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Abstract

We study the pricing of European options when the underlying stock price is illiquid. Due to
the lack of trades, the sample path followed by prices alternates between active and motionless
periods that are replicable by a fractional jump-diffusion. This process is obtained by changing
the time-scale of a jump-diffusion with the inverse of a Lévy subordinator. We prove that option
prices are solutions of a forward partial differential equation in which the derivative with respect
to time is replaced by a Dzerbayshan-Caputo (D-C) derivative. The form of the D-C derivative
depends upon the chosen inverted Lévy subordinator. We detail this for inverted « stable and
inverted Poisson subordinators. To conclude, we propose a numerical method to compute option
prices for the two types of D-C derivatives.

1 Introduction

When looking to quotes of an illiquid asset e.g. in an emerging market, we often observe relatively long
periods without any trade. As Brownian motions and Lévy processes are perpetually moving, they are
not adapted for modelling periods with motionless stock returns. Notably, we observe similar behavior
in physical systems exhibiting sub-diffusion. The periods without trades correspond to the trapping
events in which the sub-diffusive particle gets immobilized, see e.g. Eliazar and Klafter (2004) or Met-
zler and Klafter (2004). Sub-diffusion is a well identified phenomenon in statistical physics and the
density of a sub-diffusive process is described in terms of a Fractional Fokker-Planck (FFP) equation.

In the FFP equation, the derivative with respect to time is replaced by a fractional derivative. As
explained in Acay et al. (2020 a), the classical derivative restricted by rate of change falls short to
describe many phenomena that could not be constructed properly by integer order calculus encom-
passed by fractional calculus. Due to this fact, fractional derivatives are proposed for capturing the
past history as in the classical integration. Hence, both fractional derivative and integral have past
memory making them much more advantageous than classical counterparts. The beginning of the
fractional calculus is considered to be the Leibniz’s letter to L’Hospital in 1695 where the notation for
differentiation of non-integer order 1/2 is discussed. Several famous mathematicians contributed to
fractional calculus: Abel, Liouville, Rieman and more recently Caputo.
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The FFP equation for subdiffusions is e.g. studied in Barkai et al. (2000) and Metzler et al. (1999).
Sub-diffusions are popular in econophysics (see Scalas, 2006, for a survey) and Magdziarz (2009 a)
uses a geometric sub-diffusions to model illiquid asset prices. A sub-diffusion also admits a convenient
representation as a time-changed Brownian motion, see e.g. Magdziarz (2009 b). Articles of Leonenko
et al. (2013, a) Leonenko et al. (2013, b) go a step further and study fractional Pearson diffusions and
their correlation. Whereas Hainaut (2020 a, 2020 b) explores fractional self-excited jump processes.
Acay et al. (2020 b) develop economic models with various fractional dynamics.

Even if sub-diffusions appear as good candidates for modelling illiquidity, options pricing in this frame-
work remains a challenging task. A first way consists to evaluate prices by simulations as in Magdziarz
(2009 a). Solving the FFP offers an alternative solution that is nevertheless numerically unstable. Our
article explores a new approach based on a fractional version of what is called the Dupire’s equation.
Dupire (1994) has established a forward partial differential equation for call options. In his model, the
stock value is driven by a geometric diffusion with volatility, function of time and price. The Dupire’s
approach has enjoyed certain popularity with practitioners, at least partly because of its simplicity.
It has subsequently been extended by many authors, notably to Markov process with jumps as in
Andersen and Andreasen (2000) or Friz et al. (2014).

The contributions of this article are multiple. Firstly, the existing literature on option pricing in
illiquid market mainly focuses on sub-diffusive dynamics that are continuous by nature. We consider
instead a fractional jump-diffusion for the asset return. The sample path of such a process behaves like
a Brownian motion with motionless periods but exhibits discontinuities caused by jumps. Secondly,
we consider a wider family of fractional dynamics. In previously cited papers, Fractional processes are
built by replacing the time scale by a random clock that is the inverse of an « stable Lévy process.
Here, we establish a very general form of the fractional Dupire’s equation valid for all invertible Lévy
subordinators. As an illustration, we compare fractional dynamics based on inverted Poisson and «
stable subordinators. Finally, we propose a numerical method to evaluate options in these two cases.

This work is organized as follows. Section 2 reviews well-known results about option pricing in a
jump-diffusion setting. Section 3 presents the properties of inverted Lévy subordinators, used later
as stochastic clock of our financial market. The Laplace exponent of these inverted Lévy processes
may be used to define Dzerbayshan-Caputo derivatives as explained in Section 4. We retrieve such a
derivative in the fractional version of the Dupire’s equation for jump-diffusion developed in Section 5.
The two last sections are devoted to the numerical pricing of options.

2 Non-fractional jump-diffusion model

This section review some well-known results about option valuation in a jump-diffusion framework.
We will consider later a time-changed version of this model. For the moment, we consider a financial
market in which is traded a risk-free bond and a stock. The risk-free bond, noted By, earns a constant
interest rate r and satisfies the differential equation:

dBy
— =7rdt Bp=1,t>0.
Bt T 0 5 _O

The return of the stock is ruled by a Brownian motion (th ) ;>0 and by a compound Poisson process,

(Jt);>¢- This compound Poisson process is defined as:

N7
Joo= ) Y,
k=1



where N/ is a Poisson process with parameter \;. Jumps are identically independent distributed
random variables, Y, ~ Y, on [—1,00). We denote by fy(.) the probability density function (pdf) of
jumps and the jump expectation is denoted by £ = E(Y). We assume that the stock price, Ay, is ruled
by a following geometric jump-diffusion:

dA
A—t:udt+otthP+th, (1)

t
where 11 € RT and (0¢),~, is positive process. All processes are defined on a probability space 2,
endowed with their natural filtration (7)., and a probability measure, P. The volatility process is

F;—adapted and square integrable, i.e. fot 0%(w)ds < oo for all w €  and ¢ >0. By construction, the
expected instantaneous return of the stock price is equal to E (dA.|F;) = (1 + As€) Aedt. Applying
the It6’s lemma to d1n A; leads after integration to the following expression for the stock price:

