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Abstract

We consider an automatic construction of locally optimal preconditioners for positive definite linear
systems. To achieve this goal, we introduce a differentiable loss function that does not explicitly include
the estimation of minimal eigenvalue. Nevertheless, the resulting optimization problem is equivalent to a
direct minimization of the condition number. To demonstrate our approach, we construct a parametric
family of modified BPX preconditioners. Namely, we define a set of empirical basis functions for coarse
finite element spaces and tune them to achieve better condition number. For considered model equations
(that includes Poisson, Helmholtz, Convection-diffusion, Biharmonic, and others), we achieve from two
to twenty times smaller condition numbers for symmetric positive definite linear systems.

1 Introduction

In the present contribution, we consider two optimization problems. The first one is the optimization of a
parametric family of preconditioners for a modified Richardson method applied to the matrix A : AT +A > 0,
that is,

ωopt, θopt = arg min
ω,θ

ρ (I − θB(A,ω)) , (1)

where B(A,ω) = B(ω)A (or B(A,ω) = B(ω)AB(ω)) is a family of linear systems preconditioned from the
left (or in a symmetric fashion), ρ is a spectral radius, and ω is a set of real numbers. Problem (1) corresponds
to a direct optimization of asymptotic convergence speed of an iterative linear solver [25, Section 2.2.5].

The second related problem is the optimization of the condition number

ωopt = arg min
ω
λmax (B(A,ω))

/
λmin (B(A,ω)) , (2)

where λmax and λmin are the smallest and the largest eigenvalues, and A is symmetric positive definite.
In both problems we follow the approach adopted in [29] and further generalized in [21], [33]. That is, we

introduce a stochastic loss function that approximates an objective function – spectral radius or a condition
number – and perform a direct gradient-based optimization. The details can be found in Section 2 and
Section 3.

For B(ω) we use a modified BPX [7] preconditioner. General multilevel preconditioner operates on a
chain of linear spaces V1 ⊂ V2 ⊂ · · · ⊂ VL, where Vl, 1 ≤ l ≤ L is formed as a linear combination of the set
of functions φlk(x), k = 1, . . . , Nl. In the context of a finite element method, φlk(x) is a tent function located
at vertex k of a grid with the diameter of a cell ' const 2−l (grid corresponding to Vl+1 is constructed from
l-th grid by, for example, subdivision of coarse triangulation, see i.e. [50, Section 2]). BPX preconditioners
were developed for an elliptic problem

−
D∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
u(x) = f(x), (3)
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with homogeneous Dirichlet boundary conditions and uniformly symmetric positive definite aij(x). For equa-
tion (3) and a nested set of finite element spaces span

{
φlk : k = 1, . . . , Nl

}
, original BPX and preconditioner

reads

BBPX(ω)v =

L∑
l=1

Nl∑
k=1

(
v, φlk

)
φlk, (4)

where (ψ, χ) =
∫
ψ(x)χ(x)dx is a L2 scalar product. To improve BPX preconditioner we replace tent function

with empirical basis functions φ̃lk, l = 1, . . . , L − 1 and introduce scalars α̃l, l = 1, . . . , L − 1 that weight
contributions from individual spaces Vl, that is

BBPX(ω)v =

L∑
l=1

α̃l

(∑
k

(
v, φ̃lk

)
φ̃lk

)
. (5)

The details of the parametrisation and more convenient form of preconditioners (5) are given in Section 4.

Together φ̃lk and α̃l form a set of parameters ω in problems (1), (2). The results of the optimization can
be found in Section 5. In short, our framework allows for up to two times smaller spectral radius of modified
Richardson scheme and up to twenty times smaller condition number for selected problems.

2 Direct optimization of the spectral radius

Problem (1) can be viewed in the context of a general search for better linear iterative methods. As explained
in [25, Section 2.2.2], an arbitrary consistent iterative method can be written in a form

xn+1 = M(ω,A)xn +N(ω,A)b, I −M(ω,A) = N(ω,A)A. (6)

The efficiency of the method can be characterised by spectral radius ρ (M(ω,A)), because it quantifies an
asymptotic convergence rate in a following sense. Let en be an error vector on step n, ‖·‖ is arbitrary norm

and ρm+k,m =
(∥∥em+k

∥∥/ ‖em‖)1/k is a geometric mean of a one-step error reduction factor ρm+1,m. It
is known that limk→∞maxx0 {ρm+k,m(x0)} = ρ(M(ω,A)) (see [25, Remark 2.22]). That is, ρ (M(ω,A))
characterises a geometric mean of an error reduction per iteration in the worst case. Because of that it is a
custom to use ρ (M(ω,A)) as an objective function. For example, classical schemes like SOR and instationary
Richardson iteration were optimized analytically [26], [25, chapters 4, 8] and numerically [35], [38], to achieve
better ρ (M(ω,A)). More modern attempts include optimization of multigrid with local Fourier analysis [9]
and directly [42], [33], [21], [29].

To apply gradient-based optimization to (1) we need a differentiable approximation to the spectral radius.
We consider three options.

