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1. Introduction

Many real-life applications such as the shape optimization of technological devices, air pollution problems, and flow
control problems lead to optimization problems governed by partial differential equations (PDEs); see, e.g., [1-3]. In such
kind of problems, one is interested in the accurate evaluation of some target quantity, such as the value of the solution
of the underlying PDE at some reference point in the domain of interest, a physically relevant quantity such as the drag
in airfoil design or, in optimal control, the value of the objective function at the solution of the underlying minimization
problem. The complexity of such problems requires special care in order to obtain efficient numerical approximation for
the optimization problem. One particular way is the adaptive finite element method with the goal of achieving a desired
accuracy in the evaluation of the output quantity of interest, which consists of successive loops of the following sequence:

SOLVE — ESTIMATE — MARK — REFINE. (1

The SOLVE step stands for the numerical solution of the optimization problem in a finite dimensional space defined on the
given mesh. The ESTIMATE step is the key point of the adaptive finite element method. In this step, local error indicators
are computed in terms of the discrete solution without knowledge of the exact solution. They are essential in designing
algorithms for mesh adaptation, which equidistribute the computational effort and optimize the computation. Based on
the information of the indicators, the MARK step selects a subset of elements subject to refinement. The refinement is
then executed in the final step REFINE of the adaptive loop.

Nowadays, adaptive mesh refinement based on an a posteriori error estimator, contributed to the pioneer work of
BabuSka and Rheinboldt [4], has become a standard tool in the finite element codes. Most of the error estimators are
based on the L?-norm or the natural norm with respect to the applied discretization strategy, called as a residual-type a
posteriori error estimator, for the optimal control problems; see, e.g., [5-14]. However, the main drawback of conventional
error estimates is the dependence of often unknown constants. As a consequence, the error estimator cannot obtain
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information concerning the quantity of the error. With regard to applications in the scope of engineering, one can be
interested with a quantity of interest instead of the global error estimates. This can be achieved by the concept of goal-
oriented error estimates based on the error of goal to the energy estimates by means of auxiliary problems [15], recovery
based error estimates [16,17], or the dual-weighted residual method [18]. In this paper, our approach will mainly focus
on dual-weighted residual based goal-oriented a posteriori error estimation, as done in [19,20] for pointwise control
constrained optimal control problems, and in [21-24] for state constrained optimal control problems.

The dual-weighted residual (DWR) method aims at the economical computation of arbitrary quantities of physical
interest by properly adapting the computational mesh. This approach is basically based on the dual problem of the
underlying system with the target on the right-hand side. Since the dual solution impacts the weights of the resulting
error indicators, the proper choice of the weights is crucial for the effectivity of the adaptation process. In particular,
they should measure the influence of a present element on the requested goal quantity of interest. Several techniques for
approximation of the dual solution have been developed and proposed in the literature; approximation by a higher-order
method, approximation by a higher-order interpolation, approximation by difference quotients, or approximation by local
residual problems; we refer to [25-27] and references in therein.

In this work, we study a goal-oriented a posteriori error estimation for Dirichlet boundary control problems governed
by a convection diffusion equation:

. 1 w
minimize J(y, u) = - ly — 1% o + = llullg - (2)
ueysd 2 ’ 2 ’
subject to
V. (—eVy+8y)+ay =f in £2, (3a)
y=1u on I, (3b)

where £2 is a convex polygonal domain in R* with Lipschitz boundary I' = 352. The velocity field is denoted by
B € (Wl*"o(Q))z. We suppose that it satisfies incompressibility condition, that is, V - 8 = 0. The constant coefficients
¢ > 0and a > 0 are corresponding to diffusion and reaction terms, respectively. The regularization parameter w is a
positive constant. For the source function f and the desired state y?, we assume f, y¢ e [2(£2). Further, the admissible
control set U% is specified by

U .={uel’I): v <ux)<u’ ae. xeI}, (4)

where u® and u® are real numbers. It is well-known that the Dirichlet boundary control problem (2)-(4) is equivalent to
the following optimality system:

V. (—eVy+8y)+ay =f in £, (5a)
y=u on I, (5b)
V-(—eVz—fz)+az=y—y° in £2, (5¢)
z=0 onT, (5d)

9z
(wufeﬁ,wfu)g,p >0 we U%, (5e)

where n is the unit outer normal to I". We refer [28,29] and reference therein for derivation of the optimality system (5).

In such kind of problems (2)-(4), the Dirichlet boundary data, i.e., control variable, does not directly enter into standard
variational setting. Instead, the governing state equation (3) is understood in the very weak sense, see, e.g., [30-34]. Also,
on polyhedral domains, corners cause the normal derivatives of the adjoint 9z/dn in the optimality system (5) to have
limited smoothness. In [35], it is shown that the control variable u vanishes on the corners for problems on a convex
polygonal domain, whereas the control may have a pole around the corner for a nonconvex polygon domain. To avoid these
difficulties, researchers have proposed various approaches including modified cost functionals in [36-38], approximating
the Dirichlet boundary condition with a Robin boundary condition in [39], and a mixed formulation in [40].

This paper concerns a numerical investigation of Dirichlet boundary control problems governed by a convection diffu-
sion equation. Therefore, it may become natural to utilize discontinuous Galerkin methods for the spatial discretization of
problems involving strong convection and discontinuities. On the other hand, it is meaningful to use a mixed formulation
to avoid the variational difficulty as discussed in [30-34] and dependence on the regularization parameter as done in [39].
Therefore, we employ local discontinuous Galerkin (LDG) method as a discretization technique. The LDG method, one of
several discontinuous Galerkin methods, can be considered as a mixed finite element method. As in mixed finite element
methods, we rewrite the model problem as a system of first-order equations and discretize it by introducing auxiliary
variables. However, auxiliary variables can be eliminated from the equations, which is usually not the case for classical
methods. In the LDG method, the local conservativity holds compared to standard finite element methods because the
conservation laws are weakly enforced element by element. In order to do that, suitable discrete approximations of the
traces of the fluxes on the boundary elements are provided by the so-called numerical fluxes. These numerical fluxes
enhance the stability of the method, and hence, the quality of the approximation. This is why the LDG method is strongly
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related to stabilized mixed finite elements. The stabilization is associated with the jump of the approximate solution
across the element boundaries, see, e.g., [41,42] for details. Moreover, both the approximations to the state y and the
corresponding auxiliary variable q = Vy on each element belong to the same space. Therefore, the coding of the LDG
method is much simpler than that of the standard mixed methods, especially for high-degree polynomial approximations.
Last, the LDG method allows for an easy handling of general meshes since no interelement continuity is required. Hence,
it is well-suited for hp-adaptivity. We would like to refer to [41,43] for details about discontinuous Galerkin methods.
Discontinuous Galerkin methods have also been studied in [12-14,44-46] for optimal control problems due to a better
convergence behaviour for optimal control problems exhibiting boundary layers.

In the literature there exist extensive numerical studies for a priori error analysis of elliptic Dirichlet boundary control
problems; see, e.g., [31,32,34,35,40,47-51] and references therein. However, there are a few studies for a posteriori error
estimation of Dirichlet boundary control problems. Only in [36,37], residual-type a posteriori error analyses were carried
out for Dirichlet boundary control governed by an elliptic equation with the control variable defined on an equivalent
form of the norm in H%(I’ ). With the present paper we intend to contribute a goal-oriented posteriori error estimation
of Dirichlet boundary control problems governed by a convection diffusion equation, considering the control variable in
[3(I")-norm.