N/

¢ 2 ¢
Ay = Agexp</u(;Sds+/asdI/VsP)H(1+Yk). (2)
0 0

k=1

This is the dynamics of the risky asset under the real measure P. Nevertheless, the pricing of financial
derivatives is performed under an equivalent measure of probability, called “risk neutral” so as to
exclude arbitrages. Under this measure, risky assets earn on average the risk free rate whatever their
volatility. Equivalent probability measures are constructed as follows. Firstly, we define a function

¢(,k) = In (n}%é%) where k € RY and f%(.) is a pdf on [~1,0), eventually null on the same

subdomain as fy(.). Secondly, we introduce a F;—adapted and square integrable process, denoted
by(0t);5o- Thirdly, we define a process (Z;), as follows

N/

1t t
Zy = exp 75/ 02ds —/ 0, dWF +Z¢(Yk,li) —(k=1D)Ast (3)
0 0

k=1

with Zy = 1. If we apply the [t0’s lemma to Z;, we immediately infer its infinitesimal dynamics:

Az, = Z (—etthP — (k= 1)\ sdt + <m§ig§ - 1) de) .

Given that E (;;g;) = 1, E(dZ|F) = 0 and E(Z,|F,) = Z, + [* E(dZ.|F,) = Z, . This proves that

Z, is a martingale. The process (Zt)t>0 is a Radon-Nikodym derivative Z; = %‘;"

,that defines an
t

equivalent probability measure, noted P°. Under this measure, the process J; still is a Poisson process
but its frequency of jumps is equal to K\ ; whereas the jump pdf becomes f{(.). Under PP, the process
dW; = dWF +6,dt is a Brownian motion. We refer the reader to e.g. Shreve (2004, chapter 11 section
6) for detailed explanations. The equivalent measure P® is a risk neutral one, noted Q, if and only
if discounted prices are martingales. If we denote expected jump size by £ = E (Y?), the following
condition

r = M+l€)\]£b—0t9t, (4)

must be fulfilled to ensure that the equivalent measure is well a risk neutral one. As this condition is
satisfied for an infinity of combinations of (6;),~,, ~ and f4(), the risk neutral measure is not unique
and the market is said incomplete. In practice, the risk neutral measure is chosen in order to replicate
at best quoted prices of options.

In order to lighten notations in further developments, we assume without loss of generality that the



distribution and frequency of jumps is identical under P and Q , (k = 1 and f%(.) = fy(.)). In this

case, the non-arbitrage condition imposes that 6, = %"f” Under the risk neutral measure, the
drift of the risky asset is equal to the risk free rate:
dA
n L= (r = X&) dt + o0 dW, + dJ,. (5)
t

We denote by C(t, K) the value of a European call option paying the positive difference between the
stock and strike prices at expiry (time t). According to the fundamental theorem of asset pricing, the
value of this call option is the expected payoff under the risk neutral measure:

C(t,K)=E? (e (A — K),) .
Similarly, the European put option of maturity ¢ and strike price K is equal to
D(t,K)=E? (e (K — Ay),) -
Call and Put prices are solution of a forward partial differential equation (PIDE) presented in the next

proposition.

Proposition 2.1. The call price is solution of the forward partial integro-differential equation (PIDE):

aC(t K) aC(t,K) E@ (07 | Ay = K) K2 9°C(t, K)
K
e B _
(e (HY (o)) - arocm) <o
with the initial condition, C(0, K) = (So — K) . The put price is solution of the same PIDE but with

the initial condition D(0, K) = (K So) -

The proof is recalled in Appendix and is similar to the one of Bergomi (2016) for a diffusion.
Variants of this equation may be found in Andersen and Andreasen (2000),Carr et al. (2004), Cont
and Voltchkova (2005) or Bentata and Cont (2010). In absence of jumps, Equation (6) is called the
Dupire’s equation (see Dupire, 1994). When the F;-adapted process o; is a function of time and of
the asset price, or = o(t, A¢), we say that the volatility is local. For example, in the constant elasticity
volatility model (CEV), the volatility function is set to

o(t, A)* = o 4777, (7)

where v € R. The CEV process, introduced by Cox (1975), becames popular due to its ability to
capture the implied volatility skew exhibited by options prices. A possible alternative local volatility
with time dependence is:

Ay

vy 2y
o(t, A))* = Bo+ B (1;:) + 51 <Ft> , (8)

where F; = Ape™ is the forward stock price and where v € R*™. This choice is motivated by the
fact that in practice, implied volatilities reach their minimum when the strike is close or equal to the
forward price (“at the money” options). Bergomi (2016) studies a similar local volatility function in a
Brownian setting. In the remaining of this article, we explore the properties of a time-changed version
of this model. The next section introduces the stochastic clocks that we use as time-changes.



3 Subordinators

A subordinator is a stochastic process noted (U;),, with positive, non-decreasing sample paths and
taking value in R™. They are often used as stochastic clock for time-changed processes. We consider
Lévy subordinators for which increments are independent and homogeneously distributed. We refer
the reader to Applebaum (2004) for an introduction to Lévy processes. From the Lévy-Khintchine
formula, we know that the Laplace transform of Lévy subordinators has the following form:

E (e*“’Uf) = e tf(W) 9)

where f(w) =bw + [;° (1 — e “%)(dz) and b € RT. The function 7(.) is a non-negative measure on
(0, 00), referred to as the Lévy measure, satisfying the integrability condition

/Oo(z/\l)ﬁ(dz)<oo.
0

The function f(w) is also called a Bernstein function. For a detailed exposition of Bernstein functions,

we refer to Schilling et al. (2010). The inverse of a subordinator is a process denoted by (S¢),~ that

is defined as follows: B
Sy=inf{r>0: U, >t}.

