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Abstract

In this paper, we are concerned with the weighted plane wave least-squares (PWLS) method for three-
dimensional Helmholtz equations, and develop the multi-level adaptive BDDC algorithms for solving
the resulting discrete system. In order to form the adaptive coarse components, the local generalized
eigenvalue problems for each common face and each common edge are carefully designed. The
condition number of the two-level adaptive BDDC preconditioned system is proved to be bounded
above by a user-defined tolerance and a constant which is dependent on the maximum number
of faces and edges per subdomain and the number of subdomains sharing a common edge. The
efficiency of these algorithms is illustrated on a benchmark problem. The numerical results show the
robustness of our two-level adaptive BDDC algorithms with respect to the wave number, the number
of subdomains and the mesh size, and illustrate that our multi-level adaptive BDDC algorithm
can reduce the scale of the coarse problem and can be used to solve large wave number problems
efficiently.

Keywords: Helmholtz equation, plane wave discretization, BDDC, Adaptive constraints,
Multilevel algorithms
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1. Introduction

The plane wave method is an important class of Trefftz method [1] for solving the Helmholtz
equations with high wave numbers. Compared with the traditional finite element methods (FEMs),
the plane wave methods attract people’s attention mainly for two reasons: (i) they need fewer degrees
of freedom (dofs) with the same precision requirements; (ii) their basis functions naturally satisfy
the unconstrained homogenous Helmholtz equations without considering boundary conditions. In
addition, compared with boundary element methods (BEMs), an advantage of the plane wave meth-
ods is that they do not require the evaluation of singular integrals. Examples of this method include
ultra weak variational formulation (UWVF)[2, 3], variational theory of complex rays (VTCR)[4, 5],
weighted plane wave least squares (PWLS) method [6, 7, 8], plane wave discontinuous Galerkin
method (PWDG) [9, 10] and so on.
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The variational problem of the PWLS method is derived from a quadratic functional minimiza-
tion problem. Compared with other plane wave methods, the advantage is that the coefficient
matrix of the corresponding discrete system is Hermitian and positive definite and can be solved
by the preconditioned conjugate gradient (PCG) method. As early as 1999, Monk and Wang first
proposed the PWLS method for solving Helmholtz equations [6]. After that, inspired by VTCR
method, Hu and Yuan proposed a weighted PWLS method and established the corresponding error
estimation theory. But it should be pointed out that this work is only applied to the case of ho-
mogeneous equation. Recently, Hu and Yuan extended the PWLS method to the non-homogeneous
case by combining local spectral element method in [8]. Although the PWLS discrete system of
the Helmholtz equation with high wave numbers is Hermitian positive definite, its coefficient matrix
is still highly ill-conditioned [1]. Specifically, the condition number of the coefficient matrix will
deteriorate sharply with the decrease of the mesh size or the increase of the number of plane wave
basis functions in each element. In addition, compared with the traditional FEMs, the plane wave
basis function is defined on the element rather than on the nodes or edges, which results in failure
of the existing fast algorithms applied to such systems directly. Therefore, it is very challenging to
design a preconditioned algorithm for it.

Domain decomposition method (DDM) is a popular method to construct efficient preconditioners
[11]. With the development of modern computer parallel architecture, this method has become a
powerful tool for numerical simulation of complex practical problems. How to construct efficient
parallel DDM has become one of the hot research fields of the current scientific computing. The
traditional DDMs for solving the Helmholtz equations with high wave numbers face the problem
that the well-posedness of local problem can not be guaranteed, which results in that the tradi-
tional algorithms for positive definite problems, such as the traditional Schwarz method, Neumann-
Neumann method, Finite Element Tearing and Interconnecting (FETI) and Dual-Primal Finite
Element Tearing and Interconnecting (FETI-DP) method, can not be directly applied to solve this
kind of indefinite problem.

In order to overcome this difficulty, some improved methods have been proposed. For example,
Farhat et al. proposed the FETI-H and FETI-DPH methods by using regularization technique and
combining with the coarse space constructed by plane wave functions [12, 13]; Gander, Magoules
and Nataf proposed the optimal Schwarz algorithm by improving the transmission boundary condi-
tions and the selection of the optimal parameters [14], and based on this work, Gander, Halpern and
Magoules also proposed an optimized Schwarz method with two-sided Robin transmission conditions
in [15]; Chen, Liu and Xu proposed a kind of two-parameter relaxed Robin DDM by choosing ap-
propriate Robin parameters and relaxation parameters in [16]; In addition, inspired by the sweeping
preconditioner (an approximation preconditioner) with optimal computational complexity which is
proposed by Engquist and Ying [17], Chen and Xiang designed a source transfer DDM [18].

BDDC (Balancing Domain Decomposition by Constraints) method which was first proposed by
Dohrmann for structural mechanics problems [19] is an important non-overlapping DDM. Based on
the principle of energy minimization by constraints, Mandel first derived the convergence theory of
the BDDC method in [20], and proved that the condition number of its preconditioned system is
C(1 + log2(H/h)), where h and H represent the size of mesh and subdomain respectively. Later,
this method has been widely used to solve various PDE(s) models, such as scalar diffusion problem
[20], linear elasticity problem [21], almost incompressible elasticity problem [22], Helmholtz problem
[23, 24], Stokes flow problem [25], porous media flow problem [26, 27], isogeometric analysis [28], etc..
In particular, a robust BDDC method is designed by adding plane wave continuity constraints for
solving the FEM discrete system of the Helmholtz equation with constant wave numbers in [23, 24].
However, when the PDE(s) model contains strongly discontinuous or highly oscillating coefficients,
the BDDC method with the standard coarse space may not converge any more [29]. Therefore, it
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is particularly important to select coarse space adaptively according to the characteristics of the
problem.

The adaptive BDDC method is an advanced BDDC method, for which the primal unknowns
are always selected by solving some local generalized eigenvalue problems [30]. Since the condi-
tion number of the corresponding preconditioned system is controlled by a user defined tolerence,
it has attracted extensive attention of many scholars and has been successfully extended to FEMs
[29, 31, 32, 33, 34], mortar methods [35], staggered discontinuous Galerkin methods [36] and iso-
geometric analysis [37] and so on. However, most of the available literatures on adaptive BDDC
algorithms aimed at some real symmetric positive definite systems and were presented in algebraic
form (i.e. matrices and vectors), and adaptive BDDC algorithms for PWLS discrete systems (Hermi-
tian positive definite and highly ill-conditioned) of three-dimensional Helmholtz equation with high
wave numbers in variational form have not previously been discussed in the literature. It is worth
pointing out that the variational form is as popular as the matrix representation for describing and
analyzing BDDC and adaptive BDDC methods [38, 32]. Therefore, how to construct scalable and
efficient adaptive BDDC preconditioners in variational form for such discrete systems and establish
relevant theories is still a work worthy of further study.

Based on our earlier work on adaptive BDDC algorithms in variational form for the PWLS
discretization of the Helmholtz problem in two-dimension [39], we extend these algorithms to three-
dimensional problems and establish the corresponding condition number estimation theory. For the
three-dimensional PWLS Helmholtz system studied in this paper, the local generalized eigenvalue
problems are formed for each common face and each common edge respectively. To be more specific,
the common face is an equivalence class shared by two subdomains and thus the generalized eigen-
value problem is identical to that considered for two-dimensional problems in [39], and the common
edge is an equivalence class shared by more than two subdomains and thus a different idea is re-
quired to form an appropriate generalized eigenvalue problem. Inspired by the estimate of condition
numbers of the preconditioned matrix, the local generalized eigenvalue problem on each common
edge is designed carefully. In addition, though the condition numbers can be controlled by a user-
defined tolerance, the cost for forming the generalized eigenvalue problems is quite considerable [40],
especially for three-dimensional problems. Thus similar to [41], we use economic-version to enhance
the efficiency of the proposed method. Further, we extend the applicability of these methods to the
case of high wave numbers with a specific focus on the multilevel extension. Since the number of
primal unknowns increases as the wave number or the number of subdomains increases, we attempt
to construct a multilevel adaptive BDDC algorithm to resolve the bottleneck in solving large-scale
coarse problem. Finally, we perform numerical experiments for a benchmark problem. These re-
sults verify the correctness of theoretical results and show the efficiency of our two-level adaptive
BDDC algorithms with respect to the angular frequency, the number of subdomains, and mesh size.
And the numerical results also show that the multi-level adaptive BDDC algorithm is effective for
reducing the number of dofs in the coarse problem, and can be used to solving large wave number
problems efficiently.

This paper is organized as follows. In Section 2, a brief introduction to the PWLS method for
three-dimensional Helmholtz equations is presented. In Section 3, a two-level BDDC preconditioner
with adaptive coarse space is proposed, and then the multilevel extension of these methods is carried
out. The condition number analysis is provided in Section 4 and various numerical experiments are
presented in Section 5. Conclusions will be given in section 6.
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2. Problem formulation

In this section, we briefly review the weighted plane wave least squares formulation for the
Helmholtz equation.

2.1. Model problem

Let Ω ∈ R3 be a bounded and connected Lipschitz domain, the boundary of Ω is given as

∂Ω = Γd ∪ Γn ∪ Γr,

where Γd,Γn and Γr are disjoint sets. Consider the following Helmholtz equation with general
boundary condition















−∆u− κ2u = 0 in Ω,
u = gd on Γd,

∂nu = gn on Γn,
(∂n + iκ)u = gr on Γr,

(2.1)

where i =
√
−1 is the imaginary unit, the operator ∂n is the outer normal derivative, and κ = ω/c > 0

is the wave number. Here ω is called the angular frequency and c is the wave speed.

2.2. Weighted plane wave least squares discretization

Let Ω be divided into a partition as follows

Ω̄ =

Nh
⋃

k=1

Ω̄k,

where the hexahedron elements {Ωk} satisfy that Ωm ∩ Ωl = ∅,m 6= l, hk is the size of Ωk and
h = max

1≤k≤Nh

hk. Define

γkj = ∂Ωk ∩ ∂Ωj, for k, j = 1, · · · , Nh and k 6= j,
γk = ∂Ωk ∩ ∂Ω, for k = 1, · · · , Nh,

and let

FB =

Nh
⋃

k=1

γk, FI =
⋃

k 6=j

γkj . (2.2)

In this paper, we assume that each κk := κ|Ωk
is a constant. V (Ωk) is denoted as the space of

the functions which satisfies the homogeneous Helmholtz’s equation (2.1) on the cavity Ωk:

V (Ωk) = {vk ∈ H1(Ωk) : ∆vk + κ2
kvk = 0}, k = 1, · · · , Nh.

