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Abstract

In this paper, we consider the numerical solution of the poroelasticity problem with stochastic proper-
ties. We present a Two-stage Markov Chain Monte Carlo method for geomechanical subsidence. In this
work, we study two techniques of preconditioning: (MS) multiscale method for model order reduction
and (ML) machine learning technique. The purpose of preconditioning is the fast sampling, where a new
proposal is first testes by a cheap multiscale solver or using fast prediction of the neural network and the
full fine grid computations will be conducted only if the proposal passes the first step. To construct a
reduced order model, we use the Generalized Multiscale Finite Element Method and present construction
of the multiscale basis functions for pressure and displacements in stochastic fields. In order to construct
a machine learning based preconditioning, we generate a dataset using a multiscale solver and use it
to train neural networks. The Karhunen-Loéve expansion is used to represent the realization of the
stochastic field. Numerical results are presented for two- and three-dimensional model examples.

1 Introduction

Modelling geomechanical problems has important implications on the understanding of many of the physical
processes. For example, in areas such as environmental engineering with modelling permafrost compaction
and subsidence [26], and the oil and gas industry for reservoir geomechanics to increase production and
overall reservoir life [29, 40]. There are many challenges in simulating these problems. One challenging
being the length scales involved. There is a high variability in material parameters such as permeability
and porosity for flow and Young’s modulus in the case of mechanical properties. Further compounding the
problem is lack of knowledge of these parameters due to subsurface depth. This uncertainty may arise from
under resolution from seismic data or, in the case of resistivity measurements with electromagnetic sensors,
unclear physical matching of properties to data.

As noted, the computational challenge is often two fold. First, heterogeneity of subsurface properties
need to be accurately accounted for in the geomechanical model. In turn, this requires high resolution with
adding many degrees of freedom that can be computationally expensive. Second is the uncertainty in the
subsurface properties such as permeability and elastic parameters. However, in today’s “Big-Data” world,
often a plethora of information is available to help characterize the subsurface. For example, in reservoir
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engineering there is extensive logs on production data such as oil-cut of produced wells. In addition, other
metrics such as bottom hole pressure and time of flight have been extensively used in the history matching
literature to integrate data into the subsurface models [22, 39]. In the areas of environmental science and
engineering, near-surface resistivity measurements are often available to obtain constraints on subsurface
moisture content reflit.

There are various techniques to integrate data into subsurface models. The literature is quite extensive
and various uncertainty quantification methodologies exist and have various advantages and disadvantages.
Various data assimilations and variants are often used to integrate dynamic data information constantly into
models. This is particularly useful for weather forecast modelling as well as geophysical problems. In this
work, we will consider a Bayesian framework of updating a prior probability distribution with information
to obtain a data-integrated posterior. It is well known that the resulting problems are high-dimensional and
suffer from the curse of dimensionality. To circumvent some of this difficulty Monte-Carlo based techniques
have been proposed. For example, a popular and useful technique is the Ensemble Kalman Filter (EnKF) [13]
to integrate data into subsurface models. In this work, however, we consider a Markov-Chain Monte-Carlo
method (MCMC) based on the classical Metropolis-Hastings sampling algorithm [8]. This is an effective
tool to efficiently sample from an unknown posterior distribution that is conditioned to the data. However,
the MCMC algorithms suffer from the fact that many simulations must be computed [17, 19]. This is again
tied to the multiscale and high-contrast nature of the material properties as direct numerical simulations
must fully resolve these scales. Moreover, the acceptance rate of proposed subsurface properties in the
Metropolis-Hastings algorithm is known to be very low.

With the availability surface sensors and satellite observation data (InSAR) [23], it is now possible
to better characterize the geomechanical picture of the subsurface based on this data. This has proven
particularly useful in the context of monitoring large scale CO2 sequestration projects [34, 28]. There are
various subsurface mechanical models that one can consider, however, in this work we will work with a
poroelastic earth model. The mathematical structure of the poroelasticity models are coupled equations for
pressure and displacements known as Biot models [3]. Poroelastic models of this type have been explored in
the petroleum engineering literature in the context of geomechanics for some time [31, 30, 24, 25, 27]. An
interesting surface observation application such as permafrost modelling would require thermal and partially
saturated moisture considerations, but we leave this to future work.

As mentioned prior, the MCMC algorithm suffer from large number of simulation runs and low acceptance
rates. A useful technique to expedite this procedure is preconditioning the Metropolis-Hasting algorithm in
a two-stage (or multi-stage) procedure utilizing coarse-scale or upscaled models [10]. This is accomplished
by using the coarser-scale simulation as a prior filtering stage in the accept-rejection procedure. There are
many effective multiscale frameworks that have been developed in recent years for the poroelasticity problem
[7, 32, 2, 33, 14, 35]. We will use the Generalized Multiscale Finite Element Method (GMsFEM) framework
developed for poroelasticty in [4, 5], which is a generalization of the multiscale finite element method to build
our course-scale models [12]. Utilizing GMsFEMs for this application has also been useful in Multi-Level
MCMC for elliptic problems with high-contrast [15].

The GMsFEM has the advantage of being able to capture small scale features from the heterogeneities
into coarse-grid basis functions and offline spaces, as well as having a unified computational grids for both
mechanics and flow solves. The offline multiscale basis construction may proceed in both fluid and mechanics
in parallel and both constructions are comparable. First a coarse-grid is generated and in each grid block a
local static problem with varying boundary conditions is solved to construct the snapshot spaces. We then
perform a dimension reduction of the snapshot space by solving auxiliary eigenvalue problems. Taking the
corresponding smallest eigenpairs, and multiplying by a multiscale partition of unity we are able to construct
our offline basis. In this greatly reduced dimension offline basis, the online solutions may be calculated for
pressure and displacements for any viable boundary condition or forcing. Given a set or material properties
such as permeability a set of standard MsFEM basis functions must be computed, however, utilizing the
GMsFEM’s ability to handle parameters (as is used in nonlinear GMsFEM) as well as scales we are able to
compute a single set of enriched basis functions for many possible realizations of physical parameters.

For further reduction of the computational time of the first stage in the two-stage MCMC method, we
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present a machine learning technique [36, 37]. The machine learning is used to quickly predict displacements
for the estimation of the proposed fields. We generate a dataset using a multiscale solver and use it to
train neural networks and learn dependencies between heterogeneous properties and displacements in each
direction on the top boundary. As soon as neural networks are trained on the dataset, fast calculations can
be performed as preconditioning of the MCMC method. We use a convolutional neural network and GPU
training process to construct a machine learning algorithm [20, 18].

The work is organized as follows. In Section 2, we provide the mathematical background of the ge-
omechanical subsidence problem. We introduce the Biot type model and highlight where the heterogeneity
primarily occurs. In Section 3, we discuss the fine-scale and GMsFEM (coarse-scale) solution of the geome-
chanical problem. We utilize the nonlinear GMsFEM for poroelasticity developed in [4], whereby we are able
to handle parametrization. In Section 4 we introduce the broad concepts of Bayesian uncertainty quantifica-
tion. We discuss the parametrization of the randomness via the Karhunen-Loeve expansion so that when we
search in the MCMC procedure the dimension of the space is reduced. We outline the single and two-stage
Metropolis-Hastings algorithms used in the accept-reject procedure to sample from the “data-integrated”
posterior distribution. In Section 5, we present a numerical algorithm based on two- and three-dimensional
synthetic data at the surface to show the efficiency of the method as an expedited MCMC sampling method.

2 Problem Formulation

We start with the description of the general geomechanical model that we use in our simulations. We keep
the discussion very general and abstract, but ultimately the idea is to have one surface boundary that has
open surface boundary conditions, and a truncated in situ ground that has fixed motion and is in physical
reality connected to a much larger (functionally infinite) domain.

We denote computational domain Ω ⊂ Rd, d = 2, 3, to be a bounded sufficiently smooth (Lipschitz)
region. We consider linear poroelasticity problem, with random or uncertain coefficients. That we may view
as parameters. We wish to find a pressure p and displacements u satisfying the following Biot effective stress
poroelasticity law

−div σ(x, θ, u) + α grad p = 0, x ∈ Ω, t > 0,

α
∂ div u

∂t
+

1

M

∂p

∂t
+ div q(x, θ, p) = 0, x ∈ Ω, t > 0,

(1)

where M is the Biot modulus and α is the Biot-Willis fluid-solid coupling coefficient. These terms are lower
order derivatives, so for simplicity we will suppose that these are constants and not random. Body forces,
such as gravity, are neglected without loss of generality.

