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A mathematical model for a class of frying processesI
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Abstract

We present a mathematical model for deep frying in absence of mechanical deformation and in one-dimensional geometry.
In the generic stage of the process the inner zone is saturated with liquid water below the boiling point at atmospheric pressure.
When the boiling point is reached partial vaporization occurs and a zone of water–vapor thermodynamical equilibrium is formed,
followed by a region of pure vapor. The interface between mixed and vapor region can be either a zero saturation surface or a level
set of pressure when the latter reaches an imposed constraint. The outmost layer is crust. In each region the governing equations
are written for temperature and pressure and the conditions at the interfaces comes out as the corresponding Rankine–Hugoniot
relations. Boundary conditions at the crust–oil interface are discussed. Rescaling leads to only moderate simplifications and we are
left with a considerably difficult free boundary problem for a parabolic system.
c© 2007 Published by Elsevier Ltd
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1. Introduction

Frying is a process of great importance in the food industry and there is a quite substantial literature on frying
chips, tortillas or thicker specimens of tubers (see e.g. [1,2] for references). It is also the subject of intense studies for
improving quality, reducing oil absorption and producing healthier products [3,4].

In this paper we present a mathematical model for the process of frying a sufficiently thick ( '1 cm) potato slice,
schematized as an infinite slab to formulate the model in one space dimension.

The three-dimensional formulation, which may look straightforward, presents nontrivial difficulties due to the
presence of a constraint on pressure, as we shall see. Since the one-dimensional model is already remarkably
complicated we confine our attention to this case.

Some of the basic ideas were anticipated in [5]. During frying the outer surface of the sample is exposed to an
edible oil at a temperature well above the water boiling point at atmospheric pressure. Our “potato” is a porous
material which before frying is saturated with water, so the definition applies to other vegetables of similar stiffness.
The porous skeleton will be supposed undeformable, so with a constant porosity. In this way we avoid the difficulty
connected with the mechanics of the skeleton, which on the contrary is of clear importance when considering the
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Fig. 1. Sketch of the generic stage.

frying of chips or tortillas [6–8]. It is precisely for this reason that we confine to the case of a thick sample. Therefore
the problem we are going to deal with is in the spirit of [1,2], although we will pursue an entirely different approach.

Even if we are considering an idealized situation, we believe that our analysis can represent a progress in the
mathematical modelling of the process, being adherent to its thermodynamical basis as much as possible since the
relevant physics is included. Despite the many simplifications introduced, in the geometry (taken one-dimensional)
and in the mechanical behaviour of the sample (considered undeformable), the model is remarkably complex. One of
the reasons is that it contains several interfaces. A peculiar feature is the presence of a constraint on vapor pressure,
not allowed to exceed some threshold.

Before we proceed to deriving the governing equations, let us sketch briefly the general structure we will be dealing
with.

At the generic stage of the process, proceeding from the median section of the sample (x = 0) to the outer surface
(x = L), we want to describe the evolution of the following regions (see Fig. 1):

• the water saturated region 0 < x < sm(t), where temperature is below the boiling point T0; here temperature is the
only unknown,

• the mixed region sm(t) < x < sv(t), in which water coexists with saturated vapor; besides temperature the water
saturation Sw has to be found, while vapor pressure is a given function of temperature because of Clapeyron’s law,

• the vapor region sv(t) < x < sc(t), where no liquid water is present; pressure and temperature are independent
variables

• the crust sc(t) < x < L which forms above some temperature Tc; due to its structure we consider it completely
permeable to vapor.

Enthalpy and mass balance must be imposed in each region (thus including the latent heat of vaporization) as
well as on each of the unknown interfaces x = sm(t), x = sv(t), x = sc(t). In the region Ωm a unilateral constraint
on pressure will be imposed. Assumptions will be made for heat, liquid water (when needed) and vapor transport
mechanisms.

We will carry out this programme in the next two sections and we will discuss the initial conditions in Section 4.
In Section 5 we will select specific values of the physical parameter and on that basis we will try to obtain a
nondimensional version of the model of somehow reduced complexity. We shall see however that no substantial
simplification of the original model is possible unless some extreme conditions are verified. The corresponding
mathematical theory looks exceedingly difficult and will not be considered in this paper, whose purpose is limited
to the illustration of the basic ideas.

As we said, the model we are going to develop has several limitations concerning the geometry and the mechanics.
There are other important phenomena that are difficult to describe in quantitative terms. One is the shielding action of
the outgoing vapor, which reduces the contact of the sample with the oil. Another effect, which becomes important in
the real industrial process, where the mass of the material to be fried is comparable to the mass of the oil, is the fact that
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heat exchange makes the temperature of the oil variable in time and space. In our case the oil temperature is constant,
but we will try to account for the vapor–oil interaction taking a variable heat transfer coefficient at the external surface.
Needless to say, this is just an attempt to emphasize this phenomenon, more qualitatively that quantitatively, since we
play with a coefficient which is hardly known with satisfactory accuracy even in standard cases.

We will completely ignore oil suction, because it occurs mainly after vapor has ceased to flow out. For more
information on oil suction see [4,9,10].

2. The differential equations in the four regions Ωw, Ωm, Ωv , Ωc

2.1. Ωw — Heat transport

In Ωw we have Sw = 1 and p = p0 (which is both the external atmospheric pressure and the initial pressure in the
sample). The only unknown is temperature and the heat balance is expressed by

[ερ0
wCw + (1 − ε)ρsCs]

∂T
∂t

− [εkw + (1 − ε)ks]
∂2T
∂x2 = 0 (2.1)

where ρ0
w is the liquid water density, ρs is the density of the solid components Cα , kα denote the specific heat and the

thermal conductivity of the species α (α = w, s).

2.2. Ωm — Mass transport

It is assumed that in Ωm p and T are related by the Clapeyron equation

p = poe
λ
R

(
1

T0
−

1
T

)
, (2.2)

when λ is the latent heat of vaporization, R the gas constant, T0 the boiling temperature of water corresponding to p0.
Writing the mass balance for liquid water and vapor requires an assumption on the corresponding mass fluxes qw,

qv . Following [1] we write

qw = −Dwερ0
w

∂Sw

∂x
(2.3)

suggesting that the water transport mechanism is diffusion, Dw representing diffusivity. This may be questionable but
it could also be interpreted as a linearized description of the capillarity action.

