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Abstract

We examine numerical rounding errors of some deterministic solvers for systems
of ordinary differential equations (ODEs) from a probabilistic viewpoint. We show
that the accumulation of rounding errors results in a solution which is inherently
random and we obtain the theoretical distribution of the trajectory as a function
of time, the step size and the numerical precision of the computer. We consider,
in particular, systems which amplify the effect of the rounding errors so that over
long time periods the solutions exhibit divergent behaviour. By performing multiple
repetitions with different values of the time step size, we observe numerically the
random distributions predicted theoretically. We mainly focus on the explicit Euler
and fourth order Runge-Kutta methods but also briefly consider more complex
algorithms such as the implicit solvers VODE and RADAUS in order to demonstrate
that the observed effects are not specific to a particular method.
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1 Introduction

Consider ordinary differential equations (ODEs) of the form
j:t = b(l’t>
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These can be solved numerically using iteration methods of the type

Tyrn = T+ B(h, z4),

where G(h,z)/h — b(x) as h — 0.

The simplest example is the Euler method, where ((h,z) = hb(x). This
method is generally not used in practice as it is relatively inaccurate and
unstable compared to other methods. However, more useful methods, such as
the fourth order Runge-Kutta formula (RK4), also fall into this scheme.

When solving an ordinary differential equation numerically, each time an it-
eration is performed an error € is incurred due to rounding i.e.

Xion = XU+ B(h, X) + € (1)
(discussed in more detail in section 2).

Rounding errors in numerical computations are an inevitable consequence of
finite precision arithmetic. The first work thoroughly analyzing the effects of
rounding errors on numerical algorithms is the classical textbook by Wilkin-
son [1]. A recent comprehensive treatment of the behaviour of numerical al-
gorithms in finite precision, including an extensive list of references, can be
found in Higham [2]. Although rounding errors are not random in the sense
that the exact error incurred in any given calculation is fully determined (see
Higham [2] or Forsythe [3]), in many situations probabilistic models have been
shown to adequately describe their behaviour. In fact, statistical analysis of
rounding errors can be traced back to one of the first works on rounding error
analysis by Goldstine and von Neumann [4].

Henrici [5-7] proposes a probabilistic model for individual rounding errors
whereby they are assumed to be independent and uniform, the exact distri-
bution depending on the specific finite precision arithmetic being used. Using
the central limit theorem, he shows that the theoretical distribution of the er-
ror accumulated after a fixed number of steps in the numerical solution of an
ODE is asymptotically normal with variance proportional to h~!. By varying
the initial conditions, he obtains numerical distributions for the accumulated
errors with good agreement. Hull and Swenson [8] test the validity of the above
model by adding a randomly generated error with the same distribution at
each stage of the calculation, and comparing the distribution of the accu-
mulated errors with those obtained purely by rounding. They observe that,
although rounding is neither a random process nor are successive errors inde-
pendent, probabilistic models appear to provide a good description of what
actually happens.

We shall concentrate on floating point arithmetic, as used by modern com-
puters. However, our methods can be used equally well for any finite precision



arithmetic. We use the model, discussed and tested by the authors cited above,
whereby under generic conditions the errors in (1) can be viewed as indepen-
dent, zero mean, uniform random variables,

€ ~ U[_‘Xt}fz‘zizz ’th,szip]?
p being a constant determined by the precision of the computer.

The purpose of this paper is to analyze the cumulative effect of these rounding
errors as the step size h tends to 0. Where previous authors have considered
the accumulated error at a particular point, we derive a theoretical model for
the entire trajectory. In order to do so it is necessary to consider long-time
behaviour which has been previously largely unexplored due to difficulties with
rigorous analysis. We show for a particular system that on these time scales,
the trajectories exhibit genuine randomness. We obtain the distribution of the
trajectories analytically and verify our results in numerical experiments.

