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Abstract

Accurate numerical simulations of interaction between fluid and solid play an

important role in applications. The task is challenging in practical scenarios as the

media are usually highly heterogeneous with very large contrast. To overcome this

computational challenge, various multiscale methods are developed. In this paper,

we consider a class of linear poroelasticity problems in high contrast heterogeneous

porous media, and develop a mixed generalized multiscale finite element method

(GMsFEM) to obtain a fast computational method. Our aim is to develop a

multiscale method that is robust with respect to the heterogeneities and contrast

of the media, and gives a mass conservative fluid velocity field. We will construct

decoupled multiscale basis functions for the elastic displacement as well as fluid

velocity. Our multiscale basis functions are local. The construction is based on

some suitable choices of local snapshot spaces and local spectral decomposition,

with the goal of extracting dominant modes of the solutions. For the pressure,

we will use piecewise constant approximation. We will present several numerical

examples to illustrate the performance of our method. Our results indicate that

the proposed method is able to give accurate numerical solutions with a small

degree of freedoms.
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1 Introduction

Simulation of interaction between fluid and solid constituents within a heteroge-

neous porous medium is of vital importance in areas such as reservoir geomechan-

ics [15,21,32] and medical diagnosis [26]. The mechanical behavior of such porous media

accounts for the coupling of the solid deformation and fluid flow behavior. Among all the

models proposed by pioneering researchers, Biot introduced a three-dimensional theory

of elastic deformation of fluid infiltrated media [4] and extended it to porous media in

1956 [5], which can accurately model the dynamic behavior within porous media.

Due to the presence of heterogeneity, direct simulation of the model problem requires

a high grid resolution which is computationally expensive. There are in literature a

number of multiscale methods for solving these problems with a reduced computational

cost. Some popular examples are upscaling or homogenization approaches (e.g., [16,18,

22, 27, 29]), heterogeneous multiscale methods (HMM) [2, 28], multiscale finite element

methods (MsFEM) [1,3,18,23], generalized multiscale finite element method (GMsFEM)

(e.g., [8,10,12,14,17,30,31]) and local orthogonal decomposition method (LOD) [6]. The

goal of these approaches is to construct low dimensional computational models which can

give approximate solutions with good accuracy. For instance, numerical homogenization

aims at computing an effective quantity for the heterogeneous coefficient so that the

resulting computational model can be solved on a coarse grid to give an upscaled solution.

Another way is to represent the solution by some carefully designed local multiscale

basis functions as in MsFEM. These basis functions are solutions of local problems with

appropriate boundary conditions. Contrary to standard finite element basis, MsFEM

basis are oscillatory in the interior of each coarse block, and these features are important

in capturing oscillations in the solutions. Therefore, MsFEM basis functions contain

more information and are good representatives of the solution space. Nevertheless, the

accuracy of MsFEM depends on local boundary conditions and assumes scale separation.

Though effective in many cases, multiscale methods that only use local information may

not accurately capture the local features of the solution. GMsFEM is a generalization

of MsFEM with the goal of designing a systematic way to enrich the multiscale solution

space. It consists of two stages: offline stage and online stage. In the offline stage,

we construct a small dimensional multiscale basis functions that can be effectively used

to solve the global problem in the online stage for any input parameter, such as right-

hand sides or boundary conditions. To get these small dimensional multiscale basis

functions, we first compute snapshot spaces locally and then reduce the snapshot space

by performing a suitable spectral decomposition. The spectral problems are designed

by error analysis and have a huge impact on the convergence rate of the method. In the

online stage, basis functions can also be constructed and added based on the solution

residual with aims of reducing error significantly and capturing global information [30].

Our work is motivated by the framework of GMsFEM. There are in literature re-
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search on GMsFEM for poroelasticity problems (see e.g., [7, 20]). The aim of our work

is to handle the critical need of mass-conservation in flow problems. Several mixed finite

element methods have been developed to cope with this challenge (see e.g., [3,9,11,30]).

