
Formula Dissection: A Parallel Algorithm for

Constraint Satisfaction

John H Reif
Department of Computer Science

Duke University
Durham, NC

Simon Kasif
Department of Biomedical Engineering

Boston University
44 Cummington St. Boston, MA 02215

Deepak Sherlekar
Virage logic Corporation

Abstract

Many well-known problems in Artificial Intelligence can be formulated
in terms of systems of constraints. The problem of testing the satisfia-
bility of propositional formulae (SAT) is of special importance due to its
numerous applications in theoretical computer science and Artificial In-
telligence. A brute-force algorithm for SAT will have exponential time
complexity O(n), where n is the number of Boolean variables of the for-
mula. Unfortunately, more sophisticated approaches such as resolution
result in similar performance in the worst case. In this paper we present a
simple and relatively efficient parallel divide-and-conquer method to solve
various subclasses of SAT. The dissection stage of the parallel algorithm
splits the original formula into smaller subformulae with only a bounded
number of interacting variables. In particular, we derive a parallel algo-
rithm for the class of formulae whose corresponding graph representation
is planar. Our parallel algorithm for planar 3-SAT has worst-case perfor-
mance of 2O(

√
n) on a PRAM (parallel random access model) computer.

Applications of our method to constraint satisfaction problems are dis-
cussed.

Keywords: Boolean formula, combinatorial search, parallel algorithm,
graph, dissection

1

1 Introduction

Many of the well-known problems in Artificial Intelligence can be formulated as
systems of symbolic constraints [1, 2, 3, 4]. Much research has been directed
towards developing effective search methods to solve the problem in general
and for domain specific applications ([1, 2, 3, 4, 5, 6, 7]). The majority of the
solutions utilize local constraint propagation techniques (discrete relaxation)
to achieve global consistent solutions. Relaxation techniques have been used
extensively in the context of image understanding and interpretation ([2, 3,
4, 7, 8, 9]) as well as planning, natural language analysis and common sense
reasoning[1].

Since the constraint propagation procedures appear to operate locally,
it was believed that relaxation techniques had a natural parallel implementation.
However it was shown in [10] that local consistency is in some sense inherently
sequential (in the worst case). This result motivated us to examine possible
parallel approaches to constraint solving with ”good” worst-case performance.
A natural approach is divide-and-conquer. Namely, decomposing the system of
constraints into smaller systems and solving each independently. However, the
number of interacting constraints arising from the obvious decomposition causes
a combinatorial explosion. In this paper we propose a technique that exploits
the structure of the constraint graph to reduce the size of the search sphere.

The problem of testing the satisfiability of propositional formulae (SAT)
is an important instance of constraint satisfaction systems because of its special
role in numerous applications. SAT has been used extensively in theoretical
computer science to demonstrate the intractability (NP-Completeness) of many
problems [11]. In Artificial Intelligence, SAT is used as a basic building block
of many automated deduction systems. The time complexity of brute-force
algorithms is exponential (of order 2n) where n is the number of Boolean vari-
ables. Unfortunately, more sophisticated approaches such as resolution result
in a similar performance in the worst case [12, 13].

The central role played by SAT in such diverse and important appli-
cations makes it a natural candidate for presenting any approach to solving
constraint satisfaction problems. Our approach is therefore presented in the
context of solving many subclasses of SAT. It can be applied to constraint sys-
tems that arise in computer vision. In fact the research presented in this paper
was originally motivated by its possible application to the problem of recog-
nizing trihedral scenes in computer vision. Previous approaches to the problem
have used the consistent labeling method. The time complexity of this approach
is known to be exponential in the worst case (see the discussion in [14]. A recent
result due to Kirousis and Papadimitriou [15] established the NP-Completeness
of the problem by transformation from Planar 3-SAT. Planar 3-SAT is the prob-
lem of testing the satisfiability of Boolean formulae in 3CNF form whose graph
representation is planar. This result motivated us to carefully examine this class
of formulae, and exploit the structure of the graphs representing them. Such an
approach has been used with success to solve significant practical subclasses of
other constraint satisfaction problems (e.g., see [16]).

