

We propose and analyze a linearly stabilized semi-implicit diffusive Crank–
Nicolson scheme for the Cahn–Hilliard gradient flow. In this scheme, the non-
linear bulk force is treated explicitly with two second-order stabilization terms.
This treatment leads to linear elliptic system with constant coefficients and prov-
able discrete energy dissipation. Rigorous error analysis is carried out for the
fully discrete scheme. When the time step-size and the space step-size are small
enough, second order accuracy in time is obtained with a prefactor controlled
by some lower degree polynomial of 1/ε. Here ε is the thickness of the inter-
face. Numerical results together with an adaptive time stepping are presented
to verify the accuracy and efficiency of the proposed scheme.

Keywords: Cahn-Hilliard gradient flow, unconditionally stable, stabilized
semi-implicit scheme, diffusive Crank-Nicolson scheme, error analysis, adaptive
time stepping

1. Introduction

The Cahn-Hilliard equation is a widely used phase-field model. It was orig-
inally introduced by Cahn and Hilliard [6] to describe the complicated phase
separation and coarsening phenomena in non-uniform systems such as alloys,
glasses and polymer mixtures. An important feature of the phase field model is
that it can be viewed as the gradient flow of the Liapunov energy functional

Eε(φ) :=

∫
Ω

(ε
2
|∇φ|2 +

1

ε
F (φ)

)
dx. (1)
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We consider the Liapunov energy functional Eε(φ) in (1) and the corresponding
gradient flow in H−1 to get the Cahn-Hilliard equationφt = γ∆µ, (x, t) ∈ Ω× (0, T ],

µ = −ε∆φ+
1

ε
f(φ), (x, t) ∈ Ω× (0, T ],

(2)

subject to initial value
φ|t=0 = φ0(x), x ∈ Ω, (3)

and Neumann boundary condition

∂nφ = 0, ∂nµ = 0, x ∈ ∂Ω. (4)

In the above, Ω ∈ Rd, d = 1, 2, 3 is a bounded domain with a locally Lipschitz
boundary (for the d = 2, 3 case), n is the outward normal of ∂Ω, T is a given
time, φ(x, t) is the phase-field variable. f(φ) = F ′(φ) with F (φ) being a given
energy potential with two local minima. In this paper, we take the double well
potential F (φ) = 1

4 (φ2 − 1)2. ε is the thickness of the interface between two
phases. γ is the mobility, which is related to the characteristic relaxation time
of the system. On other hand, taking the inner product of the first equation in
(2) with µ and the second equation in (2) with ∂φ

∂t , we obtain immediately the
energy dissipation law:

∂

∂t
Eε(φ) = −γ‖∇µ‖2 = −γ‖φt‖2−1, (5)

where ‖ · ‖ is the L2 norm, ‖ · ‖−1 is the H−1 norm defined in Section 2.
The Cahn-Hilliard equation is frequently used in mathematical models for

problems in many fields of science and engineering, particularly in materials sci-
ence and fluid dynamics (cf. e.g. [6, 39, 2, 49, 4, 13, 43]). For this reason, Cahn-
Hilliard equation has been the subject of many theoretical and numerical investi-
gations for several decades, see, for instance, [11, 14, 7, 5, 13, 15, 22, 34, 19, 38, 9]
and the references therein. To obtain an energy dissipative scheme, the linear
term is usually treated implicitly in some manners, while different approaches
are used for nonlinear terms F (φ). A very popular approach is the convex split-
ting method which was first introduced in [12], and popularized by [15], in which,
the convex part of F (φ) is treated implicitly and the concave part of F (φ) is
treated explicitly. The convex splitting method was used widely, and several sec-
ond order extensions were proposed based on either the Crank-Nicolson scheme
(see e.g.[3, 43, 26, 10, 8, 33]), or second order backward differentiation formula
(BDF2) [44, 32].

The stabilization method is another efficient algorithm to improve the nu-
merical stability, which is a special class of convex splitting method, see [28, 38].
The main idea is to introduce an artificial stabilization term to balance the ex-
plicit treatment of the nonlinear term, which avoids strict time step constraint.
This idea was followed up in [21] for the stabilized Crank-Nicolson schemes for
phase field equations. Those time marching schemes all lead to linear systems.
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On the other hand, one needs to introduce a proper stabilization term and a
suitably truncated nonlinear function f̃(φ) instead of f(φ) to prove the uncondi-
tionally energy stable property. It is worth to mention that with no truncation
made to f(φ), Li et al [31, 30] proved that the energy stable property can be
obtained as well, but a much larger stability constant needs be used. The main
advantage of the stabilized scheme is its simplicity and efficiency.

An interesting approach, named invariant energy quadratization (IEQ), is
proposed in [46] for dealing with phase-field equations with nonlinear Flory Hug-
gins potential. The IEQ method is a generalization of the method of Lagrange
multipliers proposed in [24, 25]. It was extended to a lot of other applications,
see e.g. [27, 47, 48]. Recently, a scalar auxiliary variable (SAV) approach was
introduced by Shen et al.[36, 37]. SAV approach inherits all advantages of IEQ
approach but also overcomes the shortcomings of solving variable-coefficient
systems at each time step.

In this paper, we focus on the proof of the stability and convergence prop-
erties of energy stable linear diffusive Crank-Nicolson (SLD-CN) scheme for
the Cahn-Hilliard Equation. Recently, we proposed two second-order uncondi-
tionally stable linear schemes based on Crank-Nicolson method (SL-CN) and
second-order backward differentiation formula (SL-BDF2) with stabilization for
the Cahn-Hilliard equation and the Allen-Chan equation [41, 40, 42]. In both
schemes, the nonlinear bulk forces are treated explicitly with two additional
linear stabilization terms: Aτ∆(φn+1 − φn) and B(φn+1 − 2φn + φn−1). An
optimal error estimate with a prefactor depending on 1/ε only in some lower
polynomial order is obtained for the two second-order unconditionally stable
linear schemes for the first time, although some progress has been made in
[18, 19, 29, 45, 16, 17] for the first-order stable schemes in the last dozen years.
We observe that one shortcoming of the SL-CN scheme is that the convergence
analysis requires the second stability constant B > L/2ε. Therefore, instead of
the standard Crank-Nicolson scheme, we now use the diffusive Crank-Nicolson
scheme, i.e., replacing ∆(φn+1 + φn)/2 with ∆(3φn+1 + φn−1)/4 to approxi-

mate ∆φ(tn+ 1
2 ). The proposed method enjoys all the advantages of the SL-CN

scheme: being second order accurate, time semi-discrete system is linear with
constant coefficients, both finite element methods and spectral methods can be
used for spatial discretization to conserve volume fraction and satisfy discrete
energy dissipation law. Furthermore, it possesses the following additional ad-
vantage: an optimal error estimate is valid for the special cases A = 0 and/or
B = 0. We present in this paper the convergence analysis of the fully discrete
SLD-CN scheme instead of the time semi-discrete scheme presented in the pre-
vious papers. Time adaptive numerical results are carried out to demonstrate
the reliability and robustness of this method.

The present paper is built up as follows. Section 2 provides SLD-CN scheme
for the Cahn-Hilliard equation and the proof of its unconditionally energy sta-
bility property. In Section 3, we establish the error estimate of the fully dis-
crete numerical scheme that does not depend on 1/ε exponentially . Some
2-dimensional numerical experiments are then presented in Section 4, showing
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that our proposed approaches are more robust than existing methods. Some
concluding remarks are provided in Section 5.

2. The stabilized linear semi-implicit Crank-Nicolson scheme

We first introduce some notations. For any given function φ(t) of t, we use φn

to denote an approximation of φ(nτ), where τ is the step-size. We will frequently
use the shorthand notations: δtφ

n+1 := φn+1−φn, δttφ
n+1 := φn+1−2φn+φn−1,

φ̂n+ 1
2 := 3

2φ
n − 1

2φ
n−1 and φ̂n+1 := 2φn − φn−1.

We now present the stabilized linearly diffusive Crank-Nicolson scheme (abbr.
SLD-CN) for the Cahn-Hilliard equation (2). Suppose φ0 = φ0(·) and φ1 ≈
φ(·, τ) are given, we calculate φn+1, n = 1, 2, . . . , N = T/τ − 1 iteratively, using

φn+1 − φn

τ
= γ∆µn+ 1

2 , (6)

µn+ 1
2 = −ε∆

(3φn+1 + φn−1

4

)
+

1

ε
f
(3

2
φn − 1

2
φn−1

)
−Aτ∆δtφ

n+1 +Bδttφ
n+1,

(7)

where A and B are two non-negative constants to stabilize the scheme.
In this paper, we assume that potential function F (φ) whose derivative f(φ)

is uniformly bounded, i.e.
max
φ∈R
|f ′(φ)| ≤ L, (8)

where L is a non-negative constant.

Remark 2.1. Note that, Caffarelli proved that the maximum norm of the so-
lution to the Cahn-Hilliard equation is bounded for a truncated potential F with
quadratic growth at infinities in [5]. On the other hand, for a more general
potential F , Feng and Prohl [20] proved that if the Cahn-Hilliard equation con-
verges to its sharp-interface limit, then its solution has a L∞ bound. Therefore,
it has been a common practice (cf. [29, 38, 9]) to consider the Cahn-Hilliard
equations is satisfied with a truncated double-well potential F such that (8).

For the Ginzburg-Landau double-well potential F (φ) = 1
4 (φ2 − 1)2, to get a

C4 smooth double-well potential with quadratic growth, we introduce F̃ (φ) ∈
C∞(R) as a smooth mollification of

F̂ (φ) =


11
2 (φ− 2)2 + 6(φ− 2) + 9

4 , φ > 2,
1
4 (φ2 − 1)2, φ ∈ [−2, 2],
11
2 (φ+ 2)2 − 6(φ+ 2) + 9

4 , φ < −2.

(9)

with a mollification parameter much smaller than 1, to replace F (φ). Note that
the truncation points −2 and 2 used here are for convenience only. Other values
outside of region [−1, 1] can be used as well. For simplicity, we still denote the
potential function F̃ by F .
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Our scheme can also be applied to the log-log Flory-Huggins energy potential
by similar modification. E.g. the modified Flory-Huggins potential given in [46]
satisfies our assumptions.

We introduce some notations which will be used in the analysis. We use
‖·‖m,p to denote the standard norm of the Sobolev spaceWm,p(Ω). In particular,
we use ‖ · ‖Lp to denote the norm of W 0,p(Ω) = Lp(Ω); ‖ · ‖m to denote the
norm of Wm,2(Ω) = Hm(Ω); and ‖ · ‖ to denote the norm of W 0,2(Ω) = L2(Ω).
Let (·, ·) represent the L2 inner product. In addition, define for p ≥ 0

H−p(Ω) := (Hp(Ω))
∗
, H−p0 (Ω) :=

{
u ∈ H−p(Ω), 〈u, 1〉p = 0

}
,

where 〈·, ·〉p stands for the dual product betweenHp(Ω) andH−p(Ω). We denote
L2

0(Ω) := H0
0 (Ω). For v ∈ L2

0(Ω), let −∆−1v := v1 ∈ H1(Ω) ∩ L2
0(Ω), where v1

is the solution to

−∆v1 = v in Ω,
∂v1

∂n
= 0 on ∂Ω,

and ‖v‖−1 :=
√

(v,−∆−1v).
Following identities and inequality will be used frequently.

