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Abstract

Numerical simulation of flow problems and wave propagation in heterogeneous media

has important applications in many engineering areas. However, numerical solutions on

the fine grid are often prohibitively expensive, and multiscale model reduction techniques

are introduced to efficiently solve for an accurate approximation on the coarse grid. In this

paper, we propose an energy minimization based multiscale model reduction approach in the

discontinuous Galerkin discretization setting. The main idea of the method is to extract the

non-decaying component in the high conductivity regions by identifying dominant modes

with small eigenvalues of local spectral problems, and define multiscale basis functions

in coarse oversampled regions by constraint energy minimization problems. The multiscale

basis functions are in general discontinuous on the coarse grid and coupled by interior penalty

discontinuous Galerkin formulation. The minimal degree of freedom in representing high-

contrast features is achieved through the design of local spectral problems, which provides

the most compressed local multiscale space. We analyze the method for solving Darcy flow

problem and show that the convergence is linear in coarse mesh size and independent of the

contrast, provided that the oversampling size is appropriately chosen. Numerical results are

presented to show the performance of the method for simulation on flow problem and wave

propagation in high-contrast heterogeneous media.

1 Introduction

Many engineering applications require numerical simulation in heterogeneous media with multi-
ple scales and high contrast. For example, Darcy flow equation in heterogeneous media is used to
describe fluid flow in porous medium in reservoir simulation, and wave equation in heterogeneous
media has been widely used for subsurface modeling. Numerical solutions on the fine grid are
often prohibitively expensive in these complex multiscale problems.

To this end, extensive research effort had been devoted to developing efficient methods for
solving multiscale problems at reduced expense, for example, numerical homogenization ap-
proaches [35, 39] and multiscale methods, including Multiscale Finite Element Methods (Ms-
FEM) [27, 23, 4, 22, 7], Variational Multiscale Methods (VMS) [29, 30, 31, 3], Heterogeneous
Multiscale Methods (HMM) [16, 1, 17] and and Generalized Multsicale Finite Element Methods
(GMsFEM) [18, 15, 10, 8]. The common goal of these methods is to construct numerical solvers
on the coarse grid, which is typically much coarser than the fine grid which captures all the
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heterogeneities in the medium properties. In numerical homogenization approaches, effective
properties are computed and the global problem is formulated and solved on the coarse grid.
However, these approaches are limited to the cases when the medium properties possess scale
separation. On the other hand, multiscale methods construct of multiscale basis functions which
are responsible for capturing the local oscillatory effects of the solution. Once the multiscale
basis functions, coarse-scale equations are formulated. Moreover, fine-scale information can be
recovered by the coarse-scale coefficients and mutliscale basis functions.

Many existing mutliscale methods, such as MsFEM, VMS and HMM, construct one basis
function per local coarse region to handle the effects of local heterogeneities. However, for
more complex multiscale problems, each local coarse region contains several high-conductivity
regions and multiple multiscale basis functions are required to represent the local solution space.
GMsFEM is developed to allow systematic enrichment of the coarse-scale space with fine-scale
information and identify the underlying low-dimensional local structures for solution represen-
tation. The main idea of GMsFEM is to extract local dominant modes by carefully designed
local spectral problems in coarse regions, and the convergence of the GMsFEM is related to
eigenvalue decay of local spectral problems. For a more detailed discussion on GMsFEM, we
refer the readers to [21, 18, 20, 15, 11, 8, 25, 6, 36, 38] and the references therein. Our method
developed in this work is motivated by GMsFEM and achieves spectral convergence. Through
the design of local spectral problems, our method results in the minimal degree of freedom in
representing high-contrast features.

For typical mesh-based numerical discretization, such as the finite element method and finite
difference method, the most important issue of the solution accuracy is mesh convergence. How-
ever, for multiscale problems, it is difficult to adjust coarse-grid size based on scales and contrast,
and it is desirable to have convergence independent of these physical parameters. it becomes
non-trivial to derive multiscale methods with convergence on coarse mesh size independent of
scales and contrast. Recently, several multiscale methods with mesh convergence are developed.
[34, 32, 33]. This idea can be combined with the use of local spectral problems for achieving both
spectral convergence and mesh convergence [28, 13, 9, 5]. On the other hand, to overcome the
difficulty of stability and conservation for convection-dominated problems and wave propagations
in heterogeneous media, multiscale methods in the discontinuous Galerkin (DG) framework have
been investigated [23, 2, 37, 19, 26, 24, 12, 14]. In these approaches, unlike conforming finite
element formulations, multiscale basis functions are in general discontinuous on the coarse grid,
and stabilization or penalty terms are added to ensure well-posedness of the global problem.
Our goal in this work is to develop a robust multiscale method in interior penalty discontinuous
Galerkin formulation, which exhibits both spectral convergence and mesh convergence.

In this paper, we present Constraint EnergyMinimizing Generalized Multiscale Discontinuous
Galerkin Method (CEM-GMsDGM). There are two key ingredients of the presented approach.
The first main ingredient is the local spectral problems in each coarse block for identification of
auxiliary basis functions. The low-energy dominant modes, which are eigenvectors corresponding
to small eigenvalues of local spectral problems, are used as auxiliary basis functions for further
construction. The auxiliary basis functions possess the information related to high conductivity
channels and it suffices to use the same number of auxiliary basis functions as the number of
channels in a coarse block. The second ingredient is the constraint energy minimization prob-
lems for definition of multiscale basis functions. Each of the auxiliary basis functions sets up
an independent constraint and uniquely defines a corresponding multiscale basis function. The
multiscale basis functions will then be used to span the multiscale space and used to solve the
coarse-scale global problem in IPDG formulation. We remark that the local spectral problems
and the constraint energy minimization problems are carefully designed and supported by our
analysis. Thanks to the design of local spectral problems, the auxiliary space is of minimal dimen-
sion for representing high-contrast features and obtaining a contrast-independent convergence.
Due to the fact that the dimensions of the auxiliary space and the multiscale space are identical,
the multiscale space is of minimum dimension as well. In the construction of multiscale basis
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functions, the constraints are responsible for handling non-decaying components represented by
the auxiliary basis functions in the high conductivity regions and achieving linear convergence in
coarse mesh size. On the other hand, the multiscale basis functions are supported in oversampled
coarse regions and allowed to have discontinuity on the coarse grid. Therefore, the IPDG bilin-
ear form is also used to define the energy term in the constraint energy minimization problems.
The advantages of the method is verified both theoretically and numerically. We analyze the
method for solving Darcy flow problem and establish a criterion for the oversampling size which
is sufficient for linear coarse-mesh convergence independent of the contrast. Numerical results
are presented to show the performance of the method for simulation on flow problem and wave
propagation in high-contrast heterogeneous media.

