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Abstract
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1 Introduction

Convection-diffusion problems are used to simulate the transport of quantities, such as tem-
perature or concentration. The numerical solution of this kind of problems has attracted great
attention, specially in the case when convection is dominant. Indeed, in that case standard
finite element methods may lead to numerical solutions with unphysical oscillations, due to a
lack of stability. One way to circumvent these difficulties is by adding some artificial diffusion to
the discretization. Different stabilization methods have been proposed in the literature; among
them, the streamline-upwind Petrov Galerkin (SUPG) method or streamline-diffusion method
(SDM) [26, 30] is probably the most popular one.

In general, the solution of a convection-diffusion equation possesses small subregions, named
layers, where the derivatives of the solution are very large. Therefore, the use of adaptive
algorithms based on robust a posteriori error estimators becomes crucial in the numerical ap-
proximation. Many authors have developed and analyzed a posteriori error estimators for dif-
ferent discretizations of the convection-diffusion equation. For instance, for the SUPG method,
Verfiirth [40] presented in 1998 three reliable and locally efficient a posteriori error estimators
for the error measured in the energy norm. Those estimates are optimal provided that the
local mesh Peclet number is sufficiently small. Numerical studies of different a posteriori error
estimators can be found in [28, 34]. In 2005, Verfirth [41] incorporated to the usual energy
norm a dual norm of the convective derivative and proved that the proposed a posteriori er-
ror estimators are fully robust in the sense that the ratio of the upper and lower bounds is
uniformly bounded with respect to the mesh-size, to the diffusivity and to the size of the con-
vection. A hierarchical a posteriori error estimator was proposed in Achchab et al. [1] and a
robust residual-based a posteriori error estimator for the error in the natural SUPG norm was
proposed by John and Novo [29]. Fully computable upper bounds for the error measured in
the energy norm were introduced by Ainsworth et al. [3]. More recently, Du and Zhang [16]
introduced a novel dual norm under which the error estimator is robust with respect to the
diffusivity parameter and presented impressive numerical results. Lastly, Eigel and Merdon [17]
presented reliable and efficient a posteriori error estimators for the error in the energy norm
based on the reconstruction of equilibrated fluxed.

In this paper we are interested in the simultaneous approximation of the concentration and
the flux in a linear convection-diffusion equation with mixed boundary conditions using mixed
finite element methods. In [13], Douglas and Roberts introduced a mixed finite element dis-
cretization of a convection-diffusion-reaction equation based on the Raviart-Thomas-Nédélec
space and obtained L?()-estimates for the error. Negative norm and L>({2) estimates can
be derived by applying the same arguments as in [14]. However, that formulation leads to a
centered discretization of the convective term that is numerically unstable when convection
is important. Moreover, this formulation cannot be extended to certain classes of nonlinear
problems (see [27]). In [27], Jaffre proposed a numerical scheme where the diffusion term is ap-



proximated by Raviart-Thomas mixed finite elements and the convective term is approximated
by the Lesaint-Raviart upwind scheme for discontinuous finite elements. The error analysis of
that scheme showed that the convection term is approximated less precisely than the diffusion
term. Then, a modification of the initial formulation that allows to balance errors was proposed.
Thomas [37] introduced and analysed a dual-mixed variational formulation with artificial diffu-
sion that contains the one proposed by Jaffre [27]. It is well adapted to convection-dominated
flow problems and he obtained optimal convergence rates O(h*) provided that the flux is ap-
proximated by Raviart-Thomas elements of order k£ and the concentration is approximated by
discontinuous piecewise polynomials of order k. In [19] the authors presented a mixed-hybrid
finite element method for scalar convection-diffusion problems. The diffusive term is approx-
imated with the lowest order Raviart-Thomas finite element whereas the convective term is
treated by means of a Lagrange multiplier. Numerical results are very accurate for local Peclet
numbers up to 5. However, no convergence analysis is provided.

Concerning the a posteriori error analysis of mixed finite element methods, we refer to the
residual a posteriori error estimates derived by Vohralik [43] for lowest-order Raviart-Thomas
mixed finite element discretizations of convection-diffusion-reaction equations. Later, Kim and
Park [31] presented a posteriori error estimates for the error in the L*-norm. Finally, Du [15]
introduced new techniques to derive residual-based a posteriori error estimates over the stress
and scalar displacement error for the lowest-order Raviart-Thomas mixed finite element.

In this work we present novel augmented mixed finite element methods for the scalar
convection-diffusion equation and developed an a posteriori error analysis of residual type.
The use of augmented mixed finite element methods allows to avoid the inf-sup condition in
the analysis and, as a consequence, one can use a wider set of finite element subspaces in
the discretization. Several augmented mixed finite element methods have been proposed in
last years for different problems. Indeed, in [33] Masud and Hughes introduced an augmented
mixed finite element method for Darcy flow. Later on, this method was extended by Gatica
[20] to the linear elasticity problem with homogeneous Dirichlet boundary conditions. The
case of nonhomogeneous Dirichlet boundary conditions was analyzed in [21] (see also [23]) and
nonhomogeneous mixed boundary conditions were considered in [24]. This technique has been
applied later to the generalized Stokes problem [5, 6], anisotropic porous media flow (7, 8|, the
linear convection-diffusion equation [25] and the Oseen problem [9]. However, in the papers
[5, 25, 9] only homogeneous boundary conditions of Dirichlet type were treated.

The aim of this paper is to propose and analyze augmented mixed finite element methods
for the linear convection-diffusion equation with mixed boundary conditions. We also develop a
residual based a posteriori error analysis and derive simple a posteriori error indicators for the
two and three dimensional cases. We prove that these a posteriori error indicators are reliable
and locally efficient, and thus, can be used to drive a mesh adaptation process. We do not
consider the case of dominant convection, that will be the subject of a forthcoming paper.

The paper is organized as follows. In Section 2 we derive a dual-mixed variational for-



mulation of the model problem. Then, in Section 3 we introduce and analyze the augmented
dual-mixed variational formulation. In Section 4 we study the stabilized mixed finite element
method. We prove the stability of the Galerkin scheme and derive the rate of convergence for
some particular discretizations, using Raviart-Thomas or Brezzi-Douglas-Marini elements to
approximate the flux and continuous piecewise polynomials to approximate the scalar variable.
In Section 5, we introduce new a posteriori error estimators both in two and three dimensions,
and prove that they are reliable and locally efficient. Some numerical experiments are reported
in Section 6. Finally, in Section 7 we draw conclusions.