As to qv , we write Darcy’s law

qv = −Kv(T )ρv

∂p
∂x

= −Kv(T )ρv p′(T )
∂T
∂x

(2.4)

in which Kv(T ) is the hydraulic conductivity and

ρv = (1 − Sw)ρ̂v(T ) (2.5)

is the vapor mass actually present in the unit pore volume (irrespectively of the way it is filled) and ρ̂v(T ) is the vapor
density in the pore volume fraction occupied by vapor.

Now the mass balance equations are

ερ0
w

∂Sw

∂t
+

∂qw

∂x
= −ωv, (2.6)

ε
∂ρv

∂t
+

∂qv

∂x
= ωv, (2.7)

where ωv represents the rate of vapor production per unit volume.
Recalling (2.2), the final expression of qv is

qv = −Kv(T )ρv p(T )
λ

RT 2
∂T
∂x

, (2.8)

which, together with (2.5), allows the computation of ωv from (2.7):
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ωv = −ερ̂v

∂Sw

∂t
+ ε(1 − Sw)

dρ̂v

dT
∂T
∂t

− Kv

λp
RT 2

∂T
∂x

[
−ρ̂v

∂Sw

∂x
+ (1 − Sw)

dρ̂v

dT
∂T
∂x

]
− K ′

vρ̂v(1 − Sw)
λp

RT 2

(
∂T
∂x

)2

+ Kvρ̂v(1 − Sw)
λp

RT 3

(
2 −

λ

RT

)(
∂T
∂x

)2

− Kvρ̂v(1 − Sw)
λp

RT 2
∂2T
∂x2 (2.9)

inserting this expression in (2.6) we arrive at the equation governing water flux

ε(ρ0
w − ρ̂v)

∂Sw

∂t
− Dwερ0

w

∂2Sw

∂x2 + (1 − Sw)

[
ε

dρ̂v

dT
∂T
∂t

− Kvρ̂v

λp
RT 2

∂2T
∂x2

]
+ Kvρ̂v

λp
RT 2

∂Sw

∂x
∂T
∂x

− Kvρ̂v(1 − Sw)
λp

RT 2

{
1
ρ̂v

dρ̂v

dT
+

K ′
v

Kv

+
1
T

(
λ

RT
− 2

)}(
∂T
∂x

)2

= 0. (2.10)

Typically ρ̂v

ρ0
w

� 1 and we can introduce some simplifications. This model relies on the assumption of water–vapor
equilibrium, which may not be closely respected approaching the full vaporization interface. Therefore the model is
expected to be more realistic if qv � qw (meaning in practice Kv � 10−3 g−1 cm3 s). We also remark that, since qv

is driven by the temperature gradient, the vapor flux is directed towards the colder interface x = sm(t) and therefore
it is anyway qw which provides the mass supply to the opposite interface x = sv(t).

2.3. Ωm — Heat transport

Let hi be the enthalpy of the unit mass of the species i (i = w, v, s) and let Ci be the corresponding specific heat
( ∂hi

∂t = Ci
∂T
∂t in each species). Of course

hv = hw + λ (2.11)

at the vaporization temperature (λ latent heat ' 9717 cal/mol).
The enthalpy per unit volume of the system in Ωm is

H (m)
= εSwρ0

whw + ερvhv + (1 − ε)ρshs . (2.12)

The local balance equation is

∂ H (m)

∂t
+

∂ j (m)

∂x
= 0, (2.13)

where j (m) is the enthalpy flux

j (m)
= −(1 − ε)ks

∂T
∂x

− εSwkw

∂T
∂x

+ qwhw + qvhv. (2.14)

With the help of (2.6) and (2.7) Eq. (2.13) can be written as[
εSwρ0

wCw + ερvCv + (1 − ε)ρSCS

] ∂T
∂t

−
∂

∂x

{
(εSwkw + (1 − ε)kS)

∂T
∂x

}
+ (Cvqv + Cwqw)

∂T
∂x

= −λωv. (2.15)

The thermal conductivity of the vapor has been neglected in (2.15).
Using once again the expression (2.9) of ωv , we obtain the final form of the heat balance equation[

εSwρ0
wCw + (1 − ε)ρsCs + ερvCv + ελ(1 − Sw)

dρ̂v

dT

]
∂T
dt

−

[
εSwkw + (1 − ε)ks + λ(1 − Sw)Kvρ̂v

λp
RT 2

]
∂2T
∂x2
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− εkw

∂Sw

∂x
∂T
∂x

−

(
Cv Kvρv

λp
RT 2

∂T
∂x

+ εCw Dwρ0
w

∂Sw

∂x

)
∂T
∂x

= ελρ̂v

∂Sw

∂t
− Kv

λ2 p
RT 2 ρ̂v

∂Sw

∂x
∂T
∂x

+ Kv

λ2 p
RT 2 ρ̂v(1 − Sw)

[
1
ρ̂v

dρ̂v

dT
+

K ′
v

Kv

+
1
T

(
λ

RT
− 2

)](
∂T
∂x

)2

. (2.16)

Note that the contributions of latent heat to the coefficients of ∂T
∂t and of ∂2T

∂x2 are both in favor of the forward
parabolicity of Eq. (2.16). However we point out that in Ωm it is the system of two Eqs. (2.10) and (2.16) that has to
be parabolic. We will return to this point later on (see Section 7).

2.4. Ωv — Mass transport

In Ωv we take a different conductivity K̄v for the vapor, which we expect to be larger than Kv to increase the
efficiency of the transport mechanism. This change of Kv can be physically justified by the softening of the material
making the porous skeleton.

What changes from Ωm to Ωv is that pressure becomes independent of T . Therefore the two unknowns in Ωv are p
and T .