We begin, in the next section, by presenting Dirichlet boundary control problem, discretized by the local discontinuous
Galerkin method. Section 3 is devoted to derivation of a primal-dual weighted error representation for the objective
functional. It is shown that the control constraints yield an error term representing the mismatch in the complementary
system due to the discretization. Numerical results are given in Section 4 to show the efficiency of the proposed error
estimator. Conclusions and discussions are provided in the last section.

2. Model problem

Throughout the paper we adopt the standard notation W™?(£2) for Sobolev spaces on £2 with norm || « ||mp and
seminorm ||, , o form > 0 and 1 < p < oo. We denote Wm2(2) by H™(£2) with norm || - [lm,z and seminorm |-|,, 5. It
is noted that H9(£2) = [3(£2) and H}(2)={v e H(2): v=0 on 9£}. The L*-inner products on L?(£2) and L*(I") are
defined by

(v, wo.e =[ vw dx Vv, w ELZ(Q) and (v, w)o.r =f vw ds Yv, we LZ(I"),
2 r

respectively. In addition, C denotes a generic positive constant independent of the mesh size h and differs in various
estimates. Further, the notation a < b implies that there exists a constant C > 0, depending on the shape regularity of
triangulation, such that a < Cbh.
In order to write the LDG scheme for the optimality system (5), we introduce the following auxiliary variables:
1
q=¢2Vy, p=fe%Vz

as done by [40] in a mixed formulation of the optimality system. Then, the optimality system (5) can be rewritten as

V-(By—eiq)tay=f in 2, (6a)
q=e2Vy ing, (6b)
y=1u onl, (6¢)

Vo(elp—pr)taz=y-y g (6d)
p=—€Vz ingQ, (6e)
z=0 on I, (6f)

(wu+e%p-n,w7u)p >0 Yuw € UY, (6g)

Well-posedness and regularity of the optimality system are contained in the following theorem for the convex polygonal
domains. The proof of Theorem 2.1 is omitted here since its proof is very similar with the proofs of in [31, Thm. 3.4] for
control constrained problem and of in [34, Lemma 2.9] for unconstrained problem.

Theorem 2.1. Assume that §2 is a bounded convex polygonal domain with Lipschitz boundary I'. Let (y,u,z) € [*(£2) x
[3(M) x H&(.Q) be the solution of optimality system (6). For f, y¢ € [2(£2) we then have

ue HY(r), yeHY(£2), and zeH*(2)NH}(£2). (7)
Moreover, for y* € LSE, s‘i > 2, we have

yeWM(R), ueWVSNI), zewW?(R), 2<s<s,, (8)
where s, = min (sﬁ, sf ) with s;? = Zj;”g“j”, and wpgy is the maximum interior angle of the polygonal domain 2 with the

condition wmgy > /2.
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We assume that the domain £2 is polygonal such that the boundary is exactly represented by boundaries of triangles.
We denote {73} as a family of shape-regular simplicial triangulations of £2 in sense of [52]. Each mesh 7 consists of
closed triangles such that £2 = UKETh K holds. We assume that the mesh is regular in the following sense: for different
triangles K;, K; € 7p, i # j, the intersection K; N K; is either empty or a vertex or an edge, i.e., hanging nodes are not
allowed. The diameter of an element K and the length of an edge E are denoted by hy and hg, respectively, and also
h= maxKej'ﬁ hK-

We split the set of all edges &, into the set £ of interior edges and the set £ of boundary edges so that &, = £ U&].
Let n denote the unit outward normal to I". The inflow and outflow parts of I" are denoted by I~ and I'*, respectively,

I''={xel: B-n<0}, I'={xel: B-n>0}.
Analogously, the inflow and outflow boundaries of an element K € 7; are defined by
8K ={xcdK : B-ng <0}, K ={xedK : B -ng = 0},

where ny is the unit normal vector on the boundary 9K of an element K.

Let the edge E be a common edge for two elements K and K®. For a piecewise continuous scalar function y, there are
two traces of y along E, denoted by y|r from inside K and y°|; from inside K®. The jump and average of y across the edge
E are defined by:

1
[y] = yleng + ¥°lenge,  {y} = E(Y|E+.VE|E)1

where ng (resp. nge) denotes the unit outward normal to dK (resp. dK*¢). Similarly, for a piecewise continuous vector field
q, the jump and average across an edge E are given by

1
lal = alene +aflenee, (@) = 5 (ale+a’le).

For a boundary edge E € K N 352, we set {q} = q and [[y] = yn, where n is the outward normal unit vector on I". Note
that the jump in y is a vector and the jump in q is a scalar which only involves the normal components of q.

To obtain weak formulation for the state equation in (6), we multiply it by piecewise smooth test functions v and r,
respectively, and integrate by parts over the element K € 73

(€2q — By, Volox + (@y, vok — (2 — By) - m, v)osx = (f, )k vev, (9a)
(@ Dok + (€23, V-Tox = {2y, T Mok TeW, (9b)
where
W= Iw e (13(2)’ : V-wike [XK), VK e 77,}, (10)
V= {vel¥): vixe *(K), VK€ T}. (11)

Next, we seek to approximate the state solution (y, q) with functions (yp, q) in the following finite element spaces
W, xV,CWxV:

Wi = {we (12) : wlke (5'K), VK e T}, (12a)
Vi = {vel’(R2): vixkeS'(K), VK €T}, (12b)
Uy = {uel’r): ulgeSYE), VEe&}, (12c)

where S!(K) (resp. S!(E)) is the local finite element space, which consists of linear polynomials in each element K (resp.
on E). For a given element K € 7, the restrictions to K of y, and of each of the components of q, belong to the same
local space; this renders the coding of these methods considerably simpler than that of the standard mixed methods. It
is noted that we also define UM = U, N U*.

For all (v, r) € V}, x Wy the approximate solution (yy, qy) of the state solution (y, q) satisfies

1 1 —
(e2qy — Byn, Vvox + (ay¥n, v)ox — {(€2qn — BYn) - M, v)o,ax = (fr, vk, (13a)
1 1.
(G, o + (€2yn, V - Tlog = (€2¥h, T Mo 3k, (13b)

where Gy, ¥, ¥, denote numerical fluxes. They have to be suitably defined in order to ensure the stability of the method
and to enhance its accuracy.

We are now ready to introduce the expressions that define the numerical fluxes. The numerical traces of y associated
with the diffusion and convection terms are characterized as

up, Eel,
- +Cypp - , Eeég, ~
T = { bnb+Ga- bl F €8 and =1 ub+Dn-Inl, Ecg), (14)
" ’ Yh. Eerl™,
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respectively. We note that the numerical trace of y with respect to convection term is the classical upwinding trace. In
addition, the numerical flux q, is given by

~ [ {an} + Cillyell — Ci2llgnll, E € ngs

= 15
o qn + Cia(yn — up) - 1, Eeg. (15)

It is noted that the auxiliary parameters Ci1, C12, and D1, depend on x € E, where E € &. In the literature, there exist
different choices for these parameters; see, e.g., [ 14,43,53]. In the numerical implementations, C;; is chosen as Cy; = 1/hg
for each E € &, whereas we take C;; normal to the edges and modulus 1/2, i.e.,, Cy; -ng = % and the vector function D¢
is given by

1 .
Dy -n= 3 sign(n - g).