The first one is an approximation of ρ(A) by Gelfand formula [31] ρ(A) = limk→∞
∥∥Ak∥∥1/k

combined
with a stochastic trace approximation [2]:

ρ(A) ' ρ1(A, k,Nbatch) ≡

 1

Nbatch

Nbatch∑
j=1

∥∥Akzj∥∥2

2

1
/

2k

,

∀j : P ((zj)i = ±1) = 1
/

2, ∀i, j : zi, zj are independent.

(7)

More details about this approach can be found in [29].

The second option is based on ρ(A) = limk→∞
(∥∥em+k

∥∥/ ‖em‖)1/k , em+l = Alem, see [25, Remark 2.22
(b)] for details. This gives us another approximation

ρ(A) ' ρ2 (A, k) ≡
(∥∥Akz∥∥

2

/
‖z‖2

)1/k
, (zi)j ∼ N (0, 1). (8)

2



Algorithm 1 Minimization of L1 (10).

Input: matrix A > 0, parametric family of preconditioners B(A,ω) : B(A,ω) > 0, stochastic gradient-
based optimizer ω ← O (ω, ∂ω (loss function)) (f.e., ADAM, [30]), batch size Nbatch, number of matrix-
vector products k, number of epochs Nepochs, number of iterations for inner loop Ninner, estimator of the
spectral radius m ∈ {1, 2, 3}.

for i = 1 : Nepochs do
for j = 1 : Ninner do
ρm, ∂θρm ← AD ρm (I − θB(A,ω), k,Nbatch) // AD – automatic differentiation
θ ← O (θ, ∂θρm)

end for
L1, ∂ωL1 ← AD ρm (I − θB(A,ω), k,Nbatch)
ω ← O (ω, ∂ωL1)

end for

Approximation (8) does not contain averaging, but we can introduce Nbatch the same way as in (7). That
gives us the following the last approximation

ρ(A) ' ρ3 (A, k,Nbatch) ≡ 1

Nbatch

Nbatch∑
j=1

(∥∥Akzj∥∥2

/
‖zj‖2

)1/k
,

∀j : (zj)i ∼ N (0, 1), ∀i, j : zi, zj are independent.

(9)

The resulting loss will measure how well matrix A damps nonzero initial vectors on average. We observed
that introduction of Nbatch > 1 in (9) leads to better convergence.

With approximations ρi (A, k,Nbatch) , i = 1, 2, 3 we can use forward mode automatic differentiation
[39] and standard optimizers [20, Section 8.3] to solve problem (1). The resulting algorithm coincides with
Algorithm 1 with Ninner = 1.

3 Direct optimization of the condition number

Unlike problem (1) the optimization of the condition number is not straightforward. The main problem is
the presence of λmin which is not readily available. The standard way to resolve this issue is to substitute
spectral radius with more amenable loss. For example, objective functions ‖R−A‖ and

∥∥I −R−1A
∥∥ (here R

is an easy invertible approximation to A) were used to construct optimal circulant [10], [48], [44] and sparse
approximate inverse [23], [13] preconditioners. It is known that for nonsymmetric matrices optimization of∥∥I −R−1A

∥∥ can fail to deliver good preconditioner [12]. The same is true for symmetric positive definite
matrices as illustrated on Figure 1.

For symmetric positive definite matrices, one can construct a loss function that leads to a direct mini-
mization of the spectral condition number. It is well known that for arbitrary positive definite matrix C,
optimal spectral radius of I − θC is (λmax(C)− λmin(C))

/
(λmax(C) + λmin(C)). Using this fact, we can

consider the following loss function

L1(ω) = ρ (I − θopt(ω)B(A,ω)) , θopt(ω) = arg min
θ
ρ (I − θB(A,ω)) . (10)

Evidently, the minimization of (10) is equivalent to the minimization of (κ(B(A,ω))− 1)
/

(κ(B(A,ω)) + 1),
where κ is the spectral condition number. That means we constructed an optimization problem equivalent
to (2) but without λmin. A procedure for minimization of loss (10) is summarised in Algorithm 1. The inner
loop finds θopt for each ω and the outer loop optimizes ω. If an inner loop is reduced to a single iteration
as it is done in many other situations (for example, generalized policy iteration [45, Section 4.6], and full

3



Figure 1: Comparison of three loss functions. The first column shows how the value of the loss function
changes in the course of iterations, graphs in the second column demonstrate an evolution of condition
number. The first row corresponds to the Frobenius norm ‖I −B(ω)A‖ used as a loss function, the second
row shows minimization of L1 by Algorithm 1 (Ninner = 1), the last row shows minimization of L2 by
Algorithm 2. For the last two cases, we used (7) to approximate spectral radius. It is clear that the decrease
of both losses L1 and L2 lead to a smaller spectral condition number, whereas smaller Frobenius norm does
not lead to a better spectral condition number. In all cases we use modified BPX preconditioner (15) as
B(ω) and FEM discretization (see Section 4) of Poisson equation (16) in D = 1.
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Algorithm 2 Minimization of L2 (11).