Define

V (Th) =
Nh
⋃

k=1

V (Ωk).

The problem (2.1) to be solved consists in finding uk := u|Ωk
∈ {v ∈ H1(Ωk) : ∇v ∈ H(div; Ωk)}

such that














−∆uk − κ2
kuk = 0 in Ωk,
uk = gd on ∂Ωk ∩ Γd,

∂nuk = gn on ∂Ωk ∩ Γn,
(∂n + iκ)uk = gr on ∂Ωk ∩ Γr,

k = 1, 2, · · · , Nh, (2.3)
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and
{

uk − uj = 0 over γkj
∂nk

uk + ∂nj
uj = 0 over γkj

k, j = 1, · · · , Nh and k 6= j. (2.4)

The variational problem associated with the plane wave least squared approximation of problem
(2.3) and (2.4) can be expressed as: find u ∈ V (Th) such that

a(u, v) = L(v), ∀v ∈ V (Th), (2.5)

where

a(u, v) =

Nh
∑

k=1

(

θk1

∫

γk∩Γd

uk · vkds+ θk2

∫

γk∩Γn

∂nk
uk · ∂nk

vkds

+θk3

∫

γk∩Γr

((∂nk
+ iκk)uk) · (∂nk

+ iκk)vkds

)

+
∑

j 6=k

(

αkj

∫

γkj

(uk − uj) · (vk − vj)ds

+βkj

∫

γkj

(∂nk
uk + ∂nj

uj) · (∂nk
vk + ∂nj

vj)ds

)

, ∀u, v ∈ V (Th) (2.6)

L(v) =
Nh
∑

k=1

(

θk1

∫

γk∩Γd

gd · vkds+ θk2

∫

γk∩Γn

gn · ∂nk
vkds

+θk3

∫

γk∩Γr

gr · (∂nk
+ iκk)vkds

)

, ∀v ∈ V (Th), (2.7)

here ⋄ denotes the complex conjugate of the complex quantity ⋄, the Lagrange multipliers

αkj = h−1 + |κkj |, βkj = h−1|κkj |−2 + |κkj |−1 with κkj = (κk + κj)/2,

and
θk1 = h−1 + |κk|, θk2 = θk3 = h−1|κk|−2 + |κk|−1.

It is clear that a(·, ·) is sesquilinear, and similar to the proof of Theorem 3.1 in [7], we can see
that a(·, ·) is Hermitian positive definite on V (Th).

2.3. Discretization of the variational formulation

In this subsection, we derive a discretization of the variational formulation (2.5).
Let p ≥ 1 be a given positive integer, ym,l(l = 1, · · · , p) be the wave shape functions on Ωm(m =

1, · · · , Nh), which satisfy






ym,l(x) = eiκ(x·αl), x ∈ Ω̄m,
|αl| = 1,
αl 6= αs, for l 6= s,

where αl (l = 1, · · · , p) are unit wave propagation directions. In particular, during numerical
simulations, we set

αl := αr,j =





cos(2π(r − 1)/n1) cos(π(j − 1)/n2)
cos(2π(r − 1)/n1) sin(π(j − 1)/n2)

sin(2π(r − 1)/n1)



 , r = 1, · · · , n1, j = 1, · · · , n2,
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where l = (j − 1)n1 + r, n1, n2 are two positive integers, and we choose n1 according to the rules in
[42] that when n2 is odd, we set n1 = 2n2−1 or 2n2 or 2n2+1; when n2 is even, we set n1 = 2n2−1
or 2n2 + 1.

Thus we can define a finite dimensional subspace of V (Th) as

Vp(Th) = span{ϕm,l : 1 ≤ l ≤ p, 1 ≤ m ≤ Nh},

where

ϕm,l(x) =

{

ym,l(x) x ∈ Ω̄m,
0 x ∈ Ω\Ω̄m.

For ease of notations, we denote {ϕm,l} briefly by {ϕs}, where s = (m − 1)p + l. Define Sh =
{1, · · · , dim(Vp(Th))} as the number set of dofs.

Let Vp(Th) be the plane wave finite dimensional space defined above. Then the discrete variational
problem associated with (2.5) can be described as follows: find u ∈ Vp(Th) such that

a(u, v) = L(v), ∀v ∈ Vp(Th), (2.8)

where a(·, ·) and L(·) are separately defined in (2.6) and (2.7).
Note that the above system is large and highly ill-conditioned when the wave number is large,

therefore, a fast solver for (2.8) will be discussed in the rest of this paper.

3. Adaptive BDDC algorithms

3.1. Globs

Globs (or Equivalence classes) [43] of all dofs play a very important role in design, analysis and
parallel implementation of the BDDC methods. An important step in designing a non-overlapping
domain decomposition method is to classify all dofs. Different from the discretizations which dofs
are defined on the vertices or edges of the mesh, the dofs in the PWLS discretization are defined
on the elements; therefore, to classify all the dofs, we need to introduce a non-overlapping domain
decomposition and special interface which is similar to the fat interface in [28].

Let Td = {Dr}Nd

r=1 be a non-overlapping subdomain partition of Ω, where each Dr consists of
several complete elements and part of the elements in Th (Fig. 1 shows the cross-section of the
elements and subdomains).

Figure 1: The cross-section of the elements: the small square with dotted line boundary; the cross-section of the
subdomains: the square with solid line boundary.
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Denote Sd := {1, · · · , Nd}. For each global dof indice k ∈ Sh, we define the set of subdomain
indices sharing the dof k as

Nk = {r ∈ Sd : µ
(r)
k = 1},

where

µ
(r)
k =

{

1, supp(ϕk) ∩Dr 6= ∅,
0, others,

here supp(ϕk) denotes the support of the basis function ϕk.
Using {Nk}, we can decompose Sh into some globs. Specifically, the global dof indices k and k′

belong to the same glob when Nk = Nk′ (k 6= k′). Denote G as the set of all globs, and NG as the set
of subdomain indices associated with glob G, then the globs associated with Dr can be expressed as

Gr := {G ∈ G : r ∈ NG}, r = 1, · · · , Nd.

Let | ⋄ | denote the size of the set ⋄. If |NG| = 1 and NG := {r}, we call G the set of global
dof indices in Dr (specified as Ir), and denote the set of global dof indices in the interior of all
subdomains by I := ∪Nd

r=1Ir. If |NG| = 2 and NG := {r, j}, we call G the set of global dof indices in
the common face of Dr and Dj (specified as Fk, nFk

:= |Fk|, and k is the common face indice), and

denote the set of global dof indices in all the common faces by F := ∪NF

k=1Fk, where NF is the number
of the common faces. If |NG| = 4 and NG := {r, l,m, n}, we call G the set of global dof indices in
the common edge of Dr, Dl, Dm and Dn (specified as Ek, nEk

:= |Ek|, and k is the common edge
indice), and denote the set of global dof indices in all the common edges by E := ∪NE

k=1Ek, where NE

is the number of the common edges. Further, if |NG| > 4, then we call G the set of global dof indices
in the common vertex (specified as Vk, nVk

:= |Vk|, and k is the common vertex indice), and denote
the set of global dof indices in all the common vertices by V := ∪NV

k=1Vk, where NV is the number of
the common vertices. In addition, let the set of global dof indices on the interface be F ∪ E ∪ V .

From the above description, we can see that NFk
, NEk

and NVk
denote the set of the subdomain

indices sharing by the k-th common face, the k-th common edge and the k-th common vertex,
respectively. For simplicity, we denote the k-th (k = 1, · · · , NF ) common face as Fk, the k-th
(k = 1, · · · , NE) common edge as Ek, and the k-th (k = 1, · · · , NV ) common vertex as Vk.

For each subdomain Dr, define

M(r)
X = {k : Xk ⊂ Gr, for 1 ≤ k ≤ NX}, X = F,E, V. (3.1)

It must be pointed out that the notation Xk(X = F , E ,V) is the glob which is associated with
Xk(X = F,E, V ) in (3.1) and the remainder of this paper. From this definition, we can see that

M(r)
F (M(r)

E ,M(r)
V ) denotes the set of common face (edge, vertex) indices associated with subdomain

Dr. See Fig. 2 for a two-dimensional example, where M(1)
F = {1, 7}, M(5)

F = {3, 4, 8, 11}, M(1)
V =

{1}, M(5)
V = {1, 2, 3, 4}.
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Figure 2: The global indices of the common faces and common vertexes for a 2D example.

The following descriptions are based on the above notations.

3.2. Schur complement problem

In this subsection, the Schur complement system of the discrete variational problem (2.8) with
respect to the dofs on the interface are introduced. For this purpose, we need to introduce some
spaces firstly.

Using the bases {ϕl} of Vp(Th), we can define some subspaces of Vp(Th) as

VI = ⊕Nd

r=1V
(r)
I , V

(r)
I = span{ϕl : l ∈ Ir}, r = 1, · · · , Nd,

VXk
= span{ϕl : l ∈ Xk}, k = 1, · · · , NX , X = F,E, V.

Moreover, some local function spaces in each subdomain Dr are introduced as

V
(r)
Xk

= span{ϕ(r)
l : l ∈ Xk}, X = F,E, V,

where {ϕ(r)
l } are the truncated functions of the basis {ϕl} whose support is completely contained

in Dr, i.e.

ϕ
(r)
l (x) =

{

ϕl(x) x ∈ D̄r

0 x ∈ Ω\D̄r
, r = 1, · · · , Nd. (3.2)

In what follows, we will denote ζ(r) as the truncated function of ζ in Dr when non confusion can
arise.