Let fy, yﬁ € V;, denote approximations to the right hand side f and the desired state y¢, respectively. Then, putting the
numerical fluxes (14) and (15) into (13) and summing over all elements, we obtain

Zf(e%qh—ﬂyh)-w dx Zfe%({qh}+cn[[yhu—cu|[qﬁu>-[[v]] ds
K E

KeTy Ecg)
+ ¥ [anvtrt ¥ [ +Dn s Bl ds+ 3 [@ pyvas
KeTy, UK Eesg E Fer+"E
—Zfe%(qh‘n+C11yh)vds
Eeg] E
1
= | frvdx— fe?Cuvdsf flﬁ-n|u v ds,
L > [etcmva= 3 [18-nm
Eegh Eel”
fqh-rdeere%th-rdx—Z[e%(Lyh}+C12-[[yh]])|1r]]ds
Q KeT VK o VE
h EEEh
- Z[e%uhr-nds.
Eegf E

For simplicity, we define the following bi(linear) forms:

a(q, r) :=f q-rdx,
2

b(y, ) := Zfe%yv-rdx— Zfe%({y}JrCu-IIy]])[[r]] ds,
K E

KeTh Eegf
)= Y [ (eyv—yp-vo)ax+ 3 [ (014D )8 Lol ds
KeTy K ovE
h Eefh
- Zfe%cn[[y]]-[[u]] ds+ Y /(n-ﬂ)yvdszfe%Cllyvds,
Eeé? E per+"E Feg? E
1
my(u,r) = 2ur-nds,
(1, 7) Z[Ee
Essh
m,(u, v) == — Z[E%Cnuvdsf 3 flﬁ-n|uv ds, F(v) :=/fhvdx.
Ecgl E ger— "t §

By applying integration by parts over the first term in b(-, -), we obtain

b1 = 3 [ dyverae= 3 [ (01+co )i ds
K 0 JE

KeTh Eeg)

=—Zfe%w.rdx+Zf e%yr-nds—Z/e%({y}Jrcu-[Ly]])[[r]]ds.
K 8K o JE

KeTy KeTy Eeg)
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Then, by following straightforward computation
Zf e?yr nds = /{r} Hezy]]derZf[[r]] ezy]
KeTp ¥ oK Eeglus!

we have

Z/ezw rdx—l—Z/ei {r} — Cp2[r]) - [yl d5+Zf62yr nds.

KeTh Eeg) Eegf

Hence, the LDG approximation of the state equation in (6) reads as
a(Qn, ¥) + b(yn, £) = m1(up, 1) vr € Wy, (16a)
=b(v, @) + c(yn, v) = my(up, v) + F(v) Vv € V. (16b)

Employing Lagrange multiplier method, see, e.g., [29], to solve the Dirichlet boundary control problem (2)-(4), we derive
the following discrete optimality system:

a(gn, 1) + b(yn, ) = my(up, 1) vr e Wy, (17a)

—b(v, qn) + c(yn, v) = mz(uhs v) + F(v) Vv € Vp, (17b)

a(pn, ¥) — b(zn, ¥) = VY € W, (17¢)
b(¢, pr) + c(¢, 21) = ( — ¥ $log Vo € Vi, (17d)
(wuh+e%ph-n,w7uh)g,p >0 Yw EUﬂd, (17e)

where (Yh, Gn, Z, Pr, Un) € Xp = Vi X Wy, x Vi x Wy x U,
By invoking a Lagrange multiplier oy, € Uy pertinent to the pointwise constraints via

wuh—l—e%ph-n+ah = 0, (18a)
oy, — max{0, oy, + y(u, — up)} + min{0, oy, — y (uf — up)} = 0, (18b)

where y > 0 is an arbitrary fixed real number and the max- and min-operations are understood in the pointwise sense.
The equality (18b) is equivalent to the following pointwise complementary system with o, = cr;’ —op:

of >0, up —ul <0, op (up — up) =0, (19a)

of =0, uf—uy<0, of(uf—up)=0. (19b)

It is well known that (18) enjoys the Newton differentiability property (see, [54]), at least for y = w. Therefore, we
can apply a generalized (semi-smooth) Newton iteration. However, the infinite-dimensional generalized differentiability
concept of the max- and min-functions requires a norm gap. In case of boundary controls, it is guaranteed by applying a
smooth mapping as done in [55, Remark 4.3]. Due to the structure of the nonsmooth part (18b) the Newton iteration can
be expressed in terms of an active set strategy. For any Newton iteration step, the discrete active sets are then determined

by

Agh = U{x €E| op(x)— y(ui(x) —un(x)) <0, VE € Sﬁ}, (20a)

App=|_JIx € E| on(x) + y(uslx) — up(x)) > 0, VE € &1}, (20b)
and the inactive set is Z, = 8,? \{Agn U Ap p}. Further, the complementarity conditions in (19) can be rewritten as

up = uj, a;f’ =0, op<0 on Agp, (21a)

up=1u, of =0, op,>=0 onAyp, (21b)

W<uy<u’, of =0f =0, o,=0 onT. (21c)

One of the issues related to the Dirichlet boundary control problems is the regularity of the solutions, depending on
the angles of the domain and the regularity of the given data (see |35, Thm. 3.4]). We refer to [31,34,47] for the regularity
of the solutions for general convex polygonal domains and references therein. By following [14], the continuous solution
(y, q. z, p, u) also satisfies the following optimality system:

a(q,r)+ b(y,r) = my(u, r) Vre W, (22a)
—blv,q)+c(y, v) = mz(u v+, ve YvelV, (22b)
alp, ¥) — b(z, ¥) = Yy eW, (220)
b(¢.p)+c(¢.2) = Lv ¥ e Vo eV, (22d)

(u+erp-mw—u)or >0 Yuw e U, (22e)
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where the variational inequality (22e) reads as
1 a b __
ou+tezp-n—oc +o =0,
R——
=a

ol >0, u—ub <o, o’(u—u") =0,

g% >0, U —u<0, o’(u* —u)=0.
Then, the continuous active sets are corresponding to

Ag={xeTl: ox)—yu'x)—ux)) <0},

Ap=1{x eI a®)+ y(ulx) — u’(x) > 0},

and the inactive set is T = I'\{.A; U Ap}. Moreover, the complementarity conditions in (23) are equivalent to

u=u", ob=0 o<0 a.e. on Ag,

u=u’, ¢°=0, >0 a.e.on A,

W <u<ut, oc=cP=0, o0=0, ae.ontT

3. Goal-oriented error control

(23a)

(23b)
(23¢)

(24a)
(24b)

(25a)
(25b)
(25¢)

In this section we extend the dual-weighted residual method proposed in [56] to Dirichlet boundary control problem
governed by a convection diffusion equation under bilateral box constraints. In this context, the objective functional

represents the target quantity in the goal-oriented mesh adaption approach.
We first define the continuous Lagrangian functional £(x, o) as

‘C(X! G) = J‘(yv u) + ml(u! p) - ﬂ(q, p) - b(.ys p)

+ mz(uz Z) + (f! Z)U,ﬂ + b(zs q) - C(,V! Z)

+ (u —ub, Gb)o,r + (u“ —-u, Uﬂ)o,r!

where x = (y,q.z,p.u) e X =V x Wx V x W x U™ and ¢ € L*(I"). It is noted that
L(x,0) =]y, u),

and for all éx € X it holds that
Vi L(X, o)(6x) = 0.