The paper is organized as follows. In Section 2, we will introduce the notions of grids, and
essential discretization details such as DG finite element spaces and IPDG formulation on the
coarse grid. The details of the proposed method will be presented in Section 3. The method will
be analyzed in Section 4. Numerical results will be provided in Section 5. Finally, a conclusion
will be given in Section 6.

2 Preliminaries

We consider the following high-contrast flow problem

− div (κ∇u) = f in Ω, (1)

subject to the homogeneous Dirichlet boundary condition u = 0 on ∂Ω, where Ω ⊂ R2 is the
computational domain and f is a given source term. We assume that the permeability field κ is
highly heterogeneous with very high contrast κ0 ≤ κ ≤ κ1.

Next, we introduce the notions of coarse and fine meshes. We start with a usual partition
T H of Ω into finite elements, which does not necessarily resolve any multiscale features. The
partition T H is called a coarse grid and a generic element K in the partition T H is called a
coarse element. Moreover, H > 0 is called the coarse mesh size. We let Nc be the number of
coarse grid nodes and N be the number of coarse elements. We also denote the collection of all
coarse grid edges by EH . We perform a refinement of T H to obtain a fine grid T h, where h > 0
is called the fine mesh size. It is assumed that the fine grid is sufficiently fine to resolve the
solution. An illustration of the fine grid and the coarse grid and a coarse element are shown in
Figure 1.

K

Figure 1: An illustration of the fine grid and the coarse grid and a coarse element.
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We are now going to discuss the discontinuous Galerkin (DG) discretization and the interior
penalty discontinuous Galerkin (IPDG) global formulation. For the i-th coarse block Ki, we
denote the restriction of the Sobolev space H1

0 (Ω) on Ki by V (Ki). We let Vh(Ki) be the
conforming bilinear elements defined on the fine grid T h in Ki, i.e.

Vh(Ki) =
{
v ∈ V (Ki) : v|τ ∈ Q1(τ) for all τ ∈ T h and τ ⊂ Ki

}
, (2)

where Q1(τ) stands for the bilinear element on the fine grid block τ . The DG approximation
space is then given by the space of coarse-scale locally conforming piecewise bilinear fine-grid
basis functions, namely

Vh = ⊕N
i=1Vh(Ki). (3)

We remark that functions in Vh are continuous within coarse blocks, but discontinuous across the
coarse grid edges in general. The global formulation of IPDG method then reads: find uh ∈ Vh
such that

aDG (uh, w) =

∫

Ω

fw dx for all w ∈ Vh, (4)

where the bilinear form aDG is defined by:

aDG (v, w) =
∑

K∈T H

∫

K

κ∇v · ∇w dx−
∑

E∈EH

∫

E

{κ∇v · nE}JwK dσ

−
∑

E∈EH

∫

E

{κ∇w · nE}JvK dσ +
γ

h

∑

E∈EH

∫

E

κJvKJwK dσ,

(5)

where γ > 0 is a penalty parameter and nE is a fixed unit normal vector defined on the coarse
edge E ∈ EH . Note that, in (5), the average and the jump operators are defined in the classical
way. Specifically, consider an interior coarse edge E ∈ EH and let K+ and K− be the two coarse
grid blocks sharing the edge E, where the unit normal vector nE is pointing from K+ to K−.
For a piecewise smooth function G with respect to the coarse grid T H , we define

{G} =
1

2

(
G+ +G−

)
,

JGK = G+ −G−,
(6)

where G+ = G|K+ and G− = G|K− . Moreover, on the edge E, we define κ = (κK+ + κK−) /2,
where κK± is the maximum value of κ over K±. For a coarse edge E lying on the boundary
∂Ω, we define {G} = JGK = G, and κ = κK on E, where we always assume that nE is pointing
outside of Ω.

First, we define the energy norm on the space V of coarse-grid piecewise smooth functions
by

‖w‖2a = aDG(w,w) for all w ∈ V. (7)

We also define the DG-norm on V by

‖w‖2DG =
∑

K∈T H

∫

K

κ|∇w|2 dx +
γ

h

∑

E∈EH

∫

E

κJwK2 dσ for all w ∈ V. (8)

The two norms are equivalent on the subspace of piecewise bi-cubic polynomials in V : there
exists C0 ≥ 1 such that

C−1
0 ‖w‖a ≤ ‖w‖DG ≤ C0‖w‖a. (9)

The continuity and coercivity results of the bilinear form aDG with respect to the DG-norm is
ensured by a sufficiently large penalty parameter γ. While the method works well for general
highly heterogeneous field κ, we assume κ is piecewise constant on the fine grid T h for the sake
of simplicity in our analysis presented in Section 4.
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3 Method description

In this section, we will present the construction of the multiscale basis functions. First, we will
use the concept of GMsFEM to construct our auxiliary multiscale basis functions on a generic
coarse block K in the coarse grid. We consider Vh(Ki) as the snapshot space in Ki and perform

a dimension reduction through a spectral problem, which is to find a real number λ
(i)
j and a

function φ
(i)
j ∈ Vh(Ki) such that

ai

(
φ
(i)
j , w

)
= λ

(i)
j si

(
φ
(i)
j , w

)
for all w ∈ Vh(Ki), (10)

where ai is a symmetric non-negative definite bilinear operator and si is a symmetric positive
definite bilinear operators defined on Vh(Ki) × Vh(Ki). We remark that the above problem is
solved on the fine mesh in the actual computations. Based on our analysis, we can choose

ai (v, w) =

∫

Ki

κ∇v · ∇w dx,

si (v, w) =

∫

Ki

κ̃vw dx,

(11)

where κ̃ =
∑Nc

j=1 κ|∇χ
ms
j |2 and {χms

j }Nc

j=1 are the standard multiscale finite element (MsFEM)

basis functions. We let λ
(i)
j be the eigenvalues of (10) arranged in ascending order in j, and use

the first Li eigenfunctions to construct our local auxiliary multiscale space

V (i)
aux = span{φ

(i)
j : 1 ≤ j ≤ Li}. (12)

The global auxiliary multiscale space V h
aux is then defined as the sum of these local auxiliary

multiscale spaces
Vaux = ⊕N

i=1V
(i)
aux. (13)

For the local auxiliary multiscale space V
(i)
aux, the bilinear form si in (11) defines an inner prod-

uct with norm ‖v‖s(Ki) = s (v, v)
1
2 . These local inner products and norms provide a natural

definitions of inner product and norm for the global auxiliary multiscale space Vaux, which are
defined by

s (v, w) =

N∑

i=1

si (v, w) for all v, w ∈ Vaux,

‖v‖s = s (v, v)
1
2 for all v ∈ Vaux.