2(hn+1 − hn, hn+1) = ‖hn+1‖2 − ‖hn‖2 + ‖hn+1 − hn‖2, (10)

(u, v) ≤ ‖u‖−1‖∇v‖, ∀ u ∈ L2
0, v ∈ H1. (11)

Theorem 2.1. Under the condition

A ≥ L2

16ε2
γ, B ≥ L

2ε
, (12)

the following energy dissipation law

En+1
C ≤EnC −

(
2

√
A

γ
− L

2ε

)
‖δtφn+1‖2 −

(B
2
− L

4ε

)
‖δttφn+1‖2

− ε

8
‖∇δttφn+1‖2, ∀n ≥ 1,

(13)

holds for the scheme (6)-(7), where

En+1
C = Eε(φ

n+1) +
( L

4ε
+
B

2

)
‖δtφn+1‖2 +

ε

8
‖∇δtφn+1‖2. (14)

Proof. Pairing (6) with τµn+ 1
2 , (7) with −δtφn+1, and combining the results,

we get

ε

2
(‖∇φn+1‖2 − ‖∇φn‖2) +

ε

8
(‖∇δtφn+1‖2 − ‖∇δtφn‖2) +

1

ε
(f
(
φ̂n+ 1

2

)
, δtφ

n+1)

=− γτ‖∇µn+ 1
2 ‖2 −Aτ‖∇δtφn+1‖2 − ε

8
‖∇δttφn+1‖2 −B(δttφ

n+1, δtφ
n+1).

(15)
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Pairing (6) with 2
√
A/γτδtφ

n+1, then using Cauchy-Schwarz inequality, we get

2
√

A
γ ‖δtφ

n+1‖2 =− 2
√
Aγτ(∇µn+ 1

2 ,∇δtφn+1)

≤γτ‖∇µn+ 1
2 ‖2 +Aτ‖∇δtφn+1‖2.

(16)

To handle the term involving f , we expand F (φn+1) and F (φn) at φ̂n+ 1
2 as

F (φn+1) = F (φ̂n+ 1
2 ) + f(φ̂n+ 1

2 )(φn+1 − φ̂n+ 1
2 ) +

1

2
f ′(ξn1 )(φn+1 − φ̂n+ 1

2 )2,

F (φn) = F (φ̂n+ 1
2 ) + f(φ̂n+ 1

2 )(φn − φ̂n+ 1
2 ) +

1

2
f ′(ξn2 )(φn − φ̂n+ 1

2 )2,

where ξn1 is a number between φn+1 and φ̂n+ 1
2 , ξn2 is a number between φn and

φ̂n+ 1
2 . Taking the difference of above two equations, we have

F (φn+1)− F (φn)− f(φ̂n+ 1
2 )(φn+1 − φn)

=
1

2
f ′(ξn1 )

[
(φn+1 − φ̂n+ 1

2 )2 − (φn − φ̂n+ 1
2 )2
]
− 1

2
(f ′(ξn2 )− f ′(ξn1 ))(φn − φ̂n+ 1

2 )2

=
1

2
f ′(ξn1 )δtφ

n+1δttφ
n+1 − 1

8
(f ′(ξn2 )− f ′(ξn1 ))(δtφ

n)2

≤ L

4
(|δtφn+1|2 + |δttφn+1|2) +

L

4
|δtφn|2.

Multiplying the above equation with 1/ε, then taking integration leads to

1

ε
(F (φn+1)− F (φn)− f(φ̂n+ 1

2 )δtφ
n+1, 1)

≤ L
4ε

(‖δtφn+1‖2 + ‖δttφn+1‖2 + ‖δtφn‖2).

(17)

For the term involving B, by using identity(10) with hn+1 = δtφ
n+1, one gets

−B(δttφ
n+1, δtφ

n+1) = −B
2
‖δtφn+1‖2 +

B

2
‖δtφn‖2 −

B

2
‖δttφn+1‖2. (18)

Summing up (15)-(18), we obtain

ε

2
(‖∇φn+1‖2 − ‖∇φn‖2) +

1

ε
(F (φn+1)− F (φn), 1) +

B

2
(‖δtφn+1‖2 − ‖δtφn‖2)

+
ε

8
(‖∇δtφn+1‖2 − ‖∇δtφn‖2)

≤− 2

√
A

γ
‖δtφn+1‖2 +

L

4ε
‖δtφn+1‖2 +

L

4ε
‖δtφn‖2 −

B

2
‖δttφn+1‖2

+
L

4ε
‖δttφn+1‖2 − ε

8
‖∇δttφn+1‖2,

(19)

which is the energy estimate (13).
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Remark 2.2. The discrete Energy EC defined in equation (14) is a second
order approximation to the original energy Eε, since ‖δtφn+1‖2 ∼ O(τ2). On
the other side, summing up the equation (13) for n = 1, . . . , N , we get

EN+1
C +

N∑
n=1

((
2

√
A

γ
− L

2ε

)
‖δtφn+1‖2 +

(B
2
− L

4ε

)
‖δttφn+1‖2 +

ε

8
‖∇δttφn+1‖2

)
≤E1

C .

(20)

Under the condition (12),
(
2
√

A
γ −

L
2ε

)
and

(
B
2 −

L
4ε

)
are positive constants.

So, for given τ , by taking N → ∞, we get ‖δtφN+1‖ → 0. On the other
hand, if we leave a small part of A term in its original form in the proof,
denoted by δA, we will have an diffusion term δA

∑N
n=1 τ‖∇δtφn+1‖2, we obtain

‖∇δtφN+1‖2 → 0 as well, which means the discrete Energy converge to the
original Energy: EN+1

C → Eε(φ
N+1) and the system eventually will converge to

a steady state for long time run.

3. Error estimate

We use a Legendre Galerkin method similar as in [35, 39, 48] for spatial dis-
cretization in 2-dimensional domain. Let Lk(x) denote the Legendre polynomial
of degree k. We define

VM = span{ϕk(x)ϕj(y), k, j = 0, . . . ,M − 1 } ∈ H1(Ω),

where ϕ0(x) = L0(x);ϕ1(x) = L1(x);ϕk(x) = Lk(x)−Lk+2(x), k = 2, . . . ,M−1,
be the Galerkin approximation space for both φn+1

h and µn+1
h . Then the full

discretized form for the SLD-CN scheme reads: Find (φn+1
h , µ

n+ 1
2

h ) ∈ (VM )2

such that

1

τ
(φn+1
h − φnh, ψh) = −γ(∇µn+ 1

2

h ,∇ψh), ∀ψh ∈ VM , (21)

(µ
n+ 1

2

h , ϕh) =ε

(
∇

3φn+1
h + φn−1

h

4
,∇ϕh

)
+

1

ε

(
f
(3

2
φnh −

1

2
φn−1
h

)
, ϕh

)
+Aτ(∇δtφn+1

h ,∇ϕh) +B(δttφ
n+1
h , ϕh), ∀ϕh ∈ VM .

(22)

In this section, we shall establish the error estimate of the full discretized
form (21)-(22) for SLD-CN scheme. We will show that, if the interface is well
developed in the initial condition, the error bounds depend on 1/ε only in some
lower polynomial order for small ε. Let φ(tn) be the exact solution at time
t = tn to equation of (2), which is abbreviated as φn. Let φnh be the solution
at time t = tn to the full discrete numerical scheme (6)-(7), we define error
function en := φnh − φn.

We introduce the Ritz projection operator Rh : H1(Ω)→ VM satisfying

(∇(Rhϕ− ϕ),∇ψh) = 0, ∀ψh ∈ VM , (Rhϕ− ϕ, 1) = 0. (23)
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The following estimates hold for the Ritz projection [4]:

‖Rhϕ‖1,p ≤ C‖ϕ‖1,p, ∀1 < p ≤ ∞, (24)

‖Rhϕ− ϕ‖Lp + h‖Rhϕ− ϕ‖1,p ≤ Chq+1‖ϕ‖q+1,p, ∀1 < p ≤ ∞. (25)

‖Rhϕ− ϕ‖+ h−1‖Rhϕ− ϕ‖−1 ≤ Chq+1‖ϕ‖Hq+1 . (26)

Define ρn+1 := Rhφ
n+1 − φn+1 and σn+1

h := φn+1
h − Rhφn+1, then en+1 =

ρn+1 + σn+1
h , σ0

h ≡ 0. By the Ritz projection, (∇ρn+1,∇ψh) = 0, for all ψh ∈
VM . The proofs base on Galerkin formulation. Spectral element method can
be used for spatial discretization to satisfy the estimates for the Ritz projection
and error estimate.

Before presenting the detailed error analysis, we first make some assump-
tions. For simplicity, we take γ = 1 in this section, and assume 0 < ε < 1. We
use notation . in the way that f . g means that f ≤ Cg with positive constant
C independent of τ and ε.

Assumption 3.1. We assume that f either satisfies the following properties
(i) and (ii), or (i) and (iii).

(i) F ∈ C4(R), F (±1) = 0, and F > 0 elsewhere. There exist two non-
negative constants B0, B1, such that

φ2 ≤ B0 +B1F (φ), ∀ φ ∈ R. (27)

(ii) f = F ′. f ′ and f ′′ are uniformly bounded, i.e. f satisfies (8) and

max
φ∈R
|f ′′(φ)| ≤ L2, (28)

where L2 is a non-negative constant.

(iii) f satisfies for some finite 2 ≤ p ≤ 3 + d
3(d−2) and positive numbers c̃i > 0,

i = 0, . . . , 5,
c̃1|φ|p−2 − c̃0 ≤ f ′(φ) ≤ c̃2|φ|p−2 + c̃3, (29)

|f ′′(φ)| ≤ c̃4|φ|(p−3)+ + c̃5, (30)

where for any real number a, the notation (a)+ := max{a, 0}.

Note that Assumption 3.1 (ii) is a special case of Assumption 3.1 (iii) with
p = 2. The commonly-used quartic double-well potential satisfies Assumption
(i) and (iii) with p = 4. Furthermore, from equation (29) we easily get

− (f ′(φ)u, u) ≤ c̃0‖u‖2, ∀u ∈ L2(Ω). (31)

Assumption 3.2. We assume that φ0 is smooth enough. More precisely, there
exist constant m0 and non-negative constants σ1, . . . , σ6, such that

m0 :=
1

|Ω|

∫
Ω

φ0(x)dx ∈ (−1, 1), (32)
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Eε(φ
0) :=

ε

2
‖∇φ0‖2 +

1

ε
‖F (φ0)‖L1 . ε−σ1 , (33)

‖φ0
t‖2−1 . ε−σ2 , (34)

‖φ0
t‖2 . ε−σ3 ; (35)

ε‖∇φ0
t‖2 +

1

ε
(f ′(φ0)φ0

t , φ
0
t ) . ε−σ4 , (36)

‖∆−1φ0
tt‖2 . ε−σ5 , (37)

‖φ0
tt‖2−1 . ε−σ6 , (38)

‖φ0
tt‖2 . ε−σ7 . (39)

Given Assumption 3.1 (i)(iii) and Assumption 3.2, we have following esti-
mates for the exact solution to the Cahn-Hilliard equation.