Input: symmetric positive definite matrix A > 0, parametric family of preconditioners B(A,ω) : B(A,ω) >
0, stochastic gradient-based optimizer ω ← O (ω, ∂ω (loss function)) (f.e., ADAM, [30]), batch size Nbatch,
number of matrix-vector products k, number of epochs Nepochs, estimator of the spectral radius m ∈
{1, 2, 3}.

for i = 1 : Nepochs do
θ ← 1

/
ρ1 (B(A,ω), k,Nbatch)

ρm, ∂ωρm ← AD ρm (B(A,ω), k,Nbatch) // AD – automatic differentiation
L2, ∂ωL2, ∂θL2 ← AD ρm (I − θB(A,ω), k,Nbatch)
ω ← O

(
ω, ∂ωρm − θ2∂θL2∂ωL2

)
end for

approximation scheme [47, Section 5.3.1] follow the same pattern), we obtain an algorithm that minimizes
spectral radius for modified Richardson scheme.

Another equivalent loss function is

L2(ω) = ρ

(
I − 1

ρ(B(A,ω))
B(A,ω)

)
. (11)

Indeed, ρ (I −B(A,ω)/ρ(B(A,ω))) = 1− λmin(B(A,ω))
/
λmax(B(A,ω)), which means that a minimization

of (11) is equivalent to minimization of 1 − 1
/
κ(B(A,ω)). Gradient-based optimization can be applied to

(11) directly, but we can exploit a special structure of the problem to shorten the computation graph. Using
a chain rule we get

∂

∂ωi
ρ

(
I − 1

ρ(B(A,ω))
B(A,ω)

)
=

(
∂

∂ωi
ρ (I − θB(A,ω))

)∣∣∣∣
θ=ρ(B(A,ω))−1

−
(
θ2 ∂

∂θ
ρ (I − θB(A,ω))

)∣∣∣∣
θ=ρ(B(A,ω))−1

∂

∂ωi
ρ(B(A,ω)).

(12)

This leads to Algorithm 2. The performance of these two loss function is illustrated on Figure 1. In our
experiments, we find little difference between Algorithm 1 and Algorithm 2. Because of that, we mainly use
Algorithm 1, which requires a single computation of a gradient with respect to ω. However, unlike L1 loss
function L2 is defined in terms of ρ in closed form, i.e., without an additional optimization problem, so it
can be more advantageous in situations when a family of preconditioners is learned for a set of related linear
equations, as it is done in [21] for the multigrid solver.

We summarize the results of this section in the following statement.

Proposition 1. Let A > 0 and B(ω) > 0 for all ω. For left B(A,ω) = B(ω)A, symmetric B(A,ω) =
B(ω)AB(ω) and right B(A,ω) = AB(ω) preconditioners the following three optimization problems are equiv-
alent:

• minω ρ (I − θopt(ω)B(A,ω)), where θopt(ω) = arg minθ ρ (I − θB(A,ω)) – loss function (10)

• minω ρ
(
I −B(A,ω)

/
ρ(B(A,ω))

)
– loss function (11)

• minω
(
λmax(B(A,ω))

/
λmin(B(A,ω))

)
4 Modified BPX preconditioner

We already specified algorithms that can be used to optimize condition number (optimization problem
(2)). In this section, we describe a parametric family of positive definite preconditioners that we use in
optimization.
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BPX optimized BPX
L ρ κ N ρ κ N
3 0.621 4.277 5 0.314 1.915 2
4 0.701 5.678 7 0.386 2.259 3
5 0.746 6.867 8 0.432 2.523 3
6 0.774 7.866 10 0.46 2.706 3

(a) Bilinear FEM

BPX optimized BPX
L ρ κ N ρ κ N
3 0.62 4.269 5 0.427 2.488 3
4 0.7 5.678 7 0.448 2.621 3
5 0.746 6.867 8 0.454 2.666 3
6 0.774 7.867 10 0.472 2.791 4

(b) Mehrstellen

Figure 2: Results of optimization for 2D Poisson equation (16). Here ρ = λmax (I − θoptBAB) – a spectral
radius of optimal Richardson iteration for a given preconditioner, κ = λmax(BAB)

/
λmin(BAB) – spectral

condition number, and N – the number of iteration needed to drop an error by 0.1 in the arbitrary norm,
i.e.,

∥∥en+N
∥∥/ ‖en‖ ≤ 0.1.

To obtain a convenient form of BPX preconditioner, we introduce a hierarchy of meshes

Ml =
{
xlj = j

/
2l : j = 0, 1, . . . , 2l − 1, 2l

}
, l = 1, . . . , L (13)

such that each next mesh contains a previous one, that is, Ml ⊂ Ml+1. For each mesh, we define a set of
basis functions φli(x) = φl(x − xi), i = 0, . . . , 2l, which are rescaled and translated copies of a tent function
φl(x) =

(
1 + x

/
2l
)

Ind
[
−1
/

2l ≤ x ≤ 0
]

+
(
1− x

/
2l
)

Ind
[
0 < x ≤ 1

/
2l
]
, where Ind [x] is 1 if x holds and 0

otherwise. Basis functions
{
φLi (x) : i = 0, . . . , 2L

}
are used to perform standard finite element discretization

[14] of elliptic problem (3) for x ∈ [0, 1]. For higher dimensions, we use Ml and φli that are direct products
of unidimensional meshes and basis functions.