We write the vapor flux as

qv = −K̄v(T )ρv

∂p
∂x

, (2.17)

where ρv is linked to p and T by the equation of state

ρv = ρv(p, T ), (2.18)

for instance

ρv =
mw

R
p
T

, (2.19)

if we consider the vapor as an ideal gas (mw = 18 g).
Mass balance is expressed by

ε
∂ρv

∂t
+

∂qv

∂x
= 0, (2.20)

which in combination with (2.17) and (2.18) yields

∂ρv

∂p
∂p
∂t

+
∂ρv

∂T
∂T
∂t

−
K̄v

ε

{(
∂ρv

∂p
∂p
∂x

+
∂ρv

∂T
∂T
∂x

)
∂p
∂x

+ ρv(p, T )
∂2 p
∂x2

}
−ρv

ε
K̄ ′

v

∂p
∂x

∂T
∂x

= 0. (2.21)

In the particular case (2.19) it reduces to

∂p
∂t

−
K̄v

ε
p
∂2 p
∂x2 −

K̄v

ε

[(
∂p
∂x

)2

−
p
T

∂p
∂x

∂T
∂x

]
−

K̄ ′
v

ε
p
∂T
∂x

∂p
∂x

=
p
T

∂T
∂t

. (2.22)

2.5. Ωv — Heat transport

Neglecting again the vapor thermal conductivity we simply write

[ερvCv + (1 − ε)ρsCs]
∂T
∂t

− (1 − ε)ks
∂2T
∂x2 + εCvqv

∂T
∂x

= 0. (2.23)
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2.6. Ωc — Mass transfer

We write no equation, since we make the assumption that vapor finds no resistance to flow through the crust (which
is in any case very thin). This corresponds to moving the boundary condition p = p0 from the external surface to the
interface x = sc(t).

2.7. Ωc — Heat transfer

Since we are considering the case [L − sc(t)]/L � 1 from the practical point of view the heat balance in the crust
has little relevance. Anyway the corresponding equation is

[ερvCv + (1 − ε)ρcCc]
∂T
∂t

− (1 − ε)kc
∂2T
∂x2 + εCvqv|x=sv(t)

∂T
∂x

= 0, (2.24)

where ρc, Cc, kc refer to the crust and qv is computed at x = sv(t) according to the previous remark.

Remark 1. We have written (2.24) for the sake of completeness, but eventually we will treat the crust in a different
way, exploiting the fact that it is really thin in this kind of process.

3. Boundary conditions

In this problem we have two given boundaries

Γ0 : x = 0, median cross section
Γext : x = L , surface in contact with oil

and three free boundaries

Γm : x = sm(t), desaturation front
Γv : x = sv(t), total vaporization front
Γc : x = sc(t), crust front.

3.1. Conditions on Γ0

In Ωw we have p = p0 and we just impose the symmetry condition on the thermal field

∂T
∂x

∣∣∣∣
x=0

= 0. (3.1)

3.2. Conditions on Γext

Here we specify the pressure p = p0 (but in practice this condition becomes active on Γc) and a condition on the
heat flux.

(1 − ε)kc
∂T
∂x

∣∣∣∣
x=L

= χ(qv)(Toil − T ), (3.2)

where the heat transfer coefficient χ(qv) is taken as a decreasing function of the vapor flux in order to mimic the
shielding action of the vapor.

3.3. Conditions on Γm , x = sm(t)

The desaturation front is the isotherm

T (sm(t), t) = T0. (3.3)

Concerning mass conservation, we must say that on both sides of Γm the total mass balance has the form
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ε
∂

∂t
(ρ0

wSw + ρv) +
∂

∂x
(qw + qv) = 0 (3.4)

and we can impose the Rankine–Hugoniot condition

ε[ρ0
wSw + ρv]

m
w ṡm = [qw + qv]

m
w, (3.5)

with

[ f ]
m
w = f (sm(t)+, t) − f (sm(t)−, t).

On the left hand side of Γm we have Sw = 1, ρv = 0, qw = qv = 0, so that [Sw]
m
w = Sw −1, [qw +qv]

m
w = qw +qv ,

where on the right hand side Sw, qw, qv refer to the respective limits from Ωm . Thus (3.5) can be written in the form

−ερ0
w(1 − Sw)ṡm − qw = −ερv ṡm + qv, (3.6)

that we can interpret as follows:

• −ερ0
w(1 − ρw)ṡm = water loss rate due to the interface displacement,

• qw = water flux leaving the interface,
◦ the l.h.s. of (3.6) is the amount of water converted to vapor on the interface,
• −ερv ṡm = vapor gain accompanying the interface motion,
• qv = vapor flux leaving the interface,
◦ the r.h.s. of (3.6) is the total vapor production rate at the interface.

Recalling the expressions (2.3) and (2.4) of qw, qv and (2.5) of ρv , we can give (3.6) its explicit form

εṡm(1 − Sw){ρv(T0) − ρ0
w} = −Dwερ0

w

∂Sw

∂x

∣∣∣∣
x=sm (t)+

− Kv(1 − Sw)λρ̂v(T0)
p0

RT 2
0

∂T
∂x

∣∣∣∣∣
x=sm (t)+

(3.7)

The information just obtained about the vaporization rate allows us to write down the enthalpy balance

−[ερ0
w(1 − Sw)ṡm + qw]λ = −[εSw + (1 − ε)ks]

∂T
∂x

∣∣∣∣
x=sm (t)−

+ [εSwkw + (1 − ε)ks]
∂T
∂x

∣∣∣∣
x=sm (t)+

(3.8)

that is

−

[
ε(1 − Sw)ṡm − Dwε

∂Sw

∂x

∣∣∣∣
x=sm (t)+

]
ρ0

wλ

= −[εkw + (1 − ε)ks]
∂T
∂x

∣∣∣∣
x=sm (t)−

+ [εSwkw + (1 − ε)ks]
∂T
∂x

∣∣∣∣
x=sm (t)+

. (3.9)

Remark 2. It is important to stress that the quantity Sw appearing both in (3.5) and (3.7) is not known a priori.
However we can say that Sw cannot be 1, since it would imply ρv = 0, qv = 0 and consequently qw = 0, ∂Sw

∂x = 0 and
the latter equality is not consistent with the parabolic nature of Eq. (2.6) (Hopf’s boundary point principle) in which
ωv could not be negative in the vicinity of the interface if complete saturation is achieved there. Also we must exclude
Sw = 0, which would mean the collapse of the region Ωm .

