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Abstract

The chemical master equation is considered an accurate description of general chemical systems, and espe-

cially so for modeling cell cycle and gene regulatory networks. This paper proposes an efficient way of solving

the chemical master equation for some prototypical problems in systems biology. A comparison between this

new approach and some traditional approaches is also given.
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1. Introduction

There are two ways to describe the dynamics of chemical reactions. One is deterministic description,

which is accurate when the number of reacting molecules is large enough to allow a continuum point of view.

In the modeling of cell cycle and gene regulatory networks, the number of molecules of a given chemical

species is typically on the order of hundreds. In such a situation, the randomness in the system usually

cannot be ignored. Thus, one is forced to adopt a stochastic description.

The chemical master equation ([1], [2]) is such a stochastic description, derived from the Markov property

of the underlying stochastic process. The master equation is a formulation of the Markov property for

discrete random variables in continuous time. If the chemical system is determined by specifying the number

of molecules of each species, then the master equation governs the dynamics of the probability distribution

for the system. It is well known that such a description suffers from the “curse of dimensionality”, i.e., each

species adds one dimension to the problem, and the computational complexity grows exponentially.

Currently, Monte Carlo algorithms are used to analyze the chemical master equation. These include

the stochastic simulation algorithm (SSA) ([3], [4]), τ -leaping [5], and various other methods ([6]–[8]) that
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make quasi-steady state assumptions in order to accelerate simulation time. These methods are exact in a

statistical sense, and they simulate one trajectory at a time. Even though simulating one trajectory might

be performed relatively cheaply, many trajectories need to be simulated in order to estimate statistical

parameters accurately. Moreover, because of the explicit flavor of the method, simulating one trajectory

itself may not be easy for stiff systems that require very small time steps.

Recently, there has been considerable work on solving the master equation directly ([9]–[12]). Basically,

these approaches fit in two categories: an ordinary differential equation (ODE) point of view or a partial

differential equation (PDE) point of view. From an ODE point of view, one simply integrates the master

equation in time. The problem is that the ODE system dimension is often huge, so in order to make this

approach feasible, many state approximation techniques have been proposed, like the sparse grids technique

[9] and the finite state projection algorithm [10].

From a PDE point of view, the master equation is just a special kind of parabolic partial differential

equation. The difficulty lies in that the state space is discrete. In a recent paper, Engblom [11] proposed

a discrete version of the spectral method for the chemical master equation. Another alternative is solving

the Fokker-Planck partial differential equation ([12], [13]); the Fokker-Planck equation can be regarded as

a continuous approximation of the master equation. However, it is often difficult to determine a priori how

good the approximation would be.

Taking the ODE point of view, success in solving the master equation depends on evaluating the matrix

exponential series. In principle, the exponential of a matrix can be computed in many ways, but in practice,

taking computational stability and efficiency into account, none of them are completely satisfactory [14].

Hence, the most appropriate method should be based upon particular properties of the matrix.

Uniformization or Jensen’s Method ([15], [16]) is a special technique devised to compute the exponen-

tial of the infinitesimal generator of almost any continuous time Markov chain. It has a natural stochas-

tic/probabilistic interpretation. It is easy to implement, only involves matrix-vector multiplication and is

numerically stable. There is also a simple error bound for the matrix exponential approximation [17]. Conclu-

sively, for most non-stiff problems, uniformization provides an accurate and economical numerical solution.

Unfortunately, for stiff problems, often the case in biological systems, it is computationally inefficient.

To deal with stiff problems, Ross [18] proposed a new approach based on uniformization in 1987. Stiffness

is managed by assuming the observation time intervals to be random variables with Erlangian distribution.

Such a technique has also been called external uniformization [19]. The major difficulty with this approach

is that it requires solving a large linear system obtained from the state transition rate matrix [20]. Typically

though, in biological systems, this state transition rate matrix is ultra sparse. Therefore well-developed

2



sparse linear system solvers are applicable. Numerical experiments presented here show that this approach

is quite successful for several biological system models.