(14)

We note that s (v, w) and ‖v‖s are also an inner product and norm for the space Vh. Before
we move on to discuss the construction of multiscale basis functions, we introduce some tools
which will be used to describe our method and analyze the convergence. We first introduce the
concept of φ-orthogonality. For 1 ≤ i ≤ N and 1 ≤ j ≤ Li, in coarse block Ki, given auxiliary

basis function φ
(i)
j ∈ Vaux, we say that ψ ∈ Vh is φ

(i)
j -orthogonal if

s

(
ψ, φ

(i′)
j′

)
= δi,i′δj,j′ for all 1 ≤ j′ ≤ Li′ and 1 ≤ i′ ≤ N. (15)

We also introduce a projection operator π : Vh → Vaux by π =
∑N

i=1 πi, where

πi(v) =

Li∑

j=1

si

(
v, φ

(i)
j

)

si

(
φ
(i)
j , φ

(i)
j

)φ(i)j for all v ∈ Vh, for all i = 1, 2, . . . , N. (16)
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Next, we construct our global multiscale basis functions in Vh. The global multiscale basis

function ψ
(i)
j ∈ Vh is defined as the solution of the following constrained energy minimization

problem

ψ
(i)
j = argmin

{
aDG (ψ, ψ) : ψ ∈ Vh is φ

(i)
j -orthogonal

}
. (17)

By introducing a Lagrange multiplier, the minimization problem (17) is equivalent to the fol-

lowing variational problem: find ψ
(i)
j ∈ Vh and µ

(i)
j ∈ V

(i)
aux such that

aDG

(
ψ
(i)
j , ψ

)
+ si

(
ψ, µ

(i)
j

)
= 0 for all ψ ∈ Vh,

si

(
ψ
(i)
j − φ

(i)
j , µ

)
= 0 for all µ ∈ V (i)

aux.
(18)

Now we discuss the construction our localized multiscale basis functions. We first denote byKi,m

an oversampled domain formed by enlarging the coarse grid block Ki bym coarse grid layers. An
illustration of an oversampled domain is shown in Figure 2. We introduce the subspace Vh (Ki,m),
which contains restriction of fine-scale basis functions in Vh on the oversampled domain Ki,m.
We also define Vh,0 (Ki,m) = Vh(Ki,m) ∩ H1

0 (Ki,m) by the subspace of functions in Vh (Ki,m)
vanishing on the boundary of the oversampled domain Ki,m. Motivated by the construction of

K i

K i ,m

Figure 2: An illustration of an oversampled domain formed by enlarging Ki with 1 coarse grid
layer.

our global multiscale basis functions, the method for construction of the localized multiscale basis

functions are as follows: The localized multiscale basis function ψ
(i)
j,ms ∈ Vh (Ki,m) is defined as

the solution of the following constrained energy minimization problem

ψ
(i)
j,ms = argmin

{
aDG (ψ, ψ) : ψ ∈ Vh (Ki,m) is φ

(i)
j -orthogonal

}
. (19)

Using the method of Lagrange multiplier, the minimization problem (19) is equivalent to the

following variational problem: find ψ
(i)
j,ms ∈ Vh (Ki,m) and µ

(i)
j ∈ V

(i)
aux such that

aDG

(
ψ
(i)
j,ms, ψ

)
+ si

(
ψ, µ

(i)
j

)
= 0 for all ψ ∈ Vh (Ki,m) ,

si

(
ψ
(i)
j,ms − φ

(i)
j , µ

)
= 0 for all µ ∈ V (i)

aux.
(20)

We use the localized multiscale basis functions to construct the multiscale DG finite element
space, which is defined as

Vms = span{ψ
(i)
j,ms : 1 ≤ j ≤ Li, 1 ≤ i ≤ N}. (21)
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We remark that the multiscale finite element space Vms is a subspace of Vh. After the multiscale
DG finite element space is constructed, the multiscale solution ums is given by: find ums ∈ Vms

such that

aDG (ums, w) =

∫

Ω

fw dx for all w ∈ Vms. (22)

4 Analysis

In this section, we will analyze the proposed method. Besides the energy norm and the DG
norm, we also define the s-norm on V by

‖w‖2s =
∑

K∈T H

∫

K

κ̃|w|2 dx. (23)

Given a subdomain Ω′ ⊆ Ω formed by a union of coarse blocks K ∈ T H , we also define the local
s-norm by

‖w‖2s(Ω′) =
∑

K⊆Ω′

∫

K

κ̃|w|2 dx. (24)

The flow of our analysis goes as follows. First, we prove the convergence using the global
multiscale basis functions. With the global multiscale basis functions constructed, the global
multiscale finite element space is defined by

Vglo = span{ψ
(i)
j : 1 ≤ j ≤ Li, 1 ≤ i ≤ N}, (25)

and an approximated solution uglo ∈ Vglo is given by

aDG (uglo, w) =

∫

Ω

fw dx for all w ∈ Vglo. (26)

We remark that the construction of global multiscale basis functions motivates the construction
of localized multiscale basis functions. The approximated solution uglo will also be used in our
convergence analysis. Next, we give an estimate of the difference between the global multiscale

functions ψ
(i)
j and the localized multiscale basis functions ψ

(i)
j,ms, in order to show that using the

multiscale solution ums provide similar convergence results as the global solution uglo. For this

purpose, we denote the kernel of the projection operator π by Ṽh. Then, for any ψ
(i)
j ∈ Vglo, we

have
aDG

(
ψ
(i)
j , w

)
= 0 for all w ∈ Ṽh, (27)

which implies Ṽh ⊆ V ⊥
glo, where V ⊥

glo is the orthogonal complement of Vglo with respect to

the inner product aDG (·, ·). Moreover, since dim (Vglo) = dim (Vaux), we have Ṽh = V ⊥
glo and

Vh = Vglo ⊕ Ṽh.

4.1 Convergence result

The convergence analysis will start with the following lemma, which concerns about the conver-
gence of the approximated solution by the global multiscale basis functions.

Lemma 1. Let uh ∈ Vh be the solution of (4) and uglo ∈ Vglo be the solution of (26) with the

global multiscale basis functions defined by the constrained energy minimization problem (17).

Then we have uh − uglo ∈ Ṽh and

‖uh − uglo‖a ≤ Λ− 1
2 ‖κ̃−

1
2 f‖L2(Ω), (28)
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where

Λ = min
1≤i≤N

λ
(i)
Li+1. (29)

Moreover, if we replace the multiscale partition of unity {χms
j } by the bilinear partition of unity,

we have

‖uh − uglo‖a ≤ CHΛ− 1
2 ‖κ−

1
2 f‖L2(Ω). (30)

Proof. By the definitions of uh in (4) and uglo in (26), we have

aDG (uh, w) =

∫

Ω

fw dx for all w ∈ Vh,

aDG (uglo, w) =

∫

Ω

fw dx for all w ∈ Vglo.