Assumption 3.3. Suppose the exact solution of (2) has the following regulari-
ties:

(1) ∆−1φ ∈W 2,2(0, T ;H−1), or∫ T

0

‖∆−1φtt‖2−1dt ≤ ε−ρ1 ,

(2) φ ∈W 2,2(0, T ;H−1
⋂
H1), or∫ T

0

‖φtt‖2−1dt ≤ ε−ρ2 ,
∫ T

0

‖∇φtt‖2dt ≤ ε−ρ3 ,
∫ T

0

‖φtt‖2Hq+1dt ≤ ε−ρ4 ,

(3) φ ∈W 1,2(0, T ;H1), or∫ T

0

‖∇φt‖2dt ≤ ε−ρ5 ,
∫ T

0

‖φt‖2Hq+1dt ≤ ε−ρ6 ,

(4)

τ

N+1∑
n=1

‖φn‖2Hq+1 ≤ ε−ρ7 , τ

N+1∑
n=1

‖µn‖2Hq+1 ≤ ε−ρ8 ,

(5)
max

1≤n≤N+1
‖φn‖2Hq+1 ≤ ε−ρ9 .

Here ρ1 = β8, ρ2 = β4, ρ3 = β6, ρ4 = β11, ρ5 = β2 + 1, ρ6 = β10, ρ7 = σ1 + 3,
ρ8 = β12, ρ9 = σ1 + 3, where βj , j = 1 · · · 12 are non-negative constants which
can be control by σ1, σ2, σ3.
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An estimate for ρ1, . . . , ρ9, q = 1 is given in Appendix.
To get the convergence result of the second order schemes, we need make

some assumptions on the scheme used to calculate the numerical solution at
first time step.

Assumption 3.4. We assume that an appropriate scheme is used to calculate
the numerical solution at first step, such that

m1 :=
1

|Ω|

∫
Ω

φ1
h(x)dx = m0, (40)

Eε(φ
1
h) ≤ Eε(φ0

h) . ε−σ1 , (41)

1

τ
‖φ1

h − φ0
h‖2−1 . ε−σ1 , (42)

1

τ
‖φ1

h − φ0
h‖2 . ε−σ1−2, (43)

and there exist a constant 0 < σ̃1 < ρ5+5 and 0 < σ̃2 < max{ρ6+1, ρ7+3, ρ8+1}
such that

‖e1‖2−1 +Aτ2‖∇e1‖2 . ε−σ̃1(τ4 + h2q+4), (44)

‖σ1
h‖2−1 +Aτ2‖∇σ1

h‖2 . ε−σ̃2(τ4 + h2q+4). (45)

According to the volume conservation property, we easily get the following
properties. Because the integration of φnh is conserved, δtφ

n
h and en belong to

L2
0(Ω) such that we can define H−1 norm and use Poincare’s inequality for those

quantities.

Lemma 3.1. Suppose (32) and (40) holds, then the numerical solution of (6)-
(7) satisfies

1

|Ω|

∫
Ω

φnhdx = m0, n = 1, . . . , N + 1, (46)

and the error function en satisfies∫
Ω

en(x)dx = 0, n = 1, . . . , N + 1. (47)

We first carry out a coarse error estimate, which uses standard approach for
the full discretized schemes (21)-(22).

Proposition 3.1. (Coarse error estimate) Suppose that A and B are any non-
negative number, τ . ε3. Then for all N ≥ 1, we have estimate

‖σn+1
h ‖2−1 +

1

4
‖δtσn+1

h ‖2−1 +Aτ2‖∇σn+1
h ‖2 +

Aτ2

2
‖∇δtσn+1

h ‖2

+
Aτ2

4
‖∇δttσn+1

h ‖2 + ετ‖∇
3σn+1

h + σn−1
h

4
‖2

≤‖σnh‖2−1 +
1

4
‖δtσnh‖2−1 +Aτ2‖∇σnh‖2 +

Aτ2

4
‖∇δtσnh‖2

+
99L2

2ε3
τ‖σnh‖2−1 +

11L2

2ε3
τ‖σn−1

h ‖2−1 + γ1(ε)τ4 + γ2(ε, τ)h2q+4,

(48)
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max
1≤n≤N

(
‖σn+1

h ‖2−1 +Aτ2‖∇σn+1
h ‖2 +

1

4
‖δtσn+1

h ‖2−1 +
Aτ2

2
‖∇δtσn+1

h ‖2
)

+
Aτ2

4
‖∇δttσn+1

h ‖2 + ετ‖∇
3σn+1

h + σn−1
h

4
‖2

. exp

(
55L2T

ε3

)
(γ1(ε)τ4 + γ2(ε, τ)h2q+4),

(49)

where γ1(ε) := ε−max{ρ1+1,ρ2+3,ρ3−1,ρ5+5},
γ2(ε, τ) := min{ε−max{ρ6+1,ρ7+3,ρ8+1}, ε−(ρ4+3)τ4}.

Proof. Here, we can write the error function equations:(
en+1 − en

τ
, ψh

)
=− (∇(µ

n+ 1
2

h − µn+ 1
2 ),∇ψh)

+

(
φ
n+ 1

2
t − φn+1 − φn

τ
, ψh

)
,∀ψh ∈ Sh,

(50)

(µ
n+ 1

2

h − µn+ 1
2 , ϕh) =ε

(
∇3en+1 + en−1

4
,∇ϕh

)
+ ε

(
∇
(

3φn+1 + φn−1

4
− φn+ 1

2

)
,∇ϕh

)
+

1

ε

(
f(

3

2
φnh −

1

2
φn−1
h )− f(φn+ 1

2 ), ϕh

)
+Aτ(∇δtφn+1

h ,∇ϕh) +B(δttφ
n+1
h , ϕh), ∀ϕh ∈ Sh.

(51)

By using µ
n+ 1

2

h − µn+ 1
2 = µ

n+ 1
2

h −Rhµn+ 1
2 +Rhµ

n+ 1
2 − µn+ 1

2 and (23), we get

−(∇(µ
n+ 1

2

h − µn+ 1
2 ),∇ψh) =− (∇(µ

n+ 1
2

h −Rhµn+ 1
2 +Rhµ

n+ 1
2 − µn+ 1

2 ),∇ψh)

=− (∇(µ
n+ 1

2

h −Rhµn+ 1
2 ),∇ψh)

=(µ
n+ 1

2

h −Rhµn+ 1
2 ,∆ψh)

=(µ
n+ 1

2

h − µn+ 1
2 ,∆ψh) + (µn+ 1

2 −Rhµn+ 1
2 ,∆ψh)

(52)

Combining (50)-(52), taking ψh = −∆−1
( 3σn+1

h +σn−1
h

4

)
and ϕh = −

( 3σn+1
h +σn−1

h

4

)
,

11



and using en+1 = ρn+1 + σn+1
h , we get

−
(
σn+1
h − σnh

τ
,∆−1

(
3σn+1

h + σn−1
h

4

))
+Aτ

(
∇δtσn+1

h ,∇
3σn+1

h + σn−1
h

4

)
+ ε‖∇

3σn+1
h + σn−1

h

4
‖2

=− ε
(
∇3ρn+1 + ρn−1

4
,∇

3σn+1
h + σn−1

h

4

)
−B

(
δttσ

n+1
h ,

3σn+1
h + σn−1

h

4

)
− 1

ε

(
f(

3

2
φnh −

1

2
φn−1
h )− f(φn+ 1

2 ),
3σn+1

h + σn−1
h

4

)
−Aτ

(
∇δtρn+1,∇

3σn+1
h + σn−1

h

4

)
−B

(
δttρ

n+1,
3σn+1

h + σn−1
h

4

)
+

(
ρn+1 − ρn

τ
,∆−1

(
3σn+1

h + σn−1
h

4

))
−
(
µn+ 1

2 −Rhµn+ 1
2 ,

3σn+1
h + σn−1

h

4

)
−
(
Rn+1

1 ,∆−1

(
3σn+1

h + σn−1
h

4

))
−A

(
∇Rn+1

2 ,∇
3σn+1

h + σn−1
h

4

)
−B

(
Rn+1

3 ,
3σn+1

h + σn−1
h

4

)
− ε

(
∇Rn+1

4 ,∇
3σn+1

h + σn−1
h

4

)
= : J1 + J2 + J ′3 + J5 + J6 + J7 + J8 + J9 + J10 + J11 + J12.

(53)

where Rn+1
1 = φ

n+ 1
2

t − φn+1−φn

τ , Rn+1
2 = τδtφ

n+1, Rn+1
3 = δttφ

n+1, Rn+1
4 =

3φn+1+φn−1

4 − φn+ 1
2 . For the left side, we have

−
(
σn+1
h − σnh

τ
,∆−1 3σn+1

h + σn−1
h

4

)
=

1

2τ
(‖σn+1

h ‖2−1 − ‖σnh‖2−1) +
1

8τ
(‖δtσn+1

h ‖2−1 − ‖δtσnh‖2−1) +
1

8τ
‖δttσn+1

h ‖2−1,

(54)

Aτ

(
∇δtσn+1

h ,∇
3σn+1

h + σn−1
h

4

)
=
Aτ

2
(‖∇σn+1

h ‖2 − ‖∇σnh‖2) +
Aτ

8
(‖∇δtσn+1

h ‖2 − ‖∇δtσnh‖2) +
Aτ

8
‖∇δttσn+1

h ‖2,
(55)

For the right side, by using (∇ρ,∇ψh) = 0, ∀ψh ∈ Sh, we have

J1 = −ε
(
∇3ρn+1 + ρn−1

4
,∇

3σn+1
h + σn−1

h

4

)
= 0, (56)

and

J5 = −Aτ
(
∇δtρn+1,∇

3σn+1
h + σn−1

h

4

)
= 0, (57)
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Then, we estimate the terms on the right hand side of (53)

J2 =−B
(
δttσ

n+1
h ,

3σn+1
h + σn−1

h

4

)
≤B

2

η0
‖δttσn+1

h ‖2−1 +
η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(58)

J ′3 =− 1

ε

(
f(

3

2
φnh −

1

2
φn−1
h )− f(φn+ 1

2 ),
3σn+1

h + σn−1
h

4

)
≤L
ε

(
|3
2
σnh −

1

2
σn−1
h +

3

2
ρn − 1

2
ρn−1 +Rn+1

5 |, |
3σn+1

h + σn−1
h

4
|
)

≤ L2

ε2η0
‖3

2
σnh −

1

2
σn−1
h ‖2−1 +

L2

ε2η0
‖3

2
ρn − 1

2
ρn−1‖2−1 +

L2

ε2η0
‖Rn+1

5 ‖2−1

+
3η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(59)

where

Rn+1
5 =

3

2
φ(tn)− 1

2
φ(tn−1)− φ(tn+ 1

2 ). (60)

J6 =−B
(
δttρ

n+1,
3σn+1

h + σn−1
h

4

)
≤B

2

η0
‖δttρn+1‖2−1 +

η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(61)

J7 =

(
ρn+1 − ρn

τ
,∆−1

(
3σn+1

h + σn−1
h

4

))
≤ 1

η0
‖∆−1 δtρ

n+1

τ
‖2−1 +

η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(62)

J8 =−
(
µn+ 1

2 −Rhµn+ 1
2 ,

3σn+1
h + σn−1

h

4

)
≤ 1

η0
‖µn+ 1

2 −Rhµn+ 1
2 ‖2−1 +

η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(63)

J9 =−
(
Rn+1

1 ,∆−1

(
3σn+1

h + σn−1
h

4

))
≤ 1

η0
‖∆−1Rn+1

1 ‖2−1 +
η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(64)

J10 =−A
(
∇Rn+1

2 ,∇
3σn+1

h + σn−1
h

4

)
≤A

2

η0
‖∇Rn+1

2 ‖2 +
η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(65)
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J11 =−B
(
Rn+1

3 ,
3σn+1

h + σn−1
h

4

)
≤B

2

η0
‖Rn+1

3 ‖2−1 +
η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(66)

J12 =− ε
(
∇Rn+1

4 ,∇
3σn+1

h + σn−1
h

4

)
≤ε

2

η0
‖∇Rn+1

4 ‖2 +
η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2.