Throughout the paper, we use the usual notations for Sobolev spaces and norms. In par-
ticular, C' or ¢, with or without subscripts, will denote generic constants independent of the
discretization parameter.

2 Dual-mixed variational formulation

Let © be a bounded connected open subset of R (d = 2,3), with a Lipschitz-continuous
boundary I'. We assume that I" consists of two disjoint parts, I'p and 'y, such that I' = TpUTy
and |Tp| > 0. Let K € [L*°(Q)]9*¢ be a symmetric and uniformly positive definite tensor, that
is, K satisfies

Kx)y)'y > alyl®, ae xeQ, VyeR’, (1)
for some a > 0. Then, we also have that K~ € [L>(Q)]9*¢ and
(K '(x)y) y > ﬁnyu?, ae. xeQ, VyeR? 2)
00,0
where we denote by | - ||c.o the usual norm in [L>(2)]%*.

Let b € [L*®(£2)]? be a solenoidal velocity field, that is
div(b) =0 in Q, (3)

such that
b-n>0 only. (4)

Then, given a source f € L*(Q), g € HY*(I'p) and z € H~Y?(I'y), we consider the following
steady convection-diffusion problem: find the concentration u : €2 — R such that

—div(KVu) +b-Vu = f inQ,
u =g onlp, (5)
KVu-n = z on 'y,

where n is the unit outward normal vector to I.
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We introduce the flux ¢ := KVu in Q as an additional unknown. Then, problem (5) can be
stated equivalently as follows: find o : © — R? and u :  — R such that

( —div(e) + b-Vu = f inQ,
K'lc—Vu = 0 inQ,
(6)

g

u = onIp,

i oc-n = z onI'y.

Given s € H™Y/?(T'y), we define the space H, := {T € H(div;Q) : 7'n=35s on I'y}. Then,
multiplying the two first equations in (6) by appropriate test functions and integrating by parts,
we derive the following dual-mixed variational formulation of problem (6): find ¢ € H, and
u € H'(Q) such that

/IC_IU-T-F /udiv(r)z/ gt-n, V7€ H,,
JQ JQ I'p

./dev(“)” - _/nb'Vuv = —/va, Vve HY(Q).

(7)

We remark that the Neumann boundary condition is essential whereas the Dirichlet boundary
condition is natural in this formulation.

Let us consider the following decomposition: o = 0¢ + 0, € Hy+ H,, that is, 0p -n = 0 on
Iy and 0, -n = z on I'y. Then, problem (7) is equivalent to: find (09, u) € Hy x H'(2) such

that
//C ao-'r—i-/udlv(r):/ gT- n—/lC o,-7, VY1€H,,

/dIVUo v — /b Vuv = — /fv— /le(O’z v, YveHY Q).

Let us define the bilinear forms a : Hy x Hy — R, b : H}(Q) x Hy — R and ¢ : H(Q2) x
H'(Q) — R by

(8)

='/QIC—1C-7', b(w,T) := '/deiv('r), c(w,v) := ./Qb-va

for all ¢, 7 € Hy and w, v € H'(2), and the linear functionals m : Hy - R and [ : H(2) - R
by

m(r) := '/I‘DgT-n— ./Q’C_IO'Z-T, l(v) :=—/Q(f+div(az))v
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for all 7 € Hy and v € H*(Q2). Then, the variational formulation (8) can be rewritten as
follows: find (o9, u) € Hy x H*(Q) such that

{a(O'O,T)+b(u,T) = m(r), V7€ Hy,
b(v,00) — c(u,v) = l(v), Vve H(Q).

Thus, problem (8) has a generalized saddle point structure. Since the bilinear form ¢(-,-) is not
symmetric, in order to ensure that problem (8) is well-posed using the generalized Babuska-
Brezzi theory, we need the bilinear form a(-,-) to be elliptic in Hy. However, we only have

a(7,T) ||T||[2L2(Q)]d’ VT € Hp.

S [0}
KN 0

3 Augmented dual-mixed variational formulation

We follow the ideas in [25, 21, 24| and subtract the second equation in (8) from the first one
and then add the following residual terms:

K1 /(div(ao) —b-Vu)(div(t) + b-Vv) = —k /(f + div(e,)) (div(7) + b - Vv)
Ja Ja
Ko /(Vu— K1og) - (Vo +K17) = ks /IC_1 o, - (Vv+K17)
Ja Ja

KJ3/ 'U,’U=I€3/ qu,
JI'p JTI'p

where we assume that (o, u) is a solution of (8) and (7,v) € H := Hy x H(Q).
Proceeding in this way, we obtain the following augmented variational formulation: find
(00,u) € H such that

and

AS((UOv u)v (Tv U)) = FS(T’ U) , v (T, ’U) € H, (9)
where the bilinear form A, : H x H — R and the linear functional F, : H — R are defined by
As((¢w), (T,v)) := /IC_I( - T+ /wdjV(T) - /div(C)v + /b-va

Ja Q Q Q

+ K1 /(djv(() —b-Vw) (div(r) + b-Vv) + kg /(Vw -K1) - (Vv+K17)
Ja Ja

+I€3/ wv
JI'p
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and
Fy(r,v) = /n(f + div(o,)) v — /nlC_laz-T - nl/n(f + div(o,)) (div(7) + b - V)
g =1 . v
+ Kz./lec (Vuo+ K T)+./FDQT n+f~c3/FDg

for all (¢, w), (1,v) € H.

The stabilization parameters, k1, ko and k3, are positive constants to be chosen so that the
augmented bilinear form be coercive in the whole space H. We endow H with the product
norm

(s )l == (17l @y + 10l @)*, ¥ (7,0) € H.