We assume a shared memory random access model for a parallel com-
puter known as the PRAM (parallel random access model). This PRAM com-
putation model is an extension of the conventional sequential computer model
known as the RAM(random access model). Both these models allow for a con-

2

stant number of memory registers, as well as a random-access memory, when
each memory location is indexed from its integer address, and can be written or
read from in one time step. We assume that each memory and register location
can only hold Boolean value or an integer whose number of bits is logarithmic
in the number of inputs. Also, both these models allow the computer to execute
operations, which include Boolean and as well as basic arithmetic (addition and
multiplication) operations. However, the PRAM model allows for synchronous,
parallel execution of these operations. The processor bound of a PRAM com-
putation is the maximum number of operations that are executed in parallel,
the time bound is the total number of synchronous steps executed in the com-
putation, and the work bound is the total number of operations executed in
the computation. We assume the (CREW-PRAM) [17] variant of the PRAM
model that no parallel writes are executed simultaneously at the same memory
or register location.

In this paper we present a simple and relatively efficient parallel method
to solve various subclasses of SAT. These classes are defined by the representa-
tion of propositional formulae by graphs (see section 2). The importance of one
such class, viz. Planar 3-SAT, has already been mentioned above. Although Pla-
nar 3-SAT has already been shown to be NP-Complete (see [18]), applications
of separator decompositions of planar graphs [19] will be applied to consider-
ably decrease the work to (2O(

√
n)) in the worst case. Our algorithm is highly

parallel, and its implementation on a PRAM has O(log n) time complexity and
(2O(

√
n)) processor complexity.

A formal definition of the graph representation of propositional formu-
lae is given in Section 2. Intuitively, the graph G of a formula F is a bipartite
graph whose 2 sets of nodes correspond respectively to the variables and clauses
of F . A ’variable node’ and a ’clause node’ are connected iff the variable occurs
in the clause. The graph thus constructed can be thought of as a constraint
graph where the assignment of values to any variable node is constrained by the
assignment of values to other variable nodes, which are connected to the same
clause node. Our algorithms use divide-and-conquer, where the dissection step
repeatedly splits the graph into smaller subgraphs with only a bounded num-
ber of interacting constraints. The use of separator theorems (see next section)
allows us to partition certain classes of sparse graphs into two components of
roughly equal size by removing only a few vertices. This allows us to contain
the exponential growth generated by interacting constraints.

The worst-case work complexity of our algorithms is (2O(
√

n)) for Planar
3-SAT. This result is encouraging since 2c

√
n grows significantly slower than 2n

for modest c. In fact, it may be considered to be subexponential for inputs less
than 106 (see discussion in Section 5). More generally, for formulae represented
by a class of graphs having an nε separator theorem, ε < 1, our algorithms have
worst case complexity of 2O(nε). An nε separator theorem allows us to partition
a graph into two roughly equal parts by removing O(nε) vertices. [20].

The outline of the paper is as follows. Section 2 contains the prelimi-
nary background necessary to understand the constructions that follow. Specifi-
cally, we provide formal definitions of the graph representations of propositional
formulae and of the subclasses of propositional satisfiability studied in this pa-
per. We also include definitions of the graph separator theorems used in our
algorithms.

In section 3 we develop and describe our algorithm for testing satis-

3

fiability of propositional logic formulae and analyze its performance. Sections
4 and 5 discuss relevant literature and summarize the main results reported in
the paper.

2 Preliminary Notations

2.1 Graphs and Graph Separators

We assume the reader is familiar with standard graph theoretical concepts
and definitions [21]. The basic terminology concerning separator theorems is
reviewed below. Our primary interest is in classes of graphs that are easily
separable. A graph G is said to be easily separable if it can be partitioned into
two subgraphs of approximately equal size by removal of very few vertices. To
be able to apply our algorithm inductively we also need that the subgraphs thus
created are also easily separable in the same sense. Theorems that prove classes
of graphs to be easily separable are called separator theorems. A separator
theorem is formally defined below:
Definition 4: Let S be a class of graphs. The class S has an f(n) separator
theorem if S is closed under the subgraph relation and there exists constants
α < 1, β > 0, such that for any n-vertex graph G in S having nonnegative vertex
costs summing up to no more than 1, the vertices of G can be partitioned into
3 sets A, B, C such that no vertex in A is adjacent to a vertex in B, neither A
nor B have total cost exceeding α, and C contains no more that βf(n) vertices.