(67)

Substituting (54)-(67) into (53), we have

1

2τ
(‖σn+1

h ‖2−1 − ‖σnh‖2−1) +
1

8τ
(‖δtσn+1

h ‖2−1 − ‖δtσnh‖2−1) +
1

8τ
‖δttσn+1

h ‖2−1

+
Aτ

2
(‖∇σn+1

h ‖2 − ‖∇σnh‖2) +
Aτ

8
(‖∇δtσn+1

h ‖2 − ‖∇δtσnh‖2)

+
Aτ

8
‖∇δttσn+1

h ‖2 + ε‖∇
3σn+1

h + σn−1
h

4
‖2

≤B
2

η0
‖δttσn+1

h ‖2−1 +
L2

ε2η0
‖3

2
σnh −

1

2
σn−1
h ‖2−1 +

11η0

4
‖∇

3σn+1
h + σn−1

h

4
‖2

+
L2

ε2η0
‖3

2
ρn − 1

2
ρn−1‖2−1 +

B2

η0
‖δttρn+1‖2−1 +

1

η0
‖∆−1 δtρ

n+1

τ
‖2−1

+
1

η0
‖µn+ 1

2 −Rhµn+ 1
2 ‖2−1 +

1

η0
‖∆−1Rn+1

1 ‖2−1 +
A2

η0
‖∇Rn+1

2 ‖2

+
B2

η0
‖Rn+1

3 ‖2−1 +
ε2

η0
‖∇Rn+1

4 ‖2 +
L2

ε2η0
‖Rn+1

5 ‖2−1.

(68)

For the R1, . . . , R5 terms, we have following estimates:

‖∆−1Rn+1
1 ‖2−1 . τ3

∫ tn+1

tn
‖∆−1φtt‖2−1dt, (69)

‖∇Rn+1
2 ‖2 . τ3

∫ tn+1

tn
‖∇φt‖2dt, (70)

‖Rn+1
3 ‖2−1 . 6τ3

∫ tn+1

tn−1

‖φtt‖2−1dt, (71)

‖∇Rn+1
4 ‖2 . τ3

∫ tn+1

tn
‖∇φtt‖2dt, (72)

‖Rn+1
5 ‖2−1 . τ3

∫ tn+1

tn−1

‖φtt‖2−1dt. (73)
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For including ρ terms, using (25)-(26), we have the following estimates:

L2

ε2η0
‖3

2
ρn − 1

2
ρn−1‖2−1 ≤

L2

2ε2η0
(9‖ρn‖2−1 + ‖ρn−1‖2−1)

.
L2

2ε2η0
h2(q+2)(9‖φn‖2Hq+1 + ‖φn−1‖2Hq+1),

(74)

B2

η0
‖δttρn+1‖2−1 .

B2

η0
h2(q+2)‖δttφn+1‖2Hq+1

.
6B2

η0
τ3h2(q+2)

∫ tn+1

tn−1

‖φtt‖2Hq+1dt,

(75)

1

η0
‖∆−1 δtρ

n+1

τ
‖2−1 .

1

η0τ2
h2(q+2)‖δtφn+1‖2Hq+1

.
1

η0τ
h2(q+2)

∫ tn+1

tn
‖φt‖2Hq+1dt,

(76)

1

η0
‖µn+ 1

2 −Rhµn+ 1
2 ‖2−1 .

1

η0
h2(q+2)‖µn+1‖2Hq+1 . (77)

Multiplying (68) with 2τ , taking η0 = 2ε/11, and submitting (69)-(73), (74)-
(77) into (68), we have

(‖σn+1
h ‖2−1 − ‖σnh‖2−1) +

1

4
(‖δtσn+1

h ‖2−1 − ‖δtσnh‖2−1) +
1

4
‖δttσn+1

h ‖2−1

+Aτ2(‖∇σn+1
h ‖2 − ‖∇σnh‖2) +

Aτ2

4
(‖∇δtσn+1

h ‖2 − ‖∇δtσnh‖2)

+
Aτ2

4
‖∇δttσn+1

h ‖2 + ετ‖∇
3σn+1

h + σn−1
h

4
‖2

≤11B2τ

ε
‖δttσn+1

h ‖2−1 +
99L2

2ε3
τ‖σnh‖2−1 +

11L2

2ε3
τ‖σn−1

h ‖2−1

+ Cn+1
1 τ4 + Cn+1

2 h2q+4,

(78)

where

Cn+1
1 =

11

ε

∫ tn+1

tn
(‖∆−1φtt‖2−1 +A2‖∇φt‖2 + ε2‖∇φtt‖2)dt

+
11

ε

∫ tn+1

tn−1

(6B2‖φtt‖2−1 +
L2

ε2
‖φtt‖2−1)dt,

(79)

Cn+1
2 =

11L2

2ε3
τ(9‖φn‖2Hq+1 + ‖φn−1‖2Hq+1) +

11L2

ε
τ‖µn+1‖2Hq+1

+
11

ε

∫ tn+1

tn
‖φt‖2Hq+1dt+

66B2

ε
τ4

∫ tn+1

tn−1

‖φtt‖2Hq+1dt.

(80)
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Suppose τ . ε3, then 11B2

ε τ‖δttσn+1
h ‖2−1 ≤ 1

4‖δttσ
n+1
h ‖2−1, we get (48). Summing

up (78) from n = 1 to n = N , by discrete Gronwall’s inequality and assumption,
we get (49), where

C1 =
11

ε

∫ T

0

(‖∆−1φtt‖2−1 +A2‖∇φt‖2 + ε2‖∇φtt‖2)dt

+
22

ε

∫ T

0

(6B2‖φtt‖2−1 +
L2

ε2
‖φtt‖2−1)dt

.ε−max{ρ1+1,ρ2+3,ρ3−1,ρ5+5} := γ1(ε),

(81)

and

C2 =
55L2τ

ε3

N∑
n=1

‖φn‖2Hq+1 +
11τ

ε

N∑
n=1

‖µn+1‖2Hq+1

+
11

ε

∫ T

0

‖φt‖2Hq+1dt+
132B2

ε
τ4

∫ T

0

‖φtt‖2Hq+1dt

.min{ε−(ρ7+3), ε−(ρ8+1), ε−(ρ6+1), ε−(ρ4+3)τ4} := γ2(ε, τ).

(82)

Proposition (3.1) is the usual error estimate, in which the error growth de-
pends on T/ε3 exponentially. To obtain a finer estimate on the error, we need
to use a spectral estimate of the linearized Cahn-Hilliard operator by Chen [7]
for the case when the interface is well developed in the Cahn-Hilliard system.

Lemma 3.2. Let φ(t) be the exact solution of the Cahn-Hilliard equation (2)
with interfaces well developed in the initial condition (i.e. conditions (1.9)-
(1.15) in [7] are satisfied). Then there exist 0 < ε0 � 1 and positive constant
C0 such that the principle eigenvalue of the linearized Cahn-Hilliard operator
LCH := ∆(ε∆− 1

εf
′(φ)I) satisfies for all t ∈ [0, T ]

λCH = inf
06=v∈H1(Ω)

∆ω=v

ε‖∇v‖2 + 1
ε (f ′(φ(·, t))v, v)

‖∇ω‖2
≥ −C0 (83)

for ε ∈ (0, ε0).

The following lemma which was proved by [20] and [1], shows that the bound-
edness of the solution to the Cahn-Hilliard equation, provided that the sharp
interface limit Hele-Shaw problem has a global (in time) classical solution. This
is a condition of the finer error estimate.

Lemma 3.3. Suppose that f satisfies Assumption 3.1, and the corresponding
Hele-Shaw problem has a global (in time) classical solution. Then there exists
a family of smooth initial datum functions {φε0}0<ε≤1 and constants ε0 ∈ (0, 1]
and C > 0 such that for all ε ∈ (0, ε0) the solution φ(t) of the Cahn-Hilliard
equation(2) with the above initial data φε0 satisfies

‖φ(t)‖L∞(0,T ;Ω) ≤ C. (84)
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Now we present the refined error estimate.

Theorem 3.1. Suppose all of the Assumption 3.1(i),(ii), Assumption 3.2 and
Lemma 3.3, 3.3 hold. Let time step τ satisfy the following constraint

τ . min{ε6, ε
38+d
18−d γ3(ε)−

4
18−d }. (85)

and

h . min{ε
7d−26
8(q+2) γ4(ε, τ)−

1
2(q+2) , ε

2d+76
(18−d)(q+2) γ3(ε)−

d−2
2(18−d) γ4(ε, τ)−

1
2(q+2) }, (86)

then we have the error estimate

max
1≤n≤N

‖en+1‖2−1

.exp(5(C0 + L2)T )
(
γ3(ε)τ4 + γ4(ε, τ)h2q+4

)
+ ε−ρ9h2q+4,

(87)

τ

N∑
n=1

‖∇3en+1 + en−1

4
‖2

.exp(5(C0 + L2)T )
(
γ3(ε)ε−4τ4 + γ4(ε, τ)ε−4h2q+4

)
+ ε−ρ7h2q,

(88)

where γ3(ε) := ε−max{ρ1+4,ρ2+6,ρ3+2,ρ5+8},
γ4(ε, τ) := min{ε−max{ρ6+4,ρ7+6,ρ8+4)}, ε−(ρ4+6)τ4}.