Clearly, F; is a linear continuous functional in H. Indeed, using the Cauchy-Schwarz in-
equality, we have

1B < Cr (Iflliay + Nallaag) + llollizaye + I1div(e)llaqqy)

with Cr := max(l + K3, ”K:_IHOO,Q(I + Kz(l + ”K:_l“oo,g)), 1+ h:l(l + \/a”b“[Loo(Q)]d)).
Similarly, it is easy to see that the bilinear form A,(-,-) is continuous in H. In this case,
using the Cauchy-Schwarz inequality, we obtain

14:((C, w), (1, 0))] < MG w)llgg [1(7,0) g, V(G w), (1,0) € H,

with M =2 -+ ||’C_l”oo,Q + \/C_l”b”[Loo(Q)]d + Kl(]. -+ \/a”b”[Loo(Q)]d)z + 1‘62(1 -+ ”K:_IHOO,Q)2 + K3.
Now, let (7,v) € H. Then, from the definition of A4(-,-) and using (2) we have that

AS((T, 'U), (Ta 'U)) 2 ||K:||2 ||T||[L2(Q)]d + /s:lb -Vow
+ Kl(Hle( ||L2(Q) - ||b . V'U”iz(g))

2 s 2
+  R2(IVolligape — 1K' 7llz2gye) + Ksllvlzap, -

Integrating by parts and using (3) and (4), we have for v € H'(f2),

/b Vvv = = /b V(v =—/b-nz)22l b-nv?.
2 Jr 2-I‘D

« _ .
As((m,0),(T,v)) = (W — 2 [K7H % 7 fzaye + Falldiv(T)]| L)
00,2

Then,

1
+ (k2 — K'ld“b“[sz(Q)]d)”Vv”[2L2(Q)]d + (k3 — §||b ’ n||L°°(I‘D))||U||i2(rD)-
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Therefore, using that
IVllEz@ye + Ivlz2mpy = cllvlitng

for some positive constant ¢, the coercivity of Ay(-,-) in H follows, with an ellipticity constant
C L . « . K:_l 2 o d b 2 _l b )
e11 ‘= ININ —chuz Ka || 156, K1, (K2 — Kad| |I[L°°(Q)]¢)C’ (K3 2|| n||zeo(rp))c )
00,02

provided that

K9 «

0<ki<—5——, 0<K<
d||b||[2L°°(Q)]d ||’C||§o,n ”K_lllgo,ﬂ

1
and K3 > illb . n”Loo([‘D) . (10)

We have the following result concerning the well-posedness of problem (9).

Theorem 1 Under assumptions (1), (3), (4) and (10), problem (9) has a unique solution,
(00,u) € H.

Proof. It follows from the previous considerations and Lax-Milgram Lemma. O

Remark. A feasible choice for the stabilization parameters would be

K «
= —2, Rg = 5 K 3 K:_l 3 , KRy = ”b -n”Loo(pD).
2d||b||[Loo(Q)]d “ ”oo,ﬂ ” ”oo,Q

K1

For this choice, the ellipticity constant is

@ «

(0%
2[IKN%en” 4d[bl [0 @y Kl 0 1K 20 41K 1K 50

. 1
Ce11 = min( c, §||b-n||Lco(pD)c) .

In the particular case when K = € Z, with € > 0, we have that

1 €

Cepy =min(—, ———
. (26 4d||b||[2L°°(Q)]d

b - n||Le(rp)c) -

DO | =

€
74 C’
For € << 1 and ||b|| = O(1), we have that Cy; = O(e™!). O

4 Augmented mixed finite element method

Let {75 }n>0 be a family of shape-regular meshes of 2 made up of triangles if d = 2 or tetrahedra
if d = 3. We denote by hy the diameter of an element 7' € 7, and define h := maxype7, hr. Let



Hy, and V}, be any finite element subspaces of Hy and H'(2), respectively. Then, the Galerkin
scheme associated to problem (9) reads: find (oo, un) € Hy := Hy x Vj, such that

AS((UO,ha Uh), (Th, Uh)) = Fs(Th, Uh) , V(Th,'vh) (S Hh . (11)

Under the hypotheses of Theorem 1, problem (11) has a unique solution (oo, up) € Hp X Vj.
Moreover, there exists a constant C' > (, independent of h, such that

[|(c0 — oo, —wp)|lg < C  inf  ||(60 — Thyu — vp)| |1 - (12)
(Thvn)€HR

In order to establish a rate of convergence result, we consider specific finite element subspaces
H), and V. Hereafter, given 7' € T}, and an integer | > 0, we denote by P;(T) the space of
polynomials of total degree at most [ defined on 7" and, given an integer r > 0, we denote by
RT,(T) the local Raviart-Thomas space of order r (cf. [36]), that is,

RTH(T) := [Py(T)]* & }P(T) C [Pria(D)]),

where x is a generic vector of R%.
Let r > 0 and m > 1. Then, we define (see [10, 36])

Hy=RT,={n e H : nl, e RT.(T), VTeT},

or

Hy, := BDM,;; = {Th € Hy : 7|, € [Pra(T))%, VT € 771},

and B
Vi = {v,, €C@) : v, € Pu(T), VTe€ Th}.

The corresponding rate of convergence is given in the next theorem.

Theorem 2 Assume oy € [H'(Q)]¢, div(sg) € HY(Q) and u € H™(Q). Then, under the
assumptions of Theorem 1, there exists Cory > 0, independent of h, such that

hmi.n{t,m,r+l} (

(00 — dop,u — un)||H < Corr ||oo| [zt e + ||div(eo)|| g + ||U||H'+1(n)) ~

Proof. It follows straightforwardly from inequality (12) and the approximation properties of
the corresponding finite element subspaces. O



5 A posteriori error analysis

In this section, we assume the hypotheses of Theorem 1 and develop a residual-based a posteriori
error analysis of the augmented mixed finite element method (11). We derive a simple a
posteriori error indicator and prove that it is reliable and locally efficient.