In general, using a smaller step size h reduces truncation errors. At the same
time this necessitates a larger number of steps in order to solve the ODE
numerically on a given compact time interval, thereby increasing the accumu-
lation of round-off errors. This gives rise to a central limit theorem as shown
in [5-7]. However, randomness can be seen for time scales much longer than
would be expected purely from this theory. In order to observe the occurrence
of randomness on large time scales it is necessary to consider ODEs whose
solutions cover a finite distance in infinite time. This restricts us to systems
containing a fixed point with either a periodic orbit or a stable manifold. Cases
with periodic orbits have been studied for example in [9], [10], and [11]. Fixed
points with only stable manifolds are of limited relevance in this respect as
errors are damped and so have little effect on the qualitative behaviour of the
system. We therefore investigate the class of ODEs with a saddle fixed point
and initial condition on the stable manifold. Even though, as in [11], the initial
condition is chosen on a set of measure zero, the solutions are of interest as
they appear to exhibit strong statistical properties.

We show for an ODE in R? with a saddle fixed point at the origin that the
structure of the system amplifies the effect of the rounding errors and causes
the numerical solution to diverge from the actual solution. More precisely,
there exists a constant ¢, determined by the ODE system, such that for times
much smaller than —clog h the numerical solution converges to the actual solu-
tion; for times close to —clog h the solution undergoes a transition, determined
by a Gaussian random variable whose distribution is obtained; for times much
larger than —clog h the numerical solution diverges from the actual solution.

In the first half of the paper, we outline how rounding errors can be modelled
as random variables with specified distributions. We then show that the accu-
mulation of the rounding errors results in a random trajectory. By calculating



its theoretical distribution as an explicit function of time, the step size h, and
the precision of the computer, we explain the qualitative behaviour described
above.

In the second half of the paper, we carry out numerical simulations which illus-
trate this behaviour. By performing multiple repetitions with different values
of the time step size, the random distributions predicted theoretically are ob-
served. Where previous authors have obtained their numerical distributions
by varying the initial conditions, we do so by introducing small variations in
the step size h. During the transition period described in the previous para-
graph, the numerical solution intersects straight lines through the origin and
we compare the theoretical and numerical distributions for the points at which
these intersections occur. Both the mean and the standard deviation of these
distributions are of the form ah?, where v € (0,1/2] is a constant determined
by the ODE system, and a can be found explicitly in terms of the precision
of the computer, i.e. the number of bits used internally by the computer to
represent floating point numbers. We mainly focus on the explicit Euler and
RK4 methods, but show that the same behaviour is also observable for more
complex algorithms such as the adaptive solvers VODE [12] and RADAU5
[13].

2 Theoretical background

In the paper by Turner [14], limiting results are established for sequences of
Markov processes that approximate solutions of ordinary differential equations
with saddle fixed points. We shall outline these results and then show that
by modelling the rounding errors as random variables, the solutions obtained
when performing numerical schemes for solving ordinary differential equations
can be viewed as a special case of this. This enables us to quantify how the
rounding errors accumulate. The resulting numerical solutions exhibit random
behaviour, the exact distribution of which is obtained.

In Section 2.1 we summarize the results of Turner [14]. In Section 2.2 we de-
scribe how rounding errors can be modelled as random variables with specified
distributions. The results of [14] are applied to obtain a qualitative descrip-
tion of the accumulation of the rounding errors. The distribution is calculated
explicitly in Section 2.3.



2.1 Behaviour of stochastic jump processes

We are interested in ordinary differential equations of the form
Ty = b(wy). (2)

We focus on R? in the case where the origin is a saddle fixed point of the
system i.e. b(x;) = Bxy + 7(2¢), where B is a matrix with eigenvalues A\, —p,
with A\, x> 0 and 7(z) = O(|z|*) is twice continuously differentiable. This
case is of particular interest as the structure of the system amplifies the effect
of the rounding errors and causes the numerical solution to diverge from the
actual solution over large times. Similar behaviour can be observed in higher
dimensions where the matrix B has at least one positive and one negative
eigenvalue, although the corresponding quantitative analysis is much harder
and we do not go into it here.