Also note that the discrete Lagrangian functional is equivalent to

Lr(xn, on) = Ja(¥n, un) + mi(un, pr) — aldn, Pr) — b(Yu, Pr)
+ ma(Un, 2n) + (fr, 2n)o,2 + b(zn, Gn) — c(¥h, 2a)

+ (uh —up, Jf?)o,r + (uﬁ — Unp, Uf?)o,r’

where xp, = (yh, Qh, Zn, Ph, Hh) e Xp =V x Wy x Vi x Wy, oy, € Uy and

I ) = 31y~ Vil + %l -
Then, we have

Ln(xn, on) = Jn(¥n, Un),
and for all 8x, € X, it holds that

Vi Ln(Xn, on)(8%n) = 0

which is obtained by taking z; = 0 on the boundary (5).

(26)

Here, the second derivative of £ with respect to x does not depend on x and o. Therefore, we use V,,L(¢, ¢) instead
of Vi L(x, o )¢, ¢) for notational convenience in the rest of the paper. Similar observations also hold true for the discrete

Lagrangian L.

Now, we establish a representation for the difference of the continuous and discrete goals in terms of Hessian of the

Lagrangian and additional contributions as derived in [19,23].
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Theorem 3.1. Let (x,, oy,) and (x, o) be the solutions of (17) and (22), respectively. Then, the following relation holds
1
JO, W) = Jrn, un) = =35 Vil = %, % = X) + (07, un = 7)o + (0% 1 —un) -

1 1
+ i”J’dH%,g - Ellyﬂ\lé,g + 0 =YY g0+ (F—fazn)y g

+ 0 Y5 Y — Yados-
Proof. With the help of the following observations at optimal solutions
Jy,u)=Lx,0) and  Ja(Yn, un) = Ln(xn, on),
Taylor expansion, the definitions in (26) and (27), and the complementary conditions in (19) and (23), we obtain
J, u) = Jn(yn, un) = L(x, o) — La(x, on) — VeLa(X, on)(Xn — X)
— %Vmﬁh(xh — X, Xp — X)

J@ u) = Ja(y, w) + (f = fa, 2)o.2

— (= 00) . — (U — o),

— ViLp(x, oy )(xp — X) — vaxﬁh(xh — X, Xy — X)

1 1
EHJ’ -V - iHy —ViE o+ (F = fi 2o
+Uh—f.z—2zn)oe + (' — 5. ¥ — Yndo.o — VaL(x, 03)(xh — X)

1
f(u — Up, a,’f) - (uh —u, a;!’) fivmﬁh(x;, — X, Xp — X).

(o, up—u)
Note that x, € X;; C X. Then, the expression
VL(X, 01 )(Xn — X) = VxL(x, 0 )X — X)+(up — U, 0y — 0)
N—
=0

yields
1 1
Jow) = I w) = Sy = ¥log = 51y = Yilog + (F S 2n) g

1
+0" = Ypy = Yoo + (o, un — u)o,r - vaxf'h(xh — X, Xp — X).
Finally, the complementary condition in (23) produces the desired result. O
Now, we will summarize some known results, which will be needed in the rest of the paper.

e letip : V — V4 and I : W — W, be the special interpolation operators satisfying (see [57, Chapter III] and [58,

Section 3])
-y, v)e =0 VveW, (28a)
(V-@—-1La).v), =0 VveV. (28b)
Then, the following approximation estimates hold
ly —iyll-sre < Ci'™ Yl 0, $=0,1, yeW" (), (29a)
la—klsre < Ch'lal,e. $=0,1, qe (W(e)" (29b)

e Let y, : L3(I") — Uy be the L2-projection such that
(v—mpv, up)or =0  Vup € Up. (30)
The following approximation property of 7, holds (see [59, Lemma 3.6])
¥ — mylos< CHlyls
for y € W2(K) with 1 < s < min{2, r}. Observing that, for 1/2 <s < 3/2,

u— inf |ylse
ylr=u
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is a norm equivalent to H*~1/2(I"), we deduce from above inequality that
lu — mhuly r < Ch*[ul; (31)
for u € H°(I'"). Moreover, the following estimate holds (see [59, Equation 3.9])

llrnullo,r < llullo,r- (32)

Next, we focus on the evaluation of the Hessian of the Lagrangian in Theorem 3.1 and derive a representation in terms
of primal-dual residuals, primal-dual mismatch in complementary, and oscillation terms.

Theorem 3.2. Let (x, ¢) € X x [>(I") and (xy, ow) € Xy x Uy denote the solutions of (22) and its finite dimensional counterpart
(17). Then

J, u) = Jn(yn, un) = —r(tw — w) + ¥, + oscy, (33)
where r(tpw — w) stands for the primal-dual weighted residuals
ruw —w) == %(ml(uh, Inp — p) — a(qy, Inp — P) — b(yn, Ihp — P)
+ma(un, iz — 2) + (o, 2 — 2)o.2 + b(inz — 2, qn) — c(¥n, inz — 2)
—a(pr, [nq — q) + b(zn, Ihq — q)
+H¥h — Yo 1Y = Yoo — bliny — ¥, Br) — cliny — ¥, 24)

+(ewup +e%ph-n+ah,miu7u)g,p), (34)
the term Wy, represents the primal-dual mismatch in complementary
1 b b b b
¥, = 3 [(oh, u, — u)o,r + (U,f, u— uﬁ)o.r + (cr JUp — U )o,r + (gﬂ, Ut — uh)o,r] , (35)

and oscy, is given by
1 1
osch = o (f —finZ = 20)g 0 = 5 (" = Vi ¥ =)o

1 1
+ 51 ee = S WilG.e + Ok =¥ Yoo + (7 = fi 2)y o (36)
Note that I, iy, 7y are interpolation operators onto the finite element spaces Wy, Vi, and Uy, respectively, defined in (28) and
(30).