In article [4], authors show that for equation (3) in D = 1 with uniform Dirichlet boundary condition
at x = 0 and uniform Neumann boundary condition at x = 1 discretized as we just described, BPX
preconditioner has the following form

B =

L∑
k=1

αkB
L
kB

k
L, B

L
l = Il ⊗ ηL−l + Sl ⊗ (ξL−l − ηL−l) , BlL =

(
BLl
)T
, αk = 1

(ηk)i = i/2k, (ξk)i = 1, (Sl)ij = δij+1, (Il)ij = δij , i, j = 1, . . . , 2l.

(14)

If D = 2 matrices BkL are replaced with BkL ⊗ BkL and αk are with ratio of grid spacings hL
/
hk. The proof

of the optimality of symmetric preconditioner (14) can be found in [4, Appendix A].
It is easy to see that components of ηL−l and ξL−l − ηL−l contains scalar products

(
φL, φl

)
. Using this

observation, one can extend (14) on other boundary conditions:

Proposition 2. For equation (3) in D = 1 discretized with linear finite elements, symmetric BPX precon-

ditioner has a form B =
∑L
k=1 αkB

L
kB

k
L, where matrices BkL depend on boundary conditions as follows:

• Dirichlet-Neumann: BLl = Il ⊗ ηL−l + Sl ⊗ (ξL−l − ηL−l) ;

• Neumann-Dirichlet: BLl = Il ⊗ ηrL−l + (Sl)
T ⊗

(
ξL−l − ηrL−l

)
, (ηrk)i = (ηk)2k−i+1 ;

• Neumann-Neumann: BLl =

(
1 01×2l

el ⊗ (ξL−l − ηL−l) Il ⊗ ηL−l + Sl ⊗ (ξL−l − ηL−l)

)
;

• Dirichlet-Dirichlet: BLl = [Il ⊗ ηL−l + Sl ⊗ (ξL−l − ηL−l)]last row and column are removed .

All boundary conditions are uniform and vectors ξL−l, ηL−l are defined as in (14).
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BPX
φi are fixed

optimized BPX optimized BPX
L ρ κ N ρ κ N ρ κ N
3 0.611 4.138 5 0.483 2.866 4 0.332 1.994 3
4 0.696 5.58 7 0.554 3.484 4 0.357 2.109 3
5 0.744 6.81 8 0.599 3.983 5 0.367 2.159 3
6 0.774 7.845 9 0.629 4.389 5 0.37 2.174 3
7 0.794 8.718 10 0.651 4.724 6 0.373 2.19 3
8 0.809 9.456 11 0.667 5.003 6 0.377 2.21 3

(a) Linear FEM (b) Basis function

Figure 3: Results of optimization and basis function for 1D Poisson equation (16).

Based on (14) and Proposition 2, we put forward the following parametrization

B̃ =

L∑
k=1

(α̃k)
2
B̃Lk B̃

k
L, B̃

L
l = Il ⊗ η̃L−l + Sl ⊗ ξ̃L−l,

(
ξ̃L−l

)
2l

= 0, η̃0 = 1, α̃L = 1, (15)

where α̃k, η̃L−k and ξ̃L−k are free parameters that correspond to ω in Algorithm 1 and Algorithm 2. Chosen

parametrization differs from (14) in two respects. First, we use ξ̃L−k in place of ξ̃L−k−η̃L−k. Since both η̃L−k
and ξ̃L−k are free parameters, both options lead to the same family of preconditioners. Second, we use (α̃k)

2

in place of α̃k. This choice among with conditions η̃0 = 1 and α̃L = 1 guarantee that B̃ is positive definite

regardless of the choice of other parameters. Indeed, B̃ has a form I +
∑L−1
k=1 (α̃k)

2 (
BkL
)T
BkL, that is, the

sum of positive definite and positive semidefinite matrices. Because of that, conditions of Proposition 1 apply
and we can use parametric family (15) to optimize condition number with Algorithm 1 and Algorithm 2.

The last condition
(
ξ̃L−l

)
2l

= 0 ensures that basis functions on level l have the same support as the ordinary

tent functions.

5 Experiments

Here we present the results of the optimization for a set of test problems. First, we give an overview
of model equations and the discretization used and then comment on the performance of optimized BPX
preconditioners.