This is the time at which U, hits the barrier ¢. This inverted Lévy subordinator is in general no more
a Lévy process. However (S;),~, is positive and non-decreasing and has all requisite properties to
be used as stochastic clock. By construction, the inverted process may be constant. Therefore, any
process subordinated by S; exhibits motionless periods. This point is illustrated later in this section.
The natural filtration of (S¢),~ is denoted by (G:),~,- The probability density functions of Uy and S,
are respectively denoted by py (t,u) = L Pu< U <u+du)and g(t,7) = LP(r < S < 7+dr).
The survival function of S; is G (¢,s) = P (S; > s) and by definition we have:

G(t,s) = P(U,<t). (10)

Toaldo (2015, lemma 3.1 and proposition 3.2) shows that the Laplace transform of g(¢, 7) with respect
to t, is linked to the Laplace exponent of U, as follows:

J(w,7) = /Oooe“’tg(t,T)dt (11)

JW) )
w

This relation plays an important role in later developments. Results in Section 4 and 5 are valid for
all Lévy subordinators but we will grant more attention to inverse « stable and Poisson subordinators
because they offer a certain level of analytical tractability.

Inverse « stable subordinators. In the « stable case, the process U, is a é self-similar process,
meaning that:

U 2 (at)a Uy .

This particular type of Lévy processes has has already been succesfully used in financial modelling e.g.
in Carr and Wu (2003). It admits a simple moment generating function given by:

EO (e—uUt) — e—tu

e

Since the Laplace exponent admits the following integral representation,

e Q (1 —e w7
Jw)=w F(l—oz)/o Zlte 4z,




the Lévy measure is v(dz) = ﬁ% We infer that the Laplace transform of g(¢,7) with respect

to t is given by:
a—1_—717w

glw,7) = w e

The Laplace’s transform of S; conditionally to the information available at time zero is given by :

Eo [e™*5] = /Oooe_‘”g(t,T)dT (12)
= E,(—wt%)

where FE, is the Mittag-Leffler function (for a proof see e.g. Piryatinska et al., 2005):

Ea(z) = nz::ol—\(nz::rl)v (13)

where I'(.) is the gamma function. Equation (12) reveals that S; is not a Lévy process since its
Laplace’s transform does not have an exponential form. The moments of S; are obtained by deriving
and cancelling its Laplace’s transform:

nltne

Eo (S¢) = That1)

A particular interesting case is when a = 1. Given that I'(a) = /7, the Lévy measure is equal to

N 1 dz

The Laplace transform of the pdf of S; has a simple expression

e T Vw

g(va) = \/OTJ s

that admits an analytical inverse. The probability density function of S; for a = % is given by

(M)

T

e~ 4t
t,T) = t>0
g(t,7) 7 120
which is proportional to the density of a N(0,+/2t) on the positive real line. If we denote the error
function by erfe(z) = 2 [ e’

dt, the Mittag-Leffler exponential for o = % is equal to

E1(z) = exp(z?)erfe(—2).

1
2
The first moment of S; is :

t1/2 t1/2

Eo (S1) = m:ﬁ

The right plot of Figure 1 shows a simulated sample path of an « stable process and of its inverse for
a = 0.90. We clearly observe periods during which S; is constant. They are caused by sharp increases
of Ut.
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Figure 1: Left plot: sample path of an inverse Poisson subordinator (A = 10). Right plot: sample path
of an inverse « stable process (a = 0.90).

Inverse Poisson subordinators. In this case, we invert a subordinator of the form:
Ut = 77Nt t, 12 2 0

where (), is a Poisson process of parameter \. We choose 7 = % in order to ensure that E (U;) = t.
The variance of the subordinator is equal to nt. The Laplace function of this subordinator is equal to:

E(e V) = E(e ™)
— e tflwn)

where the Laplace exponent is a Bernstein function:
flwn) = A1 —e™")
oo
/ (1— ")\ ().
0

We denote by dy,1(2), the Dirac measure at point z = 7. The Lévy measure is therefore v(dz) =
Ad(py(2)dz and the Laplace’s transform of the pdf of U; is given by:

e nw e
g(w77_) _ )‘(1 e )ef'r(k(lfe ”)) )
w
As N; is a Poisson process, it takes its values in N and the survival function of S; is equal to:

= P(TL%J‘H > 8)
where TLL |+1 is a gamma (or Erlang) random variable, T (HJ +1; )\). The pdf of S; is therefore
the following function:

g(t,7) = iP(T <S8 <7+4d7).
dr

glt,T) =P (1< S; <7 +dr) = ,\LﬁJJrlTLWJ exp(—\7)

72>0.



The Laplace transform is in this case

Eo [e 5] = /000 e “Tg(t,T)dr (14)

_ (1 N §)*(L%J+1)

The variable TLL |41 is also the sum of L J +1 exponential random variables, noted Jj, with parameter
n

A. The probability density function of Jj is equal to f(x) = Ae™**. The process S? defined as the
sum of Jy:
L5+

> (15)
k=1

has the same statistical distribution as S, for all time ¢ > 0. Therefore, we can represent S; by the
sum (15) and we infer that the cumulative distribution function of Sy A , conditionally to the filtration
G up to time t, is given by

[ 22 ]+ | £]+1
PSua<7|F)=P| Y  J<7|S= Z T
k=1
0 Sy >T
= 1P (e gogy S 7-8) [52]> | 5] andse<r
1 {%J = HJ and Sy < T

This also means that S; is a stepwise function defined on a mesh with steps of size n: Sy = S Bt Vt e
z
R*. The process (S;),s, is clearly not Markov since P (Si4a < 7| F;) depends upon the process value

at time [%J 1 < t. The left plot of Figure 1 shows a simulated sample path of a Poisson process and

of its inverse for A = 10. S; is here an increasing stepwise function. Any process process time changed
by an inverse Poisson subordinator has therefore piecewise constant functions.

4 The Dzerbayshan-Caputo derivatives

In order to introduce motionless phases in the dynamics of a jump-diffusion, we will consider a stochas-
tic time scale ruled an inverse Lévy subordinator. We will see in Section 5 that option prices in this
setting are solutions of a PIDE similar to Equation (6) in which the derivative with respect to time are
replaced by a convolution-type derivative, called Dzerbayshan-Caputo (D-C) derivative. This section
reviews the properties of this convolution-type derivative and its link with Lévy subordinators.