The phase portrait of (2) in the neighbourhood of the origin is shown in
Figure 1. In particular, there exists some xy # 0 such that ¢;(xg) — 0 as
t — 0o, where ¢ is the flow associated with the ordinary differential equation
(2). The set of such x is the stable manifold. There also exists some z, such
that ¢; '(74) — 0 as t — 0o. The set of such z, is the unstable manifold.

[Fig. 1 about here.]

Fix an x4 in the stable manifold and consider sequences X}V of Markov pro-
cesses starting from xg, which converge to the solution of (2) over compact
time intervals. The processes are indexed so that the variance of the fluctua-
tions of X}V is inversely proportional to N. If we allow the value of ¢ to grow
with N as a constant times log N, X}V deviates from the stable solution to a
limit which is inherently random, before converging to an unstable solution
(see Figure 2).

[Fig. 2 about here.]

More precisely, we observe three different types of behaviour depending on the
time scale:

A. On compact time intervals, X}¥ converges to the stable solution of (2), the
fluctuations around this limit being of order N ~2. The exact distribution
of the fluctuations is asymptotically N _%% where ; is the solution to a
linear stochastic differential equation, described in [14].

B. Let v; and vy be the unit eigenvectors of B corresponding to —p and A
respectively. There exists some 7y # 0, depending only on x(, and a Gaus-

sian random variable Z,, such that if ¢ lies in the interval [R, 55 log N —



R], then
XtN = Toe_“t(vl + 61) + N_% OoeAt(Ug + 62)

where €;(t, N) — 0 uniformly in ¢ in probability as R, N — oco. In other
words, XV can be approximated by the solution to the linear ordinary
differential equation

Yt = By, (3>
starting from the random point Tov; + N -3 oU32.
C. Provided Z,, # 0, on time intervals of a fixed length around ilog N,

XN converges to one of the two unstable solutions of (2), each with
probability 1/2, depending on the sign of Z.

2.2 Accumulation of rounding errors

We can apply the above results to describe quantitatively how rounding er-
rors accumulate when solving ordinary differential equations of the form (2)
numerically. In particular we consider using iteration methods of the type

Tipn = Ty + B(h, 21) (4)
where 3(h,z)/h — b(z) as h — 0.

Each time an iteration is performed, an error ¢ = €(h,t) is incurred due to
rounding, so we obtain a process (X/');cny iteratively by

Xl = X[+ B(h, X[ + e (5)

Modern computers store real numbers by expressing them in binary as x =
m2" for some 1 < |m| < 2 and n € Z. They allocate a fixed number of bits
to store the mantissa m and a (different) fixed number of bits to store the
exponent n [15]. When adding to z a number of smaller order, the size of
the rounding error incurred is between 0 and 2" P = 2Uog22l=P where p is
the number of bits allocated to store the mantissa. Although it is possible
to carry out the calculations below using the exact value of 2U°s2#l]=P the
calculations are greatly simplified by approximating it by |z|27P. This results
in the ‘effective’ value of p differing from the actual value of p by some number
between 0 and 1. Provided 3(h, X}*) is sufficiently small compared with X[, the
errors € can therefore be viewed as independent, mean zero, uniform random
variables with approximate distribution

€ ~ U[_|Xt}?i|2_pa |Xt}?i|2_p]

(see Henrici [5-7]). The assumption that the ¢; are independent is in general
not true. In fact, in certain pathological cases, for example where there is a



lot of symmetry in the components, the ¢; can be strongly correlated. Nev-
ertheless, under generic conditions one would expect any correlations to be
weak and so this is a reasonable assumption to make. We shall see by the
agreement, of our numerical and theoretical results that the effect of making
this assumption is indeed small.