Let Hj, and V, be any finite element subspaces of Hy and H'(f2), respectively, and let
(00,u) € H and (oo, un) € Hy, := Hy x V} be the unique solutions to problems (9) and (11),
respectively. Then, we consider the residual

Ry(1,v) := Fy(1,v) — As((00,n, Un), (7,v)) , V(r,v) € H. (13)

Using the ellipticity of the bilinear form A,(-,-) and the definition of the residual (13), we
deduce that

i Rh(Ta U)
00— Oon U — Up)|lg < Cal sup ——~.
||( 0 0 )” 11 Fujor 20 ” (T, 'U) ”H (14)
(7,0)#(0,0)

Now, we remark that using the definitions of the linear functional F and the bilinear form
Ag(+,-), we can write

Ry (1,v) = Ry(7) + Ra(v), V1€ Hy, VYveH(Q)), (15)

where Ry : Hy — R and R; : H*(©2) — R are defined by
Ri(r) = - /(’C_I(O'z +0o0n) — Vup) - T + Ky /(’C_I(O'z +0oop) — Vuy) - K1
Jo Ja

- K /Q(f +div(e, + oop) — b - Vuy,) div(r) + (9 —up)T-n

Jrp

and
Ry(v) = /(f +div(o, +oon) — b - Vuy)v — K /(f +div(o, +09n) —b - Vu,)b - Vv
Q Q

+ K2 /(IC_l(az +0oon) — Vup) - Vo + K3 / (g —un)v.
Ja Jrp

5.1 Notations and preliminary results

We let 7, be as in section 4 and assume that {7, € Hy : (m)r € (Po(T))*,VT € Tp} C H,
and that X} := {v, € C(Q) : vp|lr € P1(T), VT € Tp} C V4. Given an element T' € Ty, we
denote by E(T) the set of the edges (if d = 2) or faces (if d = 3) of T and by E}, the set of all the
edges (d = 2) / faces (d = 3) induced by the mesh 7. Then, we can write E) = E;UEp,UEr,,
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where E; ;== {e € E}, : e CQ}, Er, :={e€ E, : e CTp} and Er, := {e € E, : e C Ty}
Moreover, if d = 2, then for each edge e € E}, we fix a unit normal vector, n, := (ny,n2)*, and
let t, := (—ng,n;)* be the corresponding fixed unit tangential vector along e. If d = 3, for each
face e € Ej,, we fix a unit normal vector n, to e. Finally, given v : Q@ -+ R and 7: Q — R3

sufficiently smooth, we denote curl(v) = (%, —a%’—l)t and curl(r) =V x 7.

We consider the Clément interpolation operator, I, : H'(Q) — X},. In the next lemma, we
recall its local approximation properties.

Lemma 1 There exist positive constants, ¢, and cq, independent of h, such that for all v €

H(Q) there holds
v = In(@)|lgm(ry < erhy ™ vllmrgoery), Yme{0,1}, VT eT,
lv = In(v)llz2e) < c2be”? 0l gue)y, Ve € En,
where w(T)=U{T" € Th : T'NT # 0} and w(e) = {T" € Tn : T'Ne # 0}.
Proof. See [12]. O

We also consider the Raviart-Thomas interpolation operator, II} : [HY(Q2)]¢ — Hj. We
recall that given 7 € [H(Q2)]¢, I1¥(7) is characterized by the following identities:

/Hﬁ(T)-neq=/T-neq, Ve € Ey, Vq€Pile)y, Vk=0 (16)

/ﬂ@w=/rmvﬂﬂhﬂw,W2L (17)
T JT

In the next lemma, we recall the approximation properties of the Raviart-Thomas interpolation
operator.

Lemma 2 There exist positive constants, cs, ¢4 and cs, independent of h, such that
I7 = T (D) llecrye < eshT |Tlgmerya, VT €Th, 1<m <k+1,
and for all T € [HY(Q)]? with div(T) € H™(Q),
Idiv(r) — div(T(r) lacry < cahifldiv(D)lamn, 0<m<k+1,
IT- 0 —T(7) - ml|a) < esh Il ye, Ve € En Ve [H(Q)),
where T, contains e on its boundary.

Proof. See [36]. O
Using (16) and (17) it is easy to show that

div(IT¥ (7)) = Prdiv(r) (18)

where PF : L?(Q) — Vj, is the L%-orthogonal projector. It is well-known that Vv € H™((),
0 <m < k+ 1, there holds

lv = P¥vllery < chf [vlgmey, VT € Th. (19)
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5.2 Two-dimensional case

In what follows, we assume that d = 2 and let (7,v) € Hy x H'(Q2). Then, there exists

X € H*(Q) and z € H%(2) such that

T = curl(x) + Vz

and

Ixllzr@) + Izllz20) < CllTllH@IV) 5 (20)
for some positive constant C. In particular, div(7) = Az in €.
Now, from the Galerkin orthogonality, we have that
Ry(7,v) = Rp(Tr — h,v —vh), V7€ Hy, Vv, €V.
Let us consider a discrete Helmholtz decomposition of 7,,: we define x» = In(x) and
= curl(xs) + IfVz € Hy.
Then,
7 — 1 = curl(x — xa) + (id - I}) V2,
and, from (18),
div(t — 1) = div((id — II¥)Vz) = (id — PF)Az = (id — PF)div(7).
Therefore, we can decompose
Ry(7) = Ry(r — m) = Ry(7) + Ra(2) + Ra(x) , (21)

where

Ri(1) = — kK /(f + div(o, + o) — b - V) (id — PF)div(r),

Ja
Ri(z) = — /(IC_l(az + 0op) — V) - (id — IIF)Vz
Ja
+ K /(’C_I(Uz + 0o4) — Vuy) - K71(id - TIF)Vz + / (g — up)(id — IIF)Vz -n,

JQ I'p
and
Ri(x) = — /(IC_l(az + oo,n) — Vuy) - curl(x — xa)

Q

+ K2 /(’C_l(az +0op) — Vuy) - K eurl(x — xn) + (9 — up)eurl(x — xn) -n.
Q

Ip

Our aim is to obtain upper bounds for each one of these three terms.
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Lemma 3 There holds

: | . V2
|Ri(7)] < Rl( D lIf +div(o. + oon) — b- VUh”Lz(T)) |div(7)][L2(e) -
TET,

Proof. The proof follows by decomposing / Z / using the Cauchy-Schwarz inequality

TeTh
and (19). O

Lemma 4 There exists a positive constant C, independent of h, such that

o = 1/2
|Ri(2)| < C (D h3lIVun — K™Yoz + oon) 2z + Y hellg — unlizge) 2|l vy -

TeTh e€Er

Proof. On the one hand, using the triangle inequality and the Cauchy-Schwarz inequality, we
have

|/ Vup—K (0. +004)) (id—TI})V2| < Y [|Vur—K (0. +004) liz2ypll ((d—T15) V2 22y
TeT,