For our purposes we need a somewhat stronger definition of a separator
theorem given below:
Definition 5: Let S be a class of graphs having an f(n) separator theorem
with α = 1

2 . then S is said to have a strong f(n) separator theorem.
It is possible to derive a strong separator theorem from a weak separator

[20]. The strong separator theorems resulting from the above technique are given
below for two different values of f(n) below.
Lemma 2.1: [20] If a class of graphs S has an nα separator theorem, 0 < α < 1,
then S has a strong nα separator theorem. If S has a logkn separator theorem,
k ≥ 0, then S has a strong logk−1n separator theorem.

A well known separator theorem is the
√

n separator theorem for planar
graphs [22], which is reproduced below.
Lemma 2.2 [22] Let G be any n-vertex planar graph having nonnegative vertex
costs summing to no more than 1. Then the vertices of G can be partitioned
into three sets A, B and C, such that no edge joins a vertex in A with a vertex
in B, neither A nor B have total costs exceeding α = 1

2 , and C contains no more
than 2

√
2
√

n/(1−
√

2/3) vertices.
Djidjev [23] has improved the size of C by a constant factor. However,

in our analysis, we shall be interested in only the order of the size of C.

2.2 The Satisfiability Problem for Propositional Logic For-
mulae

Let V = {v1, · · · , vn} be a set of Boolean variables. If v is a variable in
V then v and v̄ are called literals over V. An interpretation Φ of V is a 1 − 1
mapping from V to {0, 1} (alternatively, TRUE,FALSE). We say that v ∈ V

4

is ’true’ under Φ if Φ(v) = 1 : otherwise v is ’false’. A literal v is true under
interpretation Φ iff the v is a variable and is ’true’, or is the complement v̄ of a
variable v which is false. A clause C over V is a set of literals over V . It denotes
a disjunction of the literals comprising it. It is satisfied by an interpretation Φ
iff at least one of the literals in it is true under Φ. We then say that Φ satisfies
C.

A Boolean formula is in Conjunctive Normal Form (CNF) [24] if it is ex-
pressed as the conjunction of a set of clauses F = {C1, · · · , Cm}. F is satisfiable
iff there exists an interpretation Φ that simultaneously satisfies all the clauses
in F.

The question of whether there is an interpretation Φ that satisfies
a given set of clauses is known as the satisfiability problem (SAT). There are
numerous known methods to solve SAT (see [24]), of which resolution is the most
popular one. SAT was shown to be NP-Complete by Cook. Thus it is considered
unlikely that the problem will have general subexponential solutions. In fact,
for the resolution method, it has been shown that there are clauses for which
proofs of unsatisfiability are exponentially long [12, 13].

A CNF Boolean formula F = {C1, · · · , Cm} is said to be a k-conjunctive
normal form (k-CNF formulae) iff none of its clauses contains more than k
literals. The problem of testing the satisfiability of a formula in k-CNF (k-
SAT) is known to be NP-Complete for k ≥ 3 [11]. However, 2-SAT has a simple
linear work algorithm. Moreover, it is in NC, the class of problems solvable
in polyalgorithmic time on a PRAM using a polynomial number of processors
[25, 26, 27]. In this paper we develop PRAM algorithms for a restricted class
of 3-CNF formulae. Recall that the PRAM model we assume (CREW-PRAM),
which allows concurrent reads but prohibits concurrent writes [17].

2.3 3-CNF formulae and Their Graph Representation

Let F = {C1, · · · , Cm} be a 3-CNF formula over a set of variables V .
Then HF = (V, F) denotes the hypergraph of F. Its vertices are the variables
in V and every hyperedge corresponds to a unique clause Ci in F . A vertex
corresponding to a variable vi is incident with a hyperedge Ci iff either vi or v̄i

occurs in the clause Ci. An example of a formula in 3-CNF and its hypergraph
representation is given in Figure 1.