A Bernstein function is a function f : (0,00) — R of class C*such that f(z) > 0 for all x > 0
for which
(~1)F f®(z)<0  Vo>0keN.

A Bernstein function also admits a similar representation to the Laplace exponent of a Lévy process:
o0
F@) = a+br+ / (1— ¢ ) n(dz) (16)
0

where a,b > 0. ©(.) is a positive Lévy measure on (0,00). The triplet (a,b,7) is the Lévy triplet of
the Bernstein function. We denote by v(s) the tail of the Lévy measure that is:

v(s)ds = (a + /:o D(dz)) ds.



Let us consider f(.), a Bernstein function, and its tail Lévy measure v(s) that is absolutely continuous
n (0,00). We also need a function u(t) € AC([0,c]) that is the set of absolutely continuous function
on R*. The generalized D-C derivative according to the Bernstein function f(.) is defined as

d
IDu(t) = bd—u —u (t—s)v(s)ds te0,00). (17)
0

This integral is well defined if |u(t)] < Me“o! for some wg and M > 0. A direct calculation (see e.g.
Lemma 2.2 in Toaldo (2015)) leads to the following Laplace transform of the D-C derivatives:

fw)

LIDu®)] (@) = f(w)ii(w) -

where @ (w) is the Laplace transform of u(t). We detail the form of ths D-C for « stable and Poisson
subordinators.

u(0) Rw > wo (18)

« stable subordinators. Let us consider the « stable Lévy process, (U;),s,- The Lévy triplet is

in this case (0,0, 7) where v(dz) = The tail of the Lévy measure is given by:

F(l @) z1+°‘ :
oo —a—1
v(s)ds = ds/s %dz
S*a

= mdS

The D-C derivative becomes in this case the Caputo fractional derivative, that we denote by D,u(t).
Indeed, if we perform the change of variable s’ =t — s, we infer that

Lo
/ —u(t — s)v(s)ds = ?u( sShv(t —s')ds

and therefore

1

IDu(t) = Dault) = 7 = /O (tui(z))ads. (19)

Poisson subordinators. If (U;),, is a Poisson subordinator, the Lévy triplet is (u,0,7) with
7(dz) = Mgy} (2)dz. The tail of the Lévy measure for s > 0 is:

v(s)ds = ds/ Ay (2)dz

= A<y ds
where I <,y is the indicator variable. The D-C derivative in this case is noted Dyu(t) and given by
min(t,n) b
IDu(t) = Dyu(t) = )\/ au(t —s)ds te0,00). (20)
0

After a change of variable s’ = ¢ — s, we infer that

min(t.n) g
/ —u(t — s) ds = u(t) — u(t — min(t,n))
0 ot

and therefore
Dyu(t) = A(u(t) —u(t —min(t,n))) ¢e€0,00). (21)

In the next section, we introduce a time-changed version of the financial market presented at the
beginning of this article.



5 Fractional financial market

We recall that S; is an inverse Lévy subordinator defined on (Q, (Qt)tZO,P> which is independent

from the natural filtration (F;),., of the asset price (A¢),~,. In this section, We use (S;),~, as
stochastic clock and denote by H; the augmented filtration G, V Fs,. This is the smallest filtration at
the intersection of G; and Fg,. The time-changed risk-free bond has a value at time ¢ equal to:

Bs, =™t | By = 1. (22)

Notice that in this framework, the bond return is now stochastic. The time-changed stock price is
obtained by replacing the time by S; in Equation (2):

S, 1 S, Ng,
Ag, = Ag exp (/ p— =o2ds +/ O'SdW;D> H(l +Y%). (23)
0 0 k=1
The bond and stock values are also solutions of the time-changed stochastic differential equation:
st = rdS,,

Tt = pdS; + o, AWE + dJs,.

Figures (2) and (3) show simulated sample paths of subordinated bond and stock prices when the
time-change is an inverse « stable or Poisson subordinator. With an inverse o stable time-change,
the sample path of the risky asset alternates between active and motionless phases. Whereas for an
inverse Poisson time-change, the stock path has a piecewise constant sample path. These inverse
subordinators describe two different kinds of illiquidity. Inverse Poisson processes are rather adapted
to model recurring illiquidity at high or low frequency, depending upon the parameter . While the
inverse « stable subordinator replicates temporary illiquidity periods for an asset that is most of the
time actively traded.

Inv. Poisson Inv. Stable
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Figure 2: Left plot: sample path of Bg, when S; is an inverse Poisson subordinator (A = 10). Right
plot: sample path of Bg, when S; is an inverse « stable process (o = 0.90). r = 2%.
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Figure 3: Left plot: sample path of Ag, when S; is an inverse Poisson subordinator (A = 10). Right
plot: sample path of Ag, when S; is an inverse « stable process (a = 0.90). Here, u = 5%, o5 = 15%
and no jump.

We have laid down the fractional dynamics under the real measure but need to determine a risk
neutral measure in order to evaluate options. For this purpose, let us remember the definition of

¢ (., k) =In (n }%8) where k € RT. For a F;—adapted and square integrable process, noted (975)1‘,20’

we defined the time-changed process (Zs,),~ as follows:

1 St St
Zs, = exp|—3 / 62ds — / 0. AW+ ¢ (Vi k) — (k= 1AsS | (24)
0 0

which admits an equivalent infinitesimal representation:

dZs, = —Zs,05,dWE — Zs, (= 1)AsdSy + Zs, (*0) 1) ang, .

We can check that E (dZ;|H; V Gr) = 0 and therefore E (Z7|H: V Gr) = Z; +ftT E (dZy|H V Gr) = Z;.
Using nested expectations, the process Z; is then a martingale with Zy, = 1. Since 7, is H;-adapted, it
dp®

is a Radon-Nikodym derivative Zs, = 45| defining a new measure P, The next proposition states
t

the dynamics of Brownian motion and jump process under P°.