3.4. Conditions on Γv , x = sv(t)

This is the most delicate point of the model. The assumption that in Ωm pressure is given by (2.2) produces a
rapid increase of p with T . At T = 407.2 K (well below Toil ' 473 K) p reaches the value '3p0 (remember that
R = 1.987 cal/mol, λ = 9717 cal/mol, T0 = 373 K). For T = 423 K (the average between T0 and Toil) we
find p = 4.7p0, and if we let T reach 443 K than p becomes 7.9 times p0. It looks unreasonable that such a high
pressure can build up within the sample. This suggest to put a constraint p? on pressure in Ωm (hence on Γv , since
T is expected to increase from x = 0 to x = L). Therefore we distinguish two regimes: the unconstrained and the
constrained regime.
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3.4.1. The unconstrained regime
As long as

p(sv(t), t) < p? (3.10)

the boundary x = sv(t) is characterized by total vaporization, i.e.

Sw(sv(t), t) = 0. (3.11)

We also impose

[p]
v
m = 0, (3.12)

[ρv]
v
m = 0, (3.13)

with [·]
v
m denoting jumps.

Note that as a consequence of (3.11) what (3.13) says is that ρv = ρ̂v(T ) on both sides of Γv . All the incoming
water is vaporized. Thus the mass balance is

−

[
ρv Kv

∂p
∂x

]v

m
= −Dwερ0

w

∂Sw

∂x

∣∣∣∣
x=sv(t)−

(3.14)

(the continuity of ρv has been used), and the enthalpy balance leads to

−λDwερ0
w

∂Sw

∂x

∣∣∣∣
x=sv(t)−

= (1 − ε)ks

[
∂T
∂x

]v

m
(3.15)

neglecting as usual vapor thermal conductivity.

3.4.2. The constrained regime
Now p hits the obstacle and on both sides of Γv

p(sv(t), t) = p? (3.16)

before total vaporization is achieved. Therefore (3.11) is no longer valid and its place is taken by constraint induced
by (3.16) and temperature:

T (sv(t), t) = T ?, (3.17)

where

T ∗
= T0

(
1 −

RT0

λ
log

p?

p0

)−1

. (3.18)

The total mass balance reads

ε[ρ0
wSw + ρv]

v
m ṡv = [qw + qv]

v
m, (3.19)

where we must remember that instead of (3.13) we now have

[ρv]
v
m = ρ̂v(T ?)[1 − (1 − Sw)|x=sv(t)−] = ρ̂v(T ?)Sw(sv(t)−, t). (3.20)

Hence (3.19) becomes

−ε(ρ0
w − [ρv]

v
m)Sw(sv(t)−, t)ṡv(t) = εDwρ0

w

∂Sw

∂x

∣∣∣∣
x=sv(t)−

+ [qv]
v
m, (3.21)

where

[qv]
v
m =

{
−ρv K̄v(T ?)

∂p
∂x

∣∣∣∣
x=sv(t)+

+ ρ̂v Kv(T ?) [1 − Sw(sv(t)−, t)]
λp?

R(T ?)2
∂T
∂x

∣∣∣∣
x=sv(t)−

}
. (3.22)
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The amount of water vaporized per unit time and unit surface of the front is given by the sum of the incoming water
flux qw and water loss rate associated to the displacement of the boundary, i.e. (−ερ0

wSw ṡv + qw)|x=sv(t)−, yielding
the enthalpy balance

λ(−ερ0
wSw ṡv + qw)|x=sv(t)− = −[εSwkw + (1 − ε)ks]

∂T
∂x

∣∣∣∣
x=sv(t)−

+ (1 − ε)ks
∂T
∂x

∣∣∣∣
x=sv(t)+

. (3.23)

3.5. Conditions on Γc, x = sc(t)

In the previous model [5] a crust formation temperature Tc was introduced (between T ? and Toil). According to
this picture the interface Γc supports boundary conditions of Stefan type, since it is a temperature level set:

T (sc(t), t) = Tc (3.24)

(on both sides of Γc), and the change induced in the material is accompanied by heat absorption needed to break
chemical bonds in the solid matrix and to vaporize bonded water;

λcρs ṡc(t) =

[
−(1 − ε)k

∂T
∂x

]c

v

, (3.25)

where λc is perceived as a “latent heat” and k jumps from ks to kc.
As we said we also imposed

p(sc(t), t) = p0. (3.26)

Remark 3. The fact that (L − sc)/L � 1 for a sufficiently long time requires either Tc sufficiently close to Toil, or
λc large enough. In the former case Ωc could be simply neglected, while in the latter case Ωc plays the role of a thin
boundary layer in which temperature may be approximated linearly.

It may be objected that the above scheme is too simplified. Indeed, frying chips (which eventually consists of only
crust) at low pressure and lower temperatures (see [3]) shows that the crust formation is not necessarily related to
temperature only. It would be more appropriate to say that the formation of the crust is the result of two concurrent
situations:

• temperature is above some threshold (apparently larger than 373 K, but not necessarily much larger),
• moisture content (in the form of vapor) is below some (small) threshold (i.e. the medium is almost dehydrated).

Since the latter condition always occurs when approaching the external surface, once T (L , t) is greater than T0,
the introduction of a sufficiently large crust formation temperature will produce the correct outcome of a thin crust.
Since the role of the crust both in heat and mass transport seems marginal (except possibly for heat absorption if λc is
large enough), determining its actual thickness does not seem a relevant issue.

4. Initial conditions

What happens at the moment in which the oil comes into contact with the sample may be difficult to describe, if
e.g. the sample surface is covered by a film of water.