An alterative representation of the formula F = {C1, · · · , Cm} is in
terms of a bipartite graph GF = (V ′, E), with vertex set V ′ which is the union of
the set of variables V and the clauses of F , and with edge set E = {(ci, vj) : vj ∈
Ci or v̄j ∈ Ci}. Note that this representation is congruent with the hypergraph
representation, with every hyperedge replaced by a unique vertex along with the
k arcs joining it with the ’variable-vertices’ that were linked by the hyperedge.

The representation of formulae by graphs allows us to deal efficiently
with formulae corresponding to graphs that are easily separable in the sense
explained in Section 2.1. Partitioning the graph of a formula by removal of
variable-vertices yields subgraphs which correspond to formulae that do not
share any variables. this leads to an efficient divide and conquer method devel-
oped in the next section.

5

3 An Efficient Parallel Algorithm for Subclasses
of 3-SAT

In this section we develop a divide-and-conquer algorithm for classes of 3-
CNF formulae representable by bipartite graphs that are easily separable. The
restriction of 3-SAT that we consider are not necessarily amenable to a polyno-
mial time solution. In fact, the restriction of 3-SAT to formulae representable
by planar bipartite graphs, viz. Planar 3-SAT (or P3-SAT) is also NP-Complete
(see [18]). However, the complexity of the sequential implementation of our al-
gorithm for P3-SAT is O(nc

√
n) for a fixed constant c, which is significantly

better than O(n). The parallel implementation of our algorithm on the PRAM
runs in polylog time using O(nc

√
n) processors.

3.1 Inspiration from the Davis & Putnam Procedure

Davis & Putnam in their original procedure [28] used a divide and conquer
principle in which a Boolean formula F in CNF form is represented (with respect
to a variable v), as a conjunction of three CNF formulae (written as sets of
clauses) S0, S1, and S2 such that: (i) S0 is free of variable v (ii) variable v
occurs only positively in S1, and (iii) variable v occurs only negatively in S2.
In that case we can delete variable v from S1 and S2 to obtain S′1 and S′2
respectively. Then F is unsatisfiable iff the two sets of clauses S0 ∪ S′1 and
S0 ∪ S′2 are both unsatisfiable (see [24]). The Davis & Putnam rule is more
restrictive than our method and consequently may be applied to a smaller class
of problems.

There have been numerous attempts to cast propositional and first-order
deduction in terms of graph rewriting techniques [29, 30, 31]. To the best of
our knowledge none of the methods above used the separability properties of a
graph to obtain efficient satisfiability procedure.

3.2 Informal Description of Our Parallel Formula Dissec-
tion

Let F be a set of clauses over V. Let v be some variable in V. Assume
that we can partition F into two sets of clauses F 1 and F 2. Let F 1

v=0, F 1
v=1,

F 2
v=0, and F 2

v=1 be the clauses generated from F 1 and F 2 by instantiating all
occurrences of v in F 1 and F 2 to 0 or 1 respectively. Then

F = F 1
v=1 ∧ F 2

v=1 ∨ F 1
v=0 ∧ F 2

v=0

Hence F is satisfiable iff at least one of the two disjuncts above is satisfiable.
The formulae comprising the two disjuncts do not share any variables, allowing
computation of their satisfiability to be done in parallel.

This technique may be generalized to the following divide and conquer
method. Let F 1 and F 2 = F −F 1 be two subsets of F sharing a set of variables
V ′ = {L1, L2, · · · , Lk} ⊆ V . For each of the 2k possible interpretations of
V, create an instance of F 1 and an instance of F 2 under the interpretation.
Now the satisfiability of F can be tested by testing the satisfiability of these
2 ∗ 2k formulae, and then efficiently composing the results of the local tests.

6

Let the values of F 1, F 2, under the 2k interpretations of V ′ be denoted F 1
i , F 2

i ,
respectively for 0 ≤ i ≤ 2k − 1. Then F is satisfiable iff at least one of both
F 1

i ∧ F 2
i , 0 ≤ i ≤ 2k − 1 is satisfiable. The satisfiability of the new formulae is

tested by recursive application of the above steps until they are in a form that
is amenable to an efficient solution by other means. For a parallel (sequential)
algorithm, this implies performing the recursive step until the formula is in 2-
CNF form (which is also known as Horn form, and as previously mentioned can
be efficiently solved by known algorithms).