In multiscale framework, some mixed methods enjoy good property of mass-conservation

without post-processing. In consideration that our model is based on viscous flows and

governed by Darcy’s law, we introduce the velocity variable. Therefore, we are aiming to

find appropriate space for displacement, velocity and pressure. For the approximation of

velocity field, we first construct snapshot spaces which are local solutions supported on

single coarse edge neighborhood and are consisting of all possible boundary condition of

unit flux with respect to the fine grid. The offline space of velocity field is achieved by

performing local spectral problems in the corresponding snapshot space. In the frame-

work of continuous Galerkin approach, one basis function per edge is not sufficient to

capture many disconnected multiscale features [13, 17], while our method can system-

atically generate enough basis functions to represent the multiscale features. Moreover,

there is no need to use partition of unity functions. For approximation of displacement

field, we use local fine basis functions as the snapshot functions. Spectral problems

are performed to get the multiscale basis functions for displacement. For pressure ba-

sis functions, piecewise constant functions are proved to be good approximation in our

numerical experiments. For time sequential approximation, we consider two splitting

schemes as discussed in paper [19, 24, 25]: fixed-stress and fully coupled. Fully coupled

scheme generates a bigger matrix, while fixed-stress scheme is more economical.

The paper is organized as follows. In Section 2, we introduce the poroelasticity

model. We define the mesh and partition, derive the variational formulation, and ap-

ply different splitting schemes in Section 3. Construction of multiscale velocity basis

and multiscale displacement basis are presented in Section 4. In Section 5, numerical

results are illustrated, and we observe that our proposed method is able to give accu-

rate solutions with a small dimensional approximation space. The paper ends with a

conclusion.

2 Preliminaries

We let Ω ⊂ Rd (d = 2, 3) be a bounded computational domain with Lipschitz

boundary. Let T > 0 be a fixed time. We consider the following linear poroelasticity

problem in which we find the displacement u and the pressure p satisfying

−∇ · σ(u) + α∇p = 0 in (0, T ]× Ω, (1a)

α
∂∇ · u
∂t

+
1

M

∂p

∂t
−∇ ·

(κ
ν
∇p
)

= f in (0, T ]× Ω, (1b)
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with the initial condition p|t=0 = p0 for the pressure. We split the boundary of the

domain into two parts ∂Ω = Γ1 ∪ Γ2. We assume the following boundary conditions on

each portion

u = 0, p = 0 on (0, T ]× Γ1, u = 0,
κ

ν
∇p · ~n = 0 on (0, T ]× Γ2,

where ~n is the outward unit normal vector on ∂Ω. In Problem (1), we denote the stress

tensor by σ(u), the Biot modulus M , the fluid viscosity ν, the source term f , and

the Biot-Willis fluid-solid coupling coefficient α. For models derived from linear elastic

stress-strain constitutive relation, the stress tensor is expressed as

σ(u) = 2µε(u) + λ∇ · (u)I, ε(u) =
1

2
(∇u+∇uT ),

where I is the identity matrix, λ, µ > 0 are the Lamé coefficients. The Lamé coefficients

can be expressed in terms of the Young’s modulus E > 0 and the Possion’s ratio η ∈
(−1, 1

2
) via,

λ =
η

(1 + η)(1− 2η)
E, µ =

1

2(1 + η)
E. (2)

Here the primary sources of the heterogeneities in the physical properties arise from

M,λ, µ, α and κ.

To proceed with the mixed finite element method, we introduce the velocity variable

g = −κ
ν
∇p

to Problem (1). To state it more clearly, we are dealing with the following problem: find

(u, g, p) such that

−∇ · σ(u) + α∇p = 0 in (0, T ]× Ω, (3a)

κ−1νg +∇p = 0 in (0, T ]× Ω, (3b)

α
∂∇ · u
∂t

+
1

M

∂p

∂t
+∇ · g = f in (0, T ]× Ω, (3c)

with initial and boundary conditions rewritten as

u = 0, p = 0 on (0, T ]× Γ1, u = 0, g · ~n = 0 on (0, T ]× Γ2.

3 Variational Formulation and Splitting Scheme

In this section, we will derive the fine scale and mixed GMsFEM variational for-

mulations for Problem (3). Before introducing our method, we define the mesh and
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partitions needed in this paper. Let T H be a standard conforming partition of the com-

putational domain Ω into finite elements, where H > 0 is the mesh size. We refer to

this partition as the coarse-grid and assume that each coarse element is partitioned into

a connected union of fine grid blocks. The fine grid will be denoted by T h, and is by

definition a refinement of the coarse grid T H . We emphasize that we will use K ∈ T H
to denote a coarse element throughout the paper. Let XH := {Xj}Nc

j=1 be the set of

nodes in the coarse grid T H , where Nc is the number of the coarse nodes. Moreover,

XH
0 is defined as a subset of XH consisting of all interior coarse grid nodes. We define

the neighborhood wX of a coarse node X ∈ XH by

wX :=
⋃
j

{Kj ∈ T H |X ∈ Kj}.