We simply suppose that p = p0 everywhere and

T (x, 0) = Ti < T0, 0 < x < L , (4.1)

Sw(x, 0) = 1, 0 < x < L . (4.2)

Thus during a very short time interval (0, t0) the whole medium will be occupied by the saturated domain Ωw at a
temperature below T0. During that time we just have to solve the heat transport equation (2.1) with conditions (4.1),
(3.1) and (3.2) with qv = 0. This may not be completely correct, but (0, t0) will be anyway so short that no significant
error is expected.
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Fig. 2. (x, t) plane.

At time t = t0 both regions Ωm and Ωv must appear because p = p0 on x = L prevents Ωm to have points on the
outer surface, hence we have the starting conditions

sm(t0) = sv(t0) = L (4.3)

for the two boundaries Γm ,Γv .
For some time the system will evolve in the pressure unconstrained regime, switching to the constrained regime at

some later time t? > t0.
The appearance time of the crust tc may or may not be larger than t?, depending on the various parameters. In any

case

sc(tc) = L . (4.4)

The qualitative behavior of the onset of the free boundaries is sketched in Fig. 2.

5. Rescaling P.D.E.’s

We take the reference quantities L = 1 cm, λ ' 9.7 · 103 cal/mol, T0 ' 373 K, ε ' 0.3, kw '

1.27 · 10−3 cal/(s cm K), ks ' 1.36 · 10−3 cal/(s cm K), Cw ' 1 cal/(g K), Cs ' 0.74 cal/(g K), ρ0
w ' 1 g/cm3,

ρs ' 1.6 g/cm3. We can define

ksat = εkw + (1 − ε)ks ('1.33 · 10−3 cal/(s cm K))

Csat = ερ0
wCw + (1 − ε)ρsCs ('1.13 cal/(g K)).

Some rescaling is obvious

x̃ =
x
L

, T̃ =
T
T0

, p̃ =
p
p0

. (5.1)

Choosing the reference time is more delicate. Since vaporization is the leading phenomenon, we define

tλ = ε
L2

ksat

λρ0
w

T0
(' 3.2 · 102 s), (5.2)

and we take

t̃ =
t
tλ

. (5.3)

Each of the transport processes taking place in the sample has its own natural time scale which will have to be
compared with tλ.
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Let us write down the nondimensional version of the equations.
We denote the rescaled domains by Ω̃v , Ω̃w, etc. with interfaces Γ̃w etc.

5.1. Saturated region Ω̃w — Heat transfer

We define the diffusivity

αsat =
εkw + (1 − ε)ks

ερ0
wCw + (1 − ε)ρsCs

' 1.2 · 10−3cm2/s (5.4)

and the corresponding natural scale for heat diffusion in Ωw

tsat =
L2

αsat
' 8.3 · 102 s. (5.5)

Eq. (2.1) becomes

∂ T̃
∂ t̃

−
tλ
tsat

∂2T̃
∂ x̃2 = 0 (5.6)

with

tλ
tsat

' 0.38. (5.7)

5.2. Mixed region Ω̃m — Mass transport

The nondimensional form of Clapeyron’s law (2.2) is

p̃ = eθ(1−T̃ −1), θ =
λ

RT0
' 13.1. (5.8)

In Ωm a natural rescaling factor for ρ̂v , ρv is

ρ0
v =

mw

R
p0

T0
' 5.8 · 10−4 g/cm3 (5.9)

i.e. the value of ρ̂ for p = p0, T = T0 according to the equation of state of ideal gases. The corresponding
nondimensional quantities will be denoted by ρ̄v(T̃ ) = ρ̂v(T̃ T0)/ρ

0
v , ρ̃v = ρv/ρ

0
v .

Taking [2] Dw = 4.10 · 10−4 cm2/s, we introduce

tDw =
L2

Dw

= 2.5 · 103 s (5.10)

such that

tλ/tDw ' 0.13. (5.11)

The mass balance equation (2.10) is transformed to[
1 −

ρ0
v

ρ0
w

ρ̄v(T̃ )

]
∂Sw

∂ t̃
−

tλ
tDw

∂2S
∂ x̃2 +

ρ0
v

ρ0
w

(1 − Sw)

[
dρ̄v

dT̃

∂ T̃
∂ t̃

− ρ̄v

tλ
tv

p̃

T̃ 2

∂2T̃
∂ x̃2

]
+

ρ0
v

ρ0
w

tλ
tv

∂Sw

∂ x̃
∂ T̃
∂ x̃

p̃

T̃ 2

−
ρ0

v

ρ0
w

tλ
tv

ρ̄v(1 − Sw)
p̃

T̃ 2

[
1
ρ̄v

dρ̄v

dT̃
+

1

T̃

(
θ

T̃
− 2

)](
∂ T̃
∂ x̃

)2

= 0 (5.12)

where one more time scale has been introduced

tv =
εL2

Kv p0θ
' 0.23 s (5.13)
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corresponding to Kv ' 10−7 g−1 cm2 s. Thus

tλ
tv

' 1.4 · 103.

However tλ
tv

appears in (5.12) only through

Θ =
ρ0

v

ρ0
w

tλ
tv

' 1.1 (5.14)

and the only negligible terms in (5.12) are the ones containing the ratio ρ0
v

ρ0
w

not multiplying tλ
tv

. Thus the reduced form
of (5.12) is

∂Sw

∂ t̃
−

tλ
tDw

∂2Sw

∂ x̃2 − Θ(1 − Sw)
∂2T̃
∂ x̃2

+Θ
p̃

T̃ 2

{
∂Sw

∂ x̃
− ρ̄v(1 − Sw)

[
1
ρ̄v

dρ̄v

dT̃
+

1

T̃

(
θ

T̃
− 2

)]
∂ T̃
∂ x̃

}
∂ T̃
∂ x̃

= 0. (5.15)

Remark 4. Eq. (5.15) simply reduces to

∂Sw

∂ t̃
−

tλ
tDw

∂2Sw

∂ x̃2 = 0 (5.16)

when Θ � 1, decoupling the equation for Sw. However this requires a much smaller value of Kv . Reducing Kv by
an order of magnitude would greatly slow down vapor recirculation in Ωm . Physical information about Kv and K̄v is
scarce, but for sure K̄v has to be large enough to allow vapor to escape at a sufficiently high rate.