Note: The above technique is feasible if the set V ′ is small in size
and can be computed efficiently. If the bipartite graph GF of the formula F
belongs to a class of easily separable graphs, then this set can be computed
efficiently. However, most separator theorems in the literature would provide
a separator set containing both variable and clause vertices that partition GF .
The separator we desire can be obtained by merely replacing the clause vertices
in the separator set by all the variable vertices adjacent to them. For 3CNF
formulae, the size of the resulting separator is at most 3 times the size of the
original separator.

3.3 Our Parallel Formula Dissection Algorithm

Our parallel Formula Dissection (FD) Algorithm is given below. As men-
tioned in Section 2.2, the algorithm is described on the CREW-PRAM model
of parallel computation.

Algorithm FD
INPUT:

A 3-CNF formula F represented by its bipartite graph GF , where GF be-
longs to a family separable graphs.

OUTPUT:
If F is satisfiable output ’1’ else output ’0’.

1 If F is in 2-CNF apply the algorithm for 2-CNF. Return ’1’ if F is satisfiable
and ’0’ otherwise.

2 Let the formulae F 1 and F 2 result from splitting GF by its separator S.
Let |S| = J .

3 For each interpretation Φi, 0 ≤ i ≤ 2J − 1, of S

4 Return
∨2J−1

i=0

(
FD(F 1

i) ∧ FD(F 2
i)

)

END

The algorithm FD creates is an implicit tree-like calling structure. The base
case, Step 1, is performed at the bottom level of the recursion. The results are
sent upwards, where ’AND’ and ’OR’ operators are applied as required. See
Fig. 2. Step 2 of the algorithm can make use of a preprocessing step which
precomputes the entire separator tree.

The correctness of step 5 follows readily from the discussion in Section 3.1.
The correctness of the algorithm can be established using induction on the depth

7

of the recursion. Thus we have the following theorem.

Theorem 1

Agorithm FD is correct.

3.4 Analysis

We shall carry out our analysis for graphs satisfying two kinds of separators:
nα-separators (for some constant α, where 0 < α < 1), and logk n-separators
(for some constant k ≥ 0). The input consists of a set of O(n) clauses. The
number of variables is O(n), which is the worst case for our algorithm. The sep-
arators are assumed to be strong separators (as defined above) to simplify the
analysis. Let the computation of the separator of any n vertex graph belonging
to the class of graphs under consideration require O(log n) time using O(n)
processors. This is certainly true for planar and outerplanar graphs. then pre-
computing the separator tree takes O(log n) time using O(n) processors. The
test for satisfiability of a ground formula in 3CNF takes O(log n) time using n
processors. Thus given enough processors to handle all formulae generated, the
algorithm can be shown to run in O(log n) time. The analysis below examines
the number of processors required by our algorithm for the two kinds of sepa-
rators listed above. The processor complexity of our PRAM algorithm is the
same as the time complexity of its sequential counterpart. This can be readily
established from the proof of the processor complexity in the analysis below us-
ing the fact that both 2-SAT and Horn satisfiability can be solved in linear time.

Theorem 2: 3-SAT for formulae represented by graphs having an nα separator,
0 < α < 1, can be computed by a PRAM in time O(log n) using O(nO(nα))
processors.
Proof: For the nα-separator, the number of formulae Ni at depth i is given by:

Ni = Ni−1

(
2 ∗ (2c(n/2i−1)α

)
)

for some constant c > 0.

If the recursion bottoms out at depth L, the number of formulae is at most
2L2cnα

. Thus the number of processors required is O(nLcnα

). For L = log n,
this yields a processor complexity of O(nO(nα)) time.

Planar graphs satisfy a
√

n-separator theorem ([22]). Thus we have
Corrolary 2.2: P3-SAT can be solved in O(log n) time using O(nO(

√
n))

processors.
Naturally, we are not seriously considering using O(nO(

√
n)) processors.

The structure of our algorithm allows us to solve P3-SAT in time O(nO(
√

n))×
(log n)/P using P processors. Recall, this is worst case analysis. In many cases
the actual complexity of our algorithm is better (see next section).