Here we suppose that the stress tensor σ and flux q depend on both space x and a large dimensional
random parameter θ

q(x, θ, p) = −k(x, θ)

ν
grad p, σ(x, θ, u) = 2µ(x, θ)ε(u) + λ(x, θ) div u I,

where ε(u) = (gradu + graduT )/2, ν is the fluid viscosity, k(x, θ) is the permeability, µ(x, θ), λ(x, θ) are
Lamé coefficients, I is the identity tensor.

For Lamé coefficients λ and µ, we have following relations

µ(x, θ) =
E(x, θ)

2(1 + η)
, λ(x, θ) =

E(x, θ)η

(1 + η)(1− 2η)
,

where E(x, θ) is the random spatially varying elastic modulus and η is a constant Poisson’s ratio. One could
choose to vary both, but for this work we consider a varying elastic modulus. Thus, the coefficients k(x, θ),
µ(x, θ) and λ(x, θ) may be highly variable and contain randomness or uncertainty.

We denote the initial condition for pressure

p = p0, x ∈ Ω, t = 0.
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In general, we suppose the following Neumann and Robyn boundary conditions on each portion

u = 0, x ∈ Γu, σ · n = 0, x ∈ ∂Ω/Γu,

and
q · n = γ(p− p1), x ∈ Γp, q · n = 0, x ∈ ∂Ω/Γp,

where n is the unit normal to the boundary.
Here the primary sources of the heterogeneity and uncertainty in the physical properties are from me-

chanical properties related to E(x, θ) and fluid flow properties related to k(x, θ).
To solve (1), we use a standard finite element method and implicit time integration. We have following

variational formulation: find (u, p) ∈ V ×Q such that

a(θ;u, v) + g(p, v) = 0, ∀v ∈ V,

d

(
u− ǔ
τ

, q

)
+m

(
p− p̌
τ

, q

)
+ b(θ; p, q) = l(q), ∀q ∈ Q,

(2)

where V ∈ {v ∈ [H1(Ω)]d : v(x) = 0, x ∈ Γu}, Q = H1(Ω), τ is the time step, ǔ and p̌ are the solutions from
previous time layer.

Here for bilinear and linear forms we have

a(θ;u, v) =

∫
Ω

σ(x, θ, u) : ε(v)dx, g(p, v) =

∫
Ω

α grad p v dx,

b(θ; p, q) =

∫
Ω

k(x, θ)

ν
grad p · grad q dx+

∫
Γp

γ p q ds, l(q) =

∫
Γp

γ p1 q ds,

m(p, q) =

∫
Ω

1

M
pq dx, d(u, q) =

∫
Ω

α div u q dx.

Let T h be a fine grid partition of the computational domain Ω into finite elements and

u =
∑

uiφi, p =
∑

piψi,

where φi and ψi are the linear basis functions defined on T h.
Therefore, we have following matrix form on the fine grid

Ah(θ)u+Ghp = 0,

Dhu− ǔ
τ

+Mh p− p̌
τ

+Bh(θ)p = Fh,
(3)

where Mh = [mij ], mij = m(ψi, ψj), B
h = [bij ], bij = b(θ;ψi, ψj), A

h = [aij ], aij = a(θ;φi, φj),
Dh = [dij ], dij = d(φi, ψj), G

h = [gij ], gij = g(φi, ψj) and F = {fj}, fj = l(ψj),

3 Coarse-Scale Discretization

To construct a reduced order model on the coarse grid, we use a Generalized Multiscale Finite Element
Method (GMsFEM). We construct an offline multiscale space for pressure and displacements using some
number of random coefficients. Therefore constructed basis functions can be used for any input parameters
k(x, θ) and E(x, θ).

Let T H be a standard conforming partition of the computational domain Ω into finite elements (Figure 1).
We refer to this partition as the coarse-grid and assume that each coarse element is partitioned into a
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(a) 2D (b) 3D

Figure 1: Illustration of a coarse grid and fine grid (fine grid - black color, coarse grid - green color. (a) 2D
domain with 10× 10 coarse mesh. (b) 3D domain with 5× 5× 5 coarse mesh

connected union of fine grid blocks. We use {xi}Nc
i=1 to denote the vertices of the coarse mesh T H , and define

the neighborhood of the node xi by

ωi =
⋃
j

{
Kj ∈ T H |xi ∈ Kj

}
,

where Kj is the coarse cell and Nc is the number of coarse nodes.
The main idea for solution problem in the stochastic media is to precompute multiscale basis functions

using a number of permeability and elastic modulus realizations and use them for the making inexpensive
coarse grid calculations.

3.1 Multiscale basis functions for pressure

In the offline computation, we first construct a snapshot space. Construction involves solving the local
problem for various choices of input parameters and various boundary conditions. For each fixed parameter
θr (r = 1, ..., Nr), we propose a snapshot space generated by harmonic extensions of b(θr; p, q)

b(θr;ψ
ωi,snap
r,j , q) = 0 x ∈ ωi,
ψωi,snap
r,j = gj(x) x ∈ ∂ωi,

(4)

where gj(x) = δj,k, ∀k ∈ Jh(ωi) (Jh(ωi) denotes the fine-grid boundary node on ∂ωi.
We collect all solutions as a snapshot space in the local domain ωi to define local snapshot space

Qωi,snap = span{ψωi,snap
r,j : 1 ≤ r ≤ Nr, 0 ≤ j ≤ N∂ωi},

where N∂ωi is the number of the fine-grid boundary nodes on ∂ωi.
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We reorder the snapshot functions using a single index to create the matrix

Rωi,snap
p =

[
ψωi,snap

1 , . . . , ψωi,snap
Mp,snap

]T
,

where Mp,snap = N∂ωiNr denotes the total number of functions to keep in the snapshot construction.
To construct the offline space Qωi,off, we perform a dimension reduction of the space of snapshots by

using an auxiliary spectral decomposition. More precisely, we solve the eigenvalue problem in the space of
snapshots:

Bωi,offΨωi,off
j = λjS

ωi,offΨωi,off
j , (5)

where

Bωi,off = {blk}, blk =

∫
ωi

k(x)∇ψωi,snap
l ,∇ψωi,snap

k dx = Rωi,snap
p B (Rωi,snap

p )T ,

Sωi,off = {slk}, slk =

∫
ωi

k(x)ψωi,snap
l ψωi,snap

k dx = Rωi,snap
p S (Rωi,snap

p )T .

Here

k(x) =

Nr∑
r=1

trk(x, θr),

is independent of θr and tj are prescribed non-negative weights. The main objective is to use the offline
space to accurately construct a set of multiscale basis functions for each θr. At the offline stage the bilinear
forms are chosen to be parameter-independent, such that there is no need to reconstruct the offline space
for each θr.

We then choose the smallest Mωi
p eigenvalues from Eq. (5) and form the corresponding eigenvectors in

the space of snapshots by setting

ψωi,off
j = (Rωi,snap

p )TΨωi,off
j , j = 1, . . . ,Mωi

p .

Finally, we multiply the partition of unity functions χi by the eigenfunctions to construct the resulting
basis functions

ψi,j = χiψ
ωi,off
j , 1 ≤ i ≤ Nv, 1 ≤ j ≤Mωi

p , (6)

where χi is the standard linear partition of unity function.
Next, we define the offline space and projection matrix as

QH = span{ψi,j : 1 ≤ i ≤ Nc, 1 ≤ j ≤Mp}, Rp =
[
ψ1,1, . . . , ψNc,Mp

]T
, (7)

where Nc is number of coarse mesh nodes and Mp = Mωi
p (i = 1, ..., Nc).