Now, by Lemma 2,
”(1(1 [+ )VZ”[Lz(T)]z < c3 hT|VZ|[H1(T)]2

Then, using again the Cauchy-Schwarz inequality, we obtain

|/ Vup—K (o.4004)) (id—11;)Vz| < C( Z W\ Vun—K (02 +00) IE2iy2) /2 17 | aivse)
TeTh

where we used that (Z |VZ|[2H1(T)]2)1/2 < |lzlla2) < Cll7||H(divi)-

TeTh
Analogously, using the continuity of X!, we have that

|2 /(’C (Uz+00h) Vu,)- K~ l(zd Hk)Vzl < C( ZhT”vuh K- (Uz+0’0h ||[L2(T]2)/ ”T”H(dlvﬂ)-
TeTh

On the other hand, using the triangle inequality and the Cauchy-Schwarz inequality,

[ (g —w)id~TE)Vz-n] < 3 llg - unllzzo | (id — ) Vz - nzago

“Tp GGEFD
Since Vz € [H*(Q))?, Vz-n € [H/%(')]%. Then, by Lemma 2,
||(’Ld — HZ)VZ . n||Lz(€) < cs h;/2 ||VZ||[H1(T6)]2 .
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Therefore,

|| (g—un)(@d=TH)Vz-n| < O( Y hellg — unlifae) 7w ,

I'p eGErD

where we used that ( Z IV2lfingy2) Y < lzllre) < Clirlla@ve).
eGEpD
The proof follows by using the triangle inequality. O

Lemma 5 Assume that g € H (I'p). Then, there exists C' > 0, independent of h, such that
_ - o 1/2
B001 < € (X 19~ K7 + a0l + 3 hellgg (0= wndlagg) Il
TeTh eEEFD

Proof. Proceeding similarly as in the proof of the previous Lemma and noting that, by virtue
of Lemma 1,

llcurl(x — xa) liz2(ry2 = IV = xu)llizzeryz < X — xwllarery < e lixll o),

we have

| — /(IC_l(crz + oop) — Vuy) - curl(x — xn) + K2 /(’C_I(O’z + oon) — Vug) - K teurl(x — xa)|
Q Ja
<C Z IVun — K=o + gon) li2ery X o @iry -
Te€Th
Now, since the number of triangles in w(T’) is bounded and, from (20), || x||z1(@ < C 7| H@ivi0)s
it follows that
| - /(’C_l(az + 0op) — Vup) - curl(x — xn) + kK2 /(’C_I(Uz +aon) — Vup) - K eurl(x — xa)|
Q Q

< C(Z | Vun — ’C_l(az + UO»h)”[2L2(T)]2)1/2”T”H(div;Q) .
TeTh
(22)
On the other hand, we remark that curl(x — x) -n = g—t(x — Xn) SO,

(o - wewl(c—xa) ul < 3 1 [ - )=

|
I'p eGErD

Now, using the Cauchy-Schwarz inequality, Lemma 1 and noting that the number of elements
in w(e) is bounded, we deduce that

0
| /r (9 — up)eurl(x — xan) -n| < C( Z he||§(g —up)llF2@) Pl H@vey - (23)
D e

e€Er,,
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The proof follows using the triangle inequality, (22) and (23). O
On the other hand, we recall that

Rg(v) = Rg('l) — ’Uh), V’Uh € Vh .

Let us take v, = I(v) € Vj,. Then,
Rav) = [ (/+div(o. +00) = b- Vi) — ()
- K1 /(f + div(e; + 0o,n) — b - Vup)b - V(v — In(v))
Jo

+ & /Q (K02 + 00p) — Vi) - V(v — I(v)) + ks | (9 —un)(® — Ia(v))

JI'p
Now, using the Cauchy-Schwarz inequality and Lemma 1 in each one of the terms above, we
have that
|R2(7J)| S C (”f + diV(O'z + O'O,h) —b- Vuh||Lz(Q)

B 1/2 (24)
+ | Vup — K7 (0x + oon)llizz@pe + (Y hellg — unll3ae) ; ) vl o),

eGErD

where we used that (377, 1V/13n uiry)"? < Cl|v]l a1 @) and (EGEEI‘D ol 1)) ? < Cllvllm @)
From the previous results, we have the following upper bound for the residual.

Proposition 1 There ezists a positive constant C, independent of h, such that

Rp(T,v . _
sup Hplriv) < C (||f +div(o, + oop) — b+ Vup|2i) + ||[Vun — K71 (0 + oop)|| L2
ewen ||(T,0)|lm
(7,0)#(0,0)

0
+ (3 hellg = willa + 1 55-(0 ~ i) ).

CGE[‘D

Proof. It follows from (15), (21), the triangle inequality, Lemmas 3, 4 and 5, and (24). O

From (14) and Proposition 1, we have that
(o0 — gopu—un)la < CaiC (||f + div(o, + oon) — b - Vua||2(q)

+ |[Vun = K71 (0. + 00n)|iz2@p (25)

0
+ ( Z he (Ilg — unllZae) + ”E(g = uh)”%%e)))l/z)'

e€Er
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Motivated by this result, we define the global a posteriori error indicator
1/2
6 = (Z 9;) , (26)
TeTh
where
9%. = ||f + diV(O’z + UO,h) —b- VUhH%z(T) + ||VUh - K1 (Uz o o 0-0,"L)||?L2(T)]2
0 (27)
Y helllg = wlag) + (9 — w)lZa).
e€Er,naT &

In the next theorem we establish the reliability of the error indicator 6.

Theorem 3 Let (09,u) € H and (oon, un) € Hy be the unique solutions to problems (9) and
(11), respectively. Then, there exists a positive constant Cre1, independent of h, such that

”(00 — OQ,h, U — uh)HH S Crel 0.