(31)

Since Vglo ⊆ Vh, this yields the Galerkin orthogonality property.

aDG (uh − uglo, w) = 0 for all w ∈ Vglo, (32)

which implies uh − uglo ∈ V ⊥
glo = Ṽh. In particular, if we take w = uglo in (32), together with

(4), we have

‖uh − uglo‖
2
a
= aDG (uh, uh − uglo)

= (f, uh − uglo)0,Ω

≤ ‖κ̃−
1
2 f‖L2(Ω)‖uh − uglo‖s.

(33)

Since uh − uglo ∈ Ṽh, we have π (uh − uglo) = 0. Furthermore, since Ki are disjoint, we have
πi (uh − uglo) = 0 for all i = 1, 2, . . . , N . This implies

‖uh − uglo‖
2
s =

N∑

i=1

‖uh − uglo‖
2
s(Ki)

=
N∑

i=1

‖ (I − πi) (uh − uglo) ‖
2
s(Ki)

(34)

By the si-orthogonality of the eigenfunctions φ
(i)
j , we have

‖ (I − πi) (uh − uglo) ‖
2
s(Ki)

≤
(
λ
(i)
Li+1

)−1

ai(uh − uglo, uh − uglo)

≤ Λ−1ai(uh − uglo, uh − uglo).
(35)

Therefore, we have

‖uh − uglo‖
2
s ≤ Λ−1

N∑

i=1

ai(uh − uglo, uh − uglo)

≤ Λ−1‖uh − uglo‖
2
a.

(36)

Using (33) and (36), we obtain our desired result. The second part of the result follows from the
property |∇χj | = O

(
H−1

)
of the bilinear partition of unity.

The next step is to prove the global basis functions are indeed localizable. This makes use of
the following lemma, which states some approximation properties of the projection operator π.
In the analysis, we will make use of the Lagrange interpolation operator and a bubble function in

8



the coarse grid. We define the Lagrange interpolation operator Ih : C0(Ω)∩H1
0 (Ω) → C0(Ω)∩Vh

by: for all u ∈ C0(Ω) ∩ H1
0 (Ω), the interpolant Ihu ∈ C0(Ω) ∩ Vh is defined piecewise on each

fine block τ ∈ T h by
(Ihu)(x) = u(x) for all vectices x of τ, (37)

which satisfies the standard approximation properties: there exists CI ≥ 1 such that for every
u ∈ C0(Ω) ∩H1

0 (Ω),

∥∥∥κ̃ 1
2 (u− Ihu)

∥∥∥
L2(τ)

+ h
∥∥∥κ 1

2∇ (u− Ihu)
∥∥∥
L2(τ)

≤ CIh
∥∥∥κ 1

2∇u
∥∥∥
L2(τ)

, (38)

on each fine block τ ∈ T h. For any coarse grid block K, we define a bubble function B on K, i.e.
B(x) = 0 for all x ∈ ∂K and B(x) > 0 for all x ∈ int (K). More precisely, we take B =

∏
j χ

ms
j ,

where the product is taken over all the coarse grid nodes lying on the boundary ∂K. We can
then define the constant

Cπ = sup
K∈T H ,µ∈Vaux

∫
K
κ̃µ2

∫
K
κ̃Bµ2

. (39)

In our following analysis, we will assume the following smallness criterion on the fine mesh size
h:

CπCI(C
2
T + λmax)‖Θ‖

1
2

L∞(Ω)h < 1, (40)

where CT is the maximum number of vertices over all coarse elements K ∈ T H and

λmax = max
1≤i≤N

λ
(i)
Li
,

Θ =
∑

j

|∇χms
j |2.

(41)

Lemma 2. Assume the smallness criterion (40) on the fine mesh size h. For any vaux ∈ Vaux,
there exists a function v ∈ C0(Ω) ∩ Vh such that

π(v) = vaux, ‖v‖2a ≤ D‖vaux‖
2
s, supp(v) ⊆ supp(vaux), (42)

where the constant D is defined by

D =


 2Cπ(1 + C2

I )
(
C2

T + λmax

)

1− CπCI (C2
T + λmax) ‖Θ‖

1
2

L∞(Ki)
h




2

. (43)

Proof. Let vaux ∈ V
(i)
aux. We consider the following constraint minimization problem on the block

Ki:

v = argmin
{
aDG(v, v) : v ∈ Vh,0(Ki), si(v, ν) = si(vaux, ν) for all ν ∈ V (i)

aux

}
. (44)

The minimization problem (44) is equivalent to the following variational problem: find (v, µ) ∈

Vh,0(Ki)× V
(i)
aux such that

ai (v, w) + si (w, µ) = 0 for all w ∈ Vh,0(Ki),

si (v − vaux, ν) = 0 for all ν ∈ V (i)
aux.

(45)

The existence of solution of (45) is based on an inf-sup condition:

inf
ν∈V

(i)
aux

sup
w∈Vh,0(Ki)\{0}

si(w, ν)

ai(w,w)
≥ β, (46)

9



where β > 0 is a constant independent to be determined. Pick any ν ∈ V
(i)
aux. We take w =

Ih(Bν) ∈ C0(Ω)∩Vh. Since ν ∈ Vh(Ki) and B(x) = 0 for all vertices ofKi, we have w ∈ Vh,0(Ki).
First, we see that

si(w, ν) =

∫

Ki

κ̃Bν2 +

∫

Ki

κ̃(Ih(Bν)−Bν)ν

≥ C−1
π ‖ν‖2s(Ki)

− ‖Ih(Bν) −Bν‖s ‖ν‖s(Ki)

≥ C−1
π ‖ν‖2s(Ki)

− CIh
∥∥∥κ̃ 1

2∇(Bν)
∥∥∥
L2(Ki)

‖ν‖s(Ki)

≥ C−1
π ‖ν‖2s(Ki)

− CI‖Θ‖
1
2

L∞(Ki)
h
∥∥∥κ 1

2∇(Bν)
∥∥∥
L2(Ki)

‖ν‖s(Ki).

(47)

On the other hand, we observe that

ai(w,w) ≤ 2

(∥∥∥κ 1
2∇(Bν)

∥∥∥
2

L2(Ki)
+
∥∥∥κ 1

2∇(Bν − Ih(Bν))
∥∥∥
2

L2(Ki)

)

≤ 2(1 + C2
I )

∥∥∥κ 1
2∇(Bν)

∥∥∥
L2(Ki)

.