Proof. (i) To get a better convergence result, we reestimate J ′3 as

J ′3

=− 1

ε

(
f(

3

2
φnh −

1

2
φn−1
h )− f(

3φn+1
h + φn−1

h

4
),

3σn+1
h + σn−1

h

4

)
− 1

ε

(
f(

3φn+1
h + φn−1

h

4
)− f(φn+ 1

2 ),
3σn+1

h + σn−1
h

4

)
= : J3 + J4,

(89)

J3 =− 1

ε

(
f(

3

2
φnh −

1

2
φn−1
h )− f(

3φn+1
h + φn−1

h

4
),

3σn+1
h + σn−1

h

4

)
≤3L

4ε

(
|δttσn+1

h + δttρ
n+1 +Rn+1

3 |, |
3σn+1

h + σn−1
h

4
|
)

≤ 9L2

16ε2η
‖δttσn+1

h ‖2−1 +
9L2

16ε2η
‖Rn+1

3 ‖2−1 +
9L2

16ε2η
‖δttρn+1‖2−1

+
3η

4
‖∇

3σn+1
h + σn−1

h

4
‖2,

(90)
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J4 =− 1

ε

(
f(

3φn+1
h + φn−1

h

4
)− f(φn+ 1

2 ),
3σn+1

h + σn−1
h

4

)
=− 1

ε

(
f ′(φn+ 1

2 )(
3σn+1

h + σn−1
h

4
+

3ρn+1 + ρn−1

4
+Rn+1

4 ),
3σn+1

h + σn−1
h

4

)
− 1

2ε

(
f ′′(θn+ 1

2 )(
3σn+1

h + σn−1
h

4
+

3ρn+1 + ρn−1

4
+Rn+1

4 )2,
3σn+1

h + σn−1
h

4

)
≤− 1

ε

(
f ′(φn+ 1

2 )
3σn+1

h + σn−1
h

4
,

3σn+1
h + σn−1

h

4

)
+ η‖∇

3σn+1
h + σn−1

h

4
‖2

+
3L2

2ε
‖

3σn+1
h + σn−1

h

4
‖3L3 +

L2

ε2η
‖3ρn+1 + ρn−1

4
‖2−1 +

L2

ε2η
‖Rn+1

4 ‖2−1

+
9L2

2

4ε2η
‖3ρn+1 + ρn−1

4
‖2∞‖

3ρn+1 + ρn−1

4
‖2−1 +

9L2
2

4ε2η
‖Rn+1

4 ‖2∞‖Rn+1
4 ‖2−1.

(91)

Replacing η0 with η and submitting (54)-(58), (57)-(67), (89)-(91) into (53), we
get

1

2τ
(‖σn+1

h ‖2−1 − ‖σnh‖2−1) +
1

8τ
(‖δtσn+1

h ‖2−1 − ‖δtσnh‖2−1) +
1

8τ
‖δttσn+1

h ‖2−1

+
Aτ

2
(‖∇σn+1

h ‖2 − ‖∇σnh‖2) +
Aτ

8
(‖∇δtσn+1

h ‖2 − ‖∇δtσnh‖2)

+
Aτ

8
‖∇δttσn+1

h ‖2 + ε‖∇
3σn+1

h + σn−1
h

4
‖2

≤− 1

ε

(
f ′(φn+ 1

2 )
3σn+1

h + σn−1
h

4
,

3σn+1
h + σn−1

h

4

)
+

3L2

2ε
‖

3σn+1
h + σn−1

h

4
‖3L3

+

(
B2

η
+

9L2

16ε2η

)
‖δttσn+1

h ‖2−1 +
15η

4
‖∇

3σn+1
h + σn−1

h

4
‖2

+

(
L2

ε2η
+

9L2
2

4ε2η
‖3ρn+1 + ρn−1

4
‖2∞
)
‖3ρn+1 + ρn−1

4
‖2−1

+

(
B2

η
+

9L2

16ε2η

)
‖δttρn+1‖2−1 +

1

η
‖∆−1 δtρ

n+1

τ
‖2−1 +

1

η
‖µn+ 1

2 −Rhµn+ 1
2 ‖2−1

+
1

η
‖∆−1Rn+1

1 ‖2−1 +
A2

η
‖∇Rn+1

2 ‖2 +

(
B2

η
+

9L2

16ε2η

)
‖Rn+1

3 ‖2−1

+
ε2

η
‖∇Rn+1

4 ‖2 +

(
L2

ε2η
+

9L2
2

4ε2η
‖Rn+1

4 ‖2∞
)
‖Rn+1

4 ‖2−1.

(92)

We need to bound the last two terms on the right hand side of the above
inequality.

(ii) Now, we estimate the last two terms of the right hand side of (92). The
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spectrum estimate (83) leads to

ε‖∇
3σn+1

h + σn−1
h

4
‖2 +

1

ε

(
f ′(φn+ 1

2 )
3σn+1

h + σn−1
h

4
,

3σn+1
h + σn−1

h

4

)
≥− C0‖

3σn+1
h + σn−1

h

4
‖2−1,

(93)

applying (93) with a scaling factor (1− η1) close to but smaller than 1, we get

− (1− η1)
1

ε

(
f ′(φn+ 1

2 )
3σn+1

h + σn−1
h

4
,

3σn+1
h + σn−1

h

4

)
≤C0(1− η1)‖

3σn+1
h + σn−1

h

4
‖2−1 + (1− η1)ε‖∇

3σn+1
h + σn−1

h

4
‖2.

(94)

On the other hand,

− η1

ε

(
f ′(φn+ 1

2 )
3σn+1

h + σn−1
h

4
,

3σn+1
h + σn−1

h

4

)
≤L

2η1

ε2η2
‖

3σn+1
h + σn−1

h

4
‖2−1 +

η1η2

4
‖∇

3σn+1
h + σn−1

h

4
‖2.

(95)

Now, we estimate the L3 term. By interpolating L3 between L2 and H1

then using Poincare inequality for the error function, we get

‖
3σn+1

h + σn−1
h

4
‖3L3 ≤ K‖∇

3σn+1
h + σn−1

h

4
‖ d

2 ‖
3σn+1

h + σn−1
h

4
‖

6−d
2 ,

where K is a constant independent of ε and τ . We continue the estimate by

using ‖σ
n+1
h +σn

h

2 ‖2 ≤ ‖∇σn+1
h +σn

h

2 ‖‖σ
n+1
h +σn

h

2 ‖−1 to get

3L2

2ε
‖

3σn+1
h + σn−1

h

4
‖3L3 ≤

3L2

2ε
K‖∇

3σn+1
h + σn−1

h

4
‖ d

2 + 6−d
4 ‖

3σn+1
h + σn−1

h

4
‖

6−d
4
−1

:=Gn+1‖∇
3σn+1

h + σn−1
h

4
‖2,

(96)

where Gn+1 = 3L2

2ε K‖∇
3σn+1

h +σn−1
h

4 ‖ d−2
4 ‖ 3σn+1

h +σn−1
h

4 ‖
6−d
4
−1 .
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Now plugging equation (94), (95) and (96) into (92), we get

1

2τ
(‖σn+1

h ‖2−1 − ‖σnh‖2−1) +
1

8τ
(‖δtσn+1

h ‖2−1 − ‖δtσnh‖2−1) +
1

8τ
‖δttσn+1

h ‖2−1

+
Aτ

2
(‖∇σn+1

h ‖2 − ‖∇σnh‖2) +
Aτ

8
(‖∇δtσn+1

h ‖2 − ‖∇δtσnh‖2)

+
Aτ

8
‖∇δttσn+1

h ‖2 + η1ε‖∇
3σn+1

h + σn−1
h

4
‖2

≤
(
C0(1− η1) +

L2η1

ε2η2

)
‖

3σn+1
h + σn−1

h

4
‖2−1 +

(
15η

4
+
η1η2

4

)
‖∇

3σn+1
h + σn−1

h

4
‖2

+Gn+1‖∇
3σn+1

h + σn−1
h

4
‖2 +

(
B2

η
+

9L2

16ε2η

)
‖δttσn+1

h ‖2−1

+

(
L2

ε2η
+

9L2
2

4ε2η
‖3ρn+1 + ρn−1

4
‖2∞
)
‖3ρn+1 + ρn−1

4
‖2−1

+

(
B2

η
+

9L2

16ε2η

)
‖δttρn+1‖2−1 +

1

η
‖∆−1 δtρ

n+1

τ
‖2−1 +

1

η
‖µn+ 1

2 −Rhµn+ 1
2 ‖2−1

+
1

η
‖∆−1Rn+1

1 ‖2−1 +
A2

η
‖∇Rn+1

2 ‖2 +

(
B2

η
+

9L2

16ε2η

)
‖Rn+1

3 ‖2−1

+
ε2

η
‖∇Rn+1

4 ‖2 +

(
L2

ε2η
+

9L2
2

4ε2η
‖Rn+1

4 ‖2∞
)
‖Rn+1

4 ‖2−1.

(97)

Take η1 = ε3, η2 = ε, η = ε4/15, such that

L2η1

ε2η2
= L2,

15η

4
+
η1η2

4
=
ε4

2
,

and take

τ ≤ 1
8B2

η + 9L2

2ε2η

. ε6, (98)

such that (B2

η
+

9L2

16ε2η

)
‖δtσn+1

h ‖2−1 ≤
1

8τ
‖δtσn+1

h ‖2−1. (99)

By using (99) and the taken values, multiplying 4τ on both sides of inequality
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(97), we get

2(‖σn+1
h ‖2−1 − ‖σnh‖2−1) +

1

2
(‖δtσn+1

h ‖2−1 − ‖δtσnh‖2−1)

+ 2Aτ2(‖∇σn+1
h ‖2 − ‖∇σnh‖2) +

Aτ2

2
(‖∇δtσn+1

h ‖2 − ‖∇δtσnh‖2)

+
Aτ2

2
‖∇δttσn+1

h ‖2 + 2ε4τ‖∇
3σn+1

h + σn−1
h

4
‖2

≤
(
C0 + L2

)
τ

(
9

2
‖σn+1

h ‖2−1 +
1

2
‖σn−1

h ‖2−1

)
+ 4Gn+1τ‖∇

3σn+1
h + σn−1

h

4
‖2

+ Cn+1
3 τ4 + Cn+1

4 h2q+4.

(100)

By using

‖Rn+1
4 ‖2−1 . τ3

∫ tn+1

tn
‖φtt‖2−1dt, (101)

and ‖Rn+1
4 ‖2∞ ≤ 8C2, we have

Cn+1
3 =

60

ε4

∫ tn+1

tn
‖∆−1φtt‖2−1 +A2‖∇φt‖2 + ε2‖∇φtt‖2dt

+
60

ε4

∫ tn+1

tn

(
L2

ε2
+

18L2
2C

2

ε2

)
‖φtt‖2−1dt

+
60

ε4

∫ tn+1

tn−1

(
6B2 +

27L2

8ε2

)
‖φtt‖2−1dt.

(102)

On the other hand,

Cn+1
4 =

15

4ε6

(
2L2 + 9L2

2C
2
)
τ(9‖φn+1‖2Hq+1 + ‖φn−1‖2Hq+1)

+
15

ε4

(
24B2 +

27L2

2ε2

)
τ4

∫ tn+1

tn−1

‖φtt‖2Hq+1dt

+
60

ε4

∫ tn+1

tn
‖φt‖2Hq+1dt+

60

ε4
τ‖µn+1‖2Hq+1 ,

(103)

where

‖3ρn+1 + ρn−1

4
‖2∞ ≤

9

8
‖ρn+1‖2∞ +

1

8
‖ρn−1‖2∞

≤ 9

8
‖φn+1‖2∞ +

1

8
‖φn−1‖2∞ ≤ 2C2,

(104)

‖3ρn+1 + ρn−1

4
‖2−1 ≤

9

8
‖ρn+1‖2−1 +

1

8
‖ρn−1‖2−1

≤ h2(q+2)

(
9

8
‖φn+1‖2Hq+1 +

1

8
‖φn−1‖2Hq+1

)
.