Proposition 5.1. Under the equivalent measure Py, defined by the Radon-Nykodym derivative (24),
1. dWs, = dWéDt + 0s,dS; is a time-changed Brownian motion.
2. the process Jg, is a point process with an intensity equal to kA dS; and the pdf of jump is f{‘,()

The proof of this result is reported in Appendix and mainly relies on the independence between
filtrations of the time-change and of the Brownian and jump processes. We denote by & = E(Y)
the expectation of a jump under the equivalent probability measure. From the previous proposition,
we infer that the dynamics of the risky asset under P’ is given by

dAs,
As,

= (u — HStUSf,) dSy+og, dWs, +dJs, .

11



Using again the independence between the clock and the filtration (F;),-,, the expectation of the
infinitesimal variation of A; is such that -

dA
pr < ASSt gt) = (/’[’ + K:)\J fb - QSto-St) dSt .

Therefore, we obtain the conditions under «, fy(.) and (6s,),~, defines a risk neutral measure.

Corollary 5.2. The Radon-Nykodym derivative (24) defines an equivalent risk neutral measure Q, if
& , Kk and (est)tzo fulfill the following equality:

ptrA S —T

O'St

Os, =

t

(25)

To lighten notations in further developments, we assume without loss of generality that the fre-
quency and size of jumps are identical under real and risk neutral measures (k = 1, & = £). The price
of an European call option of maturity ¢, written on the time-changed asset is the discounted expected
payoff under @:

Cs(t,K) =C(S, K) (26)
—rS
= E? (e ™ (Asg, fK)+|]-'0) .

where S; is a time-change. If we remember that the density of S; is g(¢, 7)dT = P(S; € [7, 7+ d7]), we
can rewrite the call option as an integral:

Cs(t, K) = /O ¥ Ol K gt 7Y (27)

If the non-fractional call and the density of S; admits closed form expressions, we can evaluate the
fractional call price by computing numerically the integral in the above equation. An alternative con-
sists to calculate the price by Monte-Carlo simulations. These solutions are explored by Magdziarz
(2009 a) in a Brownian setting. Unfortunately, call prices in a jump diffusion setting do not admit
closed form expressions, excepted in the Merton model (1976). Another solution is provided by the
next proposition.

Proposition 5.3. The call option value in the fractional jump-diffusion setting is solution of a frac-
tional PIDE equation:

0Cs(t, K) K2
IDCs(t, K) = — (1 — \s€) K% + 7]EQ (03, | As, = K) (28)
2*Cs(t, K)

T A <IEQ ((1 +Y)Cs (t, 1fy)> —(1+¢) Cs(t,K)> ,

with the initial condition Cs(0, K) = (So + K),. The fractional put price, Ds(t, K) = D(S;, K), is
solution of the same PIDE but with the initial condition D(0, K) = (K — Sp), .

The proof of this result is reported in Appendix. Notice that if o, = o (¢, A;) is a function of time
and of the asset value, the conditional expectation in Equation (28) becomes

B9 (o, | As, = K) = E° (E? (o3, | A5, = K . G,)) (20)
= EQ (0’2(St7K)) .
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In the Black and Scholes (B&S) framework, the Brownian volatility is constant o2(S;, K) = 52 and
there is no jumps. In this case, the fraction PIDE (28) can be rewritten as

9
ok

Os(t,k) + 72 PCs(t.k) (30)

f - _
DCs(t, k) r 5 k2

where k& = In(K). In case of an inverse «a stable process, 7DCs(t, k) = D,Cs(t, k) and the fractional
B&S call price is solution of

1 ¢ %08(57[() 0
I‘(l—a)/o i7" ds = —T%CS(t,k)—‘r

5‘72 8205(15, k)
2 ok?

(31)

It the stochastic clock is an inverse Poisson subordinator, /DC5s(t, k) = DrCs(t, k), the fractional B&S
call price can be computed by iterating the following recursion:

=2 02
T POsR) sy,

r 0
Cs(t,k) = Cs(max(0;t—n),k) — —=Cs(t, k) + o 12

A Ok
In the constant elasticity volatility model (CEV), the expectation (29)is constant and equal to:
E? (0(S, K)?) = og K*'72.

If the Brownian volatility depends upon time as in Equation (8), the conditional expectation of the
variance in Equation (28) is a function of the Laplace’s transform of the time-change:

E (0(8:, K)?) = o + HLE? ((;i )W) + BER ((g )27> (32)

2l 2y
=fBo+ B (Z) E@ (e_"YTSt) + B2 <Z> EQ (e—Q’yrSt) .

If the clock is an inverse « stable process, this local volatility is a continuous function of time:

K\’ K\*
E@ (o(St,K)Q) = Bo+Pi|— | Eal—yrt*)+pP2| — Ey(—2vrtY),
Ao Ao
where E,(.) is the Mittag-LefHler function, such as defined by Equation (13). For an inverse Poisson
subordinator, the local volatility (8) is a stepwise function of time:

EQ (0(S;, K)?) = Bo+f (f{))7 (1 + %)ﬂﬂﬂ) + Bo (jfo)27 (1 n Qy")_(tuﬂ) .

The next section proposes a numerical method for solving Equation (28).

6 Numerical framework

Andersen and Brotherton-Ratcliffe (1998) have demonstrated the reliability of a finite difference ap-
proach for solving the Dupire equation in a Brownian setting. We extend their framework to the
fractional jump-diffusion and opt for an implicit method. We need to specify the distribution of
jumps and the form of the local volatility. We do the common assumption that jumps are exclu-
sively negative and then defined on [—-1,0]. Furthermore, we consider a continuous pdf for Y. We
also assume that the volatility is function of time and asset value: o, = o(¢, A;). Let us consider a
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domain [0, t4z] X [0, Kynae) on which we wish to estimate fractional call prices. We choose two steps
of discretization, noted A; and Ag in order to define pairs (¢, K;) where

th=kA, , K;=Ko+jAg

for k =0,....n; and j = 0,...,ng. The numbers n; and nx are integers equal to n; = VZ?J and

Kmam_

ng = L 4= KOJ . To ligthen developments, we denote by Cs(k, j) the approached value of Cs(ty, K).