(48)

It remains to estimate the term
∥∥∥κ 1

2∇(Bν)
∥∥∥
L2(Ki)

. Since 0 ≤ χms
j ≤ 1, we have 0 ≤ B ≤ 1 and

|∇B|2 ≤ C2
T Θ. Using these facts together with ∇(Bν) = (∇B)ν +B(∇ν), we imply

∥∥∥κ 1
2∇(Bν)

∥∥∥
2

L2(Ki)
≤ C2

T ‖ν‖
2
s(Ki)

+ ai(ν, ν)

≤
(
C2

T + λmax

)
‖ν‖2s(Ki)

(49)

By taking the inf-sup constant

β =
1− CπCI

(
C2

T + λmax

)
‖Θ‖

1
2

L∞(Ki)
h

2Cπ(1 + C2
I ) (C

2
T + λmax)

, (50)

we prove the inf-sup condition (46) and therefore the existence of (v, µ) ∈ Vh,0(Ki) × V
(i)
aux in

(45). It is then direct to check that the solution v ∈ Vh,0(Ki) satisfies the desired properties.

We remark that, without loss of generality, we can assume D ≥ C2
0 (1 + C2

I ). We are now
going to establish an estimate of the difference between the global multiscale basis functions
and localized multiscale basis functions. We will see that the global multiscale basis functions
have a decay property, and their values are small outside a suitably large oversampled domain.
We will make use of a cutoff function in our proof. For each coarse block Ki and M > m, the
oversampling regions Ki,M and Ki,m define an outer neighborhood and an inner neighborhood

respectively. We define χM,m
i ∈ span{χms

j } such that 0 ≤ χM,m
i ≤ 1 and

χM,m
i = 1 in Ki,m and χM,m

i = 0 in Ω \Ki,M . (51)

Moreover, we define the following DG norm for w ∈ V on Ki,M \Ki,m.

‖w‖2DG(Ki,M\Ki,m) =
∑

Kk⊂Ki,M\Ki,m

ak(w,w) +
γ

h

∑

E∈EH(Ki,M\Ki,m)

∫

E

κJwK2dσ, (52)

where EH(Ki,M \ Ki,m) denotes the collection of all coarse grid edges in EH which lie within
in the interior of Ki,M \ Ki,m and the boundary of Ki,M . We remark that the definition also
applies to a region Ω \Ki,m in the case when M is sufficiently large.
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Lemma 3. Assume the smallness criterion (40) on the fine mesh size h. Suppose m > 2 is the

number of coarse grid layers in the oversampled domain Ki,m extended from the coarse grid block

Ki. Let φ
(i)
j ∈ Vaux be a given auxiliary multiscale basis function. Let ψ

(i)
j ∈ Vglo be the global

multiscale basis function obtained from (17), and ψ
(i)
j,ms ∈ Vh (Ki,m) be the localized multiscale

basis function obtained from (19). Then we have

‖ψ
(i)
j − ψ

(i)
j,ms‖

2
a ≤ E‖φ

(i)
j ‖2s(Ki)

, (53)

where E = 40D3(1 + Λ−1)

(
1 + 6D−2

(
1 + Λ− 1

2

)−1
)1−m

.

Proof. By the variational formulations (18) and (20), we have

aDG

(
ψ
(i)
j − ψ

(i)
j,ms, ψ

)
+ si

(
ψ, µ

(i)
j − µ

(i)
j,ms

)
= 0 for all ψ ∈ Vh(Ki,m). (54)

By Lemma 2, there exists φ̃
(i)
j ∈ Vh such that

π(φ̃
(i)
j ) = φ

(i)
j , ‖φ̃

(i)
j ‖2a ≤ D‖φ

(i)
j ‖2s(Ki)

, supp
(
φ̃
(i)
j

)
⊆ Ki. (55)

We take η = ψ
(i)
j − φ̃

(i)
j ∈ Vh and ζ = φ̃

(i)
j − ψ

(i)
j,ms ∈ Vh(Ki,m). By definition, we have

π(η) = π(ζ) = 0 and therefore η, ζ ∈ Ṽh. Again, by Lemma 2, there exists ρ ∈ Vh such that

π(ρ) = π(Ih(χ
m,m−1
i η)), ‖ρ‖2a ≤ D‖π(Ih(χ

m,m−1
i η))‖2s, supp (ρ) ⊆ Ki,m \Ki,m−1. (56)

Take τ = ρ−Ih(χ
m,m−1
i η) ∈ Vh. Again, π(τ) = 0 and hence τ ∈ Ṽh. Taking ψ = τ−ζ ∈ Vh(Ki,m)

in (54) and making use of the fact τ − ζ ∈ Ṽh, we have

aDG

(
ψ
(i)
j − ψ

(i)
j,ms, τ − ζ

)
= 0, (57)

and therefore

∥∥∥ψ(i)
j − ψ

(i)
j,ms

∥∥∥
2

a
= aDG

(
ψ
(i)
j − ψ

(i)
j,ms, η + ζ

)

= aDG

(
ψ
(i)
j − ψ

(i)
j,ms, η + τ

)

≤
∥∥∥ψ(i)

j − ψ
(i)
j,ms

∥∥∥
a
‖η + τ‖a ,

(58)

which in turn implies

∥∥∥ψ(i)
j − ψ

(i)
j,ms

∥∥∥
2

a
≤ ‖η + τ‖

2
a

=
∥∥∥Ih((1− χm,m−1

i )η) + ρ
∥∥∥
2

a

≤ 2

(∥∥∥Ih((1 − χm,m−1
i )η)

∥∥∥
2

a
+ ‖ρ‖2a

)

≤ 2

(
C2

0

∥∥∥Ih((1 − χm,m−1
i )η)

∥∥∥
2

DG
+ ‖ρ‖2a

)

≤ 2

(
2C2

0 (1 + C2
I )

∥∥∥(1 − χm,m−1
i )η

∥∥∥
2

DG
+ ‖ρ‖2a

)
.

(59)
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For the first term on the right hand side of (59), by using ∇
(
(1− χm,m−1

i )η
)
= −∇χm,m−1

i η+

(1− χm,m−1
i )∇η and 0 ≤ 1− χm,m−1

i ≤ 1, we have

∥∥∥(1 − χm,m−1
i )η

∥∥∥
2

a
≤ 2

(
‖η‖2DG(Ω\Ki,m−1)

+ ‖η‖
2
s(Ω\Ki,m−1)

)
. (60)

For the second term on the right hand side of (59), using the definition of ρ in (56) and 0 ≤
1− χm,m−1

i ≤ 1, we obtain

‖ρ‖2a ≤ D‖π(χm,m−1
i η)‖2s ≤ D‖χm,m−1

i η‖2s ≤ D‖η‖2s(Ω\Ki,m−1)
. (61)

Moreover, since η ∈ Ṽh, by the spectral problem (10), we have

‖η‖2s(Ω\Ki,m−1)
≤ Λ−1

∑

Kk⊂Ω\Ki,m−1

ak(η, η). (62)

Combining all these estimates, we obtain

∥∥∥ψ(i)
j − ψ

(i)
j,ms

∥∥∥
2

a
≤ 10D(1 + Λ−1)‖η‖2DG(Ω\Ki,m−1)