Note that wX is the union of our all coarse elements Kj ∈ T H sharing the coarse vertex

X. Let EH := {Ei}Ne
i=1 be the set of all edges of the coarse mesh T H . Furthermore, EH0 is

the subset of EH containing all interior coarse edges. We define the coarse neighborhood

wE of a coarse edge E ∈ EH as the union of all coarse grid blocks having the edge E,

namely,

wE :=
⋃
l

{Kl ∈ T H |E ∈ ∂Kl}.

See Figure 1 for an illustration of neighborhoods of coarse edge and coarse grid. For the

time discretization, let
{
Tj

}j=Jt
j=0

0 = T0 < T1 < T2 < · · · < TJt = T,

be a partition of (0, T ). In the following presentation, unknown with superscript n equals

its value at time Tn. For example, pn = p(·, Tn).

(a) Coarse grid and fine grid. (b) coarse block and neighborhood.

Figure 1: Illustration of mesh and neighborhood

To introduce the variational formulation of Problem (3), we define spaces V, Z,Q, V 0
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and Z0 as follows:

V =

{
v ∈

(
H1(Ω)

)d}
, Z =

{
z ∈ H(div,Ω)

}
, Q =

{
q ∈ L2(Ω)

}
,

V 0 = V ∩
{
v ∈ V |v = 0 on (0, T ]× ∂Ω

}
, Z0 = Z ∩

{
z ∈ Z|z · ~n = 0 on (0, T ]× Γ2

}
.

We first multiply (3a), (3b) and (3c) with functions from V 0, Z0 and Q, respectively.

Next, applying Green’s formula and making use of the boundary conditions on each

portion, we get the variational formulation for Problem (3): find (u, g, p) ∈ (V, Z,Q)

satisfying ∫
Ω

−∇ · σ(u)v +

∫
Ω

α∇pv = 0,∀v ∈ V 0, (4a)∫
Ω

κ−1νgz +

∫
Ω

∇pz = 0, ∀z ∈ Z0, (4b)∫
Ω

α
∂∇ · u
∂t

q +

∫
Ω

1

M

∂p

∂t
q +

∫
Ω

∇ · gq =

∫
Ω

fq,∀q ∈ Q. (4c)

Let Vh be the standard Q1 element for the approximation of fine-scale displacement

u on the fine grid T h, Zh be the standard lowest-order Raviart-Thomas space (RT0)

for fine-scale velocity g approximation and Qh be the piecewise constant element for

fine-scale pressure p approximation for variational formulation (4). Note that Vh, Zh
and Qh are the fine-scale spaces and the corresponding solution set (uh, gh, ph) are used

as our reference solutions in numerical experiments. V 0
h and Z0

h can be defined similarly

as V 0 and Z0. Following same techniques as variational formulation of (4), we have the

fine-scale variational formulation: find (uh, gh, ph) ∈ (Vh, Zh, Qh) satisfying∫
Ω

−∇ · σ(uh)v +

∫
Ω

α∇phv = 0,∀v ∈ V 0
h , (5a)∫

Ω

κ−1νghz +

∫
Ω

∇phz = 0,∀z ∈ Z0
h, (5b)∫

Ω

α
∂∇ · uh
∂t

q +

∫
Ω

1

M

∂ph
∂t

q +

∫
Ω

∇ · ghq =

∫
Ω

fq,∀q ∈ Qh. (5c)

Remark 1. Suppose Vms, Zms, Qms V
0

ms and Z0
ms are some multiscale spaces for displace-

ment, velocity and pressure which we will discuss later in Section 4. The variational

formulation for our multiscale method is similar to fine scale formulation in (5c). There-

fore, the variational formulation for our multiscale method is: find (ums, gms, pms) ∈
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(Vms, Zms, Qms) satisfying∫
Ω

−∇ · σ(ums)v +

∫
Ω

α∇pmsv = 0,∀v ∈ V 0
ms, (6a)∫

Ω

κ−1νgmsz +

∫
Ω

∇pmsz = 0,∀z ∈ Z0
ms, (6b)∫

Ω

α
∂∇ · ums

∂t
q +

∫
Ω

1

M

∂pms

∂t
q +

∫
Ω

∇ · gmsq =

∫
Ω

fq,∀q ∈ Qms. (6c)

Finally, we notice that two terms α∂∇·uh
∂t

and 1
M

∂ph
∂t

in (5c) involve time derivative,

which requires further discretization techniques. To facilitate our discussion, we define

the following bilinear and linear operators:

a(u, v) =

∫
Ω

σ(u) : ε(v)dx, b(v, p) =

∫
Ω

α∇ · vpdx,

c(q, v) =

∫
Ω

αq∇ · vdx, d(q, p) =

∫
Ω

1

M
qpdx,

e(q, g) =

∫
Ω

q∇ · gdx, f(q) =

∫
Ω

fqdx,

j(z, g) =

∫
Ω

κ−1νzgdx, k(z, p) =

∫
Ω

∇ · zpdx.