(105)
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Now, if Gn+1 is uniformly bounded by constant ε4/4, we can sum up the
inequality (100) for n = 1 to N to get the following estimate:

2(‖σN+1
h ‖2−1 − ‖σ1

h‖2−1) +
1

2
(‖δtσN+1

h ‖2−1 − ‖δtσ1
h‖2−1)

+ 2Aτ2(‖∇σN+1
h ‖2 − ‖∇σ1

h‖2) +
Aτ2

2
(‖∇δtσN+1

h ‖2 − ‖∇δtσ1
h‖2)

+
Aτ2

2

N∑
n=1

‖∇δttσn+1
h ‖2 + ε4τ

N∑
n=1

‖∇
3σn+1

h + σn−1
h

4
‖2

≤9

2

(
C0 + L2

)
τ‖σN+1

h ‖2−1 + 5
(
C0 + L2

)
τ

N∑
n=1

‖σnh‖2−1

+ C3τ
4 + C4h

2q+4,

(106)

where

C3 =
60

ε4

∫ T

0

‖∆−1φtt‖2−1 +A2‖∇φt‖2 + ε2‖∇φtt‖2dt

+
15

ε6

∫ T

0

(
31L2 + 72L2

2C
2 + 48B2ε2

)
‖∂ttφ(t)‖2−1dt

.ε−max{ρ1+4,ρ2+6,ρ3+2,ρ5+8} := γ3(ε),

(107)

and

C4 =
75

2ε6

(
2L2 + 9L2

2

)
τ

N+1∑
n=1

‖φn‖2Hq+1 +
60

ε4
τ

N+1∑
n=1

‖µn‖2Hq+1

+
15

ε6

(
48B2ε2 + 27L2

)
τ4

∫ T

0

‖φtt‖2Hq+1dt+
60

ε4

∫ T

0

‖φt‖2Hq+1dt

.min{ε−(ρ6+4), ε−(ρ7+6), ε−(ρ8+4), ε−(ρ4+6)τ4} := γ4(ε, τ).

(108)

Choose τ ≤ 2/9(C0 + L2), then we can get a finer error estimate by discrete
Gronwall’s inequality and the assumption of first step error (45):

max
1≤n≤N

(
‖σn+1

h ‖2−1 + 2Aτ2‖∇σn+1
h ‖2 +

1

2
‖δtσn+1

h ‖2−1 +
Aτ2

2
‖∇δtσn+1

h ‖2
)

+
Aτ2

2

N∑
n=1

‖∇δttσn+1
h ‖2 + ε4τ

N∑
n=1

‖∇
3σn+1

h + σn−1
h

4
‖2

.exp(5(C0 + L2)T )
(
γ3(ε)τ4 + γ4(ε, τ)h2q+4

)
+ ε−σ̃1τ4 + ε−σ̃2h2q+4.

(109)

We prove this by induction. Assuming that the above estimate holds for all
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first N time steps. Since τ . ε6, then the coarse estimate (48) leads to

‖σN+1
h ‖2−1 +

1

4
‖δtσN+1

h ‖2−1 +Aτ2‖∇σN+1
h ‖2 +

Aτ2

2
‖∇δtσN+1

h ‖2

+
Aτ2

2
‖∇δttσN+1

h ‖2 + ετ‖∇
3σN+1

h + σN−1
h

4
‖2

≤‖σNh ‖2−1 +
1

4
‖δtσNh ‖2−1 +Aτ2‖∇σNh ‖2 +

Aτ2

2
‖∇δtσNh ‖2

+
99L2

2ε3
τ‖σNh ‖2−1 +

11L2

2ε3
τ‖σN−1

h ‖2−1 + γ1(ε)τ4 + γ2(ε, τ)h2q+4

.exp(5(C0 + L2)T )
(
γ3(ε)τ4 + γ4(ε, τ)h2q+4

)
+ ε−σ̃1τ4 + ε−σ̃2h2q+4

+ γ1(ε)τ4 + γ2(ε, τ)h2q+4,

(110)

To obtain GN+1 ≤ ε4/4, by using (110), ε−σ̃1 ≤ γ1(ε) ≤ γ3(ε) and ε−σ̃2 ≤
γ2(ε, τ) ≤ γ4(ε, τ), we easily get

GN+1 =
3L2

2ε
K‖∇

3σN+1
h + σNh

4
‖

d−2
4 ‖

3σN+1
h + σNh

4
‖

6−d
4
−1

.
3L2

2ε
K
(
γ3(ε)ε−1τ3

) d−2
8
(
γ3(ε)τ4

) 6−d
8 ≤ ε4

4
,

(111)

and

GN+1 =
3L2

2ε
K‖∇

3σN+1
h + σNh

4
‖

d−2
4 ‖

3σN+1
h + σNh

4
‖

6−d
4
−1

.
3L2

2ε
K
(
γ4(ε, τ)h2q+4ε−1τ−1

) d−2
8
(
γ4(ε, τ)h2q+4

) 6−d
8 ≤ ε4

4
.

(112)

Solving (111), we get the condition for time step:

τ . ε
38+d
18−d γ3(ε)−

4
18−d . (113)

Solving (112), we get the condition for spatial ratio:

hq+2 . ε5+ d−2
8 τ

d−2
8 γ4(ε, τ)−

1
2 , (114)

by using the definition of γ4(ε, τ) in (108), and submitting τ . min{ε6, ε
38+d
18−d γ3(ε)−

4
18−d }

into (114), then we get

h . min{ε
7d−26
8(q+2) γ4(ε, τ)−

1
2(q+2) , ε

2d+76
(18−d)(q+2) γ3(ε)−

d−2
2(18−d) γ4(ε, τ)−

1
2(q+2) }, (115)

From (25)-(26), we easily get

‖ρn+1‖−1 ≤ Chq+2‖φn+1‖Hq+1 , (116)

‖∇ρn+1‖ ≤ Chq‖φn+1‖Hq+1 . (117)

Estimate (87)-(88) follows from the application of the triangle inequality for
(116)-(117) and (109). We complete the proof.

23



Remark 3.1. Note that the spectral estimate (83) is essential to the proof.
Compared to Crank-Nicolson discretization, the diffusive Crank-Nicolson dis-
cretization has an extra numerical diffusion εδtt∆φ

n+1/4, it is easier to bound
the error growth. Here, we do not need B > L/2ε to get the convergence, while
in SL-CN scheme, there is a necessary requirement [40].

Remark 3.2. We present the error estimate of the fully discrete SLD-CN
scheme. It needs stronger regularity described in Lemma 3.3.

4. Implementation and numerical results

We will give several examples to illustrate the performance of our schemes.
To test the numerical scheme, we solve (2) in tensor product 2-dimensional

domain Ω = [−1, 1] × [−1, 1]. (21)-(22) is a linear system with constant co-

efficients for (φn+1
h , µ

n+ 1
2

h ), which can be efficiently solved. We use a spectral
transform with double quadrature points to reduce the aliasing error and effi-
ciently evaluate the integration (f( 3

2φ
n
h − 1

2φ
n−1
h ), ϕh) in equation(22).

Given φ0
h, to start the second order scheme, we use following first order

stabilized scheme to generate φ1
h ∈ VM

1

s
(φ1
h − φ0

h, ψh) = −(∇ω1
h,∇ψh), ∀ψh ∈ VM , (118)

(ω1
h, ϕh) = ε(∇φ1

h, ϕh) +
1

ε
(f(φ1

h), ϕh) + Sδt(φ
1
h, ϕh), ∀ϕh ∈ VM , (119)

where S = 1/ε is a stabilization constant. Note that the BDF1 scheme generates
a second-order accurate solution at the first time step.

We take ε = 0.05 and M = 127(except Example 4.2) and use two different
initial values to test the stability and accuracy of the SLD-CN scheme:

(i) φ0: {φ0(xi, yj)} ∈ R2M×2M with xi, yj are tensor product Legendre-
Gauss quadrature points and φ0(xi, yj) is a uniformly distributed random
number between −1 and 1;

(ii) φ1: the solution of the Cahn-Hilliard equation at t = 64ε3 which takes φ0

as its initial value.

4.1. Stability results

Table 1,2 show the required minimum values of A (resp. B) with different γ,
B (resp. A) and τ values for stably solving (not blow up in 4096 time steps) the
Cahn-Hilliard equation (2) with initial value φ0. The results for the initial value
φ1 are similar. From the two tables, we observe that for smaller τ values, the
SLD-CN scheme is more stable than the SL-CN scheme proposed in [40, 41]),
while both of them are stable with A = 0 and B = 0 when γ and τ are small
enough. Due to the fact that the SLD-CN scheme has larger diffusion term than
SL-CN scheme, SLD-CN schemes need relatively smaller A and B than SL-CN
scheme.
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τ
SL-CN SLD-CN

γ = 0.0025 γ = 1 γ = 0.0025 γ = 1
B = 0 B = 10 B = 0 B = 10 B = 0 B = 10 B = 0 B = 10

10 0.32 0.04 1 1 0.32 0.04 1 1
1 0.32 0.08 8 4 0.32 0.08 8 2

0.1 0.64 0.16 64 16 0.32 0 64 16
0.01 1.28 0.32 128 32 0 0 128 16
0.001 1.28 0.16 256 32 0 0 256 8
0.0001 0 0 256 128 0 0 64 0
1E-05 0 0 512 128 0 0 0 0
1E-06 0 0 128 0 0 0 0 0

Table 1: The minimum values of A(only values {0, 2i, i = 0, . . . , 11} × γ are tested for A) to
make schemes SL-CN and SLD-CN stable when γ, B and τ are taking different values.

τ
SL-CN SLD-CN

γ = 0.0025 γ = 1 γ = 0.0025 γ = 1
A = 0 A = 1 A = 0 A = 4 A = 0 A = 1 A = 0 A = 4

10 32 0 64 0 32 0 32 0
1 32 0 64 8 16 0 32 8

0.1 32 0 64 16 8 0 32 16
0.01 32 0 64 16 0 0 32 16
0.001 16 0 32 16 0 0 16 16
0.0001 0 0 32 32 0 0 2 2
1E-05 0 0 32 32 0 0 0 0
1E-06 0 0 8 8 0 0 0 0

Table 2: The minimum values of B(only values {0, 2i, i = 0, . . . , 9} are tested for B) to make
schemes SL-CN and SLD-CN stable when γ, A and τ are taking different values.
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4.2. Accuracy results

Example 4.1. We take initial value φ1 to test the temporal accuracy of the two
schemes: SLD-CN scheme and SL-BDF2 scheme. The Cahn-Hilliard equation
with γ = 0.0025 is solved from t = 0 to T = 12.8. We take stability constants
A = 0.25 and B = 5 in the both schemes. To calculate the numerical error,
we use the numerical result generated by the SL-BDF2 scheme using τ = 10−3

as a reference of exact solution. We see that the SLD-CN scheme is second
order accurate in L2 norm by the time step τ = 0.01, 0.02, 0.04, 0.08, 0.16. From
Figure 1, we find the error of the SLD-CN scheme is obviously smaller than the
error of the SL-BDF2 scheme.
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Figure 1: Temporal convergence of SLD-CN scheme and SL-BDF2 scheme.

Example 4.2. We take initial value φ1 to test the spatial accuracy of the SLD-
CN scheme. The Cahn-Hilliard equation with γ = 0.0025 are solved from t = 0
to T = 1 with time step size τ = 10−5. We take stability constants A = 0.025
and B = 0.5. To calculate the numerical error, we use the numerical result
generated using M = 255 as a reference of exact solution. Figure 2 presents
the semilogy plot of errors in H−1 norm, L2 norm and H1 norm against the
polynomial degree M = 17, 33, 49, 65, 87 for the SLD-CN scheme. We observe
that the SLD-CN scheme in H1 norm, L2 norm and H−1 norm are all spectral
convergent. The convergence rate in H−1 norm is higher than it in H1 norm,
which is as expected in Theorem 3.1.