3.2 Multiscale basis functions for displacements

For construction of multiscale basis functions for displacements we use similar algorithm. We first construct
a snapshot space for each parameter θr as a harmonic extension of a(θr;u, v)

a(θr;φ
ωi,snap
r,j , v) = 0, x ∈ ωi,
φωi,snap
r,j = gj(x), x ∈ ∂ωi,

(8)

where gj(x) = (δl,k, 0, 0) or (0, δl,k, 0) or (0, 0, δl,k), ∀l, k ∈ Jh(ω) (r = 1, ..., Nr).
Define local snapshot space

V ωi,snap = span{φωi,snap
r,j : 1 ≤ r ≤ Nr, 0 ≤ j ≤ d ·N∂ωi},

6



for each subdomain ωi and d = 2, 3.
We denote the corresponding matrix of snapshot functions, again with similar notation, to be

Rωi,snap
u =

[
φωi,snap

1 , . . . , φωi,snap
Mu,snap

]T
,

where Mu,snap = d ·N∂ωi ·Nr denotes the total number of functions to keep in the snapshot construction.
Again, we perform a dimension reduction of the space of snapshots by using an auxiliary spectral decom-

position. We solve the parameter-independent eigenvalue problem in the space of snapshots

Aωi,offΦωi,off
j = ηjC

ωi,offΦωi,off
j , (9)

where
Aωi,off = Ruωi,snapA(Ruωi,snap)T , Cωi,off = Ruωi,snapC(Rusnap)T ,

where A and C denote fine scale matrices

A = {alk}, alk =

∫
ωi

σ(x, φl) : ε(φk) dx, C = {clk}, clk =

∫
ωi

(λ(x) + 2µ(x))φl · φk dx,

σ(x, u) = 2µ(x)ε(u) + λ(x) div u I,

and φk are fine-scale basis functions.
Further, we have

µ(x) =
E(x)

2(1 + η)
, λ(x) =

E(x)η

(1 + η)(1− 2η)
,

where

E(x) =

Nr∑
r=1

trE(x, θr),

is independent of θr and tr are prescribed non-negative weights.
As before for the fluids flow module, at the offline stage of the mechanics the bilinear forms are chosen

to be parameter-independent, such that there is no need to reconstruct the offline space for each θr.
We then choose the smallest Mωi

u eigenvalues from Eq. (9) and form the corresponding eigenvectors in
the space of snapshots by setting

φωi,off
j = (Rusnap)TΦωi,off

j , j = 1, . . . ,Mωi
u .

Finally, we multiply the linear partition of unity functions ξi by the eigenfunctions to construct the
resulting basis functions

φi,j = ξiφ
ωi,off
j , 1 ≤ i ≤ Nc, , 1 ≤ j ≤Mωi

u . (10)

Next, we define the multiscale space and projection matrix as

VH = span{φi,j : 1 ≤ i ≤ Nc 1 ≤ j ≤Mu}, Ru = [φ1,1, . . . , ϕNc,Mu
]
T
, (11)

where Mu = Mωi
u (∀i = 1, ..., Nc).

3.3 Global coupling

The multiscale spaces are constructed for both the fluid and mechanics, and we can use them at the global
level. Using the matrices

Rp =
[
ψ1,1, . . . , ψNc,Mp

]T
, and Ru = [φ1,1, . . . , φNc,Mu

]
T
,
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we may write matrix form for the multiscale approximation

AH(θ)uH +GHpH = 0,

DH u
H − ǔH

τ
+MH p

H − p̌H

τ
+BH(θ)pH = FH ,

(12)

where
AH(θ) = RuA(θ)RTu , GH = RuG

hRTp ,

BH(θ) = RpB
h(θ)RTp , MH = RpM

hRTp , DH = RpD
hRTu , FH = RpF.

Finally, we reconstruct solution on the fine grid by ums = RTuu
H , pms = RTp p

H .
Note that, the construction of the multiscale basis functions is performed on the offline stage and the

same for any random field realization. Construction of basis usually contains two steps: (1) the construction
of a snapshot space that will be used to compute an offline space; and (2) the construction of an offline
space by performing a dimension reduction in the snapshot space. Multiscale basis functions for pressure
and displacement described above are referred to Type 1. One can also use all the fine grid nodal basis as
snapshots. This offline space is referred to Type 2.

4 Bayesian Uncertainty Quantification

As noted earlier, in many geomechanical applications a multitude of data observations are measured, such
as surface subsidence based on InSar data collected from earth observation [23, 6, 16]. Due to the collection
procedures and data processing times involved in the apprehension of such data, these pieces of information
are often sparse in time, yet spatially global. This is because only one or two post-processed displacement
fields are available per year depending on various observation and processing constraints. Other local sensors
may stream relatively constant data of surface subsidence, but only at few sparse random spatial locations.
To integrate these observations into the subsurface picture we utilize a Bayesian update framework.

We denote the set of such observations as Fobs and want to condition the probability distribution of
random fields such as E and k to respect the observed data. We develop an algorithm to sample the perme-
ability and elastic parameters given observed data Fobs that include subsidence data. This is accomplished
by the well known Bayesian formula where we may relate a new posterior probability distribution given that
we have measured information from a likelihood and a prior (usually Gaussian).

4.1 Subsurface Properties Parametrization

To parametrize the subsurface properties, we use the Karhunen-Loéve expansion (KLE) [10, 11]. Let Y (x, θ)
be a stochastic process such that

E
[
‖Y ‖2L2(Ω)

]
<∞,

where E is expectation.
Y (x, θ) can be expand as a general Fourier series

Y (x, θ) =

∞∑
k=1

Yk(θ)ϕk(x),

where Yk(θ) =
∫

Ω
Y (x, θ)ϕk(x) dx is the Fourier coefficient in the given L2 basis {ϕk}∞k=1. We wish to find

an L2 basis so that the Fourier coefficients are uncorrelated, or in some sense orthogonal in the expectation.
More specifically we require E [Yi(θ)Yj(θ)] = 0. We denote the covariance matrix, usually assumed to be
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Gaussian in their correlation lengths, to be given as R(x, y) = E [Y (x, θ)Y (y, θ)] . Note that it is symmetric
and positive definite, thus, we have that

E [Yi(θ)Yj(θ)] = E
[∫

Ω

Y (x, θ)ϕi(x)dx

∫
Ω

Y (y, θ)ϕj(y)dy

]
=

∫
Ω

∫
Ω

R(x, y)ϕi(x)ϕj(y) dx dy = δij ,

where {ϕk}∞k=1 are mutually orthogonal eigenfunctions corresponding to R. Indeed, we have∫
Ω

R(x, y)ϕk(y) dy = ψkϕk(x), k = 1, 2, . . . ,

where ψk = E
[
Y 2
k (θ)

]
.

We suppose that the Covariance structure R(x, y) is of the form

R(x, y) = σ2
R exp

(
−∆2

)
, (13)

with

∆2 =
|x1 − x2|2

l2x
+
|y1 − y2|2

l2y
,

for two - dimensional case and

∆2 =
|x1 − x2|2

l2x
+
|y1 − y2|2

l2y
+
|z1 − z2|2

l2z
,

for three - dimensional case with correlation lengths lx, ly, lz and variance σ2
R.

We denote the normalized stochastic Fourier coefficients as νk(θ) = Yk(θ)/
√
ψk and write

Y (x, θ) =

∞∑
k=1

√
ψkνk(θ)ϕk(x), (14)

where E [νi(θ)] = 0, E [νi(θ)νj(θ)] = δij , and {ψk, ϕk(x)}∞k=1 are the eigenpairs associated to the convolution
eigenvalue problem. We assume that the eigenvalues ψk are ordered ψ1 ≥ ψ2 ≥ ....

In simulations to characterize stochastic process, we keep L-leading terms to capture most of the energy
of the Y (x, θ)

YL(x, θ) =

L∑
k=1

√
ψkνk(θ)ϕk(x), (15)

with following energy ratio of the approximation

e(L) =
E||YL||2

E||Y ||2
=

∑L
k=1 ψk∑∞
k=1 ψk

.

For definition of the permeability and elastic properties, we normalize and rescale random filed to define
porosity

φ(x, θ) = φ(YL(x, θ)), (16)

where YL(x, θ) is given by (15) with the corresponding covariance as R, eigenfunctions ϕk and stochastic
coefficients as νk.

We suppose that the permeability as a function of porosity

k(x, θ) = exp (aφ(YL(x, θ))) , (17)

9



where a > 0.
The elasticity constants λ and µ are given such that

µ(x, θ) =
E(x, θ)

2(1 + η)
, λ(x, θ) =

E(x, θ)η

(1 + η)(1− 2η)
,

where the elastic modulus is given by

E(x, θ) = b

(
1.0− φ(YL(x, θ))

φ(YL(x, θ))

)n
, (18)

where n = 1.5 and b > 0 [38].