Although the above iterations are carried out at discrete time intervals, it
is convenient to embed the processes in continuous time by performing the
iterations at times of a Poisson process with rate h='. As B(h,z) does not
depend on t, this does not affect the shape of the resulting trajectories. In this
way Markov processes X' are obtained that approximate the stable solution
of (2) for small values of h. If, in addition, the assumption is made that

(100 )

as h — 0 (note that both the Euler and Runge-Kutta methods satisfy this
condition), then under the correspondence N ~ h~!, the conditions needed to
apply the results in [14] are satisfied.

N

=

Our numerical solution therefore exhibits the following random behaviour:

A. For times of order much smaller than — log h, X! approximates the stable
solution of (2), the fluctuations around this limit being of order h2.

B. There exists some T # 0, depending only on z(, and a Gaussian random
variable Z, such that if ¢ lies in the interval [—clog h, — 55 log h+clog h]
for some ¢ > 0, then X/ is asymptotic to

Toe Mo, + h%Zooe’\tvg, (6)

the solution to the linear ordinary differential equation (3) starting from
the random point Zyv; + hs oU2.

C. Provided Z,, # 0, in time intervals around —ilogh whose length is
of much smaller order than —logh, X! approximates one of the two
unstable solutions of (2), each with probability %, depending on the sign
of Z.

The random behaviour resulting from the accumulation of rounding errors is

most noticeable on time intervals of fixed lengths around —m log h, as for

these values of ¢ the two terms Toe ! and hz Zs.e™ in (6) are of the same order.
During these time interval, the numerical solution undergoes a transition from
converging to the actual solution to diverging from it. During this transition,
for each value of § € (0,7/2), X! crosses one of the straight lines passing
through 0 in the direction v; cos # + v, sin §. These intersections are important
as they indicate the onset of divergent behaviour. The distribution of the
point at which Xth intersects one of the lines in the direction v; cos 8 &+ vy sin



is asymptotic to

55| 2, |85 o] 5 tan 6] (v cos 0 o vy sin ). ")

In Section 2.3 we show how to evaluate the variance of Z,, doing so explicitly
in the linear case and obtaining bounds in the non-linear case. In Section 3
these results are verified by numerically obtaining the predicted distribution
for hitting a line through the origin.

2.3 Ezplicit calculation of the variance

Consider a numerical scheme that satisfies the above conditions, applied to
obtain a solution to the ordinary differential equation (2), starting from x
for some zy in the stable manifold. In the non-linear case we require that
xo is sufficiently close to the origin such that 7(xg) is small. In general, for
simplicity, we assume that |zq| < 1.

We define the flow ¢ associated with this system by

Pi(z) = b(¢e(x)), ¢o(x) =0
and let z; = ¢y(x0).

Suppose that vy, v € R? are the unit right-eigenvectors of B corresponding
to —u, A respectively, and that v},v, € (R?)* are the corresponding left-
eigenvectors (i.e. vjv; = d;5).

Define
Ty = lim e vl éy ()
and
D, = lim e MhV ().

It is shown in [14] that these limits exist and that |To| < 2|zg| < 2 and
|D,| < 2.

Finally, let
1 22 0
a(x) = -27% !
3 0 3
be the covariance matrix of the multivariate uniform random variable e, de-
fined in equation (5), when X}* = z. Then Z,, ~ N(0,0%), where it is shown
in [14] that

o> :/ e Doa(x,)Dds.
0



Note that 02 < %2_21’.

In the general non-linear case, evaluating o2 explicitly is not possible as it
involves solving (2). It is possible to obtain a better approximation than that
above, although the important observation is that o2 is proportional to 272.

In the linear case, ¢;(r) = ePlz and zy = |zo|v;. Hence x, = |xgle vy,
To = |zo|, and Dy = v}, and so

1
S = o2 P|xo[*(v1105,)°

700 3N+ )

Note that the directions of v; and vj, relative to the standard basis, are critical.
For example, if either v; or v} is parallel to one of the standard basis vectors,
then o2, = 0.