. (63)

Next, we will provide a recursive estimate for η in the number of oversampling layersm. We take
ξ = 1 − χm−1,m−2

i . Then 0 ≤ ξ ≤ 1 and ξ = 1 in Ω \Ki,m−1. Using ∇(ξ2η) = ξ2∇η + 2ξη∇ξ,
for every K ∈ T H , we have

∫

K

κ∇η · ∇(ξ2η) =

∫

K

κ∇η ·
(
ξ2∇η + 2ξη∇ξ

)
=

∫

K

κ|∇(ξη)|2 −

∫

K

κ|∇ξ|2η2. (64)

In addition, using ∇(ξη) = ξ∇η + η∇ξ, for every E ∈ EH , we have

−

∫

E

{κ∇η · nE}Jξ
2ηK −

∫

E

{κ∇(ξ2η) · nE}JηK +
γ

h

∫

E

κJηKJξ2ηK

= −

∫

E

{κ∇η · nE}Jξ
2ηK −

∫

E

{
κ(ξ2∇η + 2ξη∇ξ) · nE

}
JηK +

γ

h

∫

E

κJηKJξ2ηK

= −2

(∫

E

{κξ∇η · nE}JξηK +

∫

E

{κη∇ξ · nE}JξηK

)
+
γ

h

∫

E

κJξηK2

= −2

∫

E

{κ∇(ξη) · nE}JξηK +
γ

h

∫

E

κJξηK2.

(65)

Summing over K ∈ T H and E ∈ EH , we obtain

‖ξη‖2a ≤ aDG(η, ξ
2η) + ‖η‖2s(Ki,m−1\Ki,m−2)

, (66)

where we make use of the fact that ∇ξ = 0 outside Ki,m−1 \Ki,m−2. We start with estimating
the first term on the right hand side of (66). For any coarse element Kk ∈ Ω \ Ki,m−1, since

ξ = 1 in Kk and η ∈ Ṽh, we have

s
(
ξ2η, φ

(k)
j

)
= s

(
η, φ

(k)
j

)
= 0 for all j = 1, 2, . . . , Lk. (67)

On the other hand, for any coarse element Kk ∈ Ki,m−2, since ξ = 0 in Kk, we have

s
(
ξ2η, φ

(k)
j

)
= 0 for all j = 1, 2, . . . , Lk. (68)
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Therefore, supp(π(Ih(ξ
2η))) ⊂ Ki,m−1 \Ki,m−2. By Lemma 2, there exists σ ∈ Vh such that

π(σ) = π(Ih(ξ
2η)), ‖γ‖2a ≤ D‖π(Ih(ξ

2η))‖2s, supp(σ) ⊂ Ki,m−1 \Ki,m−2. (69)

For any coarse element Kk ⊂ Ki,m−1 \Ki,m−2, since 0 ≤ ξ ≤ 1 and π(η) = 0, we have

‖π(Ih(ξ
2η))‖2s(Kk)

≤ ‖Ih(ξ
2η)‖2s(Kk)

≤ ‖Ih(η)‖
2
s(Kk)

= ‖η‖2s(Kk)
≤ Λ−1ak(η, η). (70)

Summing over Kk ⊂ Ki,m−1 \Ki,m−2, we obtain

‖π(Ih(ξ
2η))‖2s ≤ Λ−1

∑

Kk⊂Ki,m−1\Ki,m−2

ak(η, η). (71)

We take θ = Ih(ξ
2η)− σ. Again, π(θ) = 0 and θ ∈ Ṽh, which yields

aDG

(
ψ
(i)
j , θ

)
= 0. (72)

On the other hand, supp(θ) ⊂ Ω \ Ki,m−2 and supp(φ̃
(i)
j ) ⊂ Ki. Since θ and φ̃

(i)
j has disjoint

supports, we have

aDG

(
φ̃
(i)
j , θ

)
= 0. (73)

Therefore, we obtain

aDG(η, θ) = aDG

(
ψ
(i)
j − φ̃

(i)
j , θ

)
= 0. (74)

Recall from the definition that Ih(ξ
2η) = θ+ σ and supp(σ) ⊂ Ki,m−1 \Ki,m−2. Hence we have

aDG(η, Ih(ξ
2η)) = aDG(η, σ)

≤ C0‖η‖DG(Ki,m−1\Ki,m−2)‖σ‖a

≤ C0D
1
2 ‖η‖DG(Ki,m−1\Ki,m−2)‖π(Ih(ξ

2η))‖s

≤ DΛ− 1
2 ‖η‖2DG(Ki,m−1\Ki,m−2)

.

(75)

On the other hand, making use of the fact that ξ2 = 0 in Ki,m−2 and ξ2 = 1 in Ω \ Ki,m−1,
we observe that ξ2η = Ih(ξ

2η) outside Ki,m−1 \ Ki,m−2. Moreover, ξ2η − Ih(ξ
2η) is globally

continuous. Thus, we obtain

aDG(η, ξ
2η − Ih(ξ

2η)) ≤ C2
0‖η‖DG(Ki,m−1\Ki,m−2)

∥∥ξ2η − Ih(ξ
2η)

∥∥
DG(Ki,m−1\Ki,m−2)

≤ C2
0CI‖η‖DG(Ki,m−1\Ki,m−2)

∥∥ξ2η
∥∥
DG(Ki,m−1\Ki,m−2)

≤
D

2

(
‖η‖2DG(Ki,m−1\Ki,m−2)

+
∥∥ξ2η

∥∥2
DG(Ki,m−1\Ki,m−2)

)
.

(76)

Again, using ∇(ξ2η) = ξ2∇η + 2ξη∇ξ, we have

∥∥ξ2η
∥∥2
DG(Ki,m−1\Ki,m−2)

≤ 2‖η‖2DG(Ki,m−1\Ki,m−2)
+ 8‖η‖2s(Ki,m−1\Ki,m−2)

. (77)

Combining (66), (75), (76) and (77), we arrive at

‖ξη‖2a ≤ D

((
3

2
+ Λ− 1

2

)
‖η‖2DG(Ki,m−1\Ki,m−2)

+ 5‖η‖2s(Ki,m−1\Ki,m−2)

)
. (78)

Moreover, since π(η) = 0, we have

‖η‖s(Ki,m−1\Ki,m−2) ≤ Λ− 1
2 ‖η‖DG(Ki,m−1\Ki,m−2), (79)
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which implies

‖ξη‖2a ≤ 6D
(
1 + Λ− 1

2

)
‖η‖2DG(Ki,m−1\Ki,m−2)

. (80)

By the equivalence of norms, we have

‖η‖2DG(Ω\Ki,m−1)
≤ C2

0‖ξη‖
2
a ≤ 6D2

(
1 + Λ− 1

2

)
‖η‖2DG(Ki,m−1\Ki,m−2)

. (81)

We obtain the recurrence estimate

‖η‖2DG(Ω\Ki,m−2)
= ‖η‖2DG(Ω\Ki,m−1)

+ ‖η‖2DG(Ki,m−1\Ki,m−2)

≥

(
1 + 6D−2

(
1 + Λ− 1

2

)−1
)
‖η‖2DG(Ω\Ki,m−1)

.
(82)

Inductively, we have

‖η‖2DG(Ω\Ki,m−1)
≤

(
1 + 6D−2

(
1 + Λ− 1

2

)−1
)1−m

‖η‖2DG(Ω\Ki,1)

≤ D

(
1 + 6D−2

(
1 + Λ− 1

2

)−1
)1−m

‖η‖2a.