5.1 Model equations

5.1.1 Poisson equation

Poisson equation appears in a variety of contexts, from continuum mechanics [37, Sections 4.3, 5.1] to
electrodynamics [28, Section 1.7]. It is also a standard test equation for multilevel solvers and preconditioners
[47, Section 1.4]. The continuum boundary value problem reads

− ∂2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f(x), x, y ∈ [0, 1]

2
, u(x, y)|∂Γ = 0, (16)

here Γ represents a domain, and ∂Γ is a boundary. We use standard bilinear finite element discretization in
D = 1 and D = 2 (see Section 4), and also employ a high order compact scheme known as Mehrstellen [15,
Table VI]. Mehrstellen discretization corresponds to the stencil

s =

−1 −4 −1
−4 20 −4
−1 −4 −1

 , (17)
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BPX optimized BPX
L ρ κ N ρ κ N
3 0.621 4.277 5 0.316 1.922 2
4 0.701 5.678 7 0.385 2.254 3
5 0.746 6.867 8 0.431 2.515 3
6 0.774 7.866 10 0.457 2.685 3

(a) k2h = 0.01

BPX
s = 1

optimized BPX
L ρ κ N ρ κ N
3 0.919 23.719 28 0.592 3.9 5
4 0.956 44.127 51 0.625 4.339 5
5 0.967 60.262 70 0.653 4.766 6
6 0.973 72.413 84 0.68 5.25 6

(b) ε = 10

BPX optimized BPX
L ρ κ N ρ κ N
3 0.621 4.277 5 0.316 1.922 2
4 0.701 5.678 7 0.385 2.254 3
5 0.746 6.867 8 0.431 2.515 3
6 0.774 7.866 10 0.457 2.685 3

(c) k2h = 0.1

BPX
s = 2

optimized BPX
L ρ κ N ρ κ N
3 0.974 75.467 87 0.679 5.235 6
4 0.991 216.104 249 0.704 5.763 7
5 0.996 468.362 540 0.71 5.9 7
6 0.997 753.064 867 0.754 7.145 9

(d) ε = 100

BPX optimized BPX
L ρ κ N ρ κ N
3 0.616 4.213 5 0.317 1.928 3
4 0.698 5.612 7 0.387 2.264 3
5 0.744 6.808 8 0.432 2.519 3
6 0.773 7.817 9 0.457 2.683 3

(e) k2h = 1

BPX
s = 2

optimized BPX
L ρ κ N ρ κ N
3 0.983 118.948 137 0.694 5.531 7
4 0.997 578.133 666 0.735 6.554 8
5 0.999 1713.449 1973 0.763 7.454 9
6 1.0 4032.087 4643 0.807 9.348 11

(f) ε = 1000

Figure 4: First column (a, c, e) results for Helmholtz equation (18), second column (b, d, f) results for
anisotropic Poisson equation (19); s refers to semicoarsening (29).

which can be used to construct a fourth and sixth-order accurate approximation to the Poisson equation if
boundary conditions and right-hand side are sufficiently smooth [41].

5.1.2 Helmholtz equation

Helmholtz equation

− ∂2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
− k2u(x, y) = f(x), x, y ∈ [0, 1]

2
, u(x, y)|∂Γ = 0, (18)

appears in the context of wave propagation problems [17, Section 2.1]. For example, the Helmholtz equa-
tion needs to be solved at each time step in the semi-implicit discretization of governing equation of non-
hydrostatic weather prediction models [43, Section 4.1].

Because of the term −k2u(x, y), bilinear finite element discretization can result in an indefinite matrix,
especially for large k, which renders our method inapplicable. However, the value of k can not be arbitrary
on a given grid because of the pollution problem [3]. More precisely, unless k2h is sufficiently small, the
solution to a discrete problem is of no use because it does not approximate an exact solution. Having this
condition in mind, we choose k small enough to have a positive definite problem.

8



BPX optimized BPX
L ρ κ N ρ κ N
3 0.878 15.367 18 0.846 11.984 14
4 0.96 48.717 57 0.878 15.33 18
5 0.988 167.576 193 0.899 18.9 22
6 0.997 617.095 711 0.945 35.073 41

(a) 13-point stencil (b) Basis function

Figure 5: Results of optimization and basis function for the Biharmonic equation (20).

5.1.3 Anisotropic Poisson equation

Anisotropic version of Poisson equation

− ∂2u(x, y)

∂x2
− ε∂

2u(x, y)

∂y2
= f(x), x, y ∈ [0, 1]

2
, u(x, y)|∂Γ = 0, (19)

arises naturally in computational fluid dynamics when a refined or stretched grid is used to resolve a boundary
layer, shock, or some other singularity [32, Chapter 4], [47, Section 5.1.2]. Parameter ε can also be related
to the anisotropy of the physical system. For example, a crystal’s permittivity can depend on the direction
[36, Chapter 9], so electrostatic boundary-value problems lead to an anisotropic Poisson equation.

5.1.4 Biharmonic equation

The only fourth-order equation we consider is biharmonic:

∂4

∂x4
u(x, y) + 2

∂2

∂x∂y
u(x, y) +

∂4

∂y4
u(x, y) = f(x, y), x, y ∈ [0, 1]

2
, u(x, y)|∂Γ = 0, ∂nu(x, y)|∂Γ = 0, (20)

here ∂n is a derivative along the normal direction to the boundary ∂Γ. Applications of the Biharmonic
equation include a description of fluid flows [11], vibrating plates, Chladni figures [19], gravitation theory,
and quantum mechanics [34, Introduction]. To discretize this equation, we use centered second-order finite
difference approximation given by a 13 point stencil

s =


1

2 −8 2
1 −8 20 −8 1

2 −8 2
1

 , (21)

which should be modified appropriately near the boundaries [46, Section 4] (see also [24] and [6]).