One popular splitting method is fixed-stress splitting scheme. The main idea is to

combine (5b) and (5c) for the approximation of new step pn+1
h and gn+1

h . Then pass

the new pn+1
h to (5a) and calculate the new un+1

h . In this way, (5a)-(5c) is divided as

a sequence of variational formulations: find (un+1
h , gn+1

h , pn+1
h ) ∈ Vh × Zh × Qh, n =

0, 1, 2, · · · , Jt − 1, such that

a
(
un+1
h , v

)
= b(v, pn+1

h ),∀v ∈ V 0
h , (7a)

j(z, gn+1
h )− k(z, pn+1

h ) = 0, ∀z ∈ Z0
h, (7b)

e(q, gn+1
h ) + d(q,

pn+1
h

τ
) = f(q)− c(q, u

n
h − un−1

h

τ
) + d(q,

pnh
τ

), ∀q ∈ Qh. (7c)

In formulation (7), right hand sides of (7b)-(7c) only involve terms that can be computed

at time step n or before. Only equations (7b)-(7c) are coupled in this scheme. We will

use this splitting scheme in our numerical experiments in Section 5.

Another feasible discretization method is the fully coupled method. All unknowns

un+1
h , gn+1

h , hn+1
h will be solved at a time in this method. Consequently, a much larger

matrix will be created and it is time-consuming. The corresponding variational method
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is as follows: find (un+1
h , gn+1

h , pn+1
h ) ∈ Vh × Zh ×Qh, n = 0, 1, 2, · · · , Jt − 1, such that

a(un+1
h , v)− b(v, pn+1

h ) = 0,∀v ∈ V 0
h , (8a)

j(z, gn+1
h )− k(z, pn+1

h ) = 0,∀z ∈ Z0
h, (8b)

c(q,
un+1
h

τ
) + e(q, gn+1

h ) + d(q,
pn+1
h

τ
) = f(q) + c(q,

unh
τ

) + d(q,
pnh
τ

),∀q ∈ Qh. (8c)

The variational formulation for multiscale space approximation of fixed-stress splitting

and fully coupled splitting can be similarly derived.

4 The Construction of Multiscale Basis Functions

As we have formed a sequence of variational formulation in Section 3, we are left

with the construction of multiscale spaces Vms, Zms, Qms V
0

ms and Z0
ms. The multiscale

space Qms is trivial in our method. It is piecewise constant with respect to the coarse

partition T H . For the construction of multiscale space of velocity and displacement, the

main idea is designing spectral problems to extract the dominant modes and thus get a

reduced space.

4.1 Multiscale space for velocity

The multiscale space Zms is formed by solving a spectral problem on a snapshot

space. The snapshot space of velocity are spanned by solutions of local problem with

unit flux on part of local boundary. For an arbitrary coarse edge Ei ∈ EH , suppose

Ei is the union of li fine edges in T h, i.e., Ei =
li⋃
j=1

ej, where li is the total number of

find-grid edges on Ei and ej denotes a fine-grid edge in coarse edge Ei. For every fine

edge ej ∈ Ei, we may define li distinct fine edge delta functions on Ei as follows:

δji =

{
1 on ej,

0 on ek, k 6= j.

As indicated by the definition, δji is a piecewise constant function defined on Ei, and it

has value 1 on ej and 0 on other fine-grid edges of Ei. Given these notations, we can

define the following problem on the neighborhood wEi
of Ei: find (gji , p

j
i ) ∈ (Zh, Qh)

such that 
∇pji + κ−1νgji = 0 in wEi

,

∇ · gji = αji in wEi
,

gji · ~ni = 0 on ∂wEi
,

gji · ~mi = δji on Ei.

(9)
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Here ~ni denotes the outward unit normal vector on ∂wEi
and ~mi a fixed unit normal

vector with respect to edge Ei. α
j
i is yet to be determined. Indeed, the above problem

can be solved separately on each coarse block of wEi
. In this case, we construct mi

corresponding to edge Ei. αji is determined uniquely by the compatibility condition∫
Kl
α(j) =

∫
E
δji , ∀Kl ⊂ wE.