(83)

Combining (63) and (83), we see that

∥∥∥ψ(i)
j − ψ

(i)
j,ms

∥∥∥
2

a
≤ 10D2

(
1 + Λ−1

)(
1 + 6D−2

(
1 + Λ− 1

2

)−1
)1−m

‖η‖2a (84)

By the energy minimizing property of ψ
(i)
j , we have

‖η‖a ≤ ‖ψ
(i)
j ‖a + ‖φ̃

(i)
j ‖a ≤ 2‖φ̃

(i)
j ‖a ≤ 2D

1
2 ‖φ

(i)
j ‖s(Ki). (85)

We obtain the desired result.

Now, we are ready to establish our main theorem, which estimates the error between the
solution uh and the multiscale solution ums.

Theorem 4. Let uh ∈ Vh be the solution of (4), uglo ∈ Vglo be the solution of (26) with the

global multiscale basis functions defined by (17), and ums ∈ Vms be the multiscale solution of

(22) with the localized multiscale basis functions defined on an oversampled domain with m > 2
coarse grid layers by (19). Then we have

‖uh − ums‖a ≤ CΛ− 1
2 ‖κ̃−

1
2 f‖L2(Ω) + CmdE

1
2 ‖uglo‖s, (86)

Moreover, if we let k = O
(
log

(κ1
H

))
and replace the multiscale partition of unity {χms

j } by the

bilinear partition of unity, we have

‖uh − ums‖a ≤ CHΛ− 1
2 ‖κ−

1
2 f‖L2(Ω). (87)

Proof. First, we write uglo in the linear combination of the basis {ψ
(j)
k }

uglo =

N∑

i=1

Li∑

j=1

α
(i)
j ψ

(i)
j . (88)

and define ûms ∈ Vms by

ûms =

N∑

i=1

Li∑

j=1

α
(i)
j ψ

(i)
j,ms. (89)
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From (4) and (22), we obtain the Galerkin orthogonality

aDG(uh − ums, w) = 0 for all w ∈ Vms, (90)

which gives
‖uh − ums‖a ≤ ‖uh − ûms‖a ≤ ‖uh − uglo‖a + ‖uglo − ûms‖a. (91)

Using Lemma 3, we see that

‖uglo − ûms‖
2
a =

∥∥∥∥∥∥

N∑

i=1

Li∑

j=1

α
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)

∥∥∥∥∥∥

2

a

≤ Cmd

N∑

i=1

∥∥∥∥∥∥

Li∑

j=1

α
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)

∥∥∥∥∥∥

2

a

≤ CmdE
N∑

i=1

∥∥∥∥∥∥

Li∑

j=1

α
(i)
j φ

(i)
j

∥∥∥∥∥∥

2

s

= CmdE‖uglo‖
2
s,

(92)

where the last equality follows from the orthogonality of the eigenfunctions in (10). Using the
estimates (28) and (92) in (91), we have

‖uh − ums‖a ≤ Λ− 1
2 ‖κ̃−

1
2 f‖L2(Ω) + Cm

d
2E

1
2 ‖uglo‖s. (93)

This completes the first part of the theorem. Next, we assume the partition of unity functions
are bilinear, and we are going to estimate ‖uglo‖s. Using the fact that |∇χk| = O(H−1), we have

‖uglo‖
2
s ≤ CH−2κ1‖uglo‖

2
L2(Ω). (94)

Then, by Poincaré inequality, we have

‖uglo‖
2
L2(Ω) ≤ Cκ−1

0 ‖uglo‖
2
a. (95)

By taking w = uglo ∈ Vglo in (26), we obtain

‖uglo‖
2
a = (f, uglo)0,Ω ≤ ‖κ̃−

1
2 f‖L2(Ω)‖uglo‖s. (96)

Combining these estimates, we have

‖uglo‖s ≤ CH−2κ−1
0 κ1‖κ̃

− 1
2 f‖L2(Ω). (97)

To obtain our desired result, we need

H−2κ1m
d
2E

1
2 = O(1). (98)

Taking logarithm, we have

log(H−2) + log(κ1) +
d

2
log(m) +

1−m

2
log

(
1 + Λ− 1

2

)
= O(1). (99)

Thus, taking m = O
(
log

(κ1
H

))
completes the proof of the second result.
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5 Numerical results

In this section, we will present numerical examples with high contrast media to demonstrate the
convergence of our proposed method with respect to the coarse mesh size H and the number of
oversampling layers m, and illustrate possible improvements in error robustness with respect to
contrast by employing the idea of constructing multiscale basis function by relaxation method
introduced in [13]. Lastly, we examine the performance of applying the method to the wave
equation. In all the experiments, the IPDG penalty parameter in (5) is set to be γ = 4, so as to
ensure the coercivity of the bilinear form aDG.

5.1 Experiment 1: flow problem

In the first experiment, we consider a highly heterogeneous permeability field κ in Ω = [0.1]2

as shown in Figure 3, with the background value is κ = 1 and the value in the channels and
inclusions is 104. and the resolution is 400× 400, i.e. κ is piecewise constant on a fine grid with
mesh size h = 1/400. The coarse mesh size varies from H = 1/80 to H = 1/10, and the number
of oversampling layers varies from m = 3 to m = 6. In all these combinations, there are no
more than 3 high conductivity channels in a coarse block K ∈ T H . As a result, we have 3 small
eigenvalues in a local spectral problem (10), and it suffices to use 3 auxiliary basis functions
per coarse block to construct the correspoding localized multiscale basis functions. The source
function is taken as

f(x, y) = 2π2 sin(πx) sin(πy) for all (x, y) ∈ Ω. (100)

Table 1 records the error when we take the number of oversampling layer to be approximately
m ≈ 4 log(1/H)/ log(1/10). The results show that the method provides optimal convergence in
energy norm, which agrees with our theoretical finding in Section 4, and the L2 error converges
with second order. Table 2 records the error with various number of oversampling layers and
a fixed coarse mesh sizes H = 1/40. It can be observed that increasing the number of over-
sampling layers improves the quality of approximations, but the decay in error is limited when
the oversampling region is sufficiently large. This numerically verifies that the multiscale basis
functions can indeed be localized.
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Figure 3: The permeability field κ for Experiment 1.