5.1.5 Convection-diffusion equation

When convective transport is present, the original diffusion equation needs to be modified as follows

− ∂2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
+ vxu(x, y) + vyu(x, y) = f(x, y), x, y ∈ [0, 1]

2
, u(x, y)|∂Γ = 0. (22)

The presence of vx and vy results in nonsymmetric matrix. This means Proposition 1 does not hold, but
Algorithm 1 can be applied to optimize modified Richardson iteration. Since we employ bilinear finite ele-
ment discretization (centered difference approximation), the stability restriction is given by Peclet condition
max (|vx|, |vy|) ≤ 2

/
h.
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BPX
optimized

BPX
L ρ3 N ρ3 N
3 0.629 5 0.398 3
4 0.741 8 0.554 4
5 0.797 11 0.649 6
6 0.829 13 0.690 7

(a) vx = −vy = 1
/
h

BPX
optimized

BPX
L ρ3 N ρ3 N
3 0.787 10 0.574 5
4 0.830 13 0.711 7
5 0.864 16 0.737 8
6 0.874 18 0.743 8

(b) vx = −vy = 2
/
h

BPX
optimized

BPX
L ρ3 N ρ3 N
3 0.855 15 0.693 7
4 0.869 17 0.743 8
5 0.872 17 0.785 10
6 0.874 18 0.792 10

(c) vx = −vy = 3
/
h

Figure 6: Results of optimization for convection-diffusion equation (22), h is a distance between grid points
on the finest grid. Note, that the value of a loss function (9) is listed, not an “exact” spectral radius.

5.1.6 Diffusion with discontinuous coefficients

In some situations, diffusion coefficient a(x, y) in equation

− ∂

∂x

(
a(x, y)

∂u(x, y)

∂x

)
− ∂

∂y

(
a(x, y)

∂u(x, y)

∂y

)
= f(x, y), x, y ∈ [0, 1]

2
, u(x, y)|∂Γ = 0, (23)

is discontinuous along some curve or surface inside the computational domain. For example, this is the
case in reservoir simulation [47, Section 7.7.1], and the description of the neutron diffusion [1]. For our
experiments, we take

a(x, y) = g(x) + g(y), g(x) = σ−1Ind
[
x < 1

/
2
]

+ σInd
[
x ≥ 1

/
2
]
, (24)

where σ is a parameter that controls the magnitude of the jump. The discretization we used is, again, FEM.

5.1.7 Mixed derivative

Another problem of interest is a Poisson equation with mixed derivative

− ∂2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
− 2τ

∂2u(x, y)

∂x∂y
= f(x), x, y ∈ [0, 1]

2
, u(x, y)|∂Γ = 0. (25)

For |τ | > 1 the equation becomes hyperbolic, so it is interesting to look how optimization works for τ ' 1.

5.1.8 Implicit scheme for the heat equation

The last equation that we consider comes from the trapezoidal discretization (in time) of the heat equation

∂u(x, y, t)

∂t
=
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
, x, y ∈ [0, 1]

2
, t ∈ [0,+∞) ,

u(x, y, t)|t=0 = φ(x, y), u(x, y)|∂Γ = 0.

(26)

Let A be a matrix that corresponds to a spatial FEM discretization of the right-hand side operator. It results
in a system of ordinary differential equations

dui(t)

dt
=
∑
j

Aijuj(t), ui(0) = φi. (27)

Application of the trapezoidal rule leads to an unconditionally stable iteration∑
j

(
I − µ̃

2
A

)
ij

un+1
j =

∑
j

(
I +

µ̃

2
A

)
ij

unj (28)
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known as Crank-Nicolson scheme [27, Section 16.4]. Here µ̃ = ∆t is related to the Courant number µ =

∆t/∆x2. Since matrix
(
I − µ̃

2A
)

is symmetric positive definite for µ̃ ≥ 0 that needs to be inverted during

each iteration, we test our preconditioner on this problem.

5.2 Optimization results

For all equations we use a symmetric form of both BPX (14) and modified BPX (15) preconditioners.
To access the results of optimization we list three related numbers: ρ = λmax (I − θoptBAB) – a spectral
radius of the optimal Richardson iteration for a given preconditioner, κ = λmax(BAB)

/
λmin(BAB) – spectral

condition number, and N – the number of iteration needed to drop an error by 0.1 with the optimal modified
Richardson iteration in an arbitrary chosen norm, i.e.,

∥∥en+N
∥∥/ ‖en‖ ≤ 0.1. The number of iterations N is

computed as
⌈
−1
/

log10 ρ
⌉
, where d·e is the ceiling function. 1

In all cases, we use Dirichlet boundary conditions. Value of L fixes the number of points along each
direction to be 2L − 1.

For all examples we employed Algorithm 1 with the loss function (9) (Nbatch = 10, k = 10), ADAM

optimizer [30], Nepoch = 500, Ninner = 1. Initial parameters α̃, η̃, ξ̃ of the modified BPX preconditioner (15)

were chosen such that the resulting matrix B̃ coincides with the BPX preconditioner (14).
All algorithms were implemented in Julia [5] and available in a public repository https://github.com/

VLSF/neuralBPX.