Proof. Let ¢, = (8yn, 8Qp, 624, 8Py, Suy) € Xy C X. It is noted that the second derivative of Lagrangian £ with respect to
x does not depend on x and o. Then, the optimality conditions in continuous and discrete settings and an application of
Taylor expansion yield

0 = ViL(x,0)(¢r)
= ViL(xn, o) ¢n) + Vi £(X — Xn, ¢1)
= Vul(xn, on)(@n) — (8up, on — 0)o.r + Viel(X — X, @)
= ViLn(Xn, 00 ) @n) +(F — fo 82n)o.2 — 0 — V1, SVl (37)
=0
+ (8un, o — on)o,r + VieL(X — X, @)
= (8un, 0 — on)o,r + Veel(X — Xn, 0n) + (f — fu 82n)o.2 — (V" — ¥h» 8¥n)o,2-
From (37) we have the following relation:
ViaL(Xn — X, Xp — X) = Vi L(Xp — X, Xn — X + ¢1) — (8Up, 0 — on)o,r (38)
—(F = fu. 8z0)o.2 + ° — ¥, 8¥n)o.c-
Next, Theorem 3.1 and the equality (38) give us

1 1
J, u) = Julyn, up) = iVxxﬁ(x — Xn, Xn — X+ @n) + 5(51#:, o —0n)y f

1
+o(f *fh"szh)u,sz - i(yd - ¥ 33’*‘)0,9

| =
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b _ b a ga __
+ (0% up —u )o,r + (U U uh)o,r

1 1
+ illyd[[%,g - Ellyﬁ\lﬁ,g + V=YYt F—fuzn)g

+0 =Yy = Ydoa
With the help of the following relation:
ViL(%h, on)(X — Xn — @n) = ViL(X, 0n)(X — Xn — @n) + Vi L(Xn — X, X — Xh — @)

= ViL(X, o)X — xn — gp) +(on — 0, U — up — Sup)o,r

-0
+ Vi £(Xn — X, X — Xn — @), (39)
we obtain

JO, u) = Ju(yn, up) =

1
Vo L(Xn, O8)(X — Xn — @n) — 5(0’}. —0o,Uu— Uy — 511;1)0",,

1 1 1
+ i(suh: ag — Uh)O,F + i(f *fhv 8zh)0,ﬂ - i(yd 7y§! 3}’.’1)0}9
+ (Ub’ Up — ub)o r U= u, Gb)o r +(Ua’ u’ — uh)o r

=0

1 1
- (uﬂ —u, Ga)oyr +E”yd”5152 - E”J/g”g,g + (yﬁ _yd,y)o’g
[ ——
=0

+(f = fuzn) o + O =¥y —Yndoe

1 1
= _ivxﬁh(xh, on)(Xn — X+ @n) + E(Uh +o,up—u), -
1 1, 4 4
+ i(f*fh’zfzh)n,g - i(y ~ YoV =)o

1 1
+ Ellyd[[é,g - Ellyﬁ\lé,g + =Y + (=i 2)g

Then, choosing ¢, = (ihy — ¥Yh, InqQ — Qn, inz — 2y, hp — Py, ThU — uh) € X and using the complementary conditions (19)
and (23), we obtain

J, u) = Ju(¥n, un)

1 . .
= _vaﬁh(xhs on)(iny — ¥, 1@ — Q. inz — z, Ip — p, Ty — u)

1
2 (b )y (o) () (%)

1 1
+ i(f —frnz = 2n)g o = i(yd — Y Y =Yoo

1 1
+ 51 5e = S Iil6.e + 0 =¥ ¥)o o + (F = i 20)g o
which is the desired result. O

The representation in Theorem 3.2 is not fully a posteriori due to the weights éx, —x and dependence on the continuous
solutions. This fact avoids an immediate numerical implementation of the representation in Theorem 3.2. Now we deduce
a fully a posteriori and local indicators from the terms of (33) in Theorem 3.2.

3.1. Primal-dual weighted residuals

First, we concern with an evaluation of the primal-dual weighted residuals r(t,w — w) given in (34).
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Theorem 3.3. The following estimate holds

1
Irlw —w)l S 5 Y peei + pesk + P + pRog + pie,

KeTy
where
1 1
pr = | = V-Byn—ezan) —aylic + Y. lezlanllfe + 18 - [yall3
Eegl ECOK
1 1
+ Y lle2Colandllfs + (€2 C — Di - BIyalls ¢
Eegl ECok
1/2
1
+ > lerCatun—ylige+ Y, WB-nlw—ylge |
Eegl EcoK Eel— ,ECaK
of = | linz—zl3c+ D iz —2M3 e + iz — 2013 ¢
Eegl EcoK
1/2
+ ) lz—zlfe+ Y. liz—zlde|
Eegl ECaK Eel ,EC3K
1 1 1
o= |12V —aldc+ DY llezlyalll}z + lle2Crz - Dyellioe
Ecgl ECaK
1/2
1
+ > ez —yalis |
Eegl ECoK
of = | Ip—plic+ D Ihp—pHE + I — Il
Ecgl ECaK
1/2
+ > Iwp-plgs|
Eegl ECoK
1
Pk = (Ilyhfyﬁfv-(ezm — Bzn) — azil3
1
+ ) llezlpnllige + 18 - zall13 6
Eegl ECoK
1 1
+ Y llezColpalllf + (€2 Cia — D1 - Blizalli3 g
EcEf ECOK
1
Y ledCumide+ Y 1B il )
Eegf ECak Eel+,EC8K
o = | iy —yI5c+ D iy —yH3e + Iliny — ¥1I3 6

Eegl EcaK
1/2

+ > iy -yiie+ D v -yiie|

Ecgl EcoK Eert,Ecak

11
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1 1 1
ok = |lezVa+ ol + D lezlzalllf + lle2Cr - [znlloe
Ee&f ECOK
1/2
1
+ ) lerzmlg |
Eegl EcK
of = |Ika—alie+ > Iha— a3+ Ilka—all3,
Ee€l ECHK
1/2
+ > Iha-alge|
Eegf ECOK
1
Pk =Y lloun +e€2py-n+onllop,  wf = Y [mnu— ullos.
Eegf Eegf

Proof. First, we consider the following state residual:

My = mi(up, Ihp — p) — alqn, [p — P) — b(yn, Ip — P)
+ma(un, inz — 2) + (fn, i — 2)o, + b(inz — 2, Qn) — c(¥n, inz — 2).

By the definition of the (bi)-linear form and then integration by parts we have

My =3, f(fh < (Byn — e an) — ay)(inz — 2)dx

KeTy

- Zfe? {inz — 2} + C1z - [inz — z])) [an]l || ds
Eegl £

+ 3 [tz =21 =D Tz ~2D)p - Inds + Y- [ edculive —2- s
Eeg} Eeg?

+ X [elentn—utiz-2ds+ 3 [18-nl0n - iz - )ds
Ecg] Eer—

+Z/ €3 Vyn — q )Uxp — p)dx
KeTh

- Z[ ! ({1np — p} — Collip — p]l)[[yhﬂds+zf 4 (un — 1 XIhp — D) ds.
EEgh Ee Sh

Then, Cauchy-Schwarz inequality and Young's inequality yield

My < 57 lfy = V- (Byh — e2a) — aynllollinz — zllok

KeTy

> (ue%[[qhﬂuo,g + 16 - Iyallo ) Hisz — zHlo.
Eegf

+ 3 (ICet Manlos + (€ Cr = Duy - A)allo ) Iivz — 2Dl
Ee€l

+ 3 €3Cullun — yulloglinz — zllog + Y 18- mlltn — yallolinz — zllo
Eeg} Eer—

1
+ ) lle2Vyn — Qullox 1P — Pllox
KeTy
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+ 3 lle Iyallo.chl{hp — PHlos + IC12€ % [yalllo,c I[P — Plllo.z

Eegf
1
+ Y ezllun —yallogllp —pllog S Y | praf + pgok-
Eeg) KeTy

Analogously, we derive the estimates for the adjoint and the control. O

In the a posteriori error estimates (40), the residuals of the state system are weighted by the adjoint variables, in turn,
those of the adjoint system by the state variables. In this way, the proposed estimator exhibits particular sensitivities of
the optimization problem. We note that the estimates in (40) still depend on the continuous solutions. To overcome this
difficulty, we replace y, q, z, p, u by ¥, Qx, Zn, Pr., us. On the other hand, we use an average technique for the interpolation
functions ¢ € {iny, InQq, inz, [p} in the element K € 7,

= cardWIO)™ ) &, (41)
KeN(K)
where
NEK) = {K}U{K' | KNK' 3}

Note that the contributions coming from the edges in (40) are eliminated with the help of the trace inequality, see, e.g., [60,

Section 1.6]. Further, typically ||wuy + €2py - 1+ oyllo,z is small, or, when the same ansatz is used for discretization, it is
even zero.