The collection of the solutions of the above local problems generates the snapshot

space. We let Ψi,snap
j := gji be the snapshot fields and define the snapshot space Zsnap by

Zsnap = span {Ψi,snap
j : 1 6 j 6 li, 1 6 i 6 Ne}.

Moreover, we define the local snapshot space by

Zi
snap = span {Ψi,snap

j : 1 6 j 6 li}.

Note that each Ψsnap
i is represented on the fine gird by the basis functions in Zh. There-

fore, each Ψsnap
i can be represented by a vector ψsnap

i containing the coefficients in the

expansions of Ψsnap
i in the fine-grid basis functions. Then, we define

Rsnap = [ψsnap
1 , . . . , ψsnap

Msnap
],

which maps from the coarse space to the fine space.

Next, we will perform a space reduction on the snapshot space through the use of

some local spectral problems. The purpose of this is to determine the important modes

in the snapshot space and to obtain a smaller space for approximating the solution. In

the general setting, we consider the spectral problem of finding a real number λ and a

vector field g ∈ Zsnap such that

a(g, z) = λs(g, z), ∀z ∈ Zsnap (10)

where a(g, z) and s(g, z) are symmetric positive definite bilinear forms defined on Zsnap×
Zsnap. We consider s(g, z) as an inner product on Zsnap and define a linear operator A:

Zsnap → Zsnap by

s(Ag, z) = a(g, z).

The operator A has rapidly decaying eigenvalues if κ is highly heterogeneous. Note that

one can take A to be a compact operator. In practice, solving the above global spectral

problem is inefficient. Therefore, the dimension reduction and the construction of the

offline space are performed locally. In particular, the above spectral problem is solved

for each wEi
. An appropriate choice of spectral problem is vital for the final convergence.

Below we list two effective and efficient spectral problems. In our numerical experiments,

we will consider Spectral Problem 1.
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• Spectral Problem 1. We take

ai(g, z) =

∫
Ei

κ−1(g ·mi)(z ·mi), si(g, z) =

∫
wi

κ−1g · z +

∫
wi

(∇ · g)(∇ · z).

• Spectral Problem 2. We take

ai(g, z) =

∫
wi

κ−1g · z, si(g, z) =

∫
Ei

[pg][pz],

where (g, pg) and (z, pz) are solutions of the local problem (9), and [p] denotes the

jump of the function p.

Without loss of generality, we assume the eigenpairs of spectral problem (10) can be

sorted as (
λ

(i)
1 ,Θ

(i)
1

)
,
(
λ

(i)
2 ,Θ

(i)
2

)
, · · · ,

(
λ

(i)
li
,Θ

(i)
li

)
,

Θ with
(
λ

(i)
k

)li
k=1

in a non-decreasing order. We will use the first J iv eigenfunctions to

form the offline space. The number J iv depends on problem and will be chosen in the

numerical experiments. Note that Using these eigenfunctions, offline basis functions can

be constructed as

Ψi,off
k =

j=li∑
j=1

Θ
(i)
kjψ

i,snap
j , k = 1, 2,

. . . , J iv.

The global offline space is then defined as

Zms = span{Ψi,off
k : 1 6 k 6 li, 1 6 i 6 Ne}.

To simplify notation, we will use the following single-index notation

Zms = span{Ψoff
k : 1 6 k 6Moff},

where Mms =
∑Ne

i=1 li is the total number of offline basis functions. This space will be

used as the approximation space for velocity in the GMsFEM system. Furthermore, we

can define Z0
ms as the subspace of Zms formed by the linear span of all the basis functions

Ψoff
k corresponding to the set of all interior coarse edges E0

H .

4.2 Multiscale space for displacement

Similar to the construction of Zms in previous subsection, we also select the most

dominant modes to form the approximation space Vms by performing local spectral
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problems. One major difference however was the underlying spaces for spectral problems,

where instead of constructing a snapshot space like Zsnap, we employ the space generated

by all fine grid basis functions in Vh. To be specific, we want to find (u, λ) ∈ R × Vh
such that

â(u, v) = λŝ(u, v), ∀v ∈ Vh. (11)

Nevertheless, doing spectral problem on Vh is memory-intensive and time-demanding.