3 Numerical experiments

In this section we solve ODEs numerically using deterministic solvers and
observe the predicted random distributions arising as a consequence of the
accumulation of rounding errors. For simplicity, and in order to observe the
desired effects as clearly as possible, we mainly focus on the most elementary
of all numerical ODE solution methods, the standard explicit Euler algorithm
with constant time step size. However, we observe similar behaviour for RK4

and also briefly mention results obtained with more complex solvers, such as
VODE [12] and RADAUS5 [13].

3.1 The system

For z : [0,00) — R?, consider the linear ODE

i(t) = Bx(t),
where
—u 0
B = a
0 A

for fixed A, u > 0. Introduce new coordinates

2(t) = R(p)x(t)



by rotating about the origin by a fixed angle ¢ € [0,7/2), i.e.

cos  —sin
Rlp)=|
siny cos e

We arrive at the transformed system

z(t) = B(p)z(t) (8)

with

B(p) = R(9)BR(p) ",
which will be the system under consideration in the following. Throughout,
the initial value

1 CcoSs
W) =R | | =7 (9)
0 sin

is used. The phase space evolution is sketched in Figure 3.

[Fig. 3 about here.]

3.2 Theoretical hitting distribution

As discussed in Section 2.2, the numerical solution to the above ODE system
undergoes a transition from converging to the actual solution to diverging from
it. During this transition, the numerical trajectory crosses one of the straight
lines passing through 0 at an angle ¢ & 6 for each value of 6 € (0, 7/2). These
intersections are important as they indicate the onset of divergent behaviour.
The hitting distributions also provide a means of measuring the random vari-
able Z,,, which determines the random variations in our solutions, and hence
of verifying the theoretical results.

Equation (7) gives the asymptotic distribution of the magnitude of the point
at which the numerical solution hits the line through the origin at angle ¢+ 7

as |Z|>+# where Z is a Gaussian random variable with mean 0 and variance

1
3N+ 1)

2

o? = ho’, = h2~2P(cos @ sin p)? (10)

i.e. Z ~ N(0,0%). We obtain an explicit formula for the asymptotic distribu-
tion by starting from the A(0, ) distribution

p(z)de = ! exp ( - 1x2)d:r;

2mo 202

10



and performing a change of variable given by y = |x|ﬁ The result is

20+ p) 2 ( 1 ww))
dy = 22000 -y )dy.
p(y)dy Varop VO T 552" y

In the case A = u = 1, which is considered below, setting a = ﬁ produces
the family of distributions

™

a2y4> dy, y € (0,00), (11)

f(y)dy = ayexp ( ~ 16

which will be fitted to the numerical data to confirm the theoretical value of a.

3.8 Choice of parameters

Rounding errors are deterministic in the sense that any given number of it-
erations of a particular numerical scheme will generate the same solution. In
order to obtain a distribution from the numerical solutions to (3), for each
repetition it is necessary to vary at least one parameter by a small amount. In
this section we discuss this issue as well as the choice of the fixed parameters
of the system such as the eigenvalues.

The possible parameters that can be varied are the initial value x(, and the
time step size h. As xg is constrained to be on the stable manifold, any variation
is required to be in the direction of the eigenvector corresponding to eigenvalue
—u. We have found that varying the initial value in a direction orthogonal
to the stable manifold does not yield any interesting results as the chosen
distribution of initial values is reproduced exactly in the hitting distribution.
Varying it within the stable manifold yields identical results to varying the
time step size, however in terms of the system we feel it is preferable to vary
the step size as this parameter is internal to the algorithm, whereas the initial
value is a physical parameter of the system. We varied the time step size as
follows. Given a user-supplied value of h, define the step size h; for the i*®
repetition by
hi=h+Ah(i—1—k), 1=1,...,L,

where the number of repetitions L = 2k+1 and 0 < Ah < h are user-supplied.
For all simulations, we set k& = 10%.