Under the assumption that Ky << Ag, we have the following boundary conditions
CS(O?]) = (AO_K])+ )
Cs(k,0) = E° (67’”5% Astk> = 4.

We note o2(k,j) = E? (a%ik | As,, = Kj) while the (nt + 1) x (nx + 1) the matrix of variances is
Y = (02(k, §))kef0,....nu €10, mx }-

The first order derivative of Cs(t, K) with respect to K in the right hand side of Equation (28) is
approached by a central finite difference approximation:

aCS(kaJ) ~ CS(k7.7+1) _CS(k7.7 - 1)

T A for0<j <ng. (33)
On the boundary, we set 803%“’0) = Cs(k’l)A*KCS(k’O) and acs(g’?{“) = Cs(k’”K+i);CS(k’nK). The

second order derivative is approached in the same way:

6203(k1aj) ~ Cs(kaj + 1) - QCS(kaj) + Cs’(k',] - 1)
K> AZ

for0<j<ng.

2 2 2 2
On lower and upper boundaries, we respectively set 9 %i((f’o) =2 %i((f’l) and £ Csknxtl) _ 9 Cg%“z’m‘).

In order to rewrite these partial derivatives in matrix form, we introduce (ng + 1) X (nx + 1) matrix
R, and R, defined by:

1 -2 1 0 ... 0
-1 1 0 0
1 =2 1 0 0
1 = 0 s " 1
0 1 -2 1 0
' 0o ... 0 1 =21
0 0 -1 1 o ... 0 1 -21

The vector partial derivatives with respect to the strike at time ¢; are then equal to following matrix
products:

8C5(k’ )
0K

82Cs(k, )

~ KR, Cs(k,.)" RTe

~ RyCs(k,.)", (34)

where Cg(k, .) is the k*" line of the (n; + 1) x (nx + 1) matrix of call prices, denoted by Cs. The next
step comnsists to discretize the continuous pdf of jumps. We denotelby yﬁﬂb)

transiting from K, = % > K to K; . By definition, these y,(%)
Yrin

< 0 the size of the jump for
are equal to

G - K

y o (m—j) A

—_— P =0, N, = Jy ey T -
K,, Ko+ mAyg J nK, M= "

14



Notice that y%) are ordered as follows: yﬁfﬁ <. < ygll < y%) <. < yj(.j) = 0. The associated

discrete probabilities of observing such jumps are:

/ oy =) , G) D)

p¥) = Plye yg)—%;y%)ﬁ—% i<m<ng.
@,

ik = P<Ye<—oo;y§£+w>>’

) )

i pee

= r(ve[5h]).

For a given j € {0, ...,nk}, we approximate the expectation related to the jump part in Equation (28)
by the following sum:

K. DK )
Q J ~ (4) (9)
B2 (11005 () & S0 () Cs () (35)

m=j

So as to rewrite this last expectation in matrix form, we denote by Y the (nx 4+ 1) X (nx + 1) matrix

(4)
of ym’ :

(0) (0)

0 n e Yo

0 0 ) .yl

Y = ' : ;
: 0 ylne=D
0 0

and by T, the (ng + 1) x (ng + 1) matrix of probabilities T}, = p) for j€{0,...,n:} and m €

{0, ceey nK}:
) (0) (0)
D1

Po Png
o pY pM P
T — . . . .
: 0 pb ple
0 ... ... 0 piE) =

The elementwise product (also called Hadamard product) of the matrix 7" and (1 4+ Y) is denoted by
T e (1+Y). Using this notation allows us infer that

K.
[EQ ((1 +Y)Cs (tk, j ))} —Te(14+Y) Cs(h)T. (36)
1+Y k€{0,ome }oj €40, mrc}

The Dzerbayshan-Caputo (D-C) derivative depends upon the chosen Bernstein function f(.). There-
fore there is no general procedure for approaching it numerically. In the two next subsections, we focus
on D-C derivatives obtained with inverse « stable and Poisson subordinators.

Inverse a stable subordinators. In this case, the D-C derivative becomes the Caputo derivative

15



and is numerically approached by the finite difference sum:

—a k-1
D“C‘s(k’j) ~ ]_E(A]_t)_a)Z(k_m)_a(cs(m"i'l’j)_Cs(m7j)) (37)
m=0
= 8 (Oglhg) - st~ 1) +
= 3 ' |
Ry 22 =)™ (Csim+1,9) = Com )

In order to rewrite this derivative under a matrix form, we define a matrix D(k) of dimension (k—1)x k
as follows:

0 0 —-(2)7* (27 °
(a0 N € R R
PO =rai—w | o o (38)
— (k)" (k)" 0
Therefore, The Caputo derivative at time ¢; admits the following representation:
T _ (At)ia T . T
DaCS(kv‘) - m(CS(kv)_CS(k_lv)) +(D(k) CS(O k-1, )) 11,

where 1j_1 is a (k— 1)—vector of ones. We denote by K = diag (Kj)je{o 1,...nx} » the diagonal matrix

of strikes and by (k) = diag (X(k,.)), the diagonal matrix of o(k,.)2. If we insert expressions (38)
and (34) in the fractional Dupire’s equation (28), we obtain its finite difference approximation:

(A)~"
I'l—a)

= < (7‘ — )\Jg) KR1 + g i(k) R2) CS(ka ')T

A (Te(1+Y) = (148 Ihs1)Cs(k, ).

(Cs(k,.) — Cs(k—1,.))" + (D(k) Cs(0: k=1, .) 144

where I,,, 11 is the identity matrix. Finally, fractional call prices are computed iteratively from ¢y to
tn, with the following recursion:

Cs(k, )T = F((Alt)_;InKH +(r—X &8 KR — g (k) Ry (39)

A (Te(L4+Y) = (148 Iner)] ' x

(A)~"
I'(l—a«)

Cs(k=1,)" = (D(k) Cs(0: k—1,.))" 1k1] .
Inverse « stable subordinators. When the stochastic clock is the inverse Poisson subordinator

and if 7 is a multiple of A; (n/A; in N). The D-C derivative becomes in this case equal to

A(Cs(k,.) = Cs(0,.)) kAy <n

DACS(k,') = {A<Cs(/€7~)—CS(k—£u'>) kAtZU.