Therefore, we would prefer a reduced space Vh(wXj
) to substitute Vh in the spectral

problem (11), where Vh(wXj
) is the subspace of Vh with domain restriction on a coarse

neighborhood wXj
. Hence, the spectral problem for displacement is written as: for every

coarse neighborhood wXj
, find (u, λ) ∈ R× Vh(wXj

) such that

â(u, v) = λŝ(u, v), ∀v ∈ Vh(wXj
). (12)

In addition, the bilinear operators are chosen as

â(vm, vn) =

∫
Ω

(
2µε(vm) : ε(vn) + λ∇ · vm∇ · vn

)
, ŝ(vm, vn) =

∫
Ω

(λ+ 2µ)vm · vn,

vm, vn ∈ Vh(wXj
). Suppose

{
(µ

(j)
k , φ

(j)
k )
}k=lj

k=1
are the eigenpairs of the problem (11),

without loss of generality, we may assume they are arranged in a non-decreasing order

by µ
(j)
k . Suppose we intend to employ J ju basis functions on wXj

, then we can construct

the corresponding offline basis functions as

Φj
k =

Jj
u∑

m=1

vmφ
j
km, 1 6 j 6 Nc, 1 6 k 6 J ju,

where φjkm are the m-th coordinates of φ
(j)
k . According, we define local offline space V

wj

off

as the space spanned by all the offline basis functions in the neighborhood wj:

V
wj

off =: span {Φj
k : 1 6 k 6 J iu}

To ensure the continuity of offline space, we multiply it by a multiscale partition of

unity functions which are constructed by a local problem. For every coarse neighborhood

of wXj
, find ξj1 =

(
ξj11, ξ

j
12

)
, ξj2 = (ξj21, ξ

j
22) satisfying


â(ξj1, v) = 0 in wXj

,

ξj11 = gj on ∂K,K ∈ wXj
,

ξj12 = 0 on ∂K,K ∈ wXj
,

ξj1 = 0 on ∂wXj
,


â(ξj2, v) = 0 in wXj

,

ξj21 = 0 on ∂K,K ∈ wXj
,

ξj22 = gj on ∂K,K ∈ wXj
,

ξj1 = 0 on ∂wXj
.

11



Here gj is a linear and continuous function on ∂K. The choice of gj can be referenced

in paper [23]. For the sake of simplicity, we utilize the hat function regarding the coarse

grid edge. Then our partition of unity multipliers are set as POUj = (ξj11, ξ
j
22). Finally,

we multiply the partition of unity functions by the eigenfunctions in the offline space

V
wj

off to construct the resulting basis functions

Υj,k = POUjΦ
j
k, for 1 6 j 6 Nc, 1 6 k 6 J ju.

Next, we define the multiscale space of displacement Vms as

Vms = span{Υj,k : 1 6 j 6 Nc, 1 6 k 6 J ju}.

Note that V 0
ms are the subspace of Vms which excluded those basis generated by the coarse

neighborhood on the boundary. Once we constructed all the necessary multiscale spaces,

we can use the splitting method and variational formulations introduced in Section 3 to

get the final simulation.

5 Numerical Results

In this section, some numerical results are presented to illustrate the performance of

our mixed GMsFEM for approximating problem (3). In all simulations reported below,

we employ the fixed-stress splitting scheme derived in Section 3. The computational

domain D = (0, 1)2. In our experiments, we will use three different permeability fields

κ1, κ2 and κ3. Each permeability field can be divided into 2 subdomains based on

heterogeneous coefficients. Figure 2 shows the subdomains distribution of κ1, κ2 and κ3

used in our experiments. In Figure 2, We choose κi = 1, i = 1, 2, 3, in the blue region

and κi = 104, i = 1, 2, 3, in the yellow region. Moreover, the coarse grid T H and the fine

grid T h are N × N and n × n uniformly meshed, respectively. A fixed number of fine

grid n = 200 is employed, which means we may change the number of coarse grid but

the number of total fine grid is set to be 200. Other coefficients information are listed

as follows.

1. The Young’s modulus E is set to equal to the permeability field coefficient κ.

2. The Biot modulus M equals 1 in Ω1, and 10 in Ω2.

3. The Biot-Wills fluid-solid coupling coefficient α = 0.9.

4. The Poisson’s ratio η = 0.2.

5. The Lamé coefficients λ, µ are determined by η, E via relation (2).

6. The initial pressure p0(x, y) = xy(1− x)(1− y), ∀(x, y) ∈ D.
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Recall that we use a few multiscale basis functions on each coarse neighborhood wXi
.