The remainder of this paper is organized as follows: in Section 2, a biological toggle switch model

is introduced, and a brief comparison between different methods is given for this typical problem. The

third section illustrates the uniformization method and Ross’ modified algorithm. Numerical results for

several molecular biology models are given in Section 4. The final section concludes with a discussion of the

capabilities of Ross’ algorithm in the field of systems biology and suggests future research directions.

2. Toggle Switch

2.1 Model

It has been proposed that gene regulatory networks with virtually any desired property can be con-

structed from simple regulatory elements. Examples of such properties include multistability and oscilla-

tions [21]. A genetic toggle switch, which has been constructed in Escherichia coli already, is such a simple

regulatory element. It is a synthetic bistable gene regulatory network that could be constructed from any

two repressible promoters. The bistability of the toggle switch is obtained from the mutually inhibitory

arrangement of these two [21]. The reaction equations are

∅ α/(β+x2
2)−→ x1

x1
µx1→ ∅

∅ γ/(δ+x2
1)−→ x2

x2
µx2→ ∅



























with parameters α = γ = 1000, β = δ = 6000 and µ = 10−3 [11].

Suppose the two promoters are x1 and x2, and initially, the number of x1 molecules is larger than

that of x2. Then one can observe that the production of x2 molecules is inhibited by the large number

of x1 molecules, so that the system will reach a stable state with x1 > x2. However, with a certain small

probability, the stochastic noise eventually makes the number of x2 molecules grow. If this is the case, then

the production of x1 molecules will be inhibited by the growing number of x2 molecules and the roles of

x1 and x2 may switch [11]. One interesting feature of the toggle switch model is that any deterministic

simulation of the model will only predict one stable state, which makes the stochastic simulation crucial in

this situation.
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2.2 Master equation

Define p(x, t) to be the probability that the chemical system has a molecular population vector x at

time t. Suppose that the state of the system can change through M different reaction channels and ai(x)

and w(i) are the nonnegative propensity function and the stoichiometric transition vector, respectively, for

reaction channel i [10], i.e.,

x − w(i)ai(x−w(i))−→ x.

The master equation [1] is then given by

∂p(x, t)

∂t
=

M
∑

i=1

ai(x − w(i))p(x − w(i), t) − ai(x)p(x, t).

Now, one can write down the master equation for this special toggle switch model. Define operators A1

and A2 by
A1p(x, t) = µ(x1 + 1)p(x1 + 1, x2, t) +

α

β + x2
2

p(x1 − 1, x2, t) −
(

µx1 +
α

β + x2
2

)

p(x, t)

and
A2p(x, t) = µ(x2 + 1)p(x1, x2 + 1, t) +

γ

δ + x2
1

p(x1, x2 − 1, t) −
(

µx2 +
γ

δ + x2
1

)

p(x, t).

Then the master equation is given by

∂p(x, t)

∂t
= A1p + A2p.

2.3 Results

In references [11] and [9] the toggle switch problem is solved with different formulations. In [11] the

same problem is solved on a state space Z2
201, the integer lattice points in [0, 200] × [0, 200]. The master

equation is approximated by an ODE system of dimension 400. The ODE system is then solved in Matlab

(ode15s). Only solutions and errors in different norms are reported in [11]. In [9] the problem setting is a

little different with a state space Z2
51. A sparse grid technique is used to make the state space even smaller.

The exponentials of the smaller matrix are then computed by some Krylov space projection methods [22].

As reported in [9], it takes less than 15 minutes to solve another problem with 1610 ≈ 1012 states (1001

grid with 16 grid points each after approximation) on a 2 GHz AMD64 based PC with 1 GByte of memory.

Sparse grid can also be used as an approximation technique in the proposed algorithm below.

The master equation for the toggle switch model can also be solved by Monte Carlo algorithms. For

future comparison, Table 1 gives the computational efficiency (CPU time) of some Monte Carlo algorithms,

implemented in StochKit [23].
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Table 1: Computation cost (sec) of two different Monte Carlo algorithms. Each simu-

lation starts at (x1, x2) = (60, 10) and ends at time tf = 2.0× 105s. In the adaptive τ-leaping

method, the error control epsilon is set at 0.03.