If n is not a multiple of A, Cg (k — Al,u ) is computed by linear interpolation of nearest call prices.

The finite difference version of fractional Dupire’s equation (28) is in this case:
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A (cs(h.) —Cs (k— L,.))T

- (~e-no R R+ TS0 ) O
+As (T. (1 + Y) - (1 +§) InK-‘rl) CS(k7 ')T :

Fractional call prices are computed iteratively from ¢y to ¢,, with the following recursion for £ A; < n

2
Cs(k,)" = [/\In,(ﬂ +(r—=XE6) KRy — KT (k) Ry (40)

A (To(1+Y)— (1+&) Lnes1)] ' x ACs(0,.)

and for k Ay > :

Cs(k,)' = { K25

AInK+1+(7’7)\J§)KR1 - TEU{I) RQ* (41)

AJ (TO (1 —|—Y) — (l—l-f)InK_;,_l)]_l x ACg <k‘ - Zt,) .

We conclude this section by presenting the recursion to estimate call prices in the non-fractional case.
The approached solution of the Dupire Equation (6) may be obtained by the following recursion:

_ K2 _
Cs(k, )T = |Ingy1+ (=X AKR; — Ay = S(k) Ry
MDA (T (14Y) = (148 Inein)] ™ x Cs(k—1,.)7,

for k =0,....,n; and j = 0,...,ng. In the next section, we test these numerical approximations and
compare option prices in each of these cases.

7 Numerical illustration

We need to specify the statistical distribution of jumps. The size of a jump cannot exceed the cur-
rent stock price otherwise the price would become negative. Therefore, we assume that Y = e? — 1
where Z is a negative exponential random variable of parameter p > 0 , under the risk neutral mea-
sure. Clearly, Y € [0,1]. The pdf of Z is fz(z) = pe’*I;.<¢y. A direct calculation yields that
P(Y < y) = (1+9)” Ityep,)y and its expectation is £ = E(Y) = —ﬁlp. As the purpose of this
section is to emphasize the impact of time-changing the dynamics of asset prices, we consider a con-
stant volatility o; = & but the numerical schemes proposed in Section 6 are well applicable with local

volatility functions (7) and (8).

Figure 4 presents 1 year call prices obtained with inverse « stable and Poisson surbordinators for
a range of strikes from K = 50 to 150. Market parameters are r = 1%, A\; = 20, & = 25%, p = 49 and
Ag = 100. The number of steps of discretization are n; = 200 and ng = 200. The upper plot reveals
that prices raises when « increases. The lower plot emphasizes that prices increases with .
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Figure 4: Prices of 1 year call option for varying strikes. Upper plot: inverse « stable subordinator.
Lower plot: inverse Poisson subordinator.

ATM call option, alpha stable
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Figure 5: prices of “at the money” (ATM, K = Sj) call options for varying maturities. Upper plot:
inverse « stable subordinator. Lower plot:inverse Poisson subordinator.

Figure 5 shows ATM call prices (K = Sp) for varying maturities. The upper plot reveals that
increasing « reduces the concavity of the curve of prices with respect to time. The lower plot em-
phasizes firstly that call prices form a stepwise increasing function of expiry, for the inverse Poisson
subordinator. The length of steps is inversely proportional to A. Furthermore, increasing A globally
raises option prices.
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To conclude this section, Figure 6 compares the implied volatility surfaces (obtained by inverting
the Black & Scholes formula) in fractional and non-fractional cases. Here, we consider an inverse «
stable subordinator with v = 0.8. These plots reveals that time-changing the jump-diffusion leads to
higher implicit volatilities than those obtained with a pure jump-diffusion. We also observe that im-
plied volatilities are rather flat for ATM options whereas they decrease with the expiry in the fractional
model.

Non Fractional Alpha Stable

Figure 6: Left plot: Implied volatility surface for a jump-diffusion. Right plot: Implied volatility
surface for the jump-diffusion subordinated by the inverse « stable subordinator.

8 Conclusions

Fractional processes are excellent candidates for modelling illiquidity in thestocks market. They are
time-changed processes, ruled by an inverse Lévy subordinator. Within this approach, the sample path
of prices alternates between active and motionless phases.

Nevertheless, the pricing of options in this framework remains a challenging task. This article ex-
plores a new approach based on a fractional version of the Dupire’s equation for jump-diffusion. We
establish a very general equation valid for all invertible Lévy subordinators.

As anillustration, we compare fractional dynamics based on inverted Poisson and « stable subor-
dinators. For inverse Poisson subordinators, the stock path has piecewise constant sample paths.
Inverse Poisson subordinators can model recurring illiquidity at high or low frequency. The inverse «
stable subordinator has a different behavior and allows replicating temporary illiquidity periods for an
asset that is most of the time actively traded.

Finally, we propose a numerical method to solve the fractional Dupire equation. The numerical illus-
tration reveals that fractional and non-fractional version of the same jump-diffusion often leads to a
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very different structure of prices and implied volatilities.

Appendix
Proof of proposition 2.1. The Heaviside function, noted v(z), is defined as:
1 >
o) = {1720
0 z<0

and we denote the Dirac delta function by 4(.). Using the Ito-Tanaka’s lemma for e="* (4; — K , we
immediately obtain that:

d (677026 (At - K)+) = 677”26 v (At - K) ((7" - A.]g) Atdt + O'tAtth) (42)
1
—re " (Ay - K), dt + ie—’“ta (A; — K) o2 A2dt
e " (A(1+Y) - K), — (A — K),)dN/ .

The next step consists to calculate the expectation of this infinitesimal variation. By definition of the
call price, we have the useful relations:

EQ (efrtv (At o K)) _ ,%’ (43)
2
E? (76 (4 — K)) = % :

On the other hand, the call price can be rewritten with the Heaviside function as follows:
Ct,K) = E9(e"Av(4 —K)) - KE? (e v(4; — K)) .