Next, we present the idea of the relaxed formulation of (19). Instead of using the method
of Lagrange multiplier as in (20), the φ-orthogonality is imposed weakly by a penalty formula-

16



m H Energy error L2 error
4 1/10 7.4625% 0.7653%
6 1/20 1.5392% 0.0625%
7 1/40 0.7266% 0.0160%
8 1/80 0.3433% 0.0035%

Table 1: History of convergence with number of oversampling layers m ≈ 4 log(1/H)/ log(1/10)
for Experiment 1.

m Energy error L2 error
3 84.7517% 72.3079%
4 19.0936% 3.6716%
5 2.6687% 0.0720%
6 0.7836% 0.0161%
7 0.7266% 0.0160%
8 0.7259% 0.0160%

Table 2: Error table with different number of oversampling layers m and a fixed coarse mesh
size H = 1/40 for Experiment 1.

tion. The localized multiscale basis function ψ
(i)
j,ms ∈ Vh (Ki,m) is defined as the solution of the

following relaxed constrained energy minimization problem

ψ
(i)
j,ms = argmin

{
aDG (ψ, ψ) + s

(
π (ψ)− φ

(i)
j , π (ψ)− φ

(i)
j

)
: ψ ∈ Vh (Ki,m)

}
. (101)

The minimization problem (101) is equivalent to the following variational problem: find ψ
(i)
j,ms ∈

Vh (Ki,m) such that

aDG

(
ψ
(i)
j,ms, ψ

)
+ s

(
π
(
ψ
(i)
j,ms

)
, π (ψ)

)
= s

(
φ
(i)
j , π (ψ)

)
for all ψ ∈ Vh (Ki,m) . (102)

The construction of multiscale finite element space and coarse-scale model then follow (21) and
(22) respectively. We compare the performance of the multiscale method with multiscale basis
functions constructed by method of Lagrange multiplier (20) and the relaxation method (102)
at different contrast values, where the coarse mesh size is taken as H = 1/10 and the number of
oversampling layers as m = 4. In Table 3, we record the energy error and L2 error with different
contrast κ1, where κ1 ≫ 1 is the value of κ in the high conductivity channels. It can be seen
that the relaxation method is more robust with respect to contrast.

Lagrange multiplier Relaxation
κ1 Energy error L2 error Energy error L2 error
104 7.4625% 0.7653% 6.3757% 0.6395%
105 12.6299% 1.6977% 6.3986% 0.6467%
106 32.1465% 10.5146% 6.4020% 0.6478%
107 64.1190% 41.8127% 6.4049% 0.6481%
108 77.1229% 60.4947% 6.4301% 0.6503%

Table 3: Comparison of the method of Lagrange multiplier and the relaxation method with
different contrast values for Experiment 1.
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5.2 Experiment 2: wave propagation

In the second experiment, we consider a simple wave equation in the space-time domain ΩT =
[0, T ]× Ω, where [0, T ] is the temporal domain and Ω is the spatial domain:

∂2u

∂t2
− div(κ∇u) = f, (103)

with homogeneous Dirichlet boundary condition u = 0 on [0, T ]×∂Ω. Here div and∇ correspond
to the divergence and gradient with respect to the spatial variable x, and κ is the bulk modulus
which is assumed to be stationary and highly oscillatory. Using second-order central difference
for temporal discretization on a uniform grid points tk = k∆t and IPDG formulation on the
space Vh, the fully-discrete DG finite element scheme reads: find un+1

h ∈ Vh such that

un+1
h − 2unh + un−1

h

∆t2
+ aDG(u

n
h, w) =

∫

Ω

fnw for all w ∈ Vh, (104)

where the superscript k stands for the evaluation of a function at the time instant tk, and the
initial conditions u0h, u

1
h are given. Next, we use the CEM method in Section 3 to construct a

multiscale finite element space Vms. The coarse-scale model then reads: find un+1
ms ∈ Vms such

that
un+1
ms − 2unms + un−1

ms

∆t2
+ aDG(u

n
ms, w) =

∫

Ω

fnw for all w ∈ Vms. (105)

In this experiment, we take the bulk modulus on the spatial domain Ω = [0, 1]2 as part of the
Marmousi model as shown in Figure 4. The fine mesh size is taken as h = 1/256. The coarse
mesh size varies from H = 1/32 to H = 1/8, and the number of oversampling layers varies from
m = 4 to m = 6. In all these combinations, we use 4 auxiliary basis functions per coarse block to
construct the correspoding localized multiscale basis functions. The source function f is taken
as the Ricker wavelet

f(t, x, y) =
t− 2/f0
4h2

exp
(
−π2f2

0 (t− 2/f0)
2
)
exp

(
(x− 0.5)2 + (y − 0.5)2

4h2

)
for all (t, x, y) ∈ ΩT .

(106)
where the central frequency is chosen as f0 = 20. We iteratively solve for the numerical solution at
the final time T = 0.2 with time step size ∆t = 10−4. Table 4 records the error of the final solution
when we take the number of oversampling layer to be approximately m ≈ 4 log(1/H)/ log(1/8).
It can been observed that the method results in good accuracy and desired convergence in
error. Figure 5 depicts the numerical solutions by the fine-scale formulation and the coarse-scale
formulation at the final time T = 2. The comparison suggests that the CEM method provides
very good accuracy at a reduced computational expense.

m H Energy error L2 error
4 1/8 67.1831% 40.4876%
5 1/16 24.1360% 9.7541%
6 1/32 4.8839% 1.1559%

Table 4: History of convergence for Experiment 2.

6 Conclusion

In this paper, we present CEM-GMsDGM, a local multiscale model reduction approach in the
discontinuous Galerkin framework. The multiscale basis functions are defined in coarse oversam-
pled regions by a constraint energy minimization problem, which are in general discontinuous
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Figure 4: Marmousi model for Experiment 2.
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Figure 5: Plots of numerical solution for Experiment 2. Fine solution (left) and multiscale
solution (right).

on the coarse grid, and coupled by the IPDG formulation. Thanks to the definition of local
spectral problems, the dimension of auxiliary space is minimal for sufficiently representing the
high conductivity regions, and provides the most locally compressed multiscale space. In our
analysis for the Darcy flow problem, we show that the method provides optimal convergence in
the coarse mesh size, which is independent of the contrast, provided that the oversampling size
is appropriately chosen. The convergence of the method for solving Darcy flow is theoretically
analyzed and numerically verified. Numerical results for applying the method on a simple wave
equation are also presented.
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