Proof. It follows from (25) and the definition of 6. O
In order to prove the efficiency of 6, we first recall that f = —div(og + 0,) + b - Vu and
Koo+ 0.) —Vu=0in Q. Let T € T,. Then, using the triangle inequality

| f +div(ez + oon) — b Vuh“%z(:r) = ||div(oon — 00) — b - V(un — U)”%z(T)
< 2(|ldiv(gon — 00)IZ2(ry + IIb - V(un — w)lZ2r))

< 2(||div(‘70,h - UO)Hiz(T) +2 ||b||[2L°°(T)]2|IV(U}, - u)"[sz(T)]d)
(28)
and

IVup, — K~ (0 + gon) Ifzrye < 2 (IIV(un — w)lifzeryp + 1K 2 7 lloon — oollfraery) - (29)

Now, in order to bound the boundary terms on the right hand side of (27), we recall a
discrete trace inequality from [2, Theorem 3.10] (see also [4]): there exists ¢ > 0, depending
only on the shape regularity of the triangulations, such that for each T' € 7}, and e € E(T),
there holds

IWlZa < er (B2 I0l3ar) + helolipgny ) Vv € HY(T). (30)

Lemma 6 There exists c; > 0, independent of h, such that for each e € Er, there holds

hellg — unlljz@ < cr (||U — up||Zay + hE, lu— Uh|§11(n)) ;

where T, is the triangle having e as an edge.
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Proof. It follows straightforwardly by taking into account that ¢ = u on I'p and applying the
discrete trace inequality (30). O
Now, in order to bound the last boundary term in (27), we use the localization technique
[39]. Given T € T, and e € E(T), we let 1, be the usual edge-bubble function (see equation
(1.6) in [39]), which satisfies 9|1 € Pa(T), supp(¥e) C we := | H{T" € Tr : e€ E(T")}, ¥ =0
on 0T \ e, and 0 < ¢, <1 in w,.
We also recall from [38] that, given a nonnegative integer k, there exists a linear operator

L:C(e) - C(T), T € we, that satisfies L(p) € Px(T) and L(p)|e = p, Vp € Pk(e).

Lemma 7 Given k € N, there exists positive constants cg and cqg, that only depend on k and
the shape reqularity of the triangulations (minimum angle condition), such that for each T € T,
and e € E(T), there holds

Ipllzae) < esllvepllizey, Vo€ Pile), (31)
le* L)) < cohe®lIplleaey, V€ Pile). (32)
Proof. See Lemma 4.1 in [38|. O

We will also use the following inverse inequality (see Theorem 3.2.6 in [11]): for each T' € Ty,
there holds
gl ey < cwhr' llglleaery, Vg€ Pu(T), (33)

where c9 > 0 depends only on k and the shape regularity of the triangulations.

Lemma 8 Assume that g € H'(T'p) is a piecewise polynomial on U'p. Then, there exists
C > 0, independent of h, such that for each e € Eyr,, there holds

0
he ||§(9 - Uh)”%z(e) < Clu-— Uhﬁll(n) )
€
where T, is the triangle having e as an edge.

Proof. Let e € Ep,, and define x, := 6%(g
thanks to (31) and the extension operator L:c (e) = C(T.), we have that

— uyp,) on e, which is a polynomial on e. Then,

0
IXellF2e) < B I192"2 Xelliae) = B /l/’exe(%(g_uh)) = /a:r YeL(xe)V(u —un) - t.

Now, integrating by parts, we find that

'd)eL(Xe)v(u - uh) -t = _/ Curl(weL(Xe)) . V(U - uh) .

oTe e
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Therefore, applying the Cauchy-Schwarz inequality, the inverse inequality (33), that h, < hr,
and 0 < 9, <1, and (32) we have

IXellZ2ey < g lleurl(®eL(xe))liz2 (e IV (w — un)lliz2(z 2

Cg |'/’eL(Xe)|H1(Te)|U - uh|H1(Te)

< cgeroh Ve L(xe) |2z lu — unl gz,
< deroh 10e L)l lu — unlmr,)
< cerocohy 'he!® || xell ey lu — unlm z,)
and we end the proof. O

In summary we have proved the next theorem, which establishes the local efficiency of the
a posteriori error indicator 6.

Theorem 4 Assume g € H'(I'p) is a piecewise polynomial on T'p. Then, there exists Coge > 0,
independent of h, such that for all T € T;, we have
07 < Cazt (Ilu — unllipery + oo — oonll i) -

Proof. It follows from (26), (28), (29) and Lemmas 6 and 8. O

5.3 Three-dimensional case

In what follows, we let d = 3 and consider (7,v) € Hox H'(2). Then, there exists y € [H}(Q)]?
and z € H%(Q) such that
T = curl(x) + Vz

and
||X“[H1(Q)]3 +||Z||H2(n) < C'||7'||H(div;ﬂ)’

for some positive constant C' independent of 7 (see Theorem 3.1 in [22]). In particular, div(r) =
Az in Q.

We consider a discrete Helmholtz decomposition of 7,: we define x;, = IL(x), where I}, :
p X X
[H*(Q)]* — X} is the vector counterpart of the Clément interpolation operator, and

T, = curl(xy) + HﬁVz € Hy,.
Then, proceeding similarly as in the previous section, we have the decomposition
Ry(7) = Ry(1 — 1) = Ry(7) + Ry (2) + Ru(x) (34)
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where R,(7) and R;(z) are formally as in the previous section and
R = — (o +ou) — Vun) - curl(x— i)
Q

+ Ko /(’C_I(O’z + oo,n) — Vuy) - IC_lcurl(X —Xn) + (g — up)curl(x — xn) -n.
JQ I'p

The analogous of Lemmas 3 and 4 follows straightforwardly. The analogous of Lemma 5 follows
by noting that

(9-ueurl(x—xn) -n = Y [(x=xn)- Vg —w) x n.

JT'p ecl'p V' €

Then, we define the global a posteriori error indicator
1/2
= (X m) " (35)
TeTh
where

ny = ||f+div(e. +00n) = b Vur|[lapy + [[Vur — K™ (0, + O’O,h)ll[ZLg(T)]z

+ Y he(lg—unlfac + V(g —un) x nifzageys)
eGEanaT

(36)

Following the same arguments as in the previous section, we have the analogous of Theorem 3.

In order to prove the efficiency of 7, we proceed with the first three terms of (36) as before,
and obtain the analogous to (28), (29) and Lemma 6. Finally, to bound the fourth term, we
proceed as in Lemma 8.

6 Numerical experiments

In this section, we show some numerical experiments that illustrate the performance of the
augmented scheme (11) and confirm the properties of the a posteriori error estimator 6 defined
in (26)-(27). The numerical experiments were performed with the finite element toolbox FENICS
[32] using the Plaza and Carey refinement algorithm [35]. We present numerical results for the
finite element pairs (Hy, V) given by (RTo, £1), (RT1,L2), (BDM, L,) and (BDMaj, L;) in
R2.