4.2 Observable Surface Data

For the case of surface subsidence, the surface displacement is used as the observable data

uobs(x, t), x ∈ ∂Ωsurf

where ∂Ωsurf the surface boundary. This data is usually dynamic, but sparse in the spatial extent, with the
occasional inclusion of global deformation at sparse time interval snapshots.

Spatially	Sparse	
Ground	Sensors

Temporally	Sparse
Satellite	ObservationSurface	Subsidence

Figure 2: Observable surface data of geomechanical subsidence. Spatially sparse, but temporally constant
ground motion sensors. Temporally sparse, but spatially global satellite observation.

The dynamic data comes from surface sensors at sparse locations throughout the area of interest that
continuously monitor displacement in time at sparse locations. While, the global information is available from
InSar satellite observation data. However, due to the nature of the collection of this data and the length of
time to process the large data sets involved, only snapshots of data are usually available in practical settings.
To make this more precise, we suppose that at distinct points xi ∈ ∂Ωsurf , for i = 1, · · ·Ns

data, uobs(xi, t) is
known for all time t ∈ [0, T ]. Further, we suppose that at snapshot times tj , j = 1, · · ·N t

data, uobs(x, tj) is
known for all time x ∈ ∂Ωsurf

Suppose that uθ(x, t) is the displacement computed using properties E(θ) and k(θ), then we define our
data misfit as

‖Fobs − Fθ‖2 =

Ns
data∑
i=1

∫ T

0

|uobs(xi, t)− uθ(xi, t)|2dt+

Nt
data∑
j=1

∫
∂Ωsurf

|uobs(x, tj)− uθ(x, tj)|2ds, (19)

10



where ds is the surface measure.

4.3 Single-stage Metropolis - Hastings Algorithm

The posterior distribution π(θ) can be expressed as

π(θ) = p(θ|Fobs) ∝ p(Fobs|θ) p(θ), (20)

where p(Fobs|θ) is the likelihood and p(θ) is the prior distribution.
Given a set of observed data Fobs and heterogeneous field parameter data θ we write F (θ) to be the

corresponding simulated data (on the fine-grid) i.e. subsidence displacement or pressures. Due to uncertainty
in the model and measurements, we suppose that the error is such that

Fobs − F (θ) = ε,

where ε is random normal with mean 0 and variance σ2
f , or in standard notation ε follows N (0, σ2

f ). Thus,
we will write the posterior as

p(θ|Fobs) ∝ exp

(
−‖F (θ)− Fobs‖2

σ2
f

)
p(θ). (21)

Let q(θ|θn) be the instrumental distribution that is used to choose the next fields θ given the previous
properties θn. We consider a random walk samplers for the transitional probability distribution q(θ|θn) and
set q(θ|θn) = θn + δ · r, where r is a Gaussian random variable with zero mean and variance 1.

The single - stage Metropolis - Hastings algorithm:

1. Given θn, generate new proposal θ, from q(θ|θn).

2. Solve forward problem, using θ, generate observable F (θ).

3. Determine the acceptance probability from

Prob(θn|θ) = min

(
1,

q(θn|θ) p(θ|Fobs)
q(θ|θn) p(θn|Fobs)

)
, (22)

and take

θn+1 =

{
θ with probability Prob(θn|θ),
θn with probability 1− Prob(θn|θ).

For symmetric q(·|·), we have

Prob(θn|θ) = min

(
1, exp

(
−E(θ)− E(θn)

σ2
f

))
,

with E(θ) = ‖F (θ)− Fobs‖2 and E(θn) = ‖F (θn)− Fobs‖2.
It is well known that the above algorithm is very costly due to the expense of having to solve the

fine-scale solution and the low acceptance rate of new proposals. A method to save computational cost
is to use a coarse-scale model or/and machine learning technique as a preconditioning phase to cheaply
reject proposals. Then, if the proposals is accepted on the cheap first-stage, run a fine-scale simulation and
generate new acceptance-rejection probabilities. This two-stage procedure has been utilized in various other
applications [10, 11, 15].
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4.4 Two-stage Metropolis - Hastings Algorithm

Let

p∗(θ|Fobs) ∝ exp

(
−E

∗(θ)

σ2
c

)
, (23)

where E∗(θ) = ‖F ∗(θ)− Fobs‖2 and σ2
c is the precision associated with the approximate model.

Here F ∗(θ) denotes the simulated data that generated using

• MS : coarse scale simulations (multiscale solver),

• ML: machine learning techniques,

The two - stage Metropolis - Hastings algorithm:

1. Given θn, generate new proposal θ′, from q(θ′|θn).

2. First stage:

(a) Generate observable F ∗(θ′) for given θ′ using forward multiscale solver (MS ) or machine learning
technique (ML).

(b) Determine the acceptance probability from

g(θn|θ′) = min

(
1,
q(θn|θ′)p∗(θ′|Fobs)
q(θ′|θn)p∗(θn|Fobs)

)
, (24)

and take

θ =

{
θ′ with probability g(θn|θ),
θn with probability 1− g(θn|θ).

3. Second stage, if accepted:

(a) Solve fine-scale forward problem using θ and generate observable F (θ).

(b) Determine the acceptance probability from

ρ(θn|θ) = min

(
1,
p∗(θn|Fobs)p(θ|Fobs)
p∗(θ|Fobs)p(θn|Fobs)

)
, (25)

and take

θn+1 =

{
θ with probability ρ(θn|θ),
θn with probability 1− ρ(θn|θ).

Here, we have

g(θn|θ′) = min

(
1, exp

(
−E

∗(θ′)− E∗(θn)

σ2
c

))
,

and

ρ(θn|θ) = min

(
1,
p∗(θn|Fobs)p(θ|Fobs)
p∗(θ|Fobs)p(θn|Fobs)

)
= min

(
1, exp

(
−E(θ)− E(θn)

σ2
f

+
E∗(θ)− E∗(θn)

σ2
c

))
.

If E∗(θ) is strongly correlated with E(θ), then the acceptance probability ρ could be close to 1 for certain
choice of σc [11].

To Generate observable E∗(θ′) for given θ′ using forward multiscale solver (MS ), we use following steps:

• Offline stage. Construction of the projection matrices Rp and Ru.

• Online stage. For given θ′:

12



1. generate a coarse grid system using preconstructed projection matrices,

2. solve time-depended coarse grid system (12),

3. find observable data uobs(θ
′) on the surface boundary from multiscale solution,

4. generate E∗(θ′).

In machine learning technique (ML), we have following steps:

• Offline stage. Dataset generation and neural networks training.

• Online stage. For given θ′:

1. predict observable data uobs(θ
′) on the surface boundary using trained neural networks,

2. generate E∗(θ′).

We construct a neural network (NN) for displacements in each direction x, y and z. Therefore, we train two
NNs for two-dimensional problems (2D) and three NNs for three-dimensional problems (3D) [36]. In ML,
we directly predict an observable data for given θ′, without solution of the forward problem.

To construct a neural network for prediction of the observable data, we generate a dataset by the solution
of the forward problems using a multiscale solver for some number of random coefficient θr (r = 1, ..., Nr)

Dataset: {(Xr, Qr), r = 1, ..., Nr}.

where Xr = θr and Qr = uobs(θr) are the input data and output data. The input field is represented as a two-
dimensional array for the two-dimensional problem and as a three-dimensional array for three-dimensional
problems. The dataset is re-scaled to fall within the range 0 to 1.

We use a convolutional neural network, where several convolutional, pooling, and activation layers are
stacked with several fully-connected layers with dropout. Training of the machine learning algorithms is
performed using mean square loss function (MSE). Implementation of the machine learning method is based
on the library Keras [9] with TensorFlow backend [1] and performed on the GPU. The machine-learning
algorithm learns dependence between global random coefficients (θ) and observable data uobs(θ).

5 Numerical results

In order to investigate the proposed method, we perform the following tests:

• In Section 5.1, we consider multiscale solver for three test cases in 2D and 3D formulations. We show
the relative errors between reference (fine-grid) solution and GMsFEM solution with different numbers
of the multiscale basis functions. Also, we present a solution time of the proposed multiscale method.