4.3. Adaptive time stepping

Several adaptive time stepping strategies have been implemented to Cahn-
Hilliard equation. We propose an adaptive time-stepping strategy in which the
time step is defined by the moving speed of the interface for SLD-CN scheme.
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Figure 2: Spatial convergence of SLD-CN scheme.

The method is presented in Algorithm 4.1. We update the time step using
the equation Adp(en+1, τn+1), which is proposed by Gomez and Hughes [23].
Our default values for the safety coefficient ρ and the tolerance tol are given
as ρ = 0.9, tol = 10−3. The minimum and maximum time steps are taken as
τmin = 10−6 and τmax = 0.01, respectively. en+1 is the approximation of the
relative ratio between the interface velocity and the interface thickness at the
(n+ 1)th time level. The initial time step is taken as 10−3.

Algorithm 4.1. Time step adaptive procedure:

• Step 1: Compute φn+1 by SLD-CN scheme with τn+1;

• Step 2: Calculate En+1
C (φn+1, φn, B).

• Step 3: Calculate en+1 = 10
(

‖φn+1−φn‖
εEn+1

C (φn+1,φn,B)

)2

and

Adp(en+1, τn+1) = ρ
(

tol
en+1

)1/2

τn+1;

• Step 4: if en+1 > tol, then
recalculate time step: τn+1 ← max{τmin,min{Adp(en+1, τn+1), τmax}};
goto Step 1;
else
update time step size τn+2 ← min{Adp(en+1, τn+1), τmax};
continue to next time step.

We solve the Cahn-Hilliard equation with initial value φ0 and M = 63 until
T = 30. We take γ = 0.0025, A = 1, B = 0.25. We present numerical results
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of phase evolutions using large time steps, adaptive time steps, and small time
steps for Cahn-Hilliard equation in Figure 4. We take a uniform large time step
τ = 0.01 and a uniform small time step τ = 10−5 for comparison. It is noted
that the solutions by adaptive time steps in the second row are consistent with
the solutions by uniform small time step in the third row. On the other hand,
the uniform large time step solutions in the first row are far different from the
adaptive time steps solutions. Figure 3 presents the adaptive time steps and
discrete energy accordingly with the time. The time steps almost grow from
τ = 10−6 to τ = 10−2. The last time step decreases because it is only 0.0034
from the second last step to the end time. Also, the discrete energy curve of
adaptive time steps coincides with it of uniform small time steps τ = 10−5, and
does not coincide with that of uniform large time steps τ = 0.01. It indicates
that the adaptive time stepping for the SLD-CN scheme is very effective.
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Figure 3: Adaptive time steps and discrete energy against time until T = 30.

5. Conclusions

We propose the SLD-CN scheme by modifying the stabilized linear Crank-
Nicolson scheme for the Cahn-Hilliard equation. In the scheme, the nonlinear
bulk force is treated explicitly with two additional linear stabilization terms:
−Aτ∆δtφ

n+1 and Bδttφ
n+1. We give a rigorous optimal error analysis of the

fully discrete SLD-CN scheme, which removes the condition B > L/2ε for the
error analysis of the SL-CN scheme. This error analysis holds for the special
case A = 0 and/or B = 0 as well. Numerical results verified the stability and
accuracy of the proposed schemes.
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Figure 4: Numerical comparisons among large time steps, adaptive time steps, and small time
steps for Cahn-Hilliard equation.

Appendix A. Estimate of the constants in Assumption 3.3

Lemma Appendix A.1. Suppose Assumption 3.1 (i)-(iii) and Assumption
3.2 are satisfied. We have following regularity results for the exact solution φ of
(2) with γ = 1.

(i)
∫∞

0
‖φt‖2−1dt+ ess sup

t∈[0,∞]

Eε(φ) . ε−β1 , and ‖φ‖2H1 . ε−(σ1+1);

(ii) ess sup
t∈[0,∞]

‖φt‖2−1 + ε
∫∞

0
‖∇φt‖2dt . ε−β2 ;

(iii) ess sup
t∈[0,∞]

‖φt‖2 + ε
∫∞

0
‖∆φt‖2dt . ε−β3 ;

(iv)
∫∞

0
‖φtt‖2−1dt+ ess sup

t∈[0,∞]

ε‖∇φt‖2 . ε−β4 ;
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(v) ess sup
t∈[0,∞]

‖∆−1φtt‖2 + ε
∫∞

0
‖φtt‖2dt . ε−β5 ;

(vi) ess sup
t∈[0,∞]

‖φtt‖2−1 + ε
∫∞

0
‖∇φtt‖2dt . ε−β6 ;

(vii) ess sup
t∈[0,∞]

‖φtt‖2 + ε
∫∞

0
‖∆φtt‖2dt . ε−β7 ;

(viii)
∫∞

0
‖∆−1φtt‖2−1dt+ ε ess sup

t∈[0,∞]

‖φt‖2−1 . ε−β8 ;

(ix) ess sup
t∈[0,∞]

‖∆−1φt‖2 + ε
∫∞

0
‖φt‖2dt . ε−β9 ;

(x)
∫∞

0
‖φt‖2Hq+1dt . ε−β10 , when q = 1;

(xi)
∫∞

0
‖φtt‖2Hq+1dt . ε−β11 , when q = 1;

(xii)
∫ T

0
‖φ‖2H2dt . ε−(σ1+3);

(xiii)
∫ T

0
‖µ‖2H2dt . ε−β12 .

where β1 = σ1 and

β2 = max{σ1 + 3, σ2},
β3 = max{(σ1 + 1)(p− 2) + β2 + 4, σ3},
β4 = max{β2 + 2 + 1

2β3 + 1
2 (σ1 + 1)(p− 3)+, σ4},

β5 = max{β2 + β4 + 1 + (σ1 + 1)(p− 3)+, (σ1 + 1)(p− 2) + β4 + 3, σ5},
β6 = max{(σ1 + 1)(p− 3)+ + β2 + β4 + 5, β5 + 2, σ6},
β7 = max{(σ1 + 1)(p− 3)+ + β2 + β4 + 5, (σ1 + 1)(p− 2) + β6 + 4, σ7},
β8 = max{(σ1 + 1)(p− 2) + β1 + 2, (σ1 + 1)(p− 2) + β2 + 3, σ2 + 1},
β9 = (σ1 + 1)(p− 2) + β1 + 3,

β10 = max{β2 + 1, β3 + 1, β9 + 1},
β11 = max{β5 + 1, β6 + 1, β7 + 1},
β12 = max{σ1, (σ1 + 1)(p− 1) + 3}.

Proof. We first write down some inequalities that will be frequently used. The
first one is the Holder’s inequality

‖uvw‖Ls ≤ ‖u‖Lp‖v‖Lq‖w‖Lr , ∀ p, q, r ∈ (0,∞],
1

s
=

1

p
+

1

q
+

1

r
. (A.1)

The second one is the Sobolev inequality

‖u‖Lq ≤ Cs‖u‖1, (A.2)
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where q ∈ [2,∞) for d = 2; q ∈ [2, 2d
d−2 ] for d > 2; Cs is a general constant

independent of φ. We can further use Poincare’s inequality to get

‖v‖Lq ≤ Cs‖∇v‖, ∀v ∈ L2
0(Ω). (A.3)

For v ∈ L2
0(Ω), we also have following inequality

‖v‖2 = (∇v,∇(−∆)−1v) ≤ 1

2δ
‖∇v‖2 +

δ

2
‖v‖2−1, (A.4)

where δ > 0 is an arbitrary constant.
Now, we begin the proof.

(i) When γ = 1, we have Cahn-Hilliard equation

φt + ε∆2φ =
1

ε
∆f(φ). (A.5)

Multiplying (A.5) by −∆−1φt and using integration by parts, we get

‖φt‖2−1 +
ε

2

d

dt
‖∇φ‖2 = −1

ε
(f(φ), φt) = −1

ε

d

dt

∫
Ω

F (φ)dx. (A.6)

After integrating over [0, T ], we obtain∫ T

0

‖φt‖2−1dt+ Eε(φ(T )) = Eε(φ
0) (A.7)

Taking maximum values of terms on the left hand side for T ∈ [0,∞],
we get the first part of (i) from (33). From the definition of Eε(φ), and
assumption (27) we know

‖φ‖2 ≤ B0|Ω|+B1ε
−σ1+1 . ε−(σ1−1)+ . (A.8)

Combining above estimate with the fact ε
2‖∇φ‖

2 . ε−σ1 , we get

‖φ‖2H1 . ε−(σ1+1). (A.9)

(ii) We formally differentiate (A.5) in time to obtain

φtt + ε∆2φt =
1

ε
∆ (f ′(φ)φt) . (A.10)

Pairing (A.10) with −∆−1φt and using (A.4), yields

1

2

d

dt
‖φt‖2−1 + ε‖∇φt‖2 =− 1

ε
(f ′(φ)φt, φt) ≤

c̃0
ε
‖φt‖2

≤ε
2
‖∇φt‖2 +

c̃20
2ε3
‖φt‖2−1.

(A.11)
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Integrating (A.11) over [0, T ] and taking maximum values for terms de-
pending on T , we get

ess sup
t∈[0,∞]

‖φt‖2−1 + ε

∫ ∞
0

‖∇φt‖2dt .
c̃20
ε3

∫ ∞
0

‖φt‖2−1dt+ ‖φ0
t‖2−1. (A.12)

The assertion then follows from (i) and the inequality (34) of Assumption
3.2.

(iii) Testing (A.10) with φt, using (A.1) and (A.2) with Poincare’s inequality,
we get

1

2

d

dt
‖φt‖2 + ε‖∆φt‖2 =

1

ε
(f ′(φ)φt,∆φt) ≤

1

ε
‖f ′(φ)‖L3‖φt‖L6‖∆φt‖

≤ε
2
‖∆φt‖2 +

1

2ε3
‖f ′(φ)‖2L3‖φt‖2L6

≤ε
2
‖∆φt‖2 +

C2
s

2ε3
‖f ′(φ)‖2L3‖∇φt‖2,

(A.13)

which leads to

ess sup
t∈[0,∞]

‖φt‖2 + ε

∫ ∞
0

‖∆φt‖2dt

.
Cs
ε3

ess sup
t∈[0,∞]

‖f ′(φ)‖2L3

∫ ∞
0

‖∇φt‖2dt+ ‖φ0
t‖2.

(A.14)

On the other hand side, by assumption (29), the Sobolev inequality (A.2)
and estimate (A.9), we have

‖f ′(φ)‖2L3 . c̃2‖φ‖2(p−2)

L3(p−2) + c̃3 . c̃2‖φ‖2(p−2)
1 + c̃3 . ε−(σ1+1)(p−2) (A.15)

The assertion then follows from (A.14), (A.15), (ii) and assumption (35).