Let

V (r) = V
(r)
I ⊕ (⊕

k∈M
(r)
F

V
(r)
Fk

)⊕ (⊕
k∈M

(r)
E

V
(r)
Ek

)⊕ (⊕
k∈M

(r)
V

V
(r)
Vk

), r = 1, · · · , Nd,

and for any r = 1, · · · , Nd, define

F (r)
I = {γ̃kj : γ̃kj = γkj |D̄r

, ∀γkj ∈ FI}, F (r)
B = {γ̃k : γ̃k = γk|D̄r

, ∀γk ∈ FB},

where FI and FB are defined in (2.2).
We can introduce a sesquilinear form ar(·, ·) by

ar(u, v) =
∑

γ̃kj∈F
(r)
I

αkj

∫

γ̃kj

(uk − uj) · (vk − vj)ds

8



+
∑

γ̃kj∈F
(r)
I

βkj

∫

γ̃kj

(∂nk
uk + ∂nj

uj) · (∂nk
vk + ∂nj

vj)ds

+
∑

γ̃k∈F
(r)
B

(

θk1

∫

γ̃k∩Γd

uk · vkds+ θk2

∫

γ̃k∩Γn

∂nk
uk · ∂nk

vkds

+θk3

∫

γ̃k∩Γr

((∂nk
+ iκk)uk) · (∂nk

+ iκk)vkds

)

, u, v ∈ V (r). (3.3)

Noting that αkj , βkj , θk1, θk2, θk3 > 0, it is easy to verify that ar(·, ·) is Hermitian and semi-positive
definite in V (r). Therefore, we can define a semi-norm

| · |2ar
:= ar(·, ·). (3.4)

Combining (2.6) with (3.3), we know that ar(·, ·) satisfies

a(u, v) =

Nd
∑

r=1

ar(u
(r), v(r)), ∀u, v ∈ Vp(Th), (3.5)

where u(r), v(r) are the corresponding truncated functions of u, v in Dr, and from (3.3), (3.5) and
the support property of these functions, it is easy to know that

ar(u
(r), v(r)) = a(u(r), v(r)), ∀ u(r), v(r) ∈ V

(r)
I ⊂ Vp(Th), r = 1, · · · , Nd.

Therefore, since a(·, ·) is Hermitian positive definite in Vp(Th) and V
(r)
I ⊂ Vp(Th), we know that

ar(·, ·) is Hermitian positive definite in V
(r)
I .

Based on the above preparation, we can introduce an important space of discrete harmonic
functions which is directly related to the Schur complement.

For any Xk(X = F,E, V ), define

φXk

l = ϕkl
+

∑

ν∈NXk

φ̌Xk,ν
l , l = 1, · · · , nXk

, (3.6)

where φ̌Xk,ν
l ∈ V

(ν)
I (ν ∈ NXk

) satisfies the following orthogonality

aν(φ̌
Xk ,ν
l , v) = −aν(ϕ

(ν)
kl

, v), ∀v ∈ V
(ν)
I , (3.7)

here kl denotes the global number of the l-th dof in Xk, ϕ
(ν)
kl

is the truncated function of the basis
ϕkl

in Dν , and aν(·, ·) is defined in (3.3).
Using the above functions, the function space associated with the Schur complement system of

the discrete variational problem (2.8) can be defined as

Ŵ = (⊕NF

k=1WFk
)⊕ (⊕NE

k=1WEk
)⊕ (⊕NV

k=1WVk
), (3.8)

where

WXk
= span{φXk

1 , · · · , φXk
nXk

}, X = F,E, V, (3.9)

and the corresponding basis function vectors can be denoted as

ΦXk
= (φXk

1 , · · · , φXk
nXk

)T , X = F,E, V, (3.10)
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respectively.
Define the Schur complement operator Ŝ : Ŵ → Ŵ as

(Ŝû, v̂) = a(û, v̂), ∀û, v̂ ∈ Ŵ . (3.11)

Noting that a(·, ·) is Hermitian positive definite in Ŵ ⊂ Vp(Th), thus Ŝ is also Hermitian positive
definite.

Using (3.11), we can derive the corresponding Schur complement problem of (2.8) as: find ŵ ∈ Ŵ
such that

(Ŝŵ, v̂) = L(v̂), ∀v̂ ∈ Ŵ . (3.12)

In the next subsection, we will propose a two-level adaptive BDDC algorithm in variational form
for solving (3.12).

3.3. Two-level methods

In order to construct the two-level adaptive BDDC preconditioner, we need to describe another
basis functions of Ŵ , and carry out an equivalent system of (3.12).

3.3.1. Primal and dual spaces

For any Xk and ν ∈ NXk
(X = F,E, V ), we introduce the basis functions

φXk,ν
l = ϕ

(ν)
kl

+ φ̌Xk,ν
l , l = 1, · · · , nXk

, (3.13)

where φ̌Xk,ν
l is defined by (3.7).

From (3.6), (3.13) and (3.2), and using the support property of ϕ
(ν)
kl

and φ̌Xk ,ν
l , we have

φXk

l |D̄ν
= φXk ,ν

l |D̄ν
, l = 1, · · · , nXk

, ν ∈ NXk
, X = F,E, V. (3.14)

Using the above basis functions, the function spaces associated with Fk, Ek and Vk are defined
as

W
(ν)
Xk

= span{φXk,ν
1 , · · · , φXk,ν

nXk
}, ν ∈ NXk

, X = F,E, V, (3.15)

and set

Φ
(ν)
Xk

= (φXk,ν
1 , · · · , φXk,ν

nXk
)T , X = F,E, V. (3.16)

For any subdomain Dr, let

W (r) = (⊕
k∈M

(r)
F

W
(r)
Fk

)⊕ (⊕
k∈M

(r)
E

W
(r)
Ek

)⊕ (⊕
k∈M

(r)
V

W
(r)
Vk

), (3.17)

and we denote the corresponding basis function vector as Φ(r).
Then, we will define two transformation operators that change the basis functions {φXk

l }nXk

l=1 (X =

F,E) and {φXk,ν
l }nXk

l=1 (ν ∈ NXk
, X = F,E) into their corresponding dual-primal basis functions.

For X = F,E, set nXk
= nXk

∆ + nXk

Π , where the integers nXk

∆ , nXk

Π ≥ 0. Let the nonsingular

matrix ~TXk
∈ C

nXk
×nXk look like

~TXk
= (~TXk

∆ , ~TXk

Π ), (3.18)
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where ~TXk

∆ ∈ C
nXk

×n
Xk
∆ and ~TXk

Π ∈ C
nXk

×n
Xk
Π .

For any given ν ∈ NXk
(X = F,E), by using ~TXk

(or ~TXk

∆ and ~TXk

Π ), we can introduce the

linear transformation operator TXk
(or TXk

∆ and TXk

Π ) which transform the basis vector ΦXk
and

Φ
(ν)
Xk

(ν ∈ NXk
) associated with WXk

and W
(ν)
Xk

into

ΦXk

T = TXk
ΦXk

:=

(

ΦXk

∆

ΦXk

Π

)

, ΦXk,ν
T = TXk

Φ
(ν)
Xk

:=

(

ΦXk,ν
∆

ΦXk,ν
Π

)

, (3.19)

where

ΦXk

ζ = (φXk

ζ,1 , · · · , φXk

ζ,n
Xk
ζ

)T = TXk

ζ ΦXk
:= (~TXk

ζ )TΦXk
, ζ = ∆,Π, (3.20)

ΦXk,ν
ζ = (φXk ,ν

ζ,1 , · · · , φXk ,ν

ζ,n
Xk
ζ

)T = TXk

ζ Φ
(ν)
Xk

:= (~TXk

ζ )TΦ
(ν)
Xk

, ζ = ∆,Π. (3.21)

Corresponding to (3.20), (3.21) and (3.14), it follows that

φXk

ζ,l |D̄ν
= φXk,ν

ζ,l |D̄ν
, l = 1, · · · , nXk

ζ , ζ = ∆,Π, ν ∈ NXk
, X = F,E. (3.22)

For an adaptive BDDC algorithm, the transformation operators are constructed by solving a gen-
eralized eigenvalue problem on each glob (or Xk, k = 1, · · · , NX , X = F,E). The idea is originated
from the upper bound estimate of BDDC preconditioned operator.

In the following, we present the generalized eigenvalue problems for the adaptive BDDC algorithm
on each glob Xk(k = 1, · · · , NX , X = F,E). For that we introduce the scaling operators firstly.

For any given ν ∈ NXk
, we present the scaling operator D

(ν)
Xk

: U → U (U = WXk
,W

(µ)
Xk

(µ ∈
NXk

)) or the scaling matrix ~D
(ν)
Xk

∈ C
nXk

×nXk , which satisfies that, for any given function w =

~wTΨ ∈ U , ~w ∈ C
nXk , Ψ = ΦXk

,Φµ
Xk

(µ ∈ NXk
), we have

D
(ν)
Xk

w = ~wT ( ~D
(ν)
Xk

)TΨ, (3.23)

where ~D
(ν)
Xk

is nonsingular, and

∑

ν∈NXk

D
(ν)
Xk

= I, (3.24)

here I is an identify operator in U .
Using the transformation operators and the scaling operators, a new set of basis functions of

W
(ν)
Xk

(ν ∈ NXk
) can be defined as

TXk
ΦXk,ν,µ

D :=

(

ΦXk,ν,µ
D,∆

ΦXk,ν,µ
D,Π

)

, (3.25)

where

ΦXk,ν,µ
D = D

(µ)
Xk

Φ
(ν)
Xk

:= ( ~D
(µ)
Xk

)TΦ
(ν)
Xk

, (3.26)

ΦXk,ν,µ
D,ζ = TXk

ζ ΦXk,ν,µ
D := (~TXk

ζ )TΦXk,ν,µ
D , ζ = ∆,Π. (3.27)

Then, we introduce some auxiliary basis functions for each equivalence class and derive some
related properties.
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For any given Xk and ν ∈ NXk
, we introduce

φ̄Xk ,ν
l = φXk ,ν

l + ˇ̄φXk,ν
l , l = 1, · · · , nXk

, (3.28)

where ˇ̄φXk,ν
l ∈ W (ν)\W (ν)

Xk
satisfies

aν(
ˇ̄φXk ,ν
l , v) = −aν(φ

Xk,ν
l , v), ∀v ∈ W (ν)\W (ν)

Xk
. (3.29)

Similar to Lemma 1 in [39], we can prove that aν(·, ·) is positive definite in W (ν)\W (ν)
Xk

, therefore,

the basis functions {φ̄Xk,ν
l } are existent and unique.