• In Section 5.2, we consider MCMC method with GMsFEM preconditioning. We start with tests of
multiscale solver, where we present errors for pressure and displacements for 100 random realizations.
Next, we demonstrate correlation between E(θ) (fine grid solver) and E∗(θ) (multiscale solver with
different number of basis functions). After that, we present results for the two-stage MCMC method
with GMsFEM preconditioning for 2D and 3D test problems. We investigate the influence of the
method parameters on the numbers of the accepted fields and number of the fields that pass the first
stage in the two-dimensional formulation. Some figures of accepted fields with corresponded solutions
are presented.

• In Section 5.3, we consider the preconditioned MCMC method using a machine learning technique.
We start with the demonstration of the neural network architectures for 2D and 3D problems, and
we use them for the prediction of the observable data. Next, we demonstrate correlation between
E(θ) (fine grid solver) and E∗(θ) (machine learning method). After that, we present results for the
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preconditioned MCMC method, where we took an observable data for three test cases considered in
Section 5.1. We shown results for both preconditioning approaches: (MS ) multiscale solver based on
GMSFEM and (ML) machine learning technique. Finally, we discuss the computational advantage of
the method.

5.1 Multiscale method

In this section, we present numerical examples to demonstrate the performance of the multiscale method for
computing the solution of the poroelasticity problem with random heterogeneous properties.

(a) k(x) for Case 1, 2 and 3 (from left to right).

(b) E(x) for Case 1, 2 and 3 (from left to right).

Figure 3: Random permeability k and elastic modulus E. Two - dimensional problem (2D). Case 1, 2 and
3 (from left to right). (a) permeability, k(x). (b) elastic modulus, E(x).

We consider two and three-dimensional model problems in domain Ω = [0, 1]d with d = 2, 3:

• Two - dimensional problem (2D). Coarse grid contains 121 nodes (10× 10) and the fine grid has 10201
nodes.

• Three - dimensional problem (3D). Coarse grid contains of 216 nodes (5×5×5) and fine grid has 9261
nodes.

The coarse grid and fine grid are presented in Figure 1.
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(a) p for Case 1, 2 and 3 (from left to right).

(b) um for Case 1, 2 and 3 (from left to right).

Figure 4: Numerical results for random permeability k and elastic modulus E. Case 1, 2 and 3 (from left to
right). Fine grid solution of two - dimensional problem (2D). (a) pressure, p. (b) displacement, um.

We perform simulations for Tmax = 0.001 with 20 time steps. As an initial condition, we set p0 = 0 and
impose the following boundary conditions:

ux = 0, σy = 0, σz = 0, x = 0,

σx = 0, uy = 0, σz = 0, y = 0,

σx = 0, σy = 0, uz = 0, z = 0,

σ · n = 0, x, y, z = 1,

and
q · n = γ(p− p1), y = 1,

q · n = 0, y 6= 1,

with γ = 104 and p1 = 1.0.
The high dimensional heterogeneity is represented using Karhunen-Loéve expansion. Random hetero-

geneous porosity fields are generated using L = 200 basis functions (YL(x, θ)) with exponential covariance
(lx = ly = lz = 0.2 and σ2

R = 2)
φ(x, θ) = φ(Y (x, θ)),

15



(a) k(x) for Case 1, 2 and 3 (from left to right).

(b) E(x) for Case 1, 2 and 3 (from left to right).

Figure 5: Random permeability k and elastic modulus E. Three - dimensional problem (3D). Case 1, 2 and
3 (from left to right). (a) permeability, k(x). (b) elastic modulus, E(x).

with normalization, that give φ ∈ [0.05, 0.2].
Heterogeneous permeability and elasticity modulus fields are given by

k(x, θ) = exp (aφ(x, θ)) ,

E(x, θ) = b

(
1.0− φ(x, θ)

φ(x, θ)

)m
,

with a = 40, b = 0.1 and m = 1.5 [38]. The Biot modulus is M = 1.0, fluid viscosity is ν = 1, fluid-solid
coupling constant is α = 0.1, the Poisson’s ratio is η = 0.3. Permeability field and elastic modulus are shown
in Figure 3 for 2D problems and in Figure 5 for 3D problems. We consider three test cases (Case 1, 2 and 3
are depicted from left to right). All permeabilities and elastic modulus are depicted in the log scale.

The reference solution computed by a standard finite element method with linear basis functions for
pressure and displacements on the fine grid. The reference pressure and the displacement fields at final time
are presented in Figures 4 and 6.
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(a) p for Case 1, 2 and 3 (from left to right).

(b) um for Case 1, 2 and 3 (from left to right).

Figure 6: Numerical results for random permeability k and elastic modulus E. Case 1, 2 and 3 (from left to
right). Fine grid solution of three - dimensional problem (3D). (a) pressure, p. (b) displacement, um.

To compare a multiscale solution, we calculate relative errors in L2 norm in %

ep =

√∫
Ω

(pms − p, pms − p) dx∫
Ω

(p, p) dx
· 100%,

eu =

√∫
Ω

(ums − u, ums − u) dx∫
Ω

(u, u) dx
· 100%,

where pms and ums are multiscale solutions, p and u are reference solutions.
For multiscale basis construction on the offline stage, we use a 10 random permeability and elastic fields.

We present numerical results in Tables 1 and 2 for Type 1 and 2 multiscale basis functions. DOFc and DOFf
are degrees of freedom for multiscale and reference (fine grid) solutions. Mp and Mu are the number of the
multiscale basis functions for pressure and displacements, respectively. Varying the basis functions in both
pressure and displacement multiscale spaces we presented the errors at the final times. We note that the first
basis for pressure is standard linear basis function because the first eigenvalue of the local spectral problem
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2D
M+ Mp Mu DOFc ep (%) eu (%)

Case 1
0 1 2 363 7.532 6.413
1 2 3 605 4.800 4.048
2 3 4 847 1.368 2.076
3 4 5 1089 0.940 1.634
4 5 6 1331 0.635 1.146
6 7 8 1815 0.303 0.840
8 9 10 2299 0.182 0.661

Case 2
0 1 2 363 2.142 2.953
1 2 3 605 1.151 2.127
2 3 4 847 0.641 1.649
3 4 5 1089 0.529 1.309
4 5 6 1331 0.234 0.822
6 7 8 1815 0.117 0.552
8 9 10 2299 0.068 0.440

Case 3
0 1 2 363 4.635 6.847
1 2 3 605 2.760 4.303
2 3 4 847 0.778 2.005
3 4 5 1089 0.492 1.579
4 5 6 1331 0.343 0.993
6 7 8 1815 0.198 0.694
8 9 10 2299 0.124 0.535

3D
M+ Mp Mu DOFc ep (%) eu (%)

Case 1
0 1 3 864 4.369 5.477
1 2 4 1296 2.727 4.343
2 3 5 1728 1.914 3.716
3 4 6 2160 1.356 3.220
4 5 7 2592 0.853 2.672
6 7 9 3456 0.453 1.904
8 9 11 4320 0.352 1.619

Case 2
0 1 3 864 6.000 3.653
1 2 4 1296 5.194 3.235
2 3 5 1728 3.185 2.700
3 4 6 2160 2.144 2.455
4 5 7 2592 0.912 2.114
6 7 9 3456 0.571 1.693
8 9 11 4320 0.452 1.443

Case 3
0 1 3 864 3.430 4.520
1 2 4 1296 2.752 3.997
2 3 5 1728 1.709 3.318
3 4 6 2160 1.129 3.071
4 5 7 2592 0.730 2.841
6 7 9 3456 0.487 2.331
8 9 11 4320 0.377 1.905

Table 1: Numerical results for random permeability k and elastic modulus E. Case 1, 2 and 3 (from left to
right). Type 1 multiscale basis functions, Mp = 1 +M+, Mu = d+M+ and DOFc = (Mp +Mu) ·Nc. Left:
two - dimensional problem, d = 2 (Nc = 121 and DOFf = 30603). Right: three - dimensional problem,
d = 3 (Nc = 216 and DOFf = 37044)

is constant. Similarly for displacements, the first d basis functions are standard linear basis functions. M+

is used to denote the number of the additional spectral basis functions calculated using algorithm presented
in Section 3. Therefore, Mp = 1 +M+, Mu = d+M+ and DOFc = (Mp +Mu) ·Nc, where Nc is the number
of coarse grid nodes. For two - dimensional problem, we have Nc = 121 and DOFf = 30603. For three -
dimensional problem, we have Nc = 216 and DOFf = 37044. We can obtain good multiscale solution when
we take sufficient number of multiscale basis functions for pressure and for displacements. For M+ = 2,
we have near 1 − 3% of errors in two - dimensional and three-dimensional problems for all cases. In Case
3 of heterogeneous permeability field, we have 0.7 % of pressure error and 2.0 % of displacement error in
two-dimensional problems with 3 multiscale basis functions for pressure and 4 multiscale basis functions for
displacements M+ = 2. In this case, we reduce size of the system from DOFf = 30603 to DOFc = 847. For
three - dimensional problem, we have 1.7 % of pressure error and 3.3 % of displacement error with 3 basis
functions for pressure and 5 basis functions for displacements (M+ = 2). We reduce size of the system from
DOFf = 37044 to DOFc = 1728.