103 runs 104 runs

SSA 52.7 526.7
Adaptive τ -leaping 49.3 492.9

3. Methods and Algorithms

3.1 Mathematical background

Let X = {X(t), t ≥ 0} be a continuous time Markov chain (CTMC) with a state space S. The number

of possible states is finite and is equal to N . For any i, j ∈ S, let

pij(t) = P [X(t) = j | X(0) = i].

Given initial state probability vector π(0), one is interested in computing π(t), the state probability vector

at time t. Obviously,

π(t) = π(0)P (t),

where P (t) = (pij(t)).

Suppose that when in state i, the CTMC makes a transition into state j at an instantaneous rate qij

and let qi =
∑

j 6=i

qij denote the rate at which X leaves state i. Then the matrix

Q =









−q1 q12 . . . q1N

q21 −q2 . . . q2N
...

...
. . .

...
qN1 qN2 . . . −qN









is called the infinitesimal generator of X . Since the state space S is finite, P (t) satisfies both Kolmogorov’s

backward equations

P ′(t) = QP (t),

and Kolmogorov’s forward equations

P ′(t) = P (t)Q.

The solution to these two equations is

π(t) = π(0)P (t) = π(0)eQt = π(0)
∞
∑

n=0

(Qt)n

n!
.

This gives a stochastic background for the master equation. However, using a truncation of the above infinite

summation to approximate π(t) is subject to severe roundoff error [14].
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3.2 Uniformization

Let η = max
1≤i≤N

qi. Then through uniformization, it can be shown that, for any λ ≥ η

P (t) = eQt = e−λteλt(I+ Q
λ

) =

∞
∑

n=0

e−λt (λt)n

n!
P̃n,

where P̃ = I + 1
λQ is a probability matrix. Hence,

π(t) =

∞
∑

n=0

e−λt (λt)n

n!
v(n),

where v(n) = π(0)P̃n is the state probability vector of a discrete time Markov chain (DTMC) after n

transitions. In practice, a piece of this infinite summation is used.

There are several interesting features about the uniformization method. It associates a DTMC and a

Poisson process with the CTMC. The Poisson process is “internal”, because its frequency parameter λ must

be larger than η, a parameter characterizing how quickly the continuous time Markov process changes its

state.

For a given error tolerance, uniformization without left side truncation (meaning that terms for small

n in the infinite series are not dropped) requires O(ηt) terms. Even if the distribution is truncated from

both sides (meaning that terms for both small and large n are dropped), it still requires O(
√

ηt) terms.

Additionally, successively squaring P̃ to get the first significant DTMC state probability vector requires time

O(N3 log l), where l is the number of terms in the left tail
l−1
∑

n=0
[24]. Hence, for large values of ηt and N , the

computation can be cumbersome.

For example, consider the bistable toggle switch problem described above. If S = Z2
201 and t = 2.0×105s,

then the value of λt = ηt would be 4 × 104. This means that at least 40000 matrix vector multiplications

are needed, while the dimension of the square matrix and vector is also about 40000.

However, the uniformization method has its own advantages. It only involves matrix vector multipli-

cation, so it is easy to implement and is numerically stable. There is also a simple error bound calculated

from the Poisson process.

3.3 External uniformization method

In 1989, Ross introduced an external uniformization technique so that one could overcome the restriction

on choosing λ larger than η. In the usual uniformization procedure, the CTMC is allowed to make transitions

only at arrival epochs of a Poisson process, so λ has to be greater than η. In the external uniformization,

instead, the CTMC is observed at arrival epochs of an independent Poisson process with any rate λ that has

nothing to do with η.
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Consider another random event E , which occurs at times τ1, τ2, ..., where the intervals τi − τi−1, for

i > 0, are i.i.d. exponential random variables with rate λ independent of the Markov process X . Assume the

initial state X(0) = i. Then either a transition of X occurs before event E , or E occurs first, and the first

event occurs with probability qi/(qi + λ) and the second with probability λ/(qi + λ). From the memoryless

property of the exponential distribution and conditioning on which event occurs first,

pij(τ1) =
qi

qi + λ

∑

k 6=i

pkj(τ1)
qik

qi
+

λ

qi + λ
δij ,

where δij = 1 if i = j and δij = 0 otherwise. Rewrite this into matrix form, giving

P (τ1) =

(

I − Q

λ

)−1

.