These number of coarse basis determine the problem size (dimension of multiscale spaces,

dim of Vms,). We assume that in each neighborhood, we select the same number of

multiscale basis functions for velocity, i.e., J iv = Jv. Similarly, we choose equal number

of basis functions for displacement, with J iu = Ju. Furthermore, we choose equal time

step size τ , i.e., Ti+1 − Ti = τ, i = 0, 1 · · · Jt − 1. For simplicity of presentation, we

introduce the following error quantities for displacement, velocity and pressure

Eu
L2 =

||ums(·, T )− uh(·, T )||L2Ω

||uh(·, T )||L2Ω

, Eu
a =
||ums(·, T )− uh(·, T )||a

||uh(·, T )||a
,

Eg
L2 =

||κ
v
(vms(·, T )− vh(·, T ))||L2Ω

||κ
ν
vh(·, T )||L2Ω

, Ep
L2 =

||(pms(·, T )− ph(·, T ))||L2Ω

||ph(·, T )||L2Ω

,

where (ums(·, T ), vms(·, T ), pms(·, T )) is the multiscale solutions and (uh(·, T ), vh(·, T ), ph(·, T ))

are the reference solution obtained by fine-scale solver. Note that Ev
L2 is the weighted

L2 norm of velocity.

(a) κ1. (b) κ2. (c) κ3.

Figure 2: Three high-contrast permeability fields used in the experiments

5.1 Model 1

In the first simulation, we consider the proposed problem at T = 1 with source term

f(x, y, t) =


2, x ∈ (0,

1

N
), y ∈ (0,

1

N
), t ∈ (0, 1],

−2, x ∈ (
N − 1

N
, 1), y ∈ (

N − 1

N
, 1), t ∈ (0, 1],

and Γ1 = ∅, i.e.,

g0 · ~n = 0 on (0, 1]× ∂D, u0 = 0 on (0, 1]× ∂D.
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In the following part, we call this explicit problem Model 1. We test Model 1 with

permeability fields κ = κ1 and κ = κ3. Table 1-3 exhibits the relationship between

the approximation errors and number of displacement basis used in per coarse grid

neighborhood Ju, number of time steps Jt used and the number of velocity basis used

in per coarse edge neighborhood Jg. In Table 1, the errors euL2 , euH1 of Model 1 at

T = 1 drop quickly if more displacement multiscale basis are employed. However, the

convergence properties reach a plateau when enough displacement basis functions are

used. Meanwhile, we test the relationship of errors and number of velocity basis used

Table 1: Convergence result for Model 1: Relationship between errors and Ju with κ1,
N = 10, n = 200, T = 1, Jt = 10, Jg = 2

Ju euL2 euH1 epL2 egL2

4 0.3138 0.4862 0.0270 0.0801
8 0.0379 0.2534 0.0270 0.0801

12 0.0285 0.2365 0.0270 0.0801
16 0.0260 0.2303 0.0270 0.0801
20 0.0253 0.2267 0.0270 0.0801
24 0.0258 0.2240 0.0270 0.0801

per coarse neighborhood Jg. The result is shown in Table 2. We can see clearly that

the error egL2 get smaller if we use more velocity basis, though at smaller scale. While

other error estimators almost maintain the same level when Jg changes. One possible

reason is that the error egL2 is already small when 2 multiscale basis of velocity is used

in per coarse neighborhood. Simultaneously, we test several different time step sizes.

Table 2: Convergence result for Model 1: Relationship between errors and Jg with κ1,
N = 10, n = 200, T = 1, Ju = 20, Jt = 10

Jg euL2 euH1 epL2 egL2

2 0.0253 0.2267 0.0270 0.0801
3 0.0246 0.2261 0.0269 0.0573
4 0.0253 0.2258 0.0269 0.0377
5 0.0254 0.2257 0.0269 0.0304
6 0.0257 0.2257 0.0269 0.0245

The result is shown in Table 3. The error quantities almost have no difference when we

enlarge the number of time steps Jt. Similar results can be seen in Model 2 and thus we

may fix Ju, Jg, Jt as follows:

Ju = 20, Jg = 2, Jt = 10.

14



Table 3: Convergence result for Model 1: Relationship between errors and Jt with κ1,
N = 10, n = 200, T = 1, Ju = 20, Jg = 2

Jt euL2 euH1 epL2 egL2

5 0.0254 0.2272 0.0269 0.0800
10 0.0253 0.2267 0.0270 0.0801
20 0.0253 0.2266 0.0270 0.0801
40 0.0253 0.2266 0.0270 0.0801

Table 4: Convergence result of Model 1: Relationship between errors and N with n =
200, T = 1, Ju = 20, Jt = 10, Jv = 2