Reasonable choices of h and Ah are limited by several factors. The hitting
distribution predicted theoretically in Section 3.2 is asymptotic as h — 0 and
hence, if h is too large (in the considered case, if h > 107! for both single and
double precision), the observed hitting distribution differs substantially from
the theoretical one. The onset of such effects can be seen for large values
of h in Figure 6. Lower bounds on h are imposed by computational cost

11



and by the numerical precision of the computer. In practice, computational
expense becomes prohibitive for values of A much larger than the smallest
values permitted by numerical accuracy. Our particular choice of step size
distribution requires that kAh should be (much) smaller than h. The lower
limit for Ah is determined solely by the numerical precision, i.e. Ah/h must
not be smaller than the numerical precision.

We did not investigate in detail the dependence of our observations on the
distribution of step sizes. However, preliminary experiments with varying Ah
and even with non-uniform step size distributions suggest that this dependence
is very weak for a wide range of conditions. Figure 4 shows that the shape of
the distribution exhibits no discernible systematic dependence on Ah over at
least nine orders of magnitude. The deviations seen for values of Ah smaller
than about 107! are due to the fact that Ah/h approaches the limits of
numerical precision.

[Fig. 4 about here.]

The remaining parameters that we need to choose are the eigenvalues A\, —u
and the rotation angle ¢. Since the limit distribution is given by |Z |ﬁu, for
some Gaussian random variable Z, if the values of A and p differ significantly
then the distribution is hard to observe in a numerical experiment. This sug-
gests choosing A and p of the same order of magnitude, and we therefore take
A = p =1 for all simulations.

There is some subtlety in the choice of the rotation angle ¢. For certain values,
trivial trajectories or symmetry effects can occur which conceal the desired
accumulation of rounding errors. For instance, for ¢ = 0 the second component
Xy of the solution is always zero, and therefore the trajectory stays on the line
Ty = 0 (or equivalently x5 = 0) with no fluctuations. Note that this is in
agreement with 02 = 0 in equation (10). For ¢ = m/4, any rounding error
that appears in one component also appears in the other one, which implies
that, again, the trajectory always stays on the line o = 0 (or equivalently
x1 = o). This case is pathological as it consistently violates our assumption
that the rounding errors for the different components are independent. For
these reasons, we chose ¢ = 7/5 throughout.

3.4 Results and observations for explicit methods

Using the values of the parameters discussed above, we carried out multiple
repetitions of Euler’s algorithm and RK4. In each run we noted the point at
which the trajectory given by the numerical solution intersected one of the
lines ¥; = &5 (the dashed lines in Figure 3). Histograms were then produced
by partitioning the interval [0, 1] into a given fixed number of subintervals of

12



equal length and counting how many times y fell into each subinterval, where y
denotes the distance of the point of intersection from the origin. The empirical
distributions shown in Figure 5 were obtained. The theoretical distribution
(11) was fitted to the empirical distributions with very good agreement.

[Fig. 5 about here.]

For each value of h, we obtained a value for the parameter a by fitting a
distribution of the form (11) to our numerical data. In Figure 6 the parameter a
is plotted as a function of the time step size h, both for single (Figure 6(a))
and double (Figure 6(b)) precision (4 and 8 bytes internal representation of
floating point numbers respectively). Error bars due to the fit are only about
1% and hence insignificant. In both cases, the dependence between a and h is
well described by a o< V/h.

[Fig. 6 about here.]

Equation (10) predicts the value of ah™2 to be

. 1/3
ah~? = W3 X 9P — 8.920 x 2.

™ 3 T
/7 cos §sin £

For Euler’s method, the above data give ah™2 = 9.411x 107 for single precision
and ah~2 = 4.956 x 10'6 for double precision. For the 4" order Runge-Kutta
method, the values are ah™2 = 9.27 x 107 (with a relatively large error of
+0.12 x 107) for single precision and ah~2 = 4.746 x 106 for double precision.
Using the approximation discussed in Section 2.2, the actual value of p is
between 23 and 24, when working in single precision, and between 52 and
53 when working in double precision. The particular value depends on the
exact number being computed. Our theoretical results therefore predict ah™?
lies between 6.895 x 107 and 1.379 x 10® for single precision and between
3.702 x 10 and 7.404 x 10 for double precision.