(iv) Testing (A.10) with −∆−1φtt, we get

‖φtt‖2−1 +
ε

2

d

dt
‖∇φt‖2 = −1

ε
(f ′(φ)φt, φtt)

=− 1

2ε

d

dt
(f ′(φ)φt, φt) +

1

2ε
(f ′′(φ)φ2

t , φt)

≤− 1

2ε

d

dt
(f ′(φ)φt, φt) +

1

2ε
‖f ′′‖L6‖φ2

t‖L3‖φt‖

≤ − 1

2ε

d

dt
(f ′(φ)φt, φt) +

C2
s

2ε
‖f ′′‖L6‖∇φt‖2‖φt‖

(A.16)
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Integrate (A.16) over [0, T ], we continue the estimate as

2

∫ T

0

‖φtt‖2−1dt+ ε‖∇φt(T )‖2 − ε‖∇φ0
t‖2

≤− 1

ε
(f ′(φ)φt, φt)|t=T +

1

ε
(f ′(φ0)φ0

t , φ
0
t )

+
C2
s

ε
ess sup
t∈[0,T ]

{‖f ′′‖L6‖φt‖}
∫ T

0

‖∇φt‖2dt

≤ε
2
‖∇φt(T )‖2 +

c̃20
2ε3
‖φt(T )‖2−1 +

1

ε
(f ′(φ0)φ0

t , φ
0
t )

+
C2
s

ε
ess sup
t∈[0,T ]

{‖f ′′‖L6‖φt‖}
∫ T

0

‖∇φt‖2dt,

(A.17)

i.e.

2

∫ T

0

‖φtt‖2−1dt+
ε

2
‖∇φt(T )‖2 ≤ ε‖∇φ0

t‖2 +
1

ε
(f ′(φ0)φ0

t , φ
0
t )

+
c̃20
2ε3
‖φt(T )‖2−1 +

C2
s

ε
ess sup
t∈[0,T ]

{‖f ′′‖L6‖φt‖}
∫ T

0

‖∇φt‖2dt.

(A.18)

On the other hand, by (30), the Sobolev inequality (A.2) and estimate
(A.9), we have

‖f ′′(φ)‖2L6 . c̃4‖φ‖2(p−3)+

L6(p−3)+
+ c̃5 . ‖φ‖2(p−3)+

1 . ε−(σ1+1)(p−3)+ (A.19)

By taking maximum for terms depending on T in (A.18) and using (A.19),
(ii), (iii) and the inequality (36) of Assumption 3.2. we obtain the assertion
(iv).

(v) We formally differentiate (A.10) in time to derive

φttt + ε∆2φtt =
1

ε
∆
(
f ′′(φ)(φt)

2 + f ′(φ)φtt
)
. (A.20)

Testing (A.20) with ∆−2φtt, we obtain

1

2

d

dt
‖∆−1φtt‖2 + ε‖φtt‖2 =

1

ε

(
f ′′(φ)(φt)

2 + f ′(φ)φtt,∆
−1φtt

)
≤ ε

2
‖f ′′(φ)‖2L2‖φt‖4L6 +

1

2ε3
‖∆−1φtt‖2L6 +

1

2ε3
‖f ′(φ)‖2L3‖∆−1φtt‖2L6 +

ε

2
‖φtt‖2

≤ ε

2
C4
s‖f ′′(φ)‖2L2‖∇φt‖4 +

C2
s

2ε3
‖φtt‖2−1 +

C2
s

2ε3
‖f ′(φ)‖2L3‖φtt‖2−1 +

ε

2
‖φtt‖2.
(A.21)
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After taking integration from [0, T ] and taking maximum for terms de-
pending on T , we have

ess sup
t∈[0,∞]

‖∆−1φtt‖2 + ε

∫ ∞
0

‖φtt‖2dt

. ε ess sup
t∈[0,∞]

(
‖f ′′(φ)‖2L2‖∇φt‖2

) ∫ ∞
0

‖∇φt‖2dt

+
1

ε3

(
ess sup
t∈[0,∞]

‖f ′(φ)‖2L3 + 1

)∫ ∞
0

‖φtt‖2−1dt+ ‖∆−1φ0
tt‖2.

(A.22)

The assertion then follows from (A.15), the following estimate

‖f ′′(φ)‖2L2 . c̃4‖φ‖2(p−3)+

L2(p−3)+
+ c̃5 . ‖φ‖2(p−3)+

1 . ε−(σ1+1)(p−3)+ , (A.23)

(ii), (iv) and the inequality (37) of Assumption 3.2.

(vi) Pairing (A.20) with −∆−1φtt, we obtain

ε

2

d

dt
‖φtt‖2−1 + ε‖∇φtt‖2

=− 1

ε

(
f ′′(φ)(φt)

2 + f ′(φ)φtt, φtt
)

≤C
2
s

2ε3
‖f ′′(φ)‖2L2‖φt‖4L6 +

ε

2C2
s

‖φtt‖2L6 +
c̃0
ε
‖φtt‖2

≤C
6
s

2ε3
‖f ′′(φ)‖2L2‖∇φt‖4 +

ε

2
‖∇φtt‖2 +

c̃0
ε
‖φtt‖2.

(A.24)

Integrating (A.24) from [0,∞), we have

ess sup
t∈[0,∞]

‖φtt‖2−1 + ε

∫ ∞
0

‖∇φtt‖2dt

.
C6
s

ε3
ess sup
t∈[0,∞]

(
‖f ′′(φ)‖2L2‖∇φt‖2

) ∫ ∞
0

‖∇φt‖2dt

+
2c̃0
ε

∫ ∞
0

‖φtt‖2dt+ ‖φ0
tt‖2−1.

(A.25)

The assertion then follows from (A.23), (ii), (iv), (vi) and the inequality
(38) of Assumption 3.2.
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(vii) Pairing (A.20) with φtt, we obtain

1

2

d

dt
‖φtt‖2 + ε‖∆φtt‖2

=
1

ε

(
f ′′(φ)(φt)

2 + f ′(φ)φtt,∆φtt
)

≤1

ε
‖f ′′(φ)‖L6‖φ2

t‖L3‖∆φtt‖+
1

ε
‖f ′(φ)‖L3‖φtt‖L6‖∆φtt‖

≤ 1

ε3

(
‖f ′′(φ)‖2L6‖φt‖4L6 + ‖f ′(φ)‖2L3‖φtt‖2L6

)
+
ε

2
‖∆φtt‖2

≤ 1

ε3

(
C4
s‖f ′′(φ)‖2L6‖∇φt‖4 + C2

s‖f ′(φ)‖2L3‖∇φtt‖2
)

+
ε

2
‖∆φtt‖2.

(A.26)

After taking integration from [0, T ] and taking maximum for terms de-
pending on T , we have

ess sup
t∈[0,∞]

‖φtt‖2 + ε

∫ ∞
0

‖∆φtt‖2dt

.
2C4

s

ε3
ess sup
t∈[0,∞]

(
‖f ′′(φ)‖2L6‖∇φt‖2

) ∫ ∞
0

‖∇φt‖2dt

+
2C2

s

ε3
ess sup
t∈[0,∞]

‖f ′(φ)‖2L3

∫ ∞
0

‖∇φtt‖2dt+ ‖φ0
tt‖2.

(A.27)

The assertion then follows from (A.19), (A.15), (ii), (iv), (v) and the
inequality (39) of Assumption 3.2.

(viii) Pairing (A.10) with −∆−3φtt, we obtain

‖∆−1φtt‖2−1 +
ε

2

d

dt
‖φt‖2−1

=− 1

ε
(f ′(φ)φt,∆

−2φtt) ≤
1

ε
‖f ′(φ)‖L3‖φt‖‖∆−2φtt‖L6

≤ 1

2C2
s

‖∆−2φtt‖2L6 +
C2
s

2ε2
‖f ′(φ)‖2L3‖φt‖2

≤1

2
‖∆−1φtt‖2−1 +

C2
s

2ε2
‖f ′(φ)‖2L3(‖φt‖2−1 + ‖∇φt‖2).

(A.28)

After taking integration from [0, T ] and taking maximum for terms de-
pending on T , we have∫ ∞

0

‖∆−1φtt‖2−1dt+ ε ess sup
t∈[0,∞]

‖φt‖2−1

.
C2
s

ε2
ess sup
t∈[0,∞]

‖f ′(φ)‖2L3

∫ ∞
0

(‖φt‖2−1 + ‖∇φt‖2)dt+ ε‖φ0
t‖2−1.

(A.29)

The assertion then follows from (A.15), (i), (ii) and the inequality (34) of
Assumption 3.2.
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(ix) Pairing (A.10) with ∆−2φt, we obtain

1

2

d

dt
‖∆−1φt‖2 + ε‖φt‖2

=
1

ε
(f ′(φ)φt,∆

−1φt) ≤
1

ε
‖f ′(φ)‖L3‖φt‖‖∆−1φt‖L6

≤ε
2
‖φt‖2 +

C2
s

2ε3
‖f ′(φ)‖2L3‖φt‖2−1.

(A.30)

After taking integration from [0, T ] and taking maximum for terms de-
pending on T , we have

ess sup
t∈[0,∞]

‖∆−1φt‖2 + ε

∫ ∞
0

‖φt‖2dt

≤C
2
s

ε3
ess sup
t∈[0,∞]

‖f ′(φ)‖2L3

∫ ∞
0

‖φt‖2−1dt.

(A.31)

(x) We can easily get the proof from (ii) (iii) (ix).

(xi) We can easily get the proof from (v) (vi) (vii).

(xii) Multiplying (A.5) by φ and using integration by parts and ε
2‖∇φ‖

2 . ε−σ1 ,
we get

1

2

d

dt
‖φ‖2 + ε‖∆φ‖2 =

1

ε
(∆f(φ), φ)

=− 1

ε
(f ′(φ)∇φ,∇φ) ≤ c̃0

ε
‖∇φ‖2 . ε−(σ1+2).

(A.32)

Then we easily get∫ T

0

‖φ‖2H2dt .
∫ T

0

‖φ‖2 + ‖∇φ‖2 + ‖∆φ‖2dt . ε−(σ1+3). (A.33)

(xiii) Multiplying (A.5) by ∆−1φt and using integration by parts, we get

‖∆−1φt‖2 +
ε

2

d

dt
‖φ‖2 =

1

ε
(f(φ),∆−1φt)

=− 1

ε
(f ′(φ)∇φ,∆− 3

2φt) ≤
1

ε
‖f ′(φ)‖L3‖∇φ‖‖∆− 3

2φt‖L6

≤ 1

2C2
s

‖∆− 3
2φt‖2L6 +

C2
s

2ε2
‖f ′(φ)‖2L3‖∇φ‖2

≤1

2
‖∆−1φt‖2 +

C2
s

2ε2
‖f ′(φ)‖2L3‖∇φ‖2.

(A.34)

After taking integration from [0, T ], we have∫ T

0

‖∆−1φt‖2dt+ ε ess sup
t∈[0,T ]

‖φ‖2

≤C
2
s

ε2
ess sup
t∈[0,T ]

‖f ′(φ)‖2L3

∫ T

0

‖∇φ‖2dt . ε−(σ1+1)(p−1)−2.

(A.35)
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On the other hand
φt = ∆µ, (A.36)

combining above estimate with (i) (ix), then we have∫ T

0

‖µ‖2H2dt .
∫ T

0

‖∆−1φt‖2 + ‖φt‖2−1 + ‖φt‖2dt . ε−β12 . (A.37)
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