κ1 κ3

N euL2 euH1 epL2 evL2 euL2 euH1 epL2 evL2

8 0.0303 0.2432 0.0478 0.1071 0.3732 0.5974 0.0383 0.3930
10 0.0253 0.2267 0.0270 0.0801 0.1388 0.4539 0.0190 0.1215
20 0.0092 0.1456 0.0045 0.0496 0.0488 0.2844 0.0036 0.0655
25 0.0053 0.1222 0.0024 0.0356 0.0318 0.2398 0.0020 0.0542

Table 4 presents the results of κ1 and κ3. In both cases, the error euL2 , euH1 ,e
p
L2 and evL2

decrease rapidly when we enlarge the number of coarse grid. We see greater errors in

displacement, velocity and pressure of κ3 when compared with κ1. The biggest possibility

is that the heterogeneity properties in κ3 is more complex.

Figure 3-5 are some images of our final result at T = 1 of κ1. Graphically, there is

no observable difference between the reference solution and our mixed solution in this

case.

(a) First component of u. (b) Second component of u. (c) Pressure p.

Figure 3: Reference solution of Model 1 at T = 1 with κ = κ1

15



(a) First component of u. (b) Second component of u. (c) Pressure p.

Figure 4: Mixed GMsFEM solution of Model 1 at T = 1 with κ = κ1, N = 10, n =
200, Ju = 20, Jg = 2

(a) Reference velocity v. (b) Mixed velocity solution of v.

Figure 5: Comparison of reference solution and mixed GMsFEM solution for Model 1 at
T = 1 with κ = κ1. Left: reference velocity solution. Right: mixed GMsFEM velocity
solution with N = 10, n = 200, Ju = 20, Jg = 2

5.2 Model 2

In the second model, we test the proposed method with Γ2 = ∅. We test with T = 1.

The boundary condition and source term are as follows:

f(x, y, t) = 1,∀(x, y) ∈ D, t ∈ (0, 1], u = 0, p = 0 on (0, 1]× ∂D.

In the following part, we call this explicit problem Model 2. For Model 2, we will employ

permeability fields κ = κ1 and κ = κ2. Relationships between the error quantities and

Ju, Jg and Jt are similar to Model 1. Therefore, we choose the following numbers of

basis:

Ju = 20, Jg = 2, Jt = 10.

Error results are shown in Table 5. For both κ, our scheme achieve good approximation.

For κ1, the L2 error quantity for displacement dropped to 0.0164 when there only 8

16



Table 5: Convergence result of Model 2: Relationship between errors and N with n =
200, T = 1, Ju = 20, Jt = 10, Jv = 2

κ1 κ2

N euL2 euH1 epL2 evL2 euL2 euH1 epL2 evL2

8 0.3555 0.4869 0.2520 0.3882 0.4185 0.6161 0.2283 0.3045
10 0.0985 0.3583 0.1438 0.0715 0.1856 0.4918 0.1564 0.0564
20 0.0265 0.1872 0.0748 0.0463 0.0482 0.2522 0.0806 0.0347
25 0.0164 0.1503 0.0607 0.0332 0.0296 0.2011 0.0653 0.0311

multiscale basis are chosen at each coarse neighborhood and the size of the coarse grid

equals 1
25

. κ2 are problem with more complex permeability media. Hence, the results

are not as good as κ1.

Figure 6-8 are some images of Model 2 with κ = κ2. They demonstrate that our

mixed GMsFEM works well on Model 2.

(a) First component of u. (b) Second component of u. (c) Pressure p.

Figure 6: Reference solution of Model 2 at T = 1 with κ = κ2

(a) First component of u. (b) Second component of u. (c) Pressure p.

Figure 7: Mixed GMsFEM solution of Experiment 2 at T = 1 with κ = κ2, N = 10, n =
200, Ju = 20, Jg = 2
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(a) Reference velocity v. (b) Mixed velocity solution of v.

Figure 8: Comparison of reference solution and mixed GMsFEM solution for Model 2 at
T = 1 with κ = κ2. Left: reference velocity solution. Right: mixed GMsFEM velocity
solution with N = 10, n = 200, Ju = 20, Jg = 2

6 Conclusion

In this paper, we have proposed a mass conservation method based on mixed fi-

nite element method and generalized multiscale finite element method (GMsFEM). We

construct effective multiscale spaces by performing spectral problems for both velocity

and displacement approximation. These multiscale basis functions are solutions of well

designed local problems and can capture more heterogeneity properties of the medium.

The numerical results show that our method works very well with only a few basis func-

tions. In the future, we will develop multiscale methods that are based on coupled basis

functions for fluid velocity and elastic displacement.
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