By using (3.7), (3.13), (3.28) and (3.29), we can obtain

φ̄Xk,ν
l − φXk,ν

l ∈ V (ν)\V (ν)
Xk

, l = 1, · · · , nXk
, (3.30)

aν(φ̄
Xk ,ν
l , v) = 0, ∀v ∈ V (ν)\V (ν)

Xk
, l = 1, · · · , nXk

. (3.31)

Using the basis functions {φ̄Xk,ν
l }nXk

l=1 (ν ∈ NXk
), we can define the corresponding function spaces

W̄
(ν)
Xk

= span{φ̄Xk,ν
1 , · · · , φ̄Xk,ν

nXk
}, ν ∈ NXk

, (3.32)

and set

Φ̄
(ν)
Xk

= (φ̄Xk,ν
1 , · · · , φ̄Xk,ν

nXk
)T , ν ∈ NXk

. (3.33)

Similar to the proof of Lemma 2 in [39], it can be proved that the following lemma holds.

Lemma 3.1. For any given subdomain Dr and vectors {~w(r)
Xm

∈ CnXm , m ∈ M(r)
X }(X = F,E), we

have
∑

m∈M
(r)
X

|w̄(r)
Xm

|2ar
≤ |M(r)

X ||w(r)|2ar
, r = 1, · · · , Nd, (3.34)

where

w(r) =
∑

m∈M
(r)
F

w
(r)
Fm

+
∑

m∈M
(r)
E

w
(r)
Em

+
∑

m∈M
(r)
V

w
(r)
Vm

,

w̄
(r)
Xm

= (~w
(r)
Xm

)T Φ̄
(r)
Xm

, w
(r)
Xm

= (~w
(r)
Xm

)TΦ
(r)
Xm

, ∀m ∈ M(r)
X ,

here M(r)
F ,M(r)

E ,M(r)
V are defined in (3.1), and if X = F (or X = E), then w

(r)
αm(α ∈ {F,E, V }\{X})

is any given function in W
(r)
αm .

Then, we introduce matrices

~S
(ν)
Xk

= (b
(ν)
l,m)nXk

×nXk
, b

(ν)
l,m = aν(φ

Xk ,ν
m , φXk,ν

l ), l,m = 1, · · · , nXk
, ν ∈ NXk

, (3.35)

~̄S
(ν)
Xk

= (c
(ν)
l,m)nXk

×nXk
, c

(ν)
l,m = aν(φ̄

Xk,ν
m , φ̄Xk ,ν

l ), l,m = 1, · · · , nXk
, ν ∈ NXk

. (3.36)

Since aν(·, ·) is Hermitian semi-positive definite in W (ν) and φ̄Xk,ν
l ∈ W (ν), we can see that the

matrices ~̄S
(ν)
Xk

(ν ∈ NXk
) is Hermitian semi-positive definite. Therefore, we can define the parallel

sum matrix (see [44] for more detials)
∏

ν∈NXk

~̄S
(ν)
Xk

.
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From the properties of the parallel sum matrix, we know that
∏

ν∈NXk

~̄S
(ν)
Xk

is Hermitian semi-

positive definite and satisfies the following spectrum estimations

∏

ν∈NXk

~̄S
(ν)
Xk

≤ ~̄S
(µ)
Xk

, µ ∈ NXk
. (3.37)

Using ~S
(ν)
Xk

and ~̄S
(ν)
Xk

(ν ∈ NXk
), we can introduce a generalized eigenvalue problem

~AD
Xk

~v = λ~BXk
~v, ~v ∈ C

nXk , (3.38)

where

~AD
Xk

=
∑

ν∈NXk

∑

µ∈NXk
\{ν}

( ~D
(µ)
Xk

)H ~S
(ν)
Xk

~D
(µ)
Xk

, ~BXk
=

∏

ν∈NXk

~̄S
(ν)
Xk

, (3.39)

here the eigenvalue λ ∈ C, ~D
(ν)
Xk

(ν ∈ NXk
) are the scaling matrices, ⋄H denotes the conjugate

transpose of ⋄.
For a given real number ΘX ≥ 1, we assume that the eigenvalues λk(k = 1, · · · , nXk

) in (3.38)
satisfy

|λ1| ≤ |λ2| ≤ · · · ≤ |λ
n
Xk
∆

| ≤ ΘX ≤ |λ
n
Xk
∆ +1

| ≤ · · · ≤ |λnXk
|, (3.40)

where nXk

∆ is a nonnegative integer.
We assume that the eigenvectors ~vl associated with λl(l = 1, · · · , nXk

) have the orthogonal
relation

~vHl
~AD
Xk

~vm = ~vHl
~BXk

~vm = 0, if m 6= l. (3.41)

and let the submatrices of ~TXk
defined in (3.18) be

~TXk

∆ := (~v1, · · · , ~vnXk
∆

), ~TXk

Π := (~v
n
Xk
∆ +1

, · · · , ~vnXk
). (3.42)

By the definitions (3.18) and (3.42) of the transform matrix ~TXk
, the transformation operator

TXk
can be obtained from (3.19) and the following lemma holds.

Lemma 3.2. For the given real number ΘX ≥ 1(X = F,E) in (3.40), and assume that the transfor-
mation operator TXk

is given by (3.18), (3.19) and (3.42), then we can obtain the following estimate

∑

s∈NXk
\{r}

(|wXk ,r,s
D,∆ |2ar

+ |w̃Xk,s,r
D,∆ |2as

) ≤ ΘX |w̄(r)
Xk,∆

+ w̄
(r)
Xk,Π

|2ar
, ∀r ∈ NXk

, (3.43)

where

wXk,r,s
D,∆ = (~w∆)

TΦXk,r,s
D,∆ , w̃Xk,s,r

D,∆ = (~w∆)TΦXk,s,r
D,∆ , w̄

(r)
Xk,ζ

= (~wζ)
T Φ̄Xk,r

ζ , ζ = ∆,Π, (3.44)

here ΦXk,r,s
D,∆ and ΦXk,s,r

D,∆ are defined in (3.27),

Φ̄Xk,r
ζ = (φ̄Xk ,r

ζ,1 , · · · , φ̄Xk,r

ζ,n
Xk
χ

)T = TXk

ζ Φ̄
(r)
Xk

:= (~TXk

ζ )T Φ̄
(r)
Xk

, ζ = ∆,Π, (3.45)

and ~wXk,∆ ∈ Cn
Xk
∆ , ~wXk,Π ∈ Cn

Xk
Π are any given vectors.
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Proof. By using (3.41), we can obtain

(~TXk

∆ )H ~C ~TXk

∆ = diag{~vH1 ~C~v1, · · · , ~vH
n
Xk
∆

~C~v
n
Xk
∆

}, ~C = ~AD
Xk

, ~BXk
, (3.46)

(~TXk

Π )H ~BXk
~TXk

∆ = 0, (~TXk

∆ )H ~BXk
~TXk

Π = 0. (3.47)

From (3.38), it is easily seen that

~vHl ~AD
Xk

~vl = |λl|~vHl ~BXk
~vl, l = 1, · · · , nXk

∆ . (3.48)

Combining (3.45) with (3.27), we can separately rewrite the functions in (3.44) as

wXk ,r,s
D,∆ = (~w∆)T (~TXk

∆ )T ( ~D
(s)
Xk

)TΦ
(r)
Xk

, w̃Xk,s,r
D,∆ = (~w∆)

T (~TXk

∆ )T ( ~D
(r)
Xk

)TΦ
(s)
Xk

, (3.49)

w̄
(r)
Xk,ζ

= (~wζ)
T (~TXk

ζ )T Φ̄
(ν)
Xk

, ζ = ∆,Π. (3.50)

According to (3.4), (3.49) and (3.35), we have

|wXk,r,s
D,∆ |2ar

= ~wH
∆ (~TXk

∆ )H( ~D
(s)
Xk

)Har(Φ
(r)
Xk

, (Φ
(r)
Xk

)T ) ~D
(s)
Xk

~TXk

∆ ~w∆

= ~wH
∆ (~TXk

∆ )H( ~D
(s)
Xk

)H ~S
(r)
Xk

~D
(s)
Xk

~TXk

∆ ~w∆. (3.51)

Similarly, we can obtain

|w̃Xk,s,r
D,∆ |2as

= ~wH
∆ (~TXk

∆ )H( ~D
(r)
Xk

)H ~S
(s)
Xk

~D
(r)
Xk

~TXk

∆ ~w∆. (3.52)

Using (3.51), (3.52), (3.39), (3.46) and noting that ~S
(µ)
Xk

(µ ∈ NXk
) are semi-positive definite, we

have
∑

s∈NXk
\{r}

(|wXk ,r,s
D,∆ |2ar

+ |w̃Xk,s,r
D,∆ |2as

) ≤ ~wH
∆diag{~vH1 ~AD

Xk
~v1, · · · , ~vH

n
Xk
∆

~AD
Xk

~v
n
Xk
∆

}~w∆.

From this, using (3.48), (3.40), (3.46), (3.47), (3.37), (3.36), (3.50) and (3.4), and noting ~BXk
is

Hermitian semi-positive definite, it follows that
∑

s∈NXk
\{r}

(|wXk ,r,s
D,∆ |2ar

+ |w̃Xk,s,r
D,∆ |2as

) ≤ ~wH
∆diag{|λ1|~vH1 ~BXk

~v1, · · · , |λn
Xk
∆

|~vH
n
Xk
∆

~BXk
~v
n
Xk
∆

}~w∆

≤ ΘX ~wH
∆diag{~vH1 ~BXk

~v1, · · · , ~vH
n
Xk
∆

~BXk
~v
n
Xk
∆

}~w∆

= ΘX ~wH
∆ (~TXk

∆ )H ~BXk
~TXk

∆ ~w∆

≤ ΘX(~TXk

∆ ~w∆ + ~TXk

Π ~wΠ)
H ~BXk

(~TXk

∆ ~w∆ + ~TXk

Π ~wΠ)

≤ ΘX(~TXk

∆ ~w∆ + ~TXk

Π ~wΠ)
H ~̄S

(r)
Xk

(~TXk

∆ ~w∆ + ~TXk

Π ~wΠ)

= ΘXar(w̄
(r)
Xk ,∆

+ w̄
(r)
Xk,Π

, w̄
(r)
Xk,∆

+ w̄
(r)
Xk,Π

)

= ΘX |w̄(r)
Xk,∆

+ w̄
(r)
Xk,Π

|2ar
,

then (3.43) holds.