Hence, a posteriori estimate for the primal-dual weighted residuals becomes

1 . N - N
Irlinw — w) £ 5 Y e + R + ol + oRig, (42)
KeTy

where @y with v € {z, p, y, q} are approximations to wj, obtained by (41).
3.2. Primal-dual mismatch in complementary

Now we concentrate the errors coming from complementary slackness (35). It can be written as

1 b b b b
o, = 5 [(ah, ub — u)qJr + (or,f, u— uﬂ)o,r + (o up —u )D,r + (G'ﬂ’ u — uh)o,r] ) (43)
This term cannot be immediately handled due to continuous unknowns u, o?, and ¢°. Using discrete and continuous
complementary conditions in (21) and (25), we derive the following estimates on the respective sets:
WWINTG) =0:=1vy',

1 1 €
Yh(I N Agp) = 5(05, U—Up)ozndg, = E(U’?’ —uj — P n)o, 7 A,

1 Je Je
< illdfllo,zmah (Huﬁ + —pn - Nllozna,, + — P —P)- n”O,IﬂAa_h)
: . . P :
= 2,
1 1 Je
Un(Z N App) = 5( b Uy — U)o, znap, = 5(0’;, up + Ll )0, 704,
1 Ve NG
< illﬂfﬂo,zm,a,,,h (lluﬁ + =——pn - o,zna,, + —— (P — Pn)- ll||o,zmxb,h)
@ @
= "p‘a,
1
Wi(AgNTp) = 5(0", u® — up)o, 4.z,
1) Je
< E(H = U, U — Un)o, 4.0z, + -5 ((p—pn)-mu— uh)o,Aath
1
< 3 lu® — unllo, a0z, (wHHa — tplo, 4.0z, + +/€1I(P — Pa) - Dllo, 4,0z, )

Il
<=
o
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v, _ 1 b b 1 a ,a
w(Ag N App) = 5(0&, Uy — Uy, agndpy + 5(0 U — Up)o, AgnAp

w
b
= 5(0” s Up — U, 4y, + E(U — Up, U — Up)o, agn Ay,

€
L e
2

(P —pr) 0, U — U)o, auna

IA

1
§||Uh — U*lo, ANy
b
% (llo?llo, agnapy + @llu® — upllo, agna,, + VEID® —Pr) - 0llo,a04,,)
— V’IS

1
Wn(Aq N Agp) = E(Uﬁl, U — Up)o, Agndgp + E(Ua, u" — Un)o, 4anAq

= E(Uﬁ[, U — Un)o, AsNAgp

1 a
+§(mu+ﬁp-n—wuh—ﬁph-n+oh,u—uh)0,AamAa!h

< [lu® — unllo,asn A,y
w €
x (o llo, 4antp s + 5[[”‘] — Upllo,aunaqy + TH(D — pn) - nllo,.4un405)
= S
1 4 b
Wh(Ap NIy) = 5(0 s Up — U)o, Ay,
@ €
= E(Uh — U, Up — U)o, a,nT, + %((Dh — D) N, Up — U, 4,0,
1
< 5””!1 — uP)|o, 4,0z, (wllup — ullo, 4,0z, + vell(Pr —P) - nlo,4,nz,)
=’
1 a a 1 b b
Wh(Ap N Agp) = 5( o U= Updo,apnagy + E(U 2 Up — U)o, 4png
a w
=< E(Uf, U — U)o, AynAgy T E(u — Up, U — Up)o, 4pNAgp
€ 1
+ %((D = Pr) MU~ Upg apnd,, T+ E(Gf, U — Up)o, 4pnAg
< |’ — upllo, apnags
w N
x (HU;?HO,ABOAM + 5 [u? — Unllo, 4,04, + 7”“’ —Pn): n||0,AbﬂAa‘h)
= ¢,
1 5 5 1, b
Wn(Ap N App) = 5(0;, s Uy — Uo,.apn Ay, + E(U S Un — U o, ApnAy

b
=< llun — v”llo, 4004, 4

b @ b Ve
x (o7 llo,.a5n + Elluh — Ullo, Asnap, + TH{Dh — ) nllo,apnay,)

= wg.

Hence, we obtain the following estimate for the primal-dual mismatch in complementary

9
W) <Y W=y (45)
i=1
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The estimates in (45) are computable a posteriori except ||(p — Pr) - n|lgs for any set S. The continuous solutions are
approximated as follows

Clpi=cardWEN™ ) L, (46)
EeN(E)
where

N(E) == {E}U{E'|ENE # @}.

However, the estimates in (45) are still not fully a posteriori due to the active or inactive set in continuous setting. By
following the steps in [9, Section 3.3], we can derive estimates continuous active or inactive sets by
a b
Aa:-l* u, —u ‘Ab:‘lf U —up I:l— Ag Ap
Xh yhr—l_uh_uﬂ! Xh yhr—l_ub_uh! Xh Xh Xh L]
where y denotes some positive constant and r > 0 is fixed. Note that Xﬁ% =1in A,y and X;‘b =1in App.
Let x(S) denote the characteristic function of a set S C £2. For instance, assume that E C .4,. Then
up — u°
yh" +u, —ut

< min{1, y "'h™"|lu — uplloe).
0.E

which tends to zero whenever |[u — uy|lp = O(h?) with ¢ > r. If E ¢ A, then we have two cases:

%A — %7 llo.g =

(i) If up — u® > yh* for some 0 < p < 1, then
yh

S < K=K 5 0ash — 0.
yh" 4+ up —us

0,E

% (Aa) — %7 llo. =

(ii) If up —u® < yh*" for some 0 < u < 1, then the measure of this set tends to zero as h — 0.

In analogues way, we can find approximations for the sets .4, and Z. Now, we have the following approximation, for
instance § = A, N Ij:

A
x(8) ~ X7 x(Tn) = x3-
We then use
x5 (up — u®)llo,e  instead of |lup — 1?0, 4,0z, s

and analogously for other terms in (45). Consequently, we obtain an a posteriori estimate for the primal-dual mismatch
in complementary

9
() 5 1P = [W(2). (47)
i=1

3.3. Primal-dual weighted data oscillations

Last we consider the data oscillation term in (36)

1 1
osch = o (f o2 = 2)g g = 5 (V" = V0¥ = W)y (48)
1 1
+ 56, = S Wallge + 0 =¥ Yoo + (F = fin 1) o

can be estimated by means of

. 1 o~ 1 ~
0S¢ = ) (2|Lf ~ fullo.clZ = zallojc + 519" = Yillo.c T — yallo.x
KeTy

+ I W IR+ 198 = ¥l Bl + I fhuu,Kuzhuu,K) :
where ¥, Z, are defined in the same way as done in (41).
4. Numerical experiments
We first give a brief overview of the adaptive finite element method (AFEM) in Section 4.1. Then, we establish an

optimization algorithm on every adaptive refinement level in Section 4.2. Last, Section 4.3 contains some numerical results
to show the efficiency of the derived estimator in Section 3.
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4.1. The adaptive loop

An adaptive procedure based on the goal-oriented a posteriori error estimators for the LDG discretization of the
optimization problem (2)-(4) consists of successive loops of the sequence given in (1). The mesh adaption process is
guided iteratively by local indicators relying on the solutions of the considered on the current mesh. The Algorithm 1
repeats the adaptive procedure until a given complexity #vertices, i.e., the number of vertices.