We use the standard adaptive finite element method (AFEM) based on the loop:

SOLVE — ESTIMATE — MARK — REFINE.
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Hereafter, we replace the subscript h by k, where k is the counter of the adaptive loop. Then,
given a mesh 7y, the procedure SOLVE is a direct solver for computing the discrete solution
(ok,ur). ESTIMATE calculates the error indicators 6,(7T") for all T € 7, depending on the
computed solution and the data. Based on the values of {6i(T")}re7,, the procedure MARK
generates a set of marked elements subject to refinement. For the elements selection, we rely
on the mazimum strategy: Given a threshold v € (0, 1], any element 7" € Ty such that

!
Ok (T") > max 0 (T), (37)

is marked for refinement (in our experiments, we took v = 0.4). Finally, the procedure REFINE
creates a conforming refinement 7., of 7y, using the Plaza and Carey refinement algorithm.
We will compare the performance of a finite element method based on uniform refinement
with the adaptive method that we have described above.
In what follows, DOFs stands for the total number of degrees of freedom (unknowns) of
(11) and we define the individual errors

ex(00) = ||oo — ookllH@vie), ex(u) = |lu—ulm@),

and the total error
ex(00,u) := (ex(00)® + ek(u)2)1/2.

The efficiency index with respect to the error estimator 6y is defined as effy, := 6;/ex (0o, u).

We present five examples. The aim of the first one is to test the robustness of the discrete
scheme (11) with respect to the stabilization parameters and to confirm the rate of convergence
predicted by Theorem 2. In the second example, the solution presents an exponential boundary
layer whereas in the third example the solution has two boundary layers. The fourth example
has a singular solution and the fifth example explores the case of mixed boundary conditions.
These four latter examples allow us to test the efficiency of the adaptive method.

6.1 A smooth example

Let Q = (0,27) x (0,27), I'p = ' and 'y = (). We consider a problem with anisotropic
variable diffusion, with

3+ cosz 0

K(z,y) =
(z.9) ( 0 3+ cosy

) ,  b(z,y) = (coszsiny, —sinz cosy)*,

and choose f and g such that the exact solution of problem (5) is u(z,y) = cos(z + y).
We solve this problem with the finite element pairs (R7 o, £1), (BDM1, L), (RT 1, L2) and
(BDMa3, L3) on a sequence of uniform meshes. In Figure 1 we show the decay of total errors
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ky = 1/16,k; = 1/4 Ky = 1/300, kg = 1 ky=1/4,kg=1

10 10

ks =1 k= 1/4 —ky = 1/16
k3 =2 —ka =1/8 —ky = 1/32
::: f:ﬁ ek = 1/16 —e—ky = 1/64
10 ks —32 10! ——ky = 1/32 10t ——ky = 1/128
ok =1/64 ky = 1/256
£10 £10° £10
107 107 107
107 107 107
10* 10 10° 10* 10* 10° 10° 10 10°
Degrees of freedom Degrees of freedom Degrees of freedom

Figure 1: Example 1: Decay of total errors vs. number of degrees of freedom in the case of
(RTo, L) and different values of 1, K, and k3.

versus DOFs for the (R7Ty, £;) finite element pair and different values of the stabilization
parameters. We observe that optimal rates of convergence are attained in all cases and the
results are independent of the values of the stabilization parameters, which shows the robustness
of the method with respect to k;, k3 and k3.

Then, we choose
1 1

16’ K2 = 1’
that satisfy conditions (10). In Figure 2 we show the decay of the error and estimator for
both uniform and adaptive mesh refinement for the different finite elements. Convergence rates
predicted by the theory for the total error (Theorem 2) are attained in all cases (we recall
that h* ~ DOFs™*/¢ on uniform meshes). Note that, since the exact solution is smooth, the
error is uniformly distributed. Thus, when using the adaptive procedure we did not expect an
improvement over the uniform one. Moreover, the errors e;(og) and e;(u) decay with the same
velocity as the total error (see Figure 3). In all cases the total error and the estimator have the
same decay, which confirms that they are equivalent. In Figure 4 we plot the efficiency index
for the different elements employed. We observe that efficiency indices are fairly stable.

Finally, the concentration and the flux obtained in the last iteration of the adaptive refine-
ment algorithm when using (R7, £1) are plotted in Figure 5.

R = kg =1,

6.2 Sharp boundary layer

Now, we let 2 = (=1,1) x (=1,1),’p =T and 'y = 0. Let £ = €¢Z, with e = 10721073, 107,
b(z’ y) = (07 1)‘:’ f = 0’ and

l—el:Ll
g(l‘,y)=$1—__z-

— € €
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of freedom for different elements.
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Figure 4: Example 1: Efficiency indices for different finite elements.
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Figure 5: Example 1: Final concentration (left) and final flux (right) when using (R7, £,) .
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We apply the proposed augmented formulation to a boundary value problem inspired from
y=1
1—e <. We remark that this solution has a sharp

—e"€

[18], whose solution is given by u(z,y) = =

boundary layer at the boundary y = 1.

We performed experiments for the finite elements pairs (R7, £1), (BDM., L1), (RT1, L2)
and (BDM,, L3). The results displayed in Figures 6 and 7 show that the individual and total
errors, as well as the estimators proposed in this work decrease following the convergence rates
predicted by the theory for the adaptive refinement algorithm, for the four finite elements
implemented. Moreover, the meshes plotted in Figure 9, reveal that the algorithm based on
the a posteriori error estimator # defined in (26) is able to identify the exponential boundary
layer and to refine the mesh around it. As a result, the adaptive procedure is more efficient
than the uniform refinement, as confirmed by Figures 6 and 7.

In Figure 8 we plot the efficiency index for the four finite elements: for first order elements
the efficiency index barely moves away from 1, while for second order elements we observe
more oscillations with a tendency of stabilization around 2.5. Finally, Figure 10 shows the final
concentration (left) and flux (right) obtained with the adaptive procedure.

6.3 Two sharp boundary layers

Next, we set = (0,1) x (0,1), Ip =T and 'y = 0. Let K = €Z, with e = 1072,1073,107*,
b(z,y) = (2,3)*, and choose f and g such that the solution of the boundary value problem (5)
is
u(z,y) = zy* — y%y I

To our knowledge, this model problem was first proposed in [28], and then analyzed in [18].