Remark 3.1. Although the condition number of the preconditioned operator can be controlled by
the user-defined tolerances, the cost for forming the two classes of generalized eigenvalue problems
is quite expensive. Therefore, similar to [41], we use economic-version to enhance the efficiency of
the proposed method.
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From this, we can decompose the function spaces WXk
and W

(ν)
Xk

(X = F,E) as

WXk
= WXk,∆ ⊕WXk,Π, W

(ν)
Xk

= W
(ν)
Xk,∆

⊕W
(ν)
Xk,Π

, (3.53)

where

WXk,ζ = span{φXk

ζ,1 , · · · , φXk

ζ,n
Xk
ζ

}, W
(ν)
Xk,ζ

= span{φXk,ν
ζ,1 , · · · , φXk,ν

ζ,n
Xk
ζ

}, ζ = ∆,Π, ν ∈ NXk
.

For any given subdomain Dr, we define the function spaces

W
(r)
∆ = (⊕

k∈M
(r)
F

W
(r)
Fk,∆

)⊕ (⊕
k∈M

(r)
E

W
(r)
Ek,∆

), (3.54)

W
(r)
Π = (⊕

k∈M
(r)
F

W
(r)
Fk,Π

)⊕ (⊕
k∈M

(r)
E

W
(r)
Ek,Π

)⊕ (⊕
k∈M

(r)
V

W
(r)
Vk

), (3.55)

and let

W̃ (r) = W
(r)
∆ ⊕W

(r)
Π . (3.56)

Using the function spaces WXk,ζ(k = 1, · · · , NX , ζ = ∆,Π, X = F,E) and WVk
(k = 1, · · · , NV ),

we can define

W∆ = (⊕NF

k=1WFk,∆)⊕ (⊕NE

k=1WEk,∆), WΠ = (⊕NF

k=1WFk,Π)⊕ (⊕NE

k=1WEk,Π)⊕ (⊕NV

k=1WVk
), (3.57)

where the function space WΠ is the so-called primal space, and the corresponding basis functions
{φXk

Π,l}(X = F,E) and {φVk

l } are the primal basis functions.

Similarly, by using the function spaces W
(r)
∆ (r = 1, · · · , Nd), we can define the so-called dual

space

W̃∆ = ⊕Nd

r=1W
(r)
∆ . (3.58)

From (3.8), (3.53) and (3.57), we can decompose the function space Ŵ which the Schur comple-
ment system depends on into

Ŵ = W∆ ⊕WΠ. (3.59)

By using the function spaces WΠ and W̃∆ defined by (3.57) and (3.58), respectively, we can
define a partial coupling function space which the adaptive BDDC preconditioner is based on

W̃ = W̃∆ ⊕WΠ. (3.60)

We can see that the functions belonging to W̃ are continuous at the primal level and discontinuous
elsewhere on the FI .

For convenience, we call the process of generating the required function spaces by using the
function space Vp(Th) as Setup algorithm.

From now on, the function space Ŵ defined by (3.59) will be adopted, and we denote the
corresponding Schur complement variational problem as (we still use the same notation as (3.12)
when no confusion can arise): find ŵ ∈ Ŵ such that

(Ŝŵ, v̂) = L(v̂), ∀v̂ ∈ Ŵ . (3.61)

In the following subsections we will design and analysis the adaptive BDDC preconditioner for
solving the Schur complement system (3.61).
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3.3.2. BDDC preconditioner

In order to derive an adaptive BDDC algorithm in variational form for solving the Schur com-
plement system (3.61), some operators are introduced firstly.

We recall that φ(r) ∈ W̃ (r) is the truncated function of the basis φ ∈ Ŵ in Dr. For any given
φ(r) ∈ W̃ (r)(r = 1, · · · , Nd), we introduce a basis transformation operator Tr : W̃ (r) → Ŵ , which is
a linear operator and satisfies

Trφ
(r) = φ, ∀ r = 1, · · · , Nd. (3.62)

Conversely, for any given basis function φ ∈ Ŵ , a basis transformation operator T r : Ŵ → W̃ (r) is
defined as

T rφ = φ(r), ∀ r = 1, · · · , Nd. (3.63)

According to the decomposition (3.60), (3.57) and (3.58) of W̃ , it follows that

ζ̃ =

Nd
∑

r=1

(
∑

k∈M
(r)
F

ζ̃
(r)
Fk,∆

+
∑

k∈M
(r)
E

ζ̃
(r)
Ek,∆

) +

NF
∑

k=1

ζ̃Fk,Π +

NE
∑

k=1

ζ̃Ek,Π +

NV
∑

k=1

ζ̃Vk
, (3.64)

where ζ̃
(r)
Xk,∆

∈ W
(r)
Xk,∆

, ζ̃Xk,Π ∈ WXk,Π(X = F,E), ζ̃Vk
∈ WVk

for any given function ζ̃ ∈ W̃ .
Using the above decomposition and ar(·, ·)(r = 1, · · · , Nd) defined in (3.3), we can obtain that for

any given ũ, ṽ ∈ W̃ , we can define a semilinear form ã(·, ·) and the corresponding partially assembled
Schur complement operator S̃ : W̃ → W̃ satisfing

(S̃ũ, ṽ) := ã(ũ, ṽ) :=

Nd
∑

r=1

ar(ũ
(r), ṽ(r)), ∀ũ, ṽ ∈ W̃ , (3.65)

where

ζ̃(r) =
∑

k∈M
(r)
F

(ζ̃
(r)
Fk,∆

+ T rζ̃Fk,Π) +
∑

k∈M
(r)
E

(ζ̃
(r)
Ek,∆

+ T rζ̃Ek,Π) +
∑

k∈M
(r)
V

T rζ̃Vk
, ζ̃ = ũ, ṽ. (3.66)

From the property that the semilinear form ã(·, ·) is Hermitian positive definite in W̃ , we can see
the operator S̃ is also Hermitian positive definite.

Let IΓ : W̃ → Ŵ be a linear operator which satisfies

IΓφ
Xk,ν
∆,l = φXk

∆,l, l = 1, · · · , nXk

∆ , ν ∈ NXk
, k = 1, · · · , NX , X = F,E, (3.67)

IΓφ
Xk

Π,l = φXk

Π,l, l = 1, · · · , nXk

Π , k = 1, · · · , NX , X = F,E, (3.68)

IΓφ
Vk

l = φVk

l , l = 1, · · · , nVk
, k = 1, · · · , NV . (3.69)

Using the scaling operators defined in (3.23), a linear operator D
(r)
∆ : W

(r)
∆ → W

(r)
∆ for any given

subdomain Dr can be defined as

D
(r)
∆ =

∑

k∈M
(r)
F

D
(r)
Fk

R
(r)
Fk,∆

+
∑

k∈M
(r)
E

D
(r)
Ek

R
(r)
Ek,∆

, (3.70)

where R
(r)
Xk,∆

(X = F,E) are the restriction operators from W
(r)
∆ to W

(r)
Xk,∆

.
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According to (3.70), it is easy to verify that

D
(r)
∆ w = D

(r)
Xk

w, ∀w ∈ W
(r)
Xk,∆

(3.71)

for any given k ∈ M(r)
X (X = F,E).

By using the operators D
(r)
∆ (r = 1, · · · , Nd) defined in (3.70), we can introduce the scaling

operator D̃ from W̃ to W̃ , which satisfies

D̃ =

Nd
∑

r=1

D
(r)
∆ R̃

(r)
∆ + R̃Π, (3.72)

where R̃
(r)
∆ is the restriction operator from W̃ to W

(r)
∆ and R̃Π is the restriction operator from W̃

to WΠ.
With the above preparations, using the sesquilinear form ã(·, ·), an adaptive BDDC operator

M−1
BDDC : Ŵ → Ŵ for solving the Schur complement system (3.61) can then be given as the

following algorithm.

Algorithm 3.1.

For any given function g ∈ Ŵ , ug = M−1
BDDCg ∈ Ŵ can be obtained by the following two steps:

Step 1. Find w ∈ W̃ , such that

ã(w, v) = ((IΓD̃)Hg, v), ∀v ∈ W̃ ,

where (⋄)H denotes the complex conjugate transpose operator of ⋄.
Step 2. Let

ug = IΓD̃w.

From this, combining with the definition (3.65) of S̃ and noting that S̃ is Hermitian positive
definite, the preconditioner operator M−1

BDDC can be showed as

M−1
BDDC = (IΓD̃)S̃−1(IΓD̃)H . (3.73)

In order to facilitate parallel programming, we want to give an equivalent description of Algorithm
3.1. To this end, we need to introduce some other operators firstly.

Let Ĩ
(r)
∆ (r = 1, · · · , Nd) be the prolongation operators from W

(r)
∆ to W̃ , we introduce a linear

operator from W̃ to W̃∆ as

S̃−1
∆ =

Nd
∑

r=1

(S̃
(r)
∆∆)

−1(Ĩ
(r)
∆ )H =

Nd
∑

r=1

Ĩ
(r)
∆ (S̃

(r)
∆∆)

−1(Ĩ
(r)
∆ )H ,

where

S̃
(r)
∆∆ = (Ĩ

(r)
∆ )H S̃Ĩ

(r)
∆ , r = 1, · · · , Nd.

Using S̃−1
∆ , a linear operator from WΠ to W̃ can be defined as

OΠ̃ = ĨΠ − S̃−1
∆ S̃ĨΠ = (I − S̃−1

∆ S̃)ĨΠ, (3.74)

where I : W̃ → W̃ is an identity operator, and ĨΠ : WΠ → W̃ is a prolongation operator.
Therefore, by using the expression (3.73) of the preconditioner operator M−1

BDDC , after detailed
deduction, we can arrived at the equivalent description of Algorithm 3.1 as follows:
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Algorithm 3.2.

For any given function g ∈ Ŵ , ug = M−1
BDDCg ∈ Ŵ can be obtained by the following steps:

Step 1. Find u∆,r
a ∈ W

(r)
∆ (r = 1, · · · , Nd) in parallel such that

ar(u
∆,r
a , v) = ((TrD

(r)
∆ )Hg, v), ∀v ∈ W

(r)
∆ ,

and compute

u∆,a =

Nd
∑

r=1

TrD
(r)
∆ u∆,r

a ∈ Ŵ ,

where the operators Tr and D
(r)
∆ are defined in (3.62) and (3.70).