Algorithm 1 AFEM Algorithm

Input: Triangulation 7;, data f, y¢, u®, u?, complexity #dof, bulk parameter 6.
loop

(J’h, Ph; Zn, Qh, Up, Jﬁ)= 501ve(7;!! uh’f!yd’ uﬂ, ub)

1 = estimate(7y, Yn, Ph, 24, G, Un, 0, f, ¥°, u%, u®)

if |#dof(7)|> #vertices then

return (7, Yh, Ph, Zh, Qas Un, Oh)

end if

Mp=mark(7y, n,0)

Tr=refine(7,, Mp)
end loop

The SOLVE step (subroutine solve) is the numerical solution of the optimal control problem with respect to the given
triangulation 7 using the LDG discretization and the primal-dual active set (PDAS) algorithm as a semi-smooth Newton
step, see, e.g., |61]. The ESTIMATE step (subroutine estimate) requires the computation of the estimates for the weighted
dual residuals, the primal-dual mismatch complementary, and the data oscillations, derived in Section 3. We use a bulk
criterion in the MARK step (subroutine mark) to specify the elements in 7; by using the a posteriori error estimator and
by choosing subsets My C 75 such that the bulk criterion is satisfied for a given marking parameter ® with0 < ® < 1:

C z Nk < Z MK » (49)

KeTy KeMg

where 7 is the a posteriori error estimator derived in Section 3. Bigger values for the parameter & will result in more
refinement of triangles in one loop, whereas smaller & will result in a more optimal grid but more refinement loops.
Finally, in the REFINE step (subroutine refine), the marked elements are refined by longest edge bisection, whereas the
elements of the marked edges are refined by bisection strategy.

Algorithm 2 Active Set Algorithm

Input: Given the parameter y.
Setk =0.
Set initial values for uj, ¢, and o},
Calculate indices of the initial active sets .Ag .
fork=1,2,...do
Solve (50) for V¥, uk, z¥, oﬁﬁfh, and a;‘!h.
Calculate indices of active sets Af ;, Af ;, and inactive set Zf:
A= {of — y(ub, —uf) <0}, Af, = {of +y(uf —uf,) >0},
¥ = 1\{4f , U A4 )
: fe+1 k41 k1
if AL, = AL AL, = ApL and Z¥ = 7 then
STOP.
end if
Setk:=k+ 1.
end for

A9, and the inactive set Z0.

4.2. Optimization algorithm

Algorithm 2 describes the primal-dual active set (PDAS) strategy as a semi-smooth Newton step, see, e.g., [61]. In the
procedure, we solve the following discrete linear system:

N1 . Aqg . . Zp Fa
wMp Nz Mp Mp Up .
K= As N3 . . Yh = Fs , (50)
DXy 0 Kby : o wXAb,hug

a

OXAgy T oy WY AqpUh
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where

. . . Mﬂ] ! 7MB]
M= - : » Ma=| Mp s MN= —Mpg; )
Cs M . 8D + Mpc
an Pn
= , Zp= .
() ==(%)
The mass matrices M and Mg on the domain and boundary are defined by
My = f gpidx, (Mgl = f @i dx,
K 3K
respectively. For all E € £9, the variants of mass matrices are given by

1 1
(Mp1)j = f62H1 gipids, (Mp)j = [62712 @j¢; ds,
E E

€2
(Mac)j = f B-nlgpids, SDj— [ = gids,
E— E 'E

where n = (n1, n2)" and E— denotes the inflow boundary.

XAqn» XApy» @nd ¥z, denote the characteristic functions of \Ag 4, .Ap 5, and Zp, respectively, defined on the boundary 5‘,? .
The bi-(linear) forms of the state system in (17a)-(17b) are represented by .A; and F;, whereas .4, and F, correspond to
the bilinear forms of the adjoint system in (17c)-(17d).

4.3. Numerical results

We now present several numerical results in order to examine the quality of derived estimators in Section 3 and the
performance of the adaptive loop introduced in Section 4.1. We use piecewise linear polynomials for the approximation
of the state, the adjoint, the control, and the Lagrange multipliers. The effectivity index is computed according to

Th
Vs u) — Jn(yn — un)
where n, consists of the approximations of the primal-dual residuals, the primal-dual mismatch in complementary, and
the data oscillations.

In our numerical experiments, the corresponding error estimators are denoted by superscript "A" for adaptive
refinement and "U" for uniform refinement. For instance, ]{;‘ represents the value of the objective function computed on
the adaptively refined mesh, whereas ],‘l’ is the value of the objective function computed on the uniformly refined mesh.
Moreover, since we have no explicit expression of the analytic solution in our numerical examples, the solutions y*, u*
obtained on adaptively refined fine meshes are taken as a reference solutions. Then, the value of the reference objective
solution is denoted by J* := J(y*, u*), computed exactly from the solutions y*, u*.

effectivity index = i (51)

4.3.1. Example 1
Our first example defined in the unit square £2 = [0, 1] x [0, 1] has been adopted from [31]. The rest of the data are

1
(x% +x3)1/3°
The control set is given by

U¥={uel¥l): —0.75<u(x)<0 ae. xel}.

f=0, y'= B=(1,17, a=1, w=1

We have no explicit expression of the analytic solution, therefore we solve the problem numerically for ¢ = 107!
using 11.374 vertices and 19.043 elements, and then obtained solutions y*, u* are used as a reference solution to make a
comparison with others. The value of the reference objective function for ¢ = 107! is J(y*, u*) = 5.646. We note that it is
a difficult task to determine J* as accurate as possible. Therefore, the errors and the effectivity indices should be treated
with care.

Fig. 1 displays the performance of the error estimator proposed in Section 3 in terms of the number of vertices for the
marking parameter 6 = 0.65 and the diffusion parameter ¢ = 10~! on adaptively and uniformly refined meshes. The left
plot shows the convergence of jﬁ — J* on the adapted meshes compared to the convergence of j,? — J* on the uniform
meshes. One can observe a reduction of complexity for a certain accuracy in the objective value. The middle plot displays
the comparison of convergence of the error estimators as a function of the number of vertices in logarithmic scale for
adaptive versus uniform refinement. Last, the right plot exhibits the actual sizes of the state, adjoint, data oscillation,
and complementary components of the error estimator. The refinement process is dominated by the contribution of the
data oscillations. All parts of the estimators converge to zero, and the estimated error n‘ﬁ on adapted meshes is smaller
compared to the ones on uniform meshes.
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Fig. 1. Section 4.3.1: Convergence of the estimators computed on adaptively and uniformly refined meshes with e = 10~! and 8 = 0.65.