In Table 3, we present solution time for the coarse grid and fine grid solvers for Case 3. Solution time
of the fine grid solver is 6.2 second for two - dimensional problem (DOFf = 30603) and 158.7 second for
the three-dimensional problem (DOFf = 37044). When we use a multiscale method for the solution with
M+ = 2, we solve two - dimensional problem by 0.8 seconds (DOFc = 847) and three-dimensional problem
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2D
M+ Mp Mu DOFc ep (%) eu (%)

Case 1
0 1 2 363 7.532 6.413
1 2 3 605 5.737 4.669
2 3 4 847 2.396 2.793
3 4 5 1089 1.548 1.796
4 5 6 1331 1.102 1.300
6 7 8 1815 0.639 0.481
8 9 10 2299 0.364 0.272

Case 2
0 1 2 363 2.142 2.953
1 2 3 605 1.219 1.847
2 3 4 847 0.703 1.430
3 4 5 1089 0.596 1.085
4 5 6 1331 0.380 0.708
6 7 8 1815 0.180 0.220
8 9 10 2299 0.101 0.146

Case 3
0 1 2 363 4.635 6.847
1 2 3 605 2.397 4.294
2 3 4 847 0.842 2.596
3 4 5 1089 0.570 1.641
4 5 6 1331 0.379 1.109
6 7 8 1815 0.218 0.336
8 9 10 2299 0.149 0.224

3D
M+ Mp Mu DOFc ep (%) eu (%)

Case 1
0 1 3 864 4.369 5.477
1 2 4 1296 2.750 4.045
2 3 5 1728 1.707 3.530
3 4 6 2160 1.348 3.052
4 5 7 2592 0.906 2.691
6 7 9 3456 0.467 2.329
8 9 11 4320 0.358 1.962

Case 2
0 1 3 864 6.000 3.653
1 2 4 1296 4.940 3.224
2 3 5 1728 3.585 2.731
3 4 6 2160 2.514 2.496
4 5 7 2592 1.805 2.327
6 7 9 3456 1.042 2.052
8 9 11 4320 0.830 1.694

Case 3
0 1 3 864 3.430 4.520
1 2 4 1296 2.705 3.991
2 3 5 1728 1.613 3.197
3 4 6 2160 1.142 2.659
4 5 7 2592 0.812 2.544
6 7 9 3456 0.554 2.356
8 9 11 4320 0.454 2.062

Table 2: Numerical results for random permeability k and elastic modulus E. Case 1, 2 and 3 (from left to
right). Type 2 multiscale basis functions, Mp = 1 +M+, Mu = d+M+ and DOFc = (Mp +Mu) ·Nc. Left:
two - dimensional problem, d = 2 (Nc = 121 and DOFf = 30603). Right: three - dimensional problem,
d = 3 (Nc = 216 and DOFf = 37044)

2D
M+ Mp Mu DOFc Time (sec)

fine grid 30603 6.211
0 1 2 363 0.350
1 2 3 605 0.587
2 3 4 847 0.833
3 4 5 1089 1.171
4 5 6 1331 1.611
6 7 8 1815 2.767
8 9 10 2299 4.569

3D
M+ Mp Mu DOFc Time (sec)

fine grid 37044 158.745
0 1 3 864 2.525
1 2 4 1296 4.940
2 3 5 1728 9.633
3 4 6 2160 16.285
4 5 7 2592 20.495
6 7 9 3456 38.951
8 9 11 4320 69.322

Table 3: Solution time for Case 3. Type 2 multiscale basis functions. Left: two - dimensional problem,
d = 2. Right: three - dimensional problem, d = 3

by 9.6 seconds (DOFc = 1728). We see that a smaller number of basis functions give a coarse grid system
with a smaller size and therefore solution time is faster. Here for the solution of the coarse and fine grid
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systems, we used a direct solver (default solver in FEniCS [21]). Note that, the solution time doesn’t include
a time of multiscale basis construction because they are constructed on the offline stage as precalculations.

5.2 Preconditioned MCMC using GMsFEM

In this section, we present results for the Two-stage MCMC method. MCMC simulations on the fine grid
(single-stage) are generally very computationally expensive because each proposal requires solving a forward
coupled poroelasticity problem over a large time interval. In presented preconditioned MCMC simulations,
we use inexpensive computations in the first stage. Preconditioning procedure is performed using

1. MS multiscale solver based on GMSFEM,

2. ML machine learning technique.

Note that, the Preconditioning procedure should be inexpensive, but not necessarily very accurate. We start
with a multiscale solver with a small number of multiscale basis functions. As we showed above, the size
of the coarse grid system (DOFc) depends on a number of multiscale basis functions. The multiscale basis
functions are constructed only once on the offline stage, and we use them for all proposed permeability and
elastic modulus without online recalculations.

(a) 2D, ep (%) (b) 3D, ep (%)

(c) 2D, eu (%) (d) 3D, eu (%)

Figure 7: Multiscale method errors for 100 random realizations of heterogeneous filed for M+ = 0, 1, 2, 4
and 8. First row: pressure relative errors in %. Second row: displacement relative errors in %. Left: two -
dimensional problem. Right: three - dimensional problem.

We present results for the proposed multiscale solver (MS ) for 100 random realizations of the heteroge-
neous fields, θr. Relative errors for pressure and displacements are presented in Figure 7. In Figure 8, we
plot E(θ) against E∗(θ) to demonstrate correlation between E∗(θ) and E(θ) for 100 realizations of random
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(a) 2D (b) 3D

Figure 8: Cross-plot between E(θ) (fine scale) and E∗(θ) (multiscale solver, MS ) for M+ = 0, 1, 2, 4 and 8.
For given observation data. (a) two - dimensional problem. (b) three - dimensional problem.

fields. Here we use a relative difference between observation data and proposed solution for given θ

E∗(θ) =
||F ∗(θ)− Fobs||2

||Fobs||2
, E(θ) =

||F (θ)− Fobs||2

||Fobs||2
, (26)

where F = u(x, t), F ∗ = ums(x, t) where t = Tmax (final time) and x ∈ ∂Ωsurf (∂Ωsurf is the top boundary
of the domain). As observation data, we take solution that presented in Figure 13 and 14. We observe
that if we take a sufficient number of multiscale basis, we can obtain a good correlation between these two
characteristics. From this perspective we will use in our calculations M+ = 2 in MCMC algorithm which
have DOFc = 847 for 2D problem (Mp = 3 and Mu = 4) and DOFc = 1728 for 3D problem (Mp = 3
and Mu = 5). Fine grid system size is DOFf = 30603 for two-dimensional problem and DOFf = 37044
for three-dimensional problem. The random heterogeneity is represented using Karhunen-Loéve expansion.
In MCMC iterations, the heterogeneous porosity field is generated using L = 200 basis functions (YL(x, θ))
with exponential covariance (lx = ly = lz = 0.2 and σ2

R = 2). Form of φ, k and E are presented in 16, 17
and 18 with a = 40, b = 0.1. In numerical simulation, we pick a some realization of the random field θref
and use corresponded solution as observation data (see first columns of Figures 13 and 14).

Next, we present results for MCMC algorithms with σ2
c = β · σ2

f . We test 1000 random fields proposals
and use a random walk sampler for transitional probability distribution

q(θ|θn) = θn + δ · r,

where r is a Gaussian random variable with zero mean and variance 1. We use relative difference between
observation data and proposed solution form (26) with F = u(x, t), F ∗ = ums(x, t) where t = Tmax (final
time) and x ∈ ∂Ωsurf (∂Ωsurf is the top boundary of the domain).

We consider the influence of the following parameters on the results and perform the following tests:

• Single-stage and two-stage MCMC method with M+ = 2 and 4 for 2D problem.