Theorem 3: 3-SAT for formulae represented by graphs having a strong logk n

separator can be computed on a PRAM in O(log n) time using O
(
nO(logk+ n)

)

processors.

Proof: Proceed on the same lines as the proof of Theorem 1. The number

8

of formulae at depth L of the recursion is:

Ni = 2Ni−12c logk(n/2i−1) for some constant c > 0,

which solves to n 2c logk+1 n formulae at depth log n. Hence we need only
O

(
nc logk+ n

)
processors.

For formulae represented by graphs having a strong 1-separator, that is they
can be separated by removing only a constant number of vertices, the processor
complexity is O(nc+). Thus for these formulae we need a polynomial number
of processors to acheive logarithmic parallel time.

4 Discussion

In this paper we presented a simple but relatively efficient procedure for test-
ing satisfiability of many classes of propositional formulae. as mentioned in the
introduction, the ideas presented here are also applicable to solving other sys-
tems of constraints such as those arising in computer vision and connectionist
networks. The basic idea is similar to the construction described in the paper
and is based on the observation that the 2D projections in the polyhedra dis-
cussed in [7] generate plane graphs. Thus, using an algorithm similar to FD we
can obtain a separation of the graph into two subgraphs by removing relatively
few vertices. the removed vertices correspond to the interactive constraints in
the interpretation. A similar observation was made in [32] where a sequential
algorithm for constraint satisfaction was described that was also based on the
principle of graph separators. Our method and the method described in [32] are
related to the theoretical construction described in [19]. We have extended this
construction to other problems and demonstrated its inherent parallelism.

There are several reasons to believe that the class of clauses represented by
’easily separable graphs’ is quite general and may lead to efficient practical im-
plementations.

1. All separable graphs are known to be sparse; that is, they have only a
linear number of edges.

2. For n ≤ 105,
√

n ≤ logk n for k ≥ 2 Thus, for this range of n, our
algorithms for planar graphs achieves subexponential O

(
nc log n

)
=

O(n
√

clogn) performance.

3. Whenever one variable in a clause is evaluated to I by an interpretation
Φ, the entire clause may be deleted from the copy of the formula created
by this interpretation.

4. On average, the number of variables in the separator set C, is likely to be
much smaller that O(

√
n).

Thus it is likely that the actual complexity of the algorithm on typical problems
occurring in practice will be significantly better than the worst case given in
the analysis here. Recall that the worst case complexity of existing methods

9

is exponential. The technique presented in this paper may have immediate
practical consequences if our analysis as presented in Section 3 carries over to
the currently realizable massively parallel machines. Since our algorithms use
divide-and-conquer, it appears that communication will not be a problem on
other architectures that support tree-like computations [33, 34].

References

[1] Winston, P.H., ”Artificial intelligence”, Third Addition, Addison-Wesley,
(1992).

[2] Tsang, E. “Foundations of Constraint Satisfaction,” Academic Press, New
York, 1993.

[3] Dechter, R. “Constraint processing,” Morgan Kaufmann, San Fransisco,
CA, 2003.

[4] Apt, K. ‘Principles of constraint programming,” Cambridge University
Press, Cambridge, UK, 2003.

[5] Steele, G. and Sussman, G., ”Constraints”, M.I.T. AI Memo, 502 (Novem-
ber 1978).

[6] Sussman, G. and Stallman, R., ”Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit Analysis”,
MIT AI Memo, 380 (1976).

[7] Waltz, D., ”Understanding Line Drawings of Scenes with Shadows”, in
The Psychology of Computer Vision, Winston, P.H. (editor), McGraw-Hill,
New York, (1975), 19-92.

[8] Mackworth, A.K., ”Consistency in Networks of relations”, Artificial Intel-
ligence, 8 (1977), 99-118.

[9] Rosenfeld, A., Hummel, R. and Zucker, S., ”Scene labelling by relaxation
operations”, IEEE Trans. Syst. Man Cybern, SMC-6 (1976), 420-433.

[10] Kasif, S., ”On the Parallel Complexity of Some Constraint Satisfaction
Problems”, Proc. of AAAI-86, (1986), 349-353.

[11] Garey, M.R. and Johnson, D.S. ”Computers and Intractability: A guide to
NP-Completeness.”, Freeman and Company, San Francisco, (1979).