Step 2. Find uΠ ∈ WΠ such that

ã(OΠ̃uΠ, OΠ̃v) = (g, v)− ã(

Nd
∑

r=1

u∆,r
a , v), ∀v ∈ WΠ,

where the operator OΠ̃ is defined in (3.74).

Step 3. Compute u∆,r
b ∈ W

(r)
∆ (r = 1, · · · , Nd) in parallel by

ar(u
∆,r
b , v) = −ar(uΠ, v), ∀v ∈ W

(r)
∆ ,

and set

u∆,b =

Nd
∑

r=1

TrD
(r)
∆ u∆,r

b ∈ Ŵ .

Step 4. Let

ug = u∆,a + uΠ + u∆,b.

Since Algorithm 3.2 is a two-level algorithm, we will call Algorithm 3.2 or its equivalent algorithm
(Algorithm 3.1) as two-level adaptive BDDC algorithm.

Furthermore, from Algorithm 3.1 or Algorithm 3.2, an algorithm for solving the original varia-
tional problem (2.8) can be obtained.

Algorithm 3.3.

Step 1. By using the Krylov subspace iteration method based on preconditioner M−1
BDDC, we can

find uΓ ∈ Ŵ such that

a(uΓ, v) = L(v), ∀v ∈ Ŵ .

Step 2. Compute u
(r)
I ∈ V

(r)
I (r = 1, · · · , Nd) in parallel by

ar(u
(r)
I , v) = L(v)− ar(uΓ, v), ∀v ∈ V

(r)
I .
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Step 3. Set

u =

Nd
∑

r=1

u
(r)
I + uΓ.

For the sake of description convenience, we call the above algorithm as two-level adaptive

BDDC solver algorithm.

3.4. Multilevel extensions

It is well known that the number of primal dofs in a nonoverlapping domain decomposition
method will increase significantly as the number of subdomain increases. The direct method is very
expensive to solve the corresponding coarse problem. In particular, for the Helmholtz problem with
high-wave number, this phenomenon becomes more obvious with the increase of wave number. The
form of the coarse problem naturally leads to a multilevel extension of the BDDC algorithm [19],
this can be used to overcome this difficulty efficiently.

In the following, based on Algorithm 3.3, a rough description of the multi-level adaptive BDDC
algorithm for solving the original variational problem (2.6) is given.

Firstly, we generate the mesh information for each level. Let L be the total number of levels,
and set the finest level by s = 0. We denote by T s

h (s = 0, · · · , L − 1) the mesh generation in the
s-th level, respectively. Let T s

d (s = 0, · · · , L − 2) be the subdomain generation in the s-th level,
and satisfy T 0

h = Th, T 0
d = Td, T s+1

h = T s
d (s ≥ 0), T s

d and T s
h (s ≥ 1) are nested. Secondly, we

generate the function spaces required by each level. Take the function space V (T 1
h ) as the coarse

space WΠ (defined in (3.57)) of the 0-th level, and regard V (T 1
h ) as V (Th) in the setup algorithm,

we can obtain the corresponding coarse space W 1
Π and other function spaces required in the 1-th

level; In general, take the function spaces V (T s+1
h )(s ≥ 0) as the coarse space W s

Π of the s-th level,
and regard V (T s+1

h ) as V (Th) in the setup algorithm, we can reach the corresponding coarse space
W s+1

Π and the other function spaces in the s+1-th level; This process is executed sequentially until
s <= L− 2, we obtain the required function spaces on each level. Based on the above preparations,
and regard Algorithm 3.3 as an iterative algorithm from s-th level to s+1-th (s = 0) level, a
multi-level adaptive BDDC algorithm with the total number L is obtained by calling the algorithm
recursively until s < L− 1.

Such an approach requires less memory than a two-level method with a direct coarse solver, and
it can lead to highly scalable algorithms. Theoretically, the condition number of multilevel BDDC
method depends multiplicatively on the condition number of each level problems [45].

In the next section, we will derive the condition number estimation of the two-level adaptive
BDDC preconditioned operator.

4. Theoretical estimates

In this section, we will provide the condition number estimate for the BDDC preconditioned
operator with adaptive coarse space.

Let R̃Γ : Ŵ → W̃ be the natural injection from Ŵ to W̃ . It follows from (3.11) and (3.65) that

Ŝ = (R̃Γ)
H S̃R̃Γ. (4.1)

Using (4.1) and (3.73), we can obtain the preconditioned operator associated with the Schur
complement system (3.61) as

Ĝ := M−1
BDDCŜ = (IΓD̃)S̃−1(IΓD̃)H(R̃Γ)

H S̃R̃Γ. (4.2)
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In the following, we will derive the estimation of the minimum eigenvalue of the preconditioned
operator Ĝ. For this purpose, the following lemma is given firstly.

Lemma 4.1. Let R̃Γ : Ŵ → W̃ be the natural injection from Ŵ to W̃ , the linear operator IΓ : W̃ →
Ŵ is given by (3.67)–(3.69), D̃ : W̃ → W̃ is defined as (3.72), then we have

IΓD̃R̃Γ = I, (4.3)

where I : Ŵ → Ŵ is an identity operator.

Proof. For any given function û ∈ Ŵ , we can decompose û by using (3.59) as

û =

NF
∑

k=1

(ûFk,∆ + ûFk,Π) +

NE
∑

k=1

(ûEk,∆ + ûEk,Π) +

NV
∑

k=1

ûVk
, (4.4)

where ûFk,∆ ∈ WFk,∆, ûFk,Π ∈ WFk,Π, ûEk,∆ ∈ WEk,∆, ûEk,Π ∈ WEk,Π and ûVk
∈ WVk

.

From this, and combining with the definitions of R̃Γ and T r(r = 1, · · · , Nd), we can see

R̃Γû =

Nd
∑

r=1

∑

k∈M
(r)
F

T rûFk,∆ +

Nd
∑

r=1

∑

k∈M
(r)
E

T rûEk,∆ +

NF
∑

k=1

ûFk,Π +

NE
∑

k=1

ûEk,Π +

NV
∑

k=1

ûVk
. (4.5)

Using the definitions (3.67), (3.68), (3.69) and (3.72) of the operator IΓ and D̃, the definitions

of the restriction operators R̃
(r)
∆ (r = 1, · · · , Nd) and R̃Π, and combining with (4.5) and (4.4), it

follows

IΓD̃R̃Γû =

Nd
∑

r=1

∑

k∈M
(r)
F

TrD
(r)
Fk

T rûFk,∆ +

Nd
∑

r=1

∑

k∈M
(r)
E

TrD
(r)
Ek

T rûEk,∆ +

NF
∑

k=1

ûFk,Π +

NE
∑

k=1

ûEk,Π +

NV
∑

k=1

ûVk

=

NF
∑

k=1

∑

ν∈NFk

TνD
(ν)
Fk

T ν ûFk,∆ +

NE
∑

k=1

∑

ν∈NEk

TνD
(ν)
Ek

T νûEk,∆ +

NF
∑

k=1

ûFk,Π +

NE
∑

k=1

ûEk,Π +

NV
∑

k=1

ûVk

=

NF
∑

k=1

ûFk,∆ +

NE
∑

k=1

ûEk,∆ +

NF
∑

k=1

ûFk,Π +

NE
∑

k=1

ûEk,Π +

NV
∑

k=1

ûVk
= û,

Noting that û is any given function of Ŵ , then (4.3) holds.

From lemma 4.1, and denote R̃ΓIΓD̃ as the average operator ED, we can see

(ED)2 = ED. (4.6)

Using Lemma 4.1 and noting that S̃ is Hermitian positive definite, similar to the proof of Lemma
3.4 in [38], we can get

Lemma 4.2. The minimum eigenvalue of the preconditioned operator Ĝ satisfies

λmin(Ĝ) ≥ 1. (4.7)
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Next, we will derive the estimation of the maximum eigenvalue of Ĝ.
We firstly introduce a jump operator PD : W̃ → W̃ , which is a complementary projector of ED

and satisfies

PD = I − ED, (4.8)

where I : W̃ → W̃ is an identity operator.
Using (4.6) and (4.8), similar to the estimation of the maximum eigenvalue of Ĝ in the algebraic

framework of [29], it follows

λmax(Ĝ) ≤ λmax(Gd), (4.9)

where Gd := (PD)H S̃PDS̃−1.
For any given w̃ ∈ W̃ , using (3.64), we have

w̃ =

Nd
∑

r=1

(
∑

k∈M
(r)
F

w
(r)
Fk,∆

+
∑

k∈M
(r)
E

w
(r)
Ek,∆

) + wΠ, wΠ :=

NF
∑

k=1

wFk,Π +

NE
∑

k=1

wEk,Π +

NV
∑

k=1

wVk
, (4.10)

where

w
(r)
Xk ,∆

= (~w
(r)
Xk,∆

)TΦXk,r
∆ ∈ W

(r)
Xk,∆

, X = F,E, (4.11)

wXk,Π = (~wXk,Π)
TΦXk

Π ∈ WXk,Π, X = F,E, wVk
= (~wVk

)TΦVk
∈ WVk

, (4.12)

here ~w
(r)
Xk,∆

∈ Cn
Xk
∆ , ~wXk,Π ∈ Cn

Xk
Π (X = F,E), and ~wVk

∈ C
nVk .

By using (4.9), noting thatGd and S̃−1PH
D S̃PD have the same eigenvalue except 0, and S̃−1PH

D S̃PD

is symmetry associated with ã(·, ·), we have

λmax(Ĝ) ≤ max
w̃∈W̃\{0}

ã(S̃−1PH
D S̃PDw̃, w̃)

ã(w̃, w̃)
.

Further, using the definition (3.66) of S̃, the following lemma holds.

Lemma 4.3. The maximum eigenvalue of the preconditioned operator Ĝ satisfies

λmax(Ĝ) ≤ max
w̃∈W̃\{0}

ã(PDw̃, PDw̃)

ã(w̃, w̃)
. (4.13)

In order to estimate the right hand of (4.13), we derive the expression of PDw̃ for any w̃ ∈ W̃
firstly.