5.3. Ω̃m — Heat transfer

In (2.16) we neglect ερvCv in the heat capacity and again we take Kv = constant. We define

γ w
C =

ρ0
wCw

Csat
, γ s

C =
ρsCs

Csat
, γ w

k =
kw

ksat
, γ s

k =
ks

ksat
(5.17)

and

σ = ε
λρ0

v

CsatT0
' 2.2 · 10−4 (5.18)

tw =
L2ρ0

vCw

kw

' 7.8 · 102 s. (5.19)

We conclude that
tλ
tw

' 0.41,
tλ
tv

σ ' 0.31

and the nondimensional form of the heat balance equation is[
εSwγ w

C + (1 − ε)γ s
C
] ∂ T̃

∂ t̃
−

{
tλ
tsat

[εSwγ w
k + (1 − ε)γ s

k ] + (1 − Sw)
tλ
tv

σ

}
∂2T̃
∂ x̃2

−

{
γ w

C
tλ
tw

+ γ w
C

tλ
tDw

+
tλ
tv

σ ρ̄v

p̃

T̃ 2

}
∂Sw

∂ x̃
∂ T̃
∂ x̃

=
tλ
tv

σ ρ̄v

p̃

T̃ 2
(1 − Sw)

{
1
ρ̄v

dρ̄v

dT
+

1

T̃

(
θ

T̃
− 2

)}(
∂ T̃
∂ x̃

)2

(5.20)
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where we have omitted the terms σ
dρ̄v

dT̃
∂ T̃
∂ t̃ and σ ρ̄v

∂ S̃w

∂ t̃ due to the smallness of σ .
Also in this case reducing Kv (i.e. tλ

tv
σ ) by one order of magnitude would imply some (through non-radical)

simplification.

5.4. Vapor region Ω̃v — Mass transfer

Eq. (2.22) takes the form

∂ p̃
∂ t̃

−
tλ
t̄v

[
p̃
∂2 p̃
∂ x̃2 +

(
∂ p̃
∂ x̃

)2

−
p̃

T̃

∂ p̃
∂ x̃

∂ T̃
∂ x̃

]
=

p̃

T̃

∂ T̃
∂ t̃

(5.21)

when K̄v is taken constant and

t̄v =
εL2

K̄v p0
' 0.3 s. (5.22)

If ∂ T̃
∂ t̃ is not too large, since tλ

t̄v
' 103 we can write

p̃
∂2 p̃
∂ x̃2 +

(
∂ p̃
∂ x̃

)2

−
p̃

T̃

∂ p̃
∂ x̃

∂ T̃
∂ x̃

= 0 (5.23)

to be solved with the data

p̃|x̃=s̃c = 1, p̃|x̃=s̃v = eθ(1−T̃ −1)
|x̃=s̃v = f (5.24)

in the unconstrained case, while the data change to

p̃|x̃=s̃c = 1, p̃|x̃=s̃v = p̃?
= eθ(1−(T̃ ?)−1)

= f ? (5.25)

with obvious meaning of the symbols.1

Eq. (5.18) can be rewritten as

∂2 P
∂ x̃2 −

1

T̃

∂ P
∂ x̃

∂ T̃
∂ x̃

= 0, (5.26)

by setting 1
2 p̃2

= P and integrated, yielding

1
2

p̃2(x̃, t̃) =
1
2

f 2
−

1
2
( f 2

− 1)

∫ x̃

s̃v(t̃)
T̃ (ξ, t̃)dξ

/∫ s̃c(t̃)

s̃v(t̃)
T̃ (ξ, t̃)dξ, (5.27)

in the case (5.24). In the case (5.25) f has to be replaced with f ?.
Thus pressure becomes a known functional of temperature.

5.5. Ω̃v — Heat transfer

Neglecting the contribution of vapor to heat capacity, we define

ts =
ρsCs L2

ks
' 8.7 · 102 s,

tλ
ts

' 0.36 (5.28)

and (2.23) becomes

∂ T̃
∂ t̃

−
tλ
ts

∂2T̃
∂ x̃2 −

ε2Cvρ
0
v

(1 − ε)ρsCs
ρ̃v

tλ
t̄v

∂ p̃
∂ x̃

∂ T̃
∂ x̃

= 0. (5.29)

1 As we will see in the following, the approximation sc = 1 can be meaningful.
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Since ε2Cvρ
0
v

(1−ε)ρsCs

tλ
t̄v

' 10−2 it is reasonable to use the approximation

∂ T̃
∂ t̃

−
tλ
ts

∂2T̃
∂ x̃2 = 0. (5.30)

5.6. Crust region Ω̃c

We think that in the present problem it is convenient to ignore mass and heat transfer through the crust,
concentrating its influence on the boundary conditions.

6. Rescaling boundary conditions

Let us start with the condition on the interfaces.

6.1. Conditions on Γ̃m , x̃ = s̃c(t)

Conditions (3.3), (3.7) and (3.9) take the form

T̃ (s̃m(t̃), t̃) = 1, (6.1)

ds̃m

dt̃
(1 − Sw) =

[
tλ

tDw

∂Sw

∂ x̃
+ (1 − Sw)Θ

∂ T̃
∂ x̃

]
x̃=s̃m (t̃)+

, (6.2)

−(1 − Sw)
ds̃m

dt̃
+

tλ
tDw

∂Sw

∂ x̃

∣∣∣∣
x̃=s̃m (t̃)+

=

[(
εSwγ w

k + (1 − ε)γ s
k
) ∂ T̃

∂ x̃

]m

w

. (6.3)

We remark that in deducing (6.1) from (3.3) we have neglected a term containing the ratio ρ0
v

ρ0
w

' 5.18 ·10−4. Recall

that such a ratio appears also in the definition of Θ =
ρ0

v

ρ0
w

tλ
tv

which is however O(1).

6.2. Conditions on Γ̃v , x̃ = s̃v(t)

6.2.1. (A) Unconstrained ( p̃ < p̃?)