5.2.1 Poisson equation

We can see on Figure 2 that for the 2D Poisson equation optimization successfully decreases the condition
number. Moreover, it seems to grow slower compared to the original BPX preconditioner as the number
of points increases 2. To assess the contribution of the optimized basis functions, we perform additional
optimization in D = 1 with fixed basis functions. Results, given in Figure 3, indicate that optimization of
the basis function leads to twice as small spectral radius compare to the situation when only scales are being
optimized. The basis function itself is depicted in Figure 3b. We can see that it is self-similar and seems to
be well defined (in a sense that a subsampled basis function for L1 > L2 is a good basis function for L2).
We can deduce that this function is a limit of some subdivision scheme [40], but we could not reliably define
subdivision weights from our numerical experiments.

5.2.2 Helmholtz equation

The first column in Figure 4 contains the results for Helmholtz equation (18) with k2h equal to 0.01, 0.1 and
1. The results are similar to the one for the Poisson equation. However, if we further increase the number
of points or k, the resulting matrix becomes indefinite, and the optimization breaks down. That means
that with our approach, we cannot construct preconditioners for the Helmholtz equation. It is known that
preconditioners for the Helmholtz equation significantly differ from preconditioners for Poisson-like equations
(see [17] for the review), so this result is not surprising.

5.2.3 Anisotrpoic Poisson equation

The second column in Figure 4 contains the results for anisotropic Poisson equation (19) with ε equal
to 10, 100 and 1000. To cope with the anisotropy, we apply semicoarsening [47, Section 5.1]. Without

semicoarsening a “projector” on the grid Mk ×Mk (Mk is as in (13)) reads B̃kL ⊗ B̃kL. For semicoarsening
the hierarchy of grids is modified, that is, in place of Mk ×Mk we project on Mmin(k−s,0) ×Mk, where s

1This definition of N guarantees
∥∥en+N

∥∥/ ‖en‖ ≤ 0.1 for normal iteration matrix M(ω,A). If M(ω,A) is not normal, N
holds as an estimation (see the discussion in Section 2 after equation (6)).

2To estimate the growth rate we fit data using ordinary least squares with the model κ(L) = c1+c2L. For BPX preconditioner
(c1, c2) = (0.792, 1.196), and for the optimized BPX (c1, c2) = (1.164, 0.264).
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BPX (r) optimized BPX (r)
L ρ κ N ρ κ N
3 0.727 6.337 8 0.657 4.834 6
4 0.898 18.524 22 0.616 4.213 5
5 0.964 54.813 64 0.652 4.746 6
6 0.986 145.244 168 0.744 6.811 8

(a) σ = 10

BPX (r) optimized BPX (r)
L ρ κ N ρ κ N
3 0.753 7.082 9 0.614 4.177 5
4 0.912 21.831 26 0.692 5.504 7
5 0.97 66.626 77 0.739 6.652 8
6 0.989 186.977 216 0.809 9.485 11

(b) σ = 100

BPX optimized BPX
L ρ κ N ρ κ N
3 0.68 5.255 6 0.45 2.638 3
4 0.751 7.044 9 0.511 3.086 4
5 0.79 8.51 10 0.553 3.479 4
6 0.813 9.685 12 0.577 3.731 5

(c) τ = 0.5

BPX optimized BPX
L ρ κ N ρ κ N
3 0.817 9.93 12 0.697 5.599 7
4 0.89 17.24 20 0.814 9.781 12
5 0.922 24.787 29 0.864 13.752 16
6 0.935 29.933 35 0.894 17.811 21

(d) τ = 0.9

BPX optimized BPX
L ρ κ N ρ κ N
3 0.908 20.723 24 0.067 1.144 1
4 0.979 94.196 109 0.033 1.069 1
5 0.995 407.671 470 0.016 1.033 1
6 0.99 1702.583 1961 0.017 1.031 1

(e) µ̃ = h
/

2

BPX optimized BPX
L ρ κ N ρ κ N
3 0.641 4.57 6 0.307 1.885 2
4 0.729 6.383 8 0.391 2.287 3
5 0.789 8.47 10 0.505 2.919 4
6 0.845 11.876 14 0.709 5.875 7

(f) µ̃ = 2
/
h

Figure 7: Results of optimization for: first row (a, b) diffusion with discontinuous coefficients (24) ((r) refers
to rescaled version (30)), second row (c, d) Laplace operator with mixed derivative (25), last row (e, f)
matrix from Crank-Nicolson scheme (28).
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quantifies the extent to which the grid along one direction is denser than a grid in the other direction. With
this modification, a preconditioner itself takes a form

B̃s =

L∑
k=1

(α̃k)
2
(
B̃Lmin(k−s,0) ⊗ B̃

L
k

)(
B̃

min(k−s,0)
L ⊗ B̃kL

)
. (29)

As a result, the coarsening is delayed for y because ε > 1 in (19), i.e., y is a direction of the strong
coupling. Note that in Figure 4 we the compare (29) with original BPX preconditioner. If semicoarsening is
applied to the BPX preconditioner, the weights αk need to be modified. Original weights αk combined with
semicoarsening lead to worse performance. We can see that the optimization was able to fix the weights
correctly. Moreover, comparing to semicoarsening applied in the context of filtering preconditioners [46] we
were able to perform more aggressive coarsening, i.e., to decrease the number of floating-point operations.