Lemma 4.4. For any w̃ ∈ W̃ defined in (4.10), we have

PDW̃ =

Nd
∑

r=1

∑

k∈M
(r)
F

∑

s∈NFk
\{r}

(wFk,r,s
D,∆ − w̃Fk,r,s

D,∆ ) +

Nd
∑

r=1

∑

k∈M
(r)
E

∑

s∈NEk
\{r}

(wEk,r,s
D,∆ − w̃Ek,r,s

D,∆ ), (4.14)

where

wXk ,r,s
D,∆ := (~w

(r)
Xk ,∆

)TΦXk,r,s
D,∆ , w̃Xk ,r,s

D,∆ := (~w
(s)
Xk ,∆

)TΦXk,r,s
D,∆ , X = F,E, (4.15)

here ΦXk,r,s
D,∆ (X = F,E) are given by (3.27).
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Proof. By using (4.8), ED = R̃ΓIΓD̃ and (3.72), we can rewrite PDw̃ as

PDw̃ = w̃ − EDw̃

= w̃ − R̃ΓIΓD̃w̃

=

Nd
∑

r=1

∑

k∈M
(r)
F

w
(r)
Fk,∆

+

Nd
∑

r=1

∑

k∈M
(r)
E

w
(r)
Ek,∆

+ wΠ

− R̃ΓIΓ

Nd
∑

r=1

D
(r)
∆ (

∑

k∈M
(r)
F

w
(r)
Fk,∆

+
∑

k∈M
(r)
E

w
(r)
Ek,∆

)− wΠ

=

Nd
∑

r=1

∑

k∈M
(r)
F

w
(r)
Fk,∆

+

Nd
∑

r=1

∑

k∈M
(r)
E

w
(r)
Ek,∆

− R̃ΓIΓ

Nd
∑

r=1

D
(r)
∆ (

∑

k∈M
(r)
F

w
(r)
Fk,∆

+
∑

k∈M
(r)
E

w
(r)
Ek,∆

). (4.16)

From (4.10), (3.71) and the definition of R̃Γ, we can see that the third term of the right hand of
(4.16) satisfies

R̃ΓIΓ

Nd
∑

r=1

D
(r)
∆ (

∑

k∈M
(r)
F

w
(r)
Fk,∆

+
∑

k∈M
(r)
E

w
(r)
Ek,∆

)

= R̃Γ(

Nd
∑

r=1

∑

k∈M
(r)
F

TrD
(r)
Fk

w
(r)
Fk,∆

+

Nd
∑

r=1

∑

k∈M
(r)
E

TrD
(r)
Ek

w
(r)
Ek,∆

)

=

Nd
∑

r=1

∑

k∈M
(r)
F

D
(r)
Fk

∑

s∈NFk

T
W

(s)
Fk

W
(r)
Fk

w
(r)
Fk,∆

+

Nd
∑

r=1

∑

k∈M
(r)
F

D
(r)
Ek

∑

s∈NEk

T
W

(s)
Ek

W
(r)
Ek

w
(r)
Ek,∆

, (4.17)

where T
W

(s)
Xk

W
(r)
Xk

(r, s ∈ NXk
, X = F,E) are the basis transformation operators from W

(r)
Xk

to W
(s)
Xk

which

satisfy

T
W

(s)
Xk

W
(r)
Xk

φXk,r
l = φXk,s

l , l = 1, · · · , nXk
, r, s ∈ NXk

, X = F,E. (4.18)

Combining (4.16) with (4.17), and using (3.24), (4.11), (4.18), (3.21) and (3.26), we obtain

PDw̃ =

Nd
∑

r=1

∑

k∈M
(r)
F

w
(r)
Fk,∆

+

Nd
∑

r=1

∑

k∈M
(r)
E

w
(r)
Ek,∆

−
Nd
∑

r=1

∑

k∈M
(r)
F

D
(r)
Fk

∑

µ∈NFk

T
W

(µ)
Fk

W
(r)
Fk

w
(r)
Fk,∆

−
Nd
∑

r=1

∑

k∈M
(r)
E

D
(r)
Ek

∑

µ∈NEk

T
W

(µ)
Ek

W
(r)
Ek

w
(r)
Ek,∆

=

Nd
∑

r=1

∑

k∈M
(r)
F

∑

µ∈NFk

D
(µ)
Fk

w
(r)
Fk,∆

−
Nd
∑

r=1

∑

k∈M
(r)
F

D
(r)
Fk

∑

µ∈NFk

T
W

(µ)
Fk

W
(r)
Fk

w
(r)
Fk,∆
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+

Nd
∑

r=1

∑

k∈M
(r)
E

∑

µ∈NEk

D
(µ)
Ek

w
(r)
Ek,∆

−
Nd
∑

r=1

∑

k∈M
(r)
E

D
(r)
Ek

∑

µ∈NEk

T
W

(µ)
Ek

W
(r)
Ek

w
(r)
Ek,∆

=

NF
∑

k=1

∑

r∈NFk

∑

µ∈NFk
\{r}

(

D
(µ)
Fk

w
(r)
Fk,∆

−D
(r)
Fk

T
W

(µ)
Fk

W
(r)
Fk

w
(r)
Fk,∆

)

+

NE
∑

k=1

∑

r∈NEk

∑

µ∈NEk
\{r}

(D
(µ)
Ek

w
(r)
Ek,∆

−D
(r)
Ek

T
W

(µ)
Ek

W
(r)
Ek

w
(r)
Ek,∆

)

=

NF
∑

k=1

∑

r∈NFk

∑

µ∈NFk
\{r}

(

D
(µ)
Fk

w
(r)
Fk,∆

−D
(µ)
Fk

T
W

(r)
Fk

W
(µ)
Fk

w
(µ)
Fk,∆

)

+

NE
∑

k=1

∑

r∈NEk

∑

µ∈NEk
\{r}

(

D
(µ)
Ek

w
(r)
Ek,∆

−D
(µ)
Ek

T
W

(r)
Ek

W
(µ)
Ek

w
(µ)
Ek,∆

)

=

Nd
∑

r=1

∑

k∈M
(r)
F

∑

s∈NFk
\{r}

(

wFk,r,s
D,∆ − w̃Fk,r,s

D,∆

)

+

Nd
∑

r=1

∑

k∈M
(r)
E

∑

s∈NEk
\{r}

(

wEk,r,s
D,∆ − w̃Ek,r,s

D,∆

)

.

The proof of (4.14) has been completed.

Combing Lemma 4.3 and Lemma 4.4, the following lemma holds.

Lemma 4.5. For any given thresholds ΘE,ΘF ≥ 1, the maximum eigenvalue of the adaptive BDDC
preconditioned operator Ĝ satisfies

λmax(Ĝ) ≤ CΘ, (4.19)

where Θ = max{ΘE ,ΘF}, C = 2C2
FE, here CFE is a constant depending only on the number of

common faces and edges per subdomain and the number of subdomains sharing an edge.

Proof. In fact, if we can prove

max
w̃∈W̃\{0}

ã(PDw̃, PDw̃)

ã(w̃, w̃)
≤ CΘ.

then (4.19) holds.
Using (3.65), (4.10), (4.14) and (3.4) , we can see the above inequality is equivalent to

Nd
∑

r=1

|(PDw̃)(r)|2ar
≤ CΘ

Nd
∑

r=1

|w̃(r)|2ar
, ∀w̃ ∈ W̃\{0}, (4.20)

where

w̃(r) =
∑

k∈M
(r)
F

(w
(r)
Fk ,∆

+ w
(r)
Fk,Π

) +
∑

k∈M
(r)
E

(w
(r)
Ek,∆

+ w
(r)
Ek,Π

) +
∑

k∈M
(r)
V

w
(r)
Vk

, (4.21)

(PDw̃)(r) =
∑

k∈M
(r)
F

∑

s∈NFk
\{r}

(wFk,r,s
D,∆ − w̃Fk,r,s

D,∆ ) +
∑

k∈M
(r)
E

∑

s∈NEk
\{r}

(wEk,r,s
D,∆ − w̃Ek,r,s

D,∆ ), (4.22)
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here w
(r)
Xk,Π

= (~wXk,Π)
TΦXk,r

Π ∈ W
(r)
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(X = F,E), w
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= (~wVk
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(r)
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, and wXk ,r,s
D,∆ , w̃Xk,r,s

D,∆

(X = F,E) are defined in (4.15).

By using (4.22), (3.43), (3.34) and the inequality |
J
∑
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αl|2ar
≤ J

J
∑
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|αl|2ar
, we obtain
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where

w̃Xk ,s,r
D,∆ := (~w

(r)
Xk,∆

)TΦXk,s,r
D,∆ , w̄

(r)
Xk,ζ

= (~w
(r)
Xk,ζ

)T Φ̄Xk,r
ζ ∈ W̄

(r)
Xk ,ζ

, ζ = ∆,Π, X = F,E.

Finally, (4.20) follows from (4.23).

By Lemma 4.2 and Lemma 4.5, the main result of this section holds.

Theorem 4.1. For any given thresholds ΘE ,ΘF ≥ 1, the condition number of the adaptive BDDC
preconditioned operator Ĝ satisfies

κ(Ĝ) ≤ CΘ,

where Θ = max{ΘE,ΘF }, C is a constant depending only on the number of common faces and
common edges per subdomain and the number of subdomains sharing a common edge.
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5. Numerical experiments

In this section, numerical experiments are presented for solving Helmholtz equations in three
dimensions. Since the stiffness matrix of the PWLS system (3.61) is Hermitian and positive definite,
we will apply preconditioned conjugate gradient (PCG) algorithm to solve (3.61), and the iteration
is stopped either the relative residual is less than 10−5 or the iteration counts are greater than 100.
These algorithms are tested in a machine with Intel(R) Xeon(R) CPU E5-2650 v2 2.60 GHz and
96-GB memory.

In the following experiments, we select a benchmark problem to study the properties of the
adaptive BDDC method. We choose Ω as a unit cube, and adopt a uniform partition Th for the
domain as follows: Ω is divided into some cubic elements with the same size h, where h denotes
the length of the longest edge of the elements. In the following tables, n denotes the number of
subdomains in each direction, m denotes the number of complete elements in each direction of one
subdomain, p is the number of plane waves used in each element, Iter is the number of iterations
needed in the PCG algorithm, λmin and λmax separately denote the minimum and maximum eigen-
values of the preconditioned system, cond is the condition number of the preconditioned system,
pnum is the number of total primal unknowns, pnumF and pnumE are separately the number of
primal unknowns on faces and edges, the average number of primal unknowns in each face or each
edge are given in the parentheses. M1 and M2 separately denote the adaptive BDDC algorithm with
deluxe scaling matrices [46] and multiplicity scaling matrices [47].