Here we have

Sw(s̃v(t̃), t̃) = 0, (6.4)
[ρ̃v]

v
m = [ρ̄v]

v
m = 0 (6.5)

as a consequence of pressure continuity [ p̃]
v
m = 0, while (3.14) becomes

tDw

tv

ρ0
v

ρ0
w

ρ̄v

1
θ

K̄v

Kv

∂ p̃
∂ x̃

∣∣∣∣
x̃=s̃v(t̃)+

−
p̃

T̃ 2

∂ T̃
∂ x̃

∣∣∣∣∣
x̃=s̃v(t̃)−

 =
∂Sw

∂ x̃

∣∣∣∣
x̃=s̃v(t̃)−

. (6.6)

Note that tDw

tv
ρ0

v

ρ0
w

' 5.6 and that 1
θ

K̄v

Kv
= O(1).

Here we used that in Ω̃m

∂ p̃
∂ x̃

= θ
p̃

T̃ 2

∂ T̃
∂ x̃

. (6.7)

Eq. (3.15) takes the form

−
tλ

tDw

∂Sw

∂ x̃

∣∣∣∣
x̃=s̃v−

= (1 − ε)k̃s

[
∂ T̃
∂ x̃

]v

m

. (6.8)
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6.2.2. (B) Constrained ( p̃ = p̃?)

The whole set of conditions (6.4)–(6.7) must be changed, keeping only (6.8).
The new conditions are

T̃ (s̃v(t̃), t̃) = T ∗/T0 = T̃ ∗, [T̃ ]
v
m = 0 (6.9)

p̃(s̃v(t̃), t̃) = p̃?, [ p̃]
v
m = 0. (6.10)

6.3. Conditions on Γ̃c, x̃ = s̃c(t)

In view of the fact that 1 − s̃c is small (unless the sample is “overfried”), we have little interest in describing the
phenomena within the crust. Instead we extend Ω̃v up to x̃ = 1. The crust influence goes into the boundary condition
at x̃ = 1, as we shall see below. We identify Γ̃c as the isotherm

T̃ (s̃c(t̃), t̃) = T̃c = Tc/T0. (6.11)

6.4. Fixed boundaries

For x̃ = 0 we have

∂ T̃
∂ x̃

∣∣∣∣∣
x̃=0

= 0. (6.12)

If the progression of the crust front is accompanied by heat absorption, for x̃ = 1 we write the following balance:
the heat flux coming from Ωv (extended up to x̃ = 1) minus the heat flux leaving the system equals the absorption rate
λcρs ṡc. Since, neglecting the crust thickness, the outgoing heat flux is χ(qv)(Toil −T )|x̃=1, passing to nondimensional
variables we write

−
tc
λ

tλ

ds̃c

dt̃
= −(1 − ε)

∂ T̃
∂ x̃

+ Ξ (q̃v)(T̃oil − T̃ ), x̃ = 1, (6.13)

where

tc
λ =

(1 − ε)λc L2ρs

ks T0
, (6.14)

Ξ (q̃v) =
T0L
ks

χ(qv), (6.15)

and

q̃v =
qv

Q
, Q = K̄vρ

0
v

p0

L
(6.16)

i.e.

q̃v = −
∂ p̃
∂ x̃

ρ̃v(1, T̃ ). (6.17)

A possible choice for Ξ (ξ) can be

Ξ (ξ) = Ξ0e−ξ2
(6.18)

(slowly decreasing near ξ = 0). Since we want |
∂ s̃c
∂ t̃ | � 1 it seems that its coefficient in (6.13) should be large. Even

in this situation (6.13) and (6.15) are a peculiar and nontrivial pair of free boundary conditions. However, if on the
contrary tc

λ

tλ
� 1 we may replace (6.13) with

−(1 − ε)
∂ T̃
∂ x̃

+ Ξ (q̃v)(T̃oil − T̃ ) = 0, for x̃ = 1. (6.19)
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In that case the penetration of the isotherm T = Tc will be slow, as we suppose, if Ξ (q̃v) becomes small, due to the
effect of the outgoing vapor flux.

Remark 5. Since (6.13) (or (6.19)) is the result of the approximation s̃c ' 1, condition (6.11) strictly speaking is no
longer applicable and it can be used to monitor how good the approximation s̃c ' 1 is, computing s̃c by means of
(6.13) and evaluating T̃ on it.

7. Summary of the rescaled problem. The mathematical structure

With the nondimensional quantities introduced in Sections 5 and 6 the problem to be solved consists in the
equations:

∂ T̃
∂ t̃

−
tλ
tsat

∂2T̃
∂ x̃2 = 0 in Ω̃w, (7.1)

∂Sw

∂ t̃
−

tλ
tDw

∂2Sw

∂ x̃2 − Θ(1 − Sw)
∂2T̃
∂ x̃2

+Θ
p̃

T̃ 2

{
∂Sw

∂ x̃
− ρ̄v(1 − Sw)

[
1
ρ̄v

dρ̄v

dT̃
+

1

T̃

(
θ

T̃
− 2

)]
∂ T̃
∂ x̃

}
∂ T̃
∂ x̃

= 0 in Ω̃m, (7.2)

[
εSwγ w

C + (1 − ε)γ s
C
] ∂ T̃

∂ t̃
−

{
tλ
tsat

[
εSwγ w

k + (1 − ε)γ s
k
]
+ (1 − Sw)

tλ
tv

σ

}
∂2T̃
∂ x̃2

−

{
γ w

C
tλ
tw

+ γ w
C

tλ
tDw

+
tλ
tv

σ ρ̄v

p̃

T̃ 2

}
∂Sw

∂ x̃
∂ T̃
∂ x̃

=
tλ
tv

σ ρ̄v

p̃

T̃ 2
(1 − Sw)

{
1
ρ̄v

dρ̄v

dT
+

1

T̃

(
θ

T̃
− 2

)}(
∂ T̃
∂ x̃

)2

in Ω̃m, (7.3)

1
2

p̃2(x̃, t̃) =
1
2

f 2
−

1
2
( f 2

− 1)