[12] Haken, A., ”The Intractability of Resolution.”, PhD Thesis, University of
Illinois Urbana-Champaign, (1984).

[13] Urquhart, A., ”Hard Examples of Resolution”, Journal of ACM, ?,1 (Jan-
uary 1987), 209-219.

[14] Mackworth, A. and freuder, E., ”The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction”, Artificial
Intelligence, 25 (1985) 65-74.

10

[15] Kirousis, L.M. and Papadimitriou, C.H., ”The Complexity of Recognizing
Polyhedral Scenes”, Proc. 26th Annual IEEE Symposium on Foundations
of Computer Science, (1985), 175-185.

[16] Pan, V. and Reif J., ”Fast and Efficient Solutions of Linera Systems”, Proc.
17th Annual ACM Symposium on Theory of Computing, (1985), 143-152.

[17] Fortune, S. and Wyllie, J., ”Parallelism in Random Access Machines”,
Proceedings of the tenthAnnual ACM Symposium on Theory of Computing,
San Diego, CA, (1978), 114 - 118.

[18] Lichtenstein, D., ”Planar Formulae and their Uses”, SIAM Journal on
Computing, 11, 2 (1982), 329-343.

[19] Lipton, R.J and Tarjan, R.E., ”Applications of a Planar Separator Theo-
rem”, SIAM Journal on Computing, 9, (3) (Aug 1980), 615-627.

[20] Ullman, J.D., ”Computational Aspects of VLSI”, Computer Science Press
Rockville, MD, (1984).

[21] Harary, F., ”Graph Theory”, Addison Wesley, (1969).

[22] Lipton, R.J and Tarjan, R.E., ”A Separator Theorem for Planar Graphs”,
SIAM Journal on Applied Mathematics, 36, (1979), 177-189.

[23] Djidjev, H.N., ”On the Problem of Partitioning Planar Graphs”, SIAM
Journal of Algebraic and Discrete Methods, 3, 2 (June 1982), 229-240.

[24] Chang C.L. and Lee R.C.T., “Symbolic Logic and Mechanical Theorem
Proving,” Academic Press, New York, 1979.

[25] Ja’Ja’, J. and Simon J., ”Parallel Algorithms in Graph Theory: Planarity
Testing”, SIAM Journal on Computing, 11, 2 (May 1982), 314-328.

[26] Karp R.M. and Widgerson, A., ”A Fast Parallel Algorithm for the Maximal
Independent Set Problem”, Proc. 16th Annual ACM Symposium on the
Theory of Computing, (1984), 266-272.

[27] Luby, M., ”A Simple Parallel Algorithm for the Maximal Independent Set
Problem”, SIAM Journal on Computing, 15 (4), (1986) 1036 - 1055.

[28] Davis M. and Putnam H., ”A Computing Procedure for Quantification
Theory”, Journal of ACM, 7, 3 (1960), 201-215.

[29] Chang C.L. and Slagle J.R., Using Rewiring Rules for Connection Graphs
to Prove Theorems, Artificial intelligence, 12, 2 (August 1979).

[30] Kowalski, R., ”A Proof Procedure Using Connection Graphs”, J. ACM,
22 (1975), 572-595.

[31] McKay, D.P. and Shapiro, S.C., ”Using Active Connection Graphs for
Reasoning with Recursive Rules”, IJCAI-81, (August 1981), 368-374.

[32] Seidel, R., ”A New Method for Solving Constraint satisfaction Problems”,
Proceedings of the international Joint Conference on AI, (1981), 338-342.

11

[33] Leiserson, C.E., ”Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing”, IEEE Transactions on Computers, C-84, 10 (Oct 1985),
892-901.

[34] Sherlekar, D.D., ”Graph Separator-Based Dissection methods in VLSI and
Algorithms”, Doctoral Dissertation, University of Maryland, College park,
(1987).

12

Figure 1: Graph Representations of a Propositional Formula.
F = (P1, P2, P3), (P1, P̄2, P4), (P̄1, P4, P̄5)

13

Figure 2: The AND/OR Tree Generated by one Iteration of Algorithm FD.

14