• Two-stage MCMC for three-dimensional test problem with M+ = 2.

• Influence of the β, σf and δ to the results of the two-stage MCMC method.

In Figure 9, we present results for single-stage and two-stage MCMC method with M+ = 2 and 4. In the
first row, we depict an accepted uobs on the surface boundary, and on the second row, we present acceptance
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(a) Single-stage MCMC (b) Two-stage MCMC, M+ = 2 (c) Two-stage MCMC, M+ = 4

Figure 9: Two - dimensional problem with σf = 0.02. Random walk samples with δ = 0.5. First row:
accepted uobs on surface boundary. Second row: E∗(θ) (green color) and E(θ)(blue color) in each MCMC
iteration. (a) Single-stage MCMC (34 accepted). (b) Two-stage MCMC with β = 2 and M+ = 2 (31
accepted and 69 passed first stage). (b) Two-stage MCMC with β = 2 and M+ = 4 (46 accepted and 68
passed first stage).

Figure 10: Three - dimensional problem with M+ = 2. Two-stage MCMC with σf = 0.02 and β = 2.
Random walk samples with δ = 0.5. First row: accepted uobs on surface boundary. Second row: E∗(θ)
(green color) and E(θ)(blue color) in each MCMC iteration. 29 accepted and 141 passed the first stage.

errors. Results are presented for two - dimensional problem. In MCMC algorithm, we use a random walk
sampler with δ = 0.5 and set σf = 0.02. We have 34 accepted fields in a single-stage method. In the
two-stage MCMC with M+ = 2 we have 31 accepted and 69 passed first stage. For M+ = 4, we obtain 46
accepted and 68 passed first stage fields. In the first row of Figure 9, we depicted an accepted uobs on the
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(a) Two-stage MCMC, σf = 0.01 (b) Two-stage MCMC, σf = 0.04 (c) Two-stage MCMC, σf = 0.06

Figure 11: Two - dimensional problem with M+ = 2. Two-stage MCMC with β = 2 for different σf =
0.01, 0.04, 0.06. Random walk samples with δ = 0.5. First row: accepted uobs on surface boundary. Second
row: E∗(θ) (green color) and E(θ)(blue color) in each MCMC iteration. (a) σf = 0.01 (14 accepted and 50
passed first stage). (b) σf = 0.04 (121 accepted and 212 passed first stage). (c) σf = 0.06 (226 accepted and
336 passed first stage).

(a) σf (b) β (c) δ

Figure 12: Number of accepted and number of passed first stage. Two - dimensional problem. Two-stage
MCMC with M+ = 2. (a) δ = 0.5, σf = 0.02, β = 1, 2, 4, 6 and 8. (b) δ = 0.5, β = 2, σf = 0.01, 0.02, 0.04
and 0.06. (c) β = 2, σf = 0.02, δ = 0, 25, 0.5 and 1.0.

surface boundary, where with gradient coloring from yellow to red related to the number of accepted fields.
We observe a convergence of the method from second row, where we depicted relative differences between
observation data and the proposed solution. Here E∗(θ) is shown in green color for multiscale solver (fist
stage) and E(θ)is shown in blue color for θ that passed the first stage and calculated using fine grid solver.

In Figure 13, we present examples of accepted permeabilities with a reference solution that we used to
calculate observation data (two-dimensional problem). 2D results are shown for two-stage MCMC algorithm
with σf = 0.02, β = 2, M+ = 2 and random walk sampler with δ = 0.5. On the first and second rows,
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Figure 13: Reference solution and solutions for accepted random fields for two - dimensional problem (from
left to right). Two-stage MCMC with σf = 0.02, β = 2 and M+ = 2. Random walk samples with δ = 0.5.
31 accepted and 69 passed the first stage. First row: permeability, k. Second row: elastic modulus, E. Third
row: pressure, p. Fourth row: displacement, um.

we depict permeability and elastic modulus, k and E. Pressure and magnitude of the displacements are
depicted in the third and fourth rows. In Figures 10 and 14, we present results for three-dimensional case.
Results are presented for the two-stage MCMC algorithm with σf = 0.02, β = 2, M+ = 2 and random walk
sampler with δ = 0.5. For 2D and 3D results with the same parameters, we obtain:

• 2D: we have 31 accepted and 69 passed the first stage.

• 3D: we have 29 accepted and 141 passed the first stage.

Numerical results for two-stage MCMC with different σf = 0.01, 0.04, 0.06 are presented in Figure 11. We
perform calculations for β = 2 and random walk sampler with δ = 0.5. In Figure 12, we show a histogram
with number of accepted and number of passed first stage for two - dimensional problem with M+ = 2 and
δ = 0.5. In the first picture in Figure 12, we consider δ = 0.5, β = 2, σf = 0.01, 0.02, 0.04 and 0.06. We have

• σf = 0.01: 14 accepted and 50 passed first stage.

• σf = 0.02: 31 accepted and 69 passed first stage.

• σf = 0.04: 121 accepted and 212 passed first stage.
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Figure 14: Reference solution and solutions for accepted random fields for three - dimensional problem (from
left to right). Two-stage MCMC with σf = 0.02, β = 2 and M+ = 2. Random walk samples with δ = 0.5.
29 accepted and 141 passed the first stage. First row: permeability, k. Second row: elastic modulus, E.
Third row: pressure, p. Fourth row: displacement, um.

• σf = 0.06: 226 accepted and 336 passed first stage.

In the second picture, we show results for
σc = β · σf ,

with σf = 0.02, β = 1, 2, 4, 6 and 8. We obtain following results

• β = 1: 23 accepted and 54 passed first stage.

• β = 2: 31 accepted and 69 passed first stage.

• β = 4: 35 accepted and 103 passed first stage.

• β = 6: 29 accepted and 122 passed first stage.

• β = 8: 29 accepted and 129 passed first stage.

In third picture in Figure 12, we present results for β = 2, σf = 0.02, δ = 0, 25, 0.5 and 1.0. We obtain

• δ = 0.25: 123 accepted and 216 passed first stage.

• δ = 0.5: 31 accepted and 69 passed first stage.
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• δ = 1.0: 17 accepted and 23 passed first stage.

We see that larger β leads to larger acceptance on the first stage. We observe that β = 2 is better to obtain
an optimal number of the accepted on the first stage vs the number of the accepted on the fine grid. By
increasing the parameter σf , we increase the number of the accepted fields by reducing requirements between
proposed and observation data differences. The smaller parameter δ from random walk leads to the larger
number of accepted fields, but larger δ leads to the larger jump in random field generator.

5.3 Preconditioned MCMC using Machine Learning

Finally, we consider the preconditioned MCMC method using a machine learning technique (ML). We con-
struct the neural networks for the prediction of the observable data (displacements on the surface boundary).
Neural networks are constructed for each direction of displacements separately.

MSE RMSE (%) MAE (%)
2D

NNx 0.0007 1.8878 1.6719
NNy 0.0002 1.3864 1.2660

3D
NNx 0.0001 1.1049 0.8978
NNy 0.0003 1.7468 1.5461
NNz 0.0003 1.7343 1.4264

Table 4: Learning performance of a machine learning algorithms for 2D and 3D formulations.

The architectures of the neural networks are presented in Figures 15 and 16 for 2D and 3D problems,
respectively. In training process, we perform 3000 epochs using Adam optimizer with learning rate ε = 0.001.
For accelerating the training process of the CNN, we use GPU (GTX 1800 Ti). We use 3d convolutions and
2d maxpooling layers with RELU activation for d = 2, 3. We have several layers of convolutions with several
final fully connected layers. We use dropout with rate 10 % in order to prevent over-fitting. As a loss
function, we use a mean square error (MSE). Convergence of the loss function presented in Figures 15 and
16, where we plot the MSE loss function vs epoch number.

For error calculation, we use mean square errors, relative mean absolute and relative root mean square
errors

MSE =
∑
i

|Qi − Q̃i|2, RMSE =

√∑
i |Qi − Q̃i|2∑

i |Qi|2
, MAE =

∑
i |Qi − Q̃i|∑

i |Qi|
,

where Qi and Q̃i denotes reference and predicted values for sample Xi. Learning performance for neural
networks are presented in Tables 4 for two and three - dimensional problems. We observe good convergence
of the relative errors with ≈ 1% of RMSE.