From the Chapman-Kolmogorov equations

P (τr) =

(

I − Q

λ

)−r

.

Now, use the fact that E[τr] = r/λ. If λ = r/t, then, as r → ∞, the random variable τr approaches t. As a

consequence, P (τr) should be a good approximation to P (t) [17].

In his paper Ross also provides some reasonable evidence that this approach is accurate, even if a small

number of steps r is chosen for the recursion. This is verified again in the numerical examples here.

3.4 Algorithm and error estimation

Algorithm:

(i) Choose appropriate r and set λ = r/t.

(ii) Compute the matrix (I − 1
λQ).

(iii) Set π
(0)
r = π(0). Solve the linear system π

(i)
r (I − 1

λQ) = π
(i−1)
r recursively, for i = 1, ..., r. Then

π
(i)
r is an approximation for π(it/r), and π

(r)
r is the desired approximation for π(t).

In order to prove the convergence, one just has to notice that

lim
r→∞

P (τr) = lim
r→∞

(

I − Qt

r

)−r

= eQt = P (t).

There is also a rough error bound for this method, based on the variance of exponential distributions

[25]:

(i)

|E[pij(τr)] − pij(t)| ≤
1

2
(t2/r)max

m∈S

∑

k

|qmkqkj |,

(ii)

max
i,j∈S

|E[pij(τr)] − pij(t)| ≤
1

2
(t2/r) max

m,l∈S

∑

k

|qmkqkl|.

The proof of these bounds just follows from a Taylor expansion of pij(τr) and the fact that τr has mean t

and variance t2/r. In the numerical examples, however, the actual error is far smaller than this error bound.
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4. Numerical Experiments

In this section the master equation of several models from molecular biology will be solved using the

proposed method, including the toggle switch model. Comparisons between the proposed method and some

other methods are also given when appropriate. The performance of the proposed method largely depends

on the effectiveness of the sparse linear system solver. Hence, the algorithm has been implemented based on

two different kinds of sparse linear system solvers: iterative [26] (such as GMRES) and direct [28] (such as

Gaussian elimination). The iterative solver software package chosen here is SPARSKIT [27], and the direct

solver package used is SuiteSparse [29]. There is also a comparison between these two.

4.1 A simple birth-death process

In this model x molecules are produced at a constant rate k and decayed at a rate proportional to the

total number of molecules simultaneously. The reaction equations are

∅ k→ x

x
µx→ ∅

}

.

The master equation for this system is

∂p(x, t)

∂t
= kp(x − 1, t) + µ(x + 1)p(x + 1, t)

− (k + µx)p(x, t).

This problem can be solved analytically if the initial data is given in the form of a Poisson distribution [30],

p(x, 0) =
ax
0

x!
e−a0 .

In this case the solution is given by

p(x, t) =
a(t)x

x!
e−a(t),

where a(t) = a0e
−µt + k

µ(1 − e−µt).

Fig. 1 displays the computational result using the algorithm proposed in Section 3.3, with parameters

k = 1, µ = 0.01, and a0 = 50. It can be seen that as the final time tf grows, larger r has to be chosen to get

accurate solutions.

The solid line in Fig. 2 shows the L∞ error (tf = 100s) for different r values. It appears that the error

decays rather slowly as r increases. Such a nearly linear log-log plot bodes well for acceleration, such as

Aitken’s δ2 method [31] and extrapolation methods. The dotted line is the L∞ error after applying Aitken’s

δ2 method on π
(r)
r and the dashed line is the L∞ error after applying the same method on π

(2i)
2i . Both of

them show improvements in error with no more expensive evaluations. However, for such a small problem,

it takes less than a second to run the algorithm even if r = 10000, which gives an L∞ error less than 10−5

even without acceleration.
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t f)

(B)

0 50 100 150
0

0.02

0.04

x

p(
x,

t f)

Fig. 1 Solutions of the master equation pertaining to the simple birth-death process. (A) tf = 10s, the solid

line is the exact solution, the dotted line is the numerical solution π
(10)
10 . (B) tf = 100s, the solid line is the

exact solution, dashed and dotted lines are the numerical solutions π
(10)
10 and π

(50)
50 , respectively.