There are three possible sources of error in our calculations. The first is the
error in fitting the numerical data to the theoretical model, the second is that
our theoretical models are based on asymptotic results as h — 0, whereas we
are applying them to values of A which are necessarily larger than the precision
of the computer. The third source of error arises from the assumption that
at each stage the rounding error can be viewed as an independent uniform
random variable, depending on a fixed value of p. The above results show that

these errors are all small and that our theoretical model provides a very good
fit.
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3.5 Adaptive solvers

Our theoretical results cover ODE solvers which use algorithms of the form (4).
In practice, more sophisticated adaptive solvers are used, such as VODE [12]
and RADAUS [13]. For these solvers, the user inputs the error tolerances RTOL
(relative) and ATOL (absolute) and the global time step h, (the time interval
after which the user requests solution output from the solver). However, the
user has no immediate control over the size of the actual steps taken. These
are determined algorithmically as a function of the error tolerance parameters
RTOL and ATOL, generally by trial-and-error methods using heuristics, rather
than by an explicit formula.

Although it is not possible to analyze such adaptive solvers in the way that
we have analyzed explicit solvers above, it is still of interest to see whether
they exhibit the same qualitative random behaviour. We performed numerical
experiments similar to those discussed above and obtained the distributions
shown in Figure 7 in the case where RTOL=0.

[Fig. 7 about here.]

Experiments do not readily suggest a simple relationship between the param-
eter a in equation (11) and any of the parameters ATOL, RTOL, and h,. This is
possibly not surprising given the lack of direct control over the time step size.
However, the fact that the results are qualitatively similar supports the asser-
tion that the observed phenomena are not specific to a particular algorithm,
but rather are general effects.

4 Conclusion

We analyzed the cumulative effect of rounding errors incurred by deterministic
ODE solvers as the step size h — 0. We considered in particular the interesting
case where the ordinary differential equation has a saddle fixed point and
showed that the numerical solution is inherently random and also obtained its
theoretical distribution in terms of the time, step size and numerical precision.
We showed that as the step size h — 0, the numerical solution exhibits three
types of behaviour, depending on the time: initially it converges to the actual
solution, it then undergoes a transition stage, finally it diverges from the actual
solution.

By performing multiple repetitions with different values of the time step size,

we observed the random distributions predicted theoretically. We demon-
strated that during the transition period described above the numerical solu-
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tion intersects all the straight lines through the origin. The theoretical and nu-
merical distributions for the points at which these intersections occur showed
very good agreement. Both the mean and the standard deviation of these dis-
tributions were found to be of the form ah?, where v € (0,1/2] is a constant
determined by the ODE system, and a was found explicitly in terms of the
precision of the computer. We mainly focused on the explicit Euler and RK4
methods with constant step size, but also briefly considered the implicit solvers
VODE and RADAUS5 with automatic step adaption in order to demonstrate
that the observed effects are not specific to a particular numerical method.
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Fig. 1. The phase portrait of an ordinary differential equation having a saddle fixed
point at the origin (taken from [14]).
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Fig. 2. Diagram showing how the Markov process X} deviates from the stable
solution ¢y(xg) for large values of t (taken from [14]).
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Fig. 3. Phase space for the saddlepoint ODE system (8) with sample trajectories
and lines where hitting distributions are recorded (dashed lines).
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Fig. 4. Step size variation for Euler’s algorithm (double precision, step size h = 1074,
L = 20001 repetitions each).
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Fig. 6. Parameter a in equation (11) as function of the time step size h for simple
methods (Euler and 4" order Runge-Kutta).
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