5.2.4 Biharmonic equation

Results for the biharmonic equation are given in Figure 5. We can see that the BPX preconditioner is
relatively inefficient. It was able to substantially decrease the condition number compared to the original
matrix (this condition number is not listed), but still, the condition number is large and grows like κL+1 '
4κL. Condition number for the optimized BPX preconditioner is not only smaller but grows like κL+1 ' 2κL.
The basis function on Figure 5b does not seem to be stable in this case. Authors in [46] were managed to
obtain a better preconditioner for the biharmonic equation using larger filters. The same applies to the case
of multigrid solvers, where orders of interpolation ni and restriction nr operators should fulfill ni + nr > nl
[47, Remark 2.7.1], where nl is the order of the linear operator (4 in the case of biharmonic equation). Given
that, we can suggest that by increasing the basis function’s support, one can achieve a better condition
number. We will study this elsewhere.

5.2.5 Convection-diffusion equation

Convection-diffusion equation leads to a non-symmetric matrix. Because of this, we do not list spectral con-
dition number in Figure 6. Here optimization results in about twice as efficient solver, but the improvement
becomes less pronounced for larger convection coefficient values.

5.2.6 Diffusion with discontinuous coefficients

Because neither BPX nor modified BPX account for the variation of coefficients, we used a rescaled version
of preconditioner

B̃r =
L∑
k=1

(α̃k)
2
B̃LkD

(
BkLAB

L
k

)−1/2
B̃kL, (30)

where D(·) denotes the diagonal part of the matrix. For the original BPX preconditioner we again insert a
diagonal part in-between “projectors” and use αk as in (14). Results are given in the first row of Figure 7.
It is evident that it is enough to recover the correct scales α̃k. This was achieved by optimization which
produces a good preconditioner regardless of scale.

The other option would be to perform a Jacobi preconditioning step A → D(A)−1/2AD(A)−1/2 as
explained in [8, discussion after equation (5.2)] and (in relation to diffusion with discontinuous coefficients)
in [49, Section 3.1]. If this kind of rescaling is performed, BPX becomes a reasonable preconditioner, and
optimization leads to results similar to the observed ones for the Poisson equation.

5.2.7 Mixed derivative

Results can be found in the second row of Figure 7. We can see that optimization is better for smaller values
of τ , but when τ becomes closer to one, optimization deteriorates.
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5.2.8 Implicit scheme for heat equation

Results are in the third row of Figure 7. We study problem (28) in two regimes. The first one corresponds
to small time steps µ̃ = h

/
2 used when the transient dynamic is of interest. In this case I −

(
µ̃
/

2
)
A ' I

so the preconditioner is not needed. As a result, BPX applied in a naive manner increases the condition
number. The alternative solution would be to apply BPX preconditioner to the second matrix only, i.e.,
I−
(
µ̃
/

2
)
BAB, which solves this problem. However, the goal was to access the optimization, so we keep this

experiment. In the other regime µ̃ = 2
/
h and one is interested in steady-state. In this situation, optimization

again helps to decrease the spectral condition number. The last regime related to the elliptic equation with
a linear source (different sign compare to the Helmholtz equation) for which a robust preconditioner was
constructed in [22] with the help of a sophisticated subspace splitting technique.

6 Conclusion

In this article, we study the direct optimization of the spectral condition number. We derive two new loss
functions, demonstrate how they are related to the spectral condition number, and show how stochastic
optimization can be used to construct locally optimal preconditioners. We test our approach on a para-
metric family of modified BPX preconditioners. Optimization results show that for a large class of linear
equations, automatic construction of reasonable preconditioners is possible. We want to emphasize that for
many equations above, other more specialized preconditioners are available. There are also robust Schwarz
preconditioners that are applicable for a broad class of second-order elliptic problems (see [18], [16]). The
proposed approach differs from the previous attempts in three respects. First, described algorithms allow for
a black-box construction of preconditioners, should a suitable parametrization is available. That means it is
theoretically possible to apply the proposed approach in the algebraic setting as well. Second, the resulting
preconditioner is locally optimal. The technique developed in [16] undoubtedly leads to a robust precon-
ditioner. However, there is no guarantee that the resulting preconditioner is optimal. Since we are using
stochastic gradient descent to directly optimize the spectral condition number of a preconditioner system,
we can be sure that we achieve locally optimal preconditioner.3 Third, proposed algorithms can be poten-
tially applied to a wider class of linear problems, f.e., different discretizations and higher-order equations.
As a downside, our approach currently is not practically applicable for real problems because optimization
includes thousands of matrix-vector products. However, it could be possible to transfer from optimization
to learning, i.e., to construct a model that can be trained on small matrices and applied on larger matrices
as it was done for the multigrid method [21]. This is the focus of our current investigations.
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