∫ x̃

s̃v(t̃)
T̃ (ξ, t̃)dξ

/∫ s̃c(t̃)

s̃v(t̃)
T̃ (ξ, t̃)dξ in Ω̃v, (7.4)

with f given by (5.24) or by (5.25),

∂ T̃
∂ t̃

−
tλ
ts

∂2T̃
∂ x̃2 = 0 in Ω̃v. (7.5)

On the free boundaries Γ̃m , Γ̃v both temperature and pressure are continuous, and

T̃ (s̃m(t̃), t̃) = 1 on Γ̃m, (7.6)

ds̃m

dt̃
(1 − Sw) =

[
tλ

tDw

∂Sw

∂ x̃
+ (1 − Sw)Θ

∂ T̃
∂ x̃

]
x̃=s̃m (t̃)+

on Γ̃m, (7.7)

−(1 − Sw)
ds̃m

dt̃
+

tλ
tDw

∂Sw

∂ x̃

∣∣∣∣
x̃=s̃m (t̃)+

=

[(
εSwγ w

k + (1 − ε)γ s
k
) ∂ T̃

∂ x̃

]
x̃=s̃m (t̃)+

−

[(
εSwγ w

k + (1 − ε)γ s
k
) ∂ T̃

∂ x̃

]
x̃=s̃m (t̃)−

on Γ̃m,

−
tλ

tDw

∂Sw

∂ x̃

∣∣∣∣
x̃=s̃v−

= (1 − ε)k̃s

[
∂ T̃
∂ x̃

]v

m

on Γ̃v (7.8)
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and, again on Γ̃v , either

Sw(s̃v(t̃), t̃) = 0, (7.9)
[ρ̃v]

v
m = [ρ̄v]

v
m = 0 (7.10)

tDw

tv

ρ0
v

ρ0
w

ρ̄v

1
θ

K̄v

Kv

∂ p̃
∂ x̃

∣∣∣∣
x̃=s̃v(t̃)+

−
p̃

T̃ 2

∂ T̃
∂ x̃

∣∣∣∣∣
x̃=s̃v(t̃)−

 =
∂Sw

∂ x̃

∣∣∣∣
x̃=s̃v(t̃)−

(7.11)

in the unconstrained case ( p̃ < p̃?), or

T̃ (s̃v(t̃), t̃) = T ∗/T0 = T̃ ∗, (7.12)

p̃(s̃v(t̃), t̃) = p̃? (7.13)

in the constrained case,

∂ T̃
∂ x̃

|x̃=0 = 0 on x̃ = 0, (7.14)

and finally, on Γ̃c, approximated as x̃ = 1,

−
tc
λ

tλ

ds̃c

dt̃
= −(1 − ε)

∂ T̃
∂ x̃

+ Ξ (q̃v)(T̃oil − T̃ ), (7.15)

(with (6.18) as a possible choice of Ξ ), possibly simplified to

−(1 − ε)
∂ T̃
∂ x̃

+ Ξ (q̃v)(T̃oil − T̃ ) = 0, for x̃ = 1. (7.16)

We remind the values of the ratios of all time scales to tλ:

tλ
tsat

' 0.38,
tλ

tDw

' 0.13,
tλ
tv

' 1.4 · 103
(

tλ
tv

σ = 0.31
)

, (7.17)

tλ
t̄v

' 103,
tλ
tw

' 0.41,
tλ
ts

' 0.36. (7.18)

In the scheme above the only region in which we have to solve a system of partial differential equations is Ω̃m .
Introducing the vector

EU =

(
Sw

T̃

)
(7.19)

the system (7.2), (7.3) can be written in the form

∂ EU
∂t

= A( EU )
∂2 EU
∂x2 + EB

(
EU ,

∂ EU
∂x

)
(7.20)

where A is the 2 × 2 matrix
tλ

tDw

Θ(1 − Sw)

0
k̄
C̄

 , (7.21)

k̄, C̄ denoting the coefficients of ∂2 T̃
∂ x̃2 and of ∂ T̃

∂ t̃ in (7.3), respectively.
It is immediate to recognize that (7.20) is uniformly parabolic in the sense of Petrowski, following the definition

of [11].
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Thus problem (7.1)–(7.16) has the structure of a parabolic free boundary problem. We remark that if we can set
Θ ' 0 the results of [12], in whichA is diagonal, are directly applicable. If not it seems crucial to assume tλ

tDw
6=

k̄
C̄

so
that the matrix is not of Jordan type. Both the theoretical and numerical investigation of (7.1)–(7.16) look extremely
difficult. Very delicate questions are for instance the simultaneous appearance of the free boundaries Γ̃m , Γ̃v and the
implicit nature of the boundary Γ̃m in the pressure unconstrained regime. We leave these questions open.

8. Conclusions

We have formulated a mathematical model for deep frying processes, assuming that the sample undergoing frying is
sufficiently thick so as to neglect deformation. Thus frying is described as vaporization of water in an initially saturated
undeformable porous material. The chosen geometrical setting is one dimensional. In the generic stage of the process,
proceeding from the median section to the outer surface (in contact with the oil) one finds a saturated region below
the boiling point, a mixed region in which liquid water and vapor coexist in thermodynamical equilibrium, a pure
vapor zone, the crust. The latter is assumed to be thin and transparent to vapor, but its formation possibly requiring
some latent heat. The temperature and the pressure of vapor (when present) are the field variables, the interfaces
separating the regions listed above are free boundaries. A double regime is proposed on the total vaporization interface:
unconstrained pressure or constrained pressure. The latter has the role to prevent excessive pressure build-up due to
temperature rise.

Using data available in the literature the model has been reduced to a nondimensional version, emphasizing that
its intrinsic complication survives rescaling. Only when the permeability to the vapor on the mixed region is small
enough is some more effective simplification possible. It is shown that the governing equations are parabolic. The
questions of well-posedness and numerical computations are left open. Nevertheless, we believe that the material
presented here represents some progress in the direction of providing a description of deep frying processes with a
solid physical basis.
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