In Figure 11, we can observe the total error and estimator for the uniform and adaptive
refinements. From this graph, we conclude that the adaptive algorithm is more competitive than
the uniform procedure. Figure 12 shows the decay of the individual errors, e;(u) and e (o), for
the adaptive and uniform refinements. We observe a fast convergence of the adaptive procedure
for the variables of interest (flux and concentration) as a consequence of the localization of the
two boundary layers (see Figure 14).

Figure 13 shows the efficiency indices for the different finite elements and the different values
of € considered here. In Figure 14 we show the initial, an intermediary and final meshes for
(RT1,Ls) and € = 1072 Finally, in Figure 15 we show the final flux and concentration.

6.4 An example with a singular solution

Let Q = (0,1) x (0,1) be the unit square, 'p =T and 'y = (). Let K = €Z, with ¢ = 1074,
b = (1,0)*, and choose f and g such that the solution of the boundary value problem (5) is

u(z,y) = (2.1 —z —y)~%/3,
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of freedom for different elements and values of e.
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Figure 8: Example 2: Efficiency indices for different finite elements and values of €.

Figure 9: Example 2: Initial (397 DOFSs), intermediate (8 702 DOFs) and final (1.5 x 10¢ DOFs)
mesh in the case of (R7 1, L2) and for e = 0.01.
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Figure 11: Example 3: Decay of total errors (left) and estimators (right) vs. number of degrees
of freedom for different elements and different values of e.
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Figure 12: Example 3: Decay of e (u) (left) a.ngoek(a) (right) vs. number of degrees of freedom

for different elements and values of e.
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Figure 13: Example 3: Efficiency indices for different finite elements and values of e.

Figure 14: Example 3: Initial (397 DOFs), intermediate (42082 DOFs) and final (2.2 x 10°

Degrees of freedom

DOFs) mesh in the case of (R71,£L2) and for € = 0.01.
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and for e = 0.01.
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Figure 16: Example 4: Decay of total errors vs. number of degrees of freedom for different
elements.

We remark that this solution presents a singularity in an exterior neighbourhood of the point
(1,1). In this example, we took k; = §, kg = § and k3 = 1.

In Figure 16, we can observe the decay of the total error for the uniform and adaptive
refinements for the 4 different finite elements implemented. From this graph, we conclude that
in all cases the adaptive algorithm is more competitive than the uniform procedure. Figure 17
shows the efficiency indices for the different finite elements. In Figure 18 we show the initial
mesh, and the meshes obtained after 6 and 12 iterations of the adaptive algorithm with the
(RTo, L) element and € = 10~*. We remark that the adapted meshes are highly refined around
the singularity. Finally, in Figure 19 we show the final flux and concentration.

6.5 An example with mixed boundary conditions

Let 2 = (0,1) x (0,1) be the unit square and define I'p to be the left and bottom boundaries
of Qand 'y = 90\ I'p. Let K = €Z, with ¢ = 1073, b = (2,1)*, and choose the data so that
the solution of the boundary value problem is

u(z,y) =1+ %(tanh(a%) + tanh(;—i,))

with a, = 0.05. We remark that this solution has two boundary layers around the Dirichlet
boundaries. In this example, we took k1 = 35, k2 = § and K3 = 2.
In Figure 20, we observe the decay of the total error for the uniform and adaptive refinements

for the 4 different finite elements implemented. From this graph, we conclude that in all cases
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Figure 17: Example 4: Efficiency indices for different finite elements.

Figure 18: Example 4: Initial mesh (25 DOFs), mesh after 6 iterations (2346 DOFs) and mesh
after 12 iterations (24415 DOFs) in the case of (R7,£1) and € = 10~*.
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Figure 20: Example 5: Decay of total errors vs. number of degrees of freedom for different
elements.

the adaptive algorithm is more competitive than the uniform procedure. Figure 21 shows the
efficiency indices for the different finite elements. In Figure 22 we show the initial mesh, and
the meshes obtained after 5 and 10 iterations of the adaptive algorithm with the (R7,, £;)
element and € = 1073. We remark that the adapted meshes are highly refined around the
boundary layers. Finally, in Figure 23 we show the final flux and concentration.

7 Conclusions

We introduced new augmented mixed finite element methods for the linear convection-diffusion
equation with mixed boundary conditions in two and three dimensions. We proved that for
appropriate values of the stabilization parameters, the new variational formulation and the
corresponding Galerkin schemes are well-posed and a Céa estimate holds. We derived the rate
of convergence when the flux is approximated by Raviart-Thomas or Brezzi-Douglas-Marini
elements, and the concentration is approximated by continuous piecewise polynomials. More-
over, we developed an a posteriori error analysis of residual type based on the use of a discrete
Helmholtz decomposition, and propose a simple a posteriori error indicator that is reliable and
locally efficient. This a posteriori error indicator consists of two terms in internal elements and
elements with a side/face on the Neumann boundary, and it contains two additional terms on
elements with a side/face on the Dirichlet boundary.

Finally, we presented some numerical examples that illustrate the performance of the aug-
mented schemes and confirm the properties of the a posteriori error indicators when the finite

element pairs (R7, L), (BDMy, L,), (RT1,L3) and (BDMa, L) are used. The fist example
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Figure 21: Example 5: Efficiency indices for different finite elements.

Figure 22: Example 5: Initial mesh (81 DOFs), mesh after 5 iterations (4326 DOFs) and mesh
after 10 iterations (71626 DOFs) in the case of (R7p, £1) and € = 107°.
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allowed us to test the robustness of the augmented mixed finite element schemes with respect
to the stabilization parameters, and to confirm that optimal convergence rates predicted by the
theory are attained in all cases when the solution is sufficiently smooth. Then, we tested the
adaptive algorithm based on the a posteriori error indicator 6 (see (27)) over an example with
an exponential boundary layer, another one with two sharp boundary layers, an example with
a singular solution and one example with mixed boundary conditions. We conclude that the
adaptive algorithm is more competitive than the uniform refinement algorithm, and it is able
to locate the boundary layers and singularities of the solutions.

We remark that we have taken as point of departure a centered mixed scheme. In order
to tackle problems with a more important convection, we need to incorporate some kind of
upwinding technique. This will be the subject of a forthcoming paper.
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