From this last equation, the discounted expectation of the product A; and the Heaviside function is
therefore equal to:

K
E? (e "Av(4: — K)) = C(t,K)- K% . (44)
Given that jumps are independent from N;, we have that
E9 (7" ((A(1+Y) = K), — (A — K), ) dN/) (45)
K
_ Q _
(22 (10 (0125)) et a
Combining Equations (42), (43), (44) and (45) leads to the following forward equation:
oC(t, K) oC(t,K) K? _,
—ar = = MK e TEY (5(A - K) of) (46)

I (EQ ((1 +Y)C (t, 1fy)> (146 C(t,K)) .

The expected variance of the Brownian term, conditioned by the asset value is equal to

e "E? (6 (A — K) o)

ES (07 |4 = K) = ~ =50 5 (4, 1))

Since e "EC (§ (A; — K)) = 82(5};"2[{) , the PIDE (46) becomes Equation (6). The same reasoning
holds for a put option.

20



[ |
Proof of proposition 5.1. 1). Let us denote by (V;),-, the subfiltration of (F;),., carrying
exclusively information about the jump process. Using nested expectations, the moment generating
function (mgf) of W; under the equivalent measure is:

b b P St N Ngt
]EP (GWWSf' |HO) — ]EP ewWSt—l—w I 95d532k=1 ¢(Yk;N)*(H*1)>\JSt|HO

J
=E (eZkaf ¢(Y1«,H)*(N71))\.75t]E (6wW§t+w fost 05d8|7_[0 V. st V. gf) |HO> )

Since the Brownian motion is independent from the filtration of the jump process and time-change,
we have that

E (ewW; +w fOSt 95d3|7_[0 Vi VSt Vi gt>

— 3PS (ef% S0, —w)2ds— [t (0. —w)dW ]

HoV Vs, v G,)

= e%wzsf

To pass from the second to last to the last line, we use the property that the Doleans-Dade exponential
of a martingale is a martingale. We recognize the mgf of a Brownian motion, time-changed by S;.

NI
Since, e2-r=1 ¢(Vim)=(s=1Ast ig o martingale, nesting expectations leads to
b 1,.2 Né]t
EF (e“’Wst |H0) - E (ez‘-’" SiR (ezk=1 ¢(Yk7f€)*(ﬁ*1)>m$t|7_[0 V. gt) |H0>
= E (e%w2st|7'[0> .
Therefore, we conclude that Wg, = Wéj + fost f.ds is a time-changed Brownian motion under P°.

2) Using nested expectations, the mgf of the time-changed jump process under the measure P® may
be rewritten as follows:

J
EPb (estt |7‘[0) - <]E (estt-l-Zstf ¢(Yk7f'€)_(/‘€—1))\JSt|HO vV gt) |HO>
Given that jump sizes are independent from the number of jumps, we rewritte this last equation as:

J
E (esttJrZZ]:f &(Yi, k)= (r—=1)AsS: [Ho V gt>

= e~ (k-DASS ((IE (ewy+¢<y’“>))NSJt |Ho V Qt> .
On one hand, we have that
E (e“Y+¢(Y’”)) = / re“Y [y (y) dy
= /-@HT]:] (e“’y) .

where Y has here the density f2(.). On the other hand, we know that the moment generating function
of a compound Poisson process is equal to:

E (exp (w]y)) = exp (Ast(E(e*Y) —1)).
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The mgf of the jump process is therefore equal to:

EF' (e*"[H,) = E <e<“1>AJSf1E ((H]E (NN g v gt> |H0)
Y G e R C C A TN
- E (e_(“‘l)“ St Ay H(RE(eY) 1) |H0)
- E (6“1 Se (E(eY)-1) |7‘l0>

and we recognize the mgf of a time-changed Poisson process with a intensity xk\; and jump density

()

Proof of proposition 5.3. The Laplace’s transform of Cg(t, K) with respect to time ¢ is equal
to

Crg(w, K) /0 " /O T O(r K) g(t, 7 dr dt (47)

/000 C(r,K) g(w, ) dr,

where §(w, 7) is the Laplace transform, fooo e “g(t,T)dt, of the density of S;. On the other hand, we
have that:

e~

E ((1 LY)Cs <t, 1fy>)
:/me—wt /+°°(1+y)cs< ) y)dy dt
=/+°°1+y/ / c( ) ster)ara f) dy
=E9 ((1 +Y)Cs ( ))

Let us adopt momentarily the following notations:

9?C(t, K)
0?C(S:, K
hs(t, K) = E® (U%t | Ag, = K) %

The Laplace transform of h(t, K) is equal to

hs(w,K) = /000 e vt /0oo h(r,K) g(t,7)dr dt
_ /Ooo h(r, K) §(w, 7) dr .

We have seen in Section 3 that the Laplace transform of g(¢,7) with respect to t, is related to the
Laplace exponent f(.) of U; by Equation (11). Combining this expression with Equation (47) gives us

22



and

go (0evies (1755)) = 280 (ane (5. 55)

Hence, from the FPE (6) we deduce that C(w, K) is solution of the following equation:

wCi(w, K) — C(0,K) = — (r — Ay&) K a?r(é( K) + %ﬁ( K)

+As (EQ ((1 +Y)C <w, 1fy)) - (1+¢) é(w,K)) .

As Cg(w, K) = MC(f(w), K), replacing w by f(w) leads to

w

fW)C(f(w),K) = C(0,K) =

= M) K ). ) + R ). 1)

+As (EQ ((1 +Y)C <w, 1fy>> —(1+¢) é(f(w),K)) :

Multiplying this last equation by £“2 and since Cs(0,K) = C(0, K), we infer that

: M

fw)Cs(w, K) — Cs(0,K) =

2

(= M) Ky sl K) + s, K)

+As (EQ <(1 +Y)C <wlfy>> - (1+¢) C“s(uaK)) ;

which is well the Laplace transform of Equation (28).
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