Example 5.1.
{

−∆u− κ2u = 0, in Ω,
∂u
∂n

+ iκu = g, on ∂Ω,
(5.1)

where Ω = (0, 1)× (0, 1)× (0, 1), and g = iκ(1 + v · neiκv0·x).
The analytic solution of the problem can be obtained in the close form as

uex(x) = eiκv0·x,

where v1 = (tan(−π/10), 0, tan(π/5))T , v0 = v1/‖v1‖2.
In Table 1 and Table 2, we study the convergence behavior and the changes in the scale of the

coarse spaces with respect to the condition number indicators ΘF and ΘE .
We set κ = 8π, p = 18, n(m) = 3(3), Table 1 summarizes the results of the two-level adaptive

BDDC method with economic (see [41], where η = h) and noneconomic generalized eigenvalue
problems for different choice of ΘF and ΘE.

Table 1: The results for different choice of the tolerances ΘF and ΘE with economic-version and noneconomic-version
two-level adaptive BDDC method.

method
noneconomic-version economic-version(η = h)

Iter pnum pnumF pnumE Iter pnum pnumF pnumE
ΘF = 1 + log(m) M1 7 3626 1538 1944 7 3646 1558 1944
ΘE = 1 + log(m) M2 9 8534 6446 1944 9 8530 6442 1944
ΘF = 1 + log(m) M1 7 3526 1538 1844 7 3542 1558 1840

ΘE = 4m M2 11 8406 6446 1816 11 8398 6442 1812
ΘF = 1 + log(m) M1 16 2086 1538 404 15 1986 1558 284

ΘE = 103 M2 80 7070 6446 480 89 6930 6442 344
ΘF = 1 + log(m) M1 16 2074 1538 392 16 1946 1558 244
ΘE = 103log(m) M2 102 7042 6446 452 111 6890 6442 304

ΘF = 4m M1 24 1090 542 404 24 974 546 284
ΘE = 103 M2 87 3264 2640 480 97 3138 2650 344
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From this table, we can see that for ΘE = 1+ log(m), the dofs on edges are totally selected as the
primal unknows, and as ΘE increase from 1+ log(m) to 103, the number of primal unknows on edges
significantly reduced. Similarly, the number of primal unknows on faces reduced as ΘF increases.
We also note that, compared with M2, the iteration counts of M1 are not large and increase slowly
when the condition number indicators (or tolerances) increase. It worth pointing out that, when
we use the economic-version BDDC algorithm, not only the iteration counts of the PCG algorithm
dose not increases, but in most cases the number of the primal unknowns has slightly decreased.

We set p = 18, n(m) = 3(3) and adopt deluxe scaling in our proposed adaptive BDDC algorithm
with economic generalized eigenvalue problems, Table 2 shows the numerical results for different
wave numbers and different condition number indicators ΘF and ΘE .

Table 2: The results for different ΘF ,ΘE and different wave numbers.

ΘF ,ΘE
8π 16π

pnumF pnumE cond Iter pnumF pnumE cond Iter
1 7662 1944 1.03 3 7976 1944 1.03 3
10 772 1888 4.12 13 440 1836 2.39 12
102 292 1248 7.06 18 260 640 14.70 23
103 260 284 24.09 33 260 224 22.60 26

As we can see in Table 2, the number of primal unknowns on faces and edges decreases as the
condition number indicators ΘF ,ΘE increase, the condition number of the preconditioned system
and the total number of PCG iterations increase as the condition number indicators ΘF ,ΘE increase.

In the following experiments, we choose ΘF = 4m,ΘE = 1000 and adopt the economic-version.
To measure the accuracy of the numerical solution, we introduce a relative L2-error as:

err =
‖uex − uh‖L2(Ω)

‖uex‖L2(Ω)
,

and as the PWLS method has the “wave number polution” phenomenon, we keep p = 28 and
decrease h to control the relative error less than 10−2 in the next experiments.

Table 3: The efficiency of the two-level adaptive BDDC algorithm with variable wave number κ

κ Nh err method λmin λmax pnum pnumF pnumE Iter

8π 113 9.68E-03
M1 1.00 6.07 7644 3873(26.89) 3015(27.92) 16
M2 1.00 90.41 14571 10251(71.18) 3564(33.00) 65

10π 153 8.23E-03
M1 1.00 8.46 10365 5406(37.54) 4203(38.92) 19
M2 1.00 113.62 25833 19911(138.27) 5166(47.83) 73

16π 273 9.19E-03
M1 1.00 12.13 19236 10686(74.21) 7794(72.17) 23
M2 - - 61952 51260(355.97) 9936(92.00) -

The results listed in Table 3 show that the iteration counts are not large and increase slowly as
the wave number increases, i.e., the growth rates of the iteration numbers are much smaller than the
growth rates of the scales of the discrete systems. But the cost of keeping the number of iterations
is that the size of the coarse space increases sharply with the increase of wave number. Especially,
when κ = 16π, due to the limitation of the computer’s memory, the program of the two-level
adaptive BDDC algorithm with multiplicity scaling matrices can not be calculated properly. From
this point of view, it is better to adopt deluxe scaling matrices in the adaptive BDDC algorithm for
the Helmholtz problem with large wave numbers.
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Further, we also show the efficiency of the two-level adaptive BDDC algorithm with deluxe
scaling matrices for a fixed number of subdomains and a fixed number of complete elements in each
direction of one subdomain respectively.

Table 4: The efficiency of the two-level adaptive BDDC algorithm with variable number of complete elements m in
each direction of one subdomain.

m pnum pnumF pnumE λmin λmax Iter
2 7644 3873(26.89) 3015(27.92) 1.00 6.07 16
3 10812 5682(39.46) 4374(40.50) 1.00 8.72 19
4 14156 7694(53.43) 5706(52.83) 1.00 8.80 19

Table 5: The efficiency of the two-level adaptive BDDC algorithm with variable number of subdomains n in each
direction.

n pnum pnumF pnumE λmin λmax Iter
4 3030 1680(11.67) 864(8.00) 1.00 8.78 20
5 7732 4228(14.09) 2352(9.80) 1.00 10.77 22
6 16010 8460(15.67) 5300(11.78) 1.00 11.95 22
7 28470 15114(17.14) 9468(12.52) 1.00 15.46 24

In Table 4, we set the wave number κ = 8π, p = 28 and the number of subdomains in each
direction n = 4. The results show that the iteration numbers are mildly dependent on the mesh
size, the minimum eigenvalues of the preconditioned systems are larger than 1, and the maximum
eigenvalues are mildly dependent on the mesh size. In Table 5, we set the wave number κ = 8π,
p = 18 and the number of complete elements m = 2 in each direction of one subdomain, and we have
the same experiment results, but it is worth pointing out that the number of the primal unknowns
have significantly increased as the number of subdomains increase. Since the coarse matrix in this
algorithm is complex and dense, and the direct solver is applied to the coarse problem, it brings
great challenges to the computer hardware, and needs more time and memory cost.

In the next experiments, we would like to test the efficiency of our multi-level adaptive BDDC
algorithm with deluxe scaling and economic generalized eigenvalue problems, where the wave number
κ = 8π, m = 2, the PCG algorithm stopped either the iteration counts are greater than 100 or the
relative residual is reduced by the factor of 10−5 at level 0 and 10−2 at other levels, and four
subdomains at the finer level are treated as a coarser subdomain.

Table 6: The efficiency of the multi-level adaptive BDDC algorithm with variable number of subdomains

n pnum pnumF pnumE λmin λmax Iter
3 level(p = 18)

4/2 3030/138 1680/96 864/24 1.00 8.78 20
6/3 16010/1574 8460/1002 5300/428 1.00 11.95 22
8/4 46746/5389 24696/3354 15876/1549 1.00 17.08 26
10/5 104418/13280 54036/8176 37260/3952 1.00 14.70 25

4 level(p = 15)
8/4/2 34888/4411/309 19110/2871/273 10633/1135/21 1.00 25.92 33
12/6/3 139282/19525/2324 75757/12070/1836 43560/5580/368 1.00 17.93 28

The results are listed in Table 6, especially, we list the number of subdomains in each direction
(n), the total number of primal unknows (pnum), the total number of primal unknows on faces
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(pnumF), the total number of primal unknows on edges (pnumE) at each level. From this table,
we can see that the PCG iteration number (or the condition number) slightly increases when using
more levels (see the results of n = 8 in the finest level) or increasing the number of subdomains
in the finest level. And in addition, it is worth point out that compared with the finest level, the
number of dofs at the coarsest level is reduced significantly, i.e., the multilevel algorithm is effective
for reducing the number of dofs at the coarse problem, and can be used to solve large wave number
problems efficiently.

6. Conclusions

In this paper, by introducing some auxiliary spaces, dual-primal basis functions, and operators
with essential properties, BDDC algorithms with adaptive primal unknowns are developed and ana-
lyzed for the PWLS discretizations of the three-dimensional Helmholtz equations. Since the dofs of
the PWLS discretization are defined on elements rather than vertices or edges, we introduce a special
“interface” and the corresponding sesquilinear form for each subdomain. The coarse components are
obtained by solving two types of local generalized eigenvalue problems for each common face and
each common edge. We prove that the condition number of the two-level adaptive BDDC precon-
ditioned system is bounded above by CΘ, where C is a constant depending only on the number of
common faces and common edges per subdomain and the number of subdomains sharing a common
edge, Θ is the maximum of ΘF and ΘE . Some technical approaches are proposed to improve the
computing efficiency, such as choosing the appropriate threshold and adopting the economic gener-
alized eigenvalue problems, and multilevel algorithm is designed to resolve the bottleneck of large
scale coarse problem. Numerical results are presented to verify the robustness and efficiency of the
proposed approaches. Further, we will devote to the parallel implementation of our multi-level adap-
tive BDDC algorithms, and extend this algorithms to the non-homogeneous Helmholtz equations
with constant or variable wave numbers.
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