Table 1
Section 4.3.1: Convergence history for ¢ = 107! and # = 0.65 on adaptively
refined meshes.

vertices (N) nt order =g Eff. Ind.
25 1.37e+-00 - 2.38e+00 0.58
38 1.35e+00 0.04 1.28e+00 1.05
59 1.06e+-00 0.55 8.18e—01 1.29
96 8.14e—01 0.54 5.04e—01 1.62
174 5.61e—01 0.62 3.22e—-01 1.74
333 3.03e—01 0.95 191e-01 1.59
637 2.27e—01 0.44 1.09e—-01 2.07
1016 1.41e—01 1.02 6.15e—02 2.28
1707 9.17e—02 0.82 3.43e—-02 2.68
3272 6.59e—02 0.51 1.74e—02 3.78
6538 4.94e—02 0.42 6.50e—03 7.59
Table 2
Section 4.3.1: Convergence history for € = 10~! on uniformly refined meshes.
# vertices (N) nY order w-r Eff. Ind.
25 1.37e+-00 - 2.38e+00 0.58
89 1.28e+00 0.06 1.38e4+00 0.93
289 1.02e+00 0.18 7.70e—01 1.32
1089 7.73e—01 0.21 4.08e—01 1.89
4225 5.58e—01 024 2.13e—01 261
16641 3.60e—01 0.32 1.11e—-01 3.24
Convergence history for ¢ = 107! on adaptively and uniformly refined meshes are exhibited in Tables 1 and 2,

respectively. Despite oscillations, the reduction of estimators n}? is close to N~1/2, which is the optimal rate we can expect

with linear elements. Generally, it is expected that the effectivity index should be close to one however for our example
the value of effectivity index is increasing as we refine the mesh. Computation of the reference solution or approximation
of the dual solution in the estimator can be reason of this case. However, the results in Table 1 show that the estimator
114 becomes reliable.

Fig. 2 shows computed solutions of the control for various values of the diffusion parameter €. As expected, the control
constraints are satisfied even for convection dominated case. Last, the adaptively generated meshes are depicted in Fig. 3.

4.3.2. Example 2
Our second example, modified from [34], is defined in a polygonal domain with maximum interior angle 8 = %n as
shown in Fig. 4. The remaining data of the problem are given by

i _ ] —1, 0=x, <05, _ _ T _ _
y_{‘l, 0.55x2<1’ f_17 18_[210)5 (l—‘l, (1)_1'

We choose the control set as
U ={uel?(l): 0<u(x)<05 ae.xerl}

As previous example, an analytical representation is not known. As a substitute for the exact solution of the case
€ = 1071, we have chosen the computed solution with respect to a sufficiently fine simplicial triangulation of the
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=107 =107

Fig. 2. Section 4.3.1: Computed solutions of the control for different values of € = 10~!, 1072, and 103 (from left to right).

[level,vertices] = [6,4128] [level,vertices] = [9, 5687] [level, vertices] = [10, 4938]

Fig. 3. Section 4.3.1: Adaptively generated meshes for various values of € = 10~', 10~2, 10~* with the marking parameter # = 0.8 (from left to
right).

0
=

Fig. 4. Section 4.3.2: Domain with 6 = %n.

computational domain with 8.707 vertices and 15.389 elements obtained by adaptive refinement, see Fig. 5 for the
corresponding discrete solutions. The value of reference objective function is J* = 2.445.

In Fig. 6, we show the convergence comparison in the quantity of interest (objective functional) J, —J* on the adapted
meshes and on the uniform meshes (left), the convergence of the error estimator in adaptive versus uniform refinement
(middle), and the actual sizes of the state, adjoint, data oscillation, and complementary components of the error estimator
(right). As previous example, the error estimator on adaptively refined meshes exhibits a better convergence. Although
the complementary component of the estimator converges to zero, it does not decrease monotonically as the other terms
of the estimator.

In Table 3, we observe that n‘; provides an upper bound for the absolute error in the objective function. Reduction
of the estimator is around the optimal rate N~'/2, where N is the number of vertices. Moreover, convergence history on
uniformly refined meshes is exhibited in Table 4.
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Fig. 6. Section 4.3.2: Comparison of convergence of the estimators on adaptive and uniform refined meshes for ¢ = 10~! and 8 = 0.65.
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Fig. 7. Section 4.3.2: Comparison of convergence of the estimators on adapted and uniform meshes with different values of e = 10°, 107, and 1072

and the marking parameter 8 = 0.75.

We next have a closer look at the convergence of J, — J* and the estimator 7. Fig. 7 illustrates the behaviour of our
estimator for different values of the diffusion parameter ¢ = 10°, 107!, and 1072 on adaptively and uniformly refined
meshes with the marking parameter 8 = 0.75. After a few steps, the adaptive refinements lead to better convergence

than the uniform refinements for all cases.
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Table 3

Section 4.3.2: Convergence history of the adaptive method for ¢ = 10! and

# = 0.65.
# vertices nt order JA = Eff. Ind.
35 8.06e—01 - 1.30e+-00 0.62
59 6.93e—01 0.29 8.88e—01 0.78
113 5.55e—01 0.34 7.02e—01 0.79
210 4.62e—01 0.30 3.90e—01 1.18
327 3.60e—01 0.57 2.75e—01 131
567 2.70e—01 0.52 1.64e—01 1.64
1006 2.03e—01 0.49 1.06e—01 191
1833 1.56e—01 0.44 6.09e—02 257
3023 1.23e—01 0.48 3.04e—02 4.04
4904 9.71e—02 0.48 1.24e—02 7.84

Table 4

Section 4.3.2: Convergence history for ¢ = 10~! on uniformly refined meshes.
# vertices (N) nf order = Eff. Ind.
35 8.06e—01 - 1.30e+4-00 0.62
117 6.73e—01 0.15 7.24e—01 0.92
425 4.98e—01 0.23 3.65e—01 1.36
1617 3.54e—01 0.25 1.75e—01 2.03
6305 2.49e—-01 0.26 7.79e—02 3.19

e=10° e=10"" =107

-
P

e i ——

Y

Fig. 8. Section 4.3.2: Computed solutions of the control for different values of € = 10°, 107, and 1072 (from left to right).

[level,vertices] = [8,5524] [level,vertices] = [7,5955] [level,vertices] = [10,5975]

Fig. 9. Section 4.3.2: Adaptively generated meshes for various values of € = 10°, 107!, and 1072 with the marking parameter 6 = 0.75.

Fig. 8 displays the discrete control solutions for different values of the ¢. Finally, the adaptively generated meshes for
various value of the diffusion parameter € are depicted in Fig. 9. These meshes clearly show that the largest errors in the
numerical approximation occur on the boundaries and along x; = 0.5 and on the boundary of the domain.

5. Conclusions

In this paper, we have studied goal-oriented a posteriori error estimates of local discontinuous Galerkin method for
the numerical approximation of Dirichlet boundary control problem governed by a convection diffusion equation with
bilateral control constraints. We derive primal-dual weighted error estimates for the objective functional with an error
term representing the mismatch in the complementary system due to the discretization. The numerical results show that
the adaptive refinements are superior to uniform refinements. We have obtained a reduction of complexity for a certain
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accuracy in the objective value and have derived reliable error estimator. Future work will include the extension of our
results to Dirichlet boundary optimal control problems with state constraint conditions.
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