In Figure 18, we present parity plots comparing reference values against predicted using trained neural
networks for Case 1, 2 and 3. Cross plot demonstrate correlation between E∗(θ) and E(θ) for 100 realizations
of random fields for three cases in 2D and 3D formulations. In Figure 17, we present a relative errors
for displacements on the top boundary. We compare prediction using reference fine grid values of the
displacements. We observe sufficiently good errors for predicted values, where we have less than 5% of errors
for 2D and less than 10% of errors for 3D. Later, we will discuss the computational efficiency of the machine
learning algorithms compared with direct forward calculations and preconditioning using multiscale solver.

Next, we consider numerical results for the two-stage MCMC method with machine learning technique
(ML) and multiscale solver (MS ). In Figures 19 and 20, we present results two-dimensional problem for Case
1, 2 and 3 (see Section 5.1). In the first row, we depict an accepted uobs on surface boundary and on the
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(a) architecture of NN

(b) loss function vs epoch

Figure 15: Two neural networks for the 2D problem. (a) the architecture of neural networks. (b) learning
performance, loss function vs epoch. NNx for x-displacement with RMSE = 1.887 %, and NNy for y-
displacement with RMSE = 1.386 % (from left to right).

second row, we present an acceptence errors. In MCMC algorithm, we use a random walk sampler with
δ = 0.5. We use σf = 0.02 and set σc = 2 · σf .

For MS preconditioning, we have

• Case 1 with 47 accepted and 105 passed first stage.

• Case 2 with 27 accepted and 62 passed first stage.

• Case 3 with 25 accepted and 72 passed first stage.

For ML preconditioning, we have

• Case 1 with 28 accepted and 132 passed first stage.
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(a) architecture of NN

(b) loss function vs epoch

Figure 16: Three neural networks for the 3D problem. (a) the architecture of neural networks. (b) learn-
ing performance, loss function vs epoch. NNx for x-displacement with RMSE = 1.104 %, NNy for y-
displacement with RMSE = 1.746 %, and NNz for z-displacement with RMSE = 1.734 % (from left to
right).

(a) 2D (b) 3D

Figure 17: Multiscale method errors for 100 random realizations of heterogeneous filed. Prediction of the
machine learning algorithm and multiscale solver with M+ = 2, 4. Relative errors in % for displacements on
the top boundary.
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(a) Case 1 for 2D (b) Case 2 for 2D (c) Case 3 for 2D

(d) Case 1 for 3D (e) Case 2 for 3D (f) Case 3 for 3D

Figure 18: Cross-plot between E(θ) (fine scale) and E∗(θ). Prediction of the machine learning algorithm
and multiscale solver with M+ = 2, 4. Case 1, 2 and 3 observation data (from left to right). First row:
two-dimensional problem. Second row: three-dimensional problem.

• Case 2 with 18 accepted and 81 passed first stage.

• Case 3 with 14 accepted and 45 passed first stage.

The results for three-dimensional problem are presented in Figures 22 and 23 for Case 1, 2 and 3 (see
Section 5.1).

For MS preconditioning, we have

• Case 1 with 16 accepted and 67 passed first stage.

• Case 2 with 30 accepted and 71 passed first stage.

• Case 3 with 40 accepted and 124 passed first stage.

For ML preconditioning, we have

• Case 1 with 17 accepted and 89 passed first stage.

• Case 2 with 26 accepted and 63 passed first stage.

• Case 3 with 39 accepted and 159 passed first stage.

In Figures 21 and 24, we depict an examples of accepted porosities with a reference porosity that we
used to calculate observation data. Numerical results are shown for two-stage MCMC algorithm with ML
preconditioning for Case 1,2 and 3 in 2D and 3D formulations.
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(a) Case 1 for 2D (MS) (b) Case 3 for 2D (MS) (c) Case 2 for 2D (MS)

Figure 19: Two - dimensional problem with MS preconditioning. Two-stage MCMC with σf = 0.02 and
β = 2. First row: accepted uobs on surface boundary. Second row: E∗(θ) (green color) and E(θ)(blue color)
in each MCMC iteration. (a) Case 1. (b) Case 2. (c) Case 3.

(a) Case 1 for 2D (ML) (b) Case 3 for 2D (ML) (c) Case 2 for 2D (ML)

Figure 20: Two - dimensional problem with ML preconditioning. Two-stage MCMC with σf = 0.02 and
β = 2. First row: accepted uobs on surface boundary. Second row: E∗(θ) (green color) and E(θ)(blue color)
in each MCMC iteration. (a) Case 1. (b) Case 2. (c) Case 3.
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(a) Case 1 for 2D (ML)

(b) Case 2 for 2D (ML)

(c) Case 3 for 2D (ML)

Figure 21: Reference field and accepted random fields for three - dimensional problem (from left to right).
Two - dimensional problem with ML preconditioning. Two-stage MCMC with σf = 0.02 and β = 2. (a) φ
for Case 1. (b) φ for Case 2. (c) φ for Case 3.

We observe that we can obtain a good acceptance rate with very cheap machine learning-based prediction.
The acceptance rate is Naccepted/Nfine, Naccepted and Nfine are the number of accepted fields and number
of expensive fine grid calculations (passed the first stage). For the fast construction of the dataset that used
for training, we used a multiscale solver with M+ = 2.

Finally, we discuss the advantage of the proposed algorithm. In the single-stage MCMC method with
Niter iterations, time of calculations TF is equal to number of iterations multiply to time of solution of the
fine grid system

TF = Niter · tfine,

where tfine is the time of fine grid system solution. Here for 2D system with DOFf = 30603, we have
tfine = 6.2 seconds and tfine = 158.7 seconds for 3D problem with DOFf = 37044 (see Table 3).
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(a) Case 1 for 3D (MS) (b) Case 3 for 3D (MS) (c) Case 2 for 3D (MS)

Figure 22: Three - dimensional problem with MS preconditioning. Two-stage MCMC with σf = 0.02 and
β = 2. First row: accepted uobs on surface boundary. Second row: E∗(θ) (green color) and E(θ)(blue color)
in each MCMC iteration. (a) Case 1. (b) Case 2. (c) Case 3.

(a) Case 1 for 3D (ML) (b) Case 3 for 3D (ML) (c) Case 2 for 3D (ML)

Figure 23: Three - dimensional problem with ML preconditioning. Two-stage MCMC with σf = 0.02 and
β = 2. First row: accepted uobs on surface boundary. Second row: E∗(θ) (green color) and E(θ)(blue color)
in each MCMC iteration. (a) Case 1. (b) Case 2. (c) Case 3.
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(a) Case 1 for 3D (ML)

(b) Case 2 for 3D (ML)

(c) Case 3 for 3D (ML)

Figure 24: Reference field and accepted random fields for three - dimensional problem (from left to right).
Three - dimensional problem with ML preconditioning. Two-stage MCMC with σf = 0.02 and β = 2. (a) φ
for Case 1. (b) φ for Case 2. (c) φ for Case 3.

For MS preconditioning of the MCMC method, we have

TMS = Niter · tms +Nfine · tfine,

where tms is the time of coarse grid system solution using GMsFEM and Nfine is the number of accepted
on the first stage. For M+ = 2, we have tms = 0.83 seconds for 2D problem with DOFc = 847 and tms = 9.6
seconds for 3D problem with DOFc = 1728 (see Table 3). In preconditioned MCMC method, we obtain
that Nfine << Niter, and therefore, we have a huge reduction in the solution time because the presented
multiscale method provides a huge reduction of the system size, but it still takes some time for the solution.

For further reduction of the time, we proposed a machine learning-based technique with a super quick
prediction. For ML preconditioning of the MCMC method, we have

TML = Niter · tml +Nfine · tfine,
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where tml is the time of coarse grid system solution using trained neural networks. Becuase prediction time
is very fast i.e. tml << 1 second, therefore

TML = Nfine · tfine.

6 Conclusion

Simulation of the poroelasticity is difficult due to the complex heterogeneities and uncertainty. In this work,
we considered a Two-stage Markov Chain Monte Carlo method for geomechanical subsidence. We presented
two techniques for preconditioning: (MS) multiscale method for model order reduction and (ML) machine
learning technique. Numerical results are presented for two- and three-dimensional models to show the
efficiency of the method as an expedited MCMC sampling method.

Codes used in this manuscript are publicly available on Bitbucket at https://bitbucket.org/vmasha/ms-
mcmc.
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