10
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10
1

10
2

10
310

−6

10
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10
−2

10
0

r

L∞
 e

rr
or

Fig. 2 The L∞ error versus r (tf = 100s) before and after Aitken’s δ2 acceleration is applied.
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4.2 Schlögl reaction

The Schlögl reaction [32] is famous for its bistable distribution. The reaction equations are given by

b1 + 2x
c1⇀↽
c2

3x

b2

c3⇀↽
c4

x











,

where b1 and b2 denote buffered species whose respective molecular populations are assumed to be constant.

Now, the propensity functions are

a1(x) =
c1

2
b1x(x − 1),

a2(x) =
c2

6
x(x − 1)(x − 2),

a3(x) = c3b2,

a4(x) = c4x.

The master equation for this system is

∂p(x, t)

∂t
=

(

a1(x − 1) + a3(x − 1)
)

p(x − 1, t)

+
(

a2(x + 1) + a4(x + 1)
)

p(x + 1, t)

−
4

∑

i=1

ai(x)p(x, t).

Fig. 3 compares the numerical results obtained from SSA and the external uniformization method. The

parameters here are c1 = 3 × 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5, b1 = 1 × 105, b2 = 2 × 105, and the

final time tf is 4.0s. This Schlögl model displays the bistable distribution only if the initial state is wisely

chosen. In [32], the author has shown that this system has two stable states x1 = 82 and x2 = 563 and one

barrier state xb = 248. The bistable property of the distribution is apparent only when the initial state is

close enough to the barrier state, as shown in Fig. 3 (A). In Fig. 3 (B), the initial state is set to the left of

the barrier state. Trajectories starting from this initial state are more likely to end up around stable state

x1, which makes it more difficult to capture the other stable state x2. Similarly, Fig. 3 (C) illustrates what

happens when the initial state is set to the right of the barrier — most trajectories end up around stable

state x2, which makes stable state x1 more difficult to capture. Figs. 3 (B) and (C) show that the proposed

method captures the behavior of the distribution around the stable point with small probability density far

better than histograms based on 10,000 SSA simulations.

Moreover, for such a small problem, the computational cost for the external uniformization method is

negligible. For example, for r = 30, it takes approximately 0.018 sec if one uses a direct linear system solver,

or 0.37 sec if an iterative one is used instead. On the other hand, the histogram estimation of the probability

density function based on 10,000 simulation runs is quite rough, and costs nearly two minutes on the same

machine.

10



(A)
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0.015

x

p(
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t f)

(B)

450 550 650
0

2

4
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x 10
−6

x

p(
x,

t f)

(C)

100 200
0

2
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6

x 10
−6

x

p(
x,

t f)

Fig. 3 Comparison of the numerical results for the Schlögl reaction, with different initial states: (A) x = 250,

(B) x = 150, (C) x = 400. The histogram (thin solid line) is based on 10,000 SSA simulations. The thick

solid line is the numerical solution π
(30)
30 from the proposed method.

11



10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

r

L∞
 e

rr
or

Fig. 4 The L∞ error versus r before and after Aitken’s δ2 acceleration is applied. The initial condition is

(x1, x2) = (60, 10) and the final time tf = 2.0 × 105s.

4.3 Toggle switch model

This model problem (also considered briefly in [33]) is solved with different r in order to estimate the

convergence rate of the method. The error is estimated using a reference solution (r = 10000) and measured

in the L∞ norm. Here, Fig. 4 shows results similar to those in Fig. 2.

Fig. 5 contains the contour plots for numerical results. The bistable property is clearly apparent in each

contour plot. Again, the contour plots obtained from SSA have much more noise than those two from the

proposed method. Running 1,000,000 SSA simulations takes more than 10 hours, while the proposed method

just takes a few seconds on the same machine. Fig. 5 also contains a contour plot of π
(10)
20 , which approximates

the probability density function at time 1.0× 105s. Actually, the vectors π
(i)
20 (i = 1, ..., 20) approximate the

probability density function at any epoch i
20 × 2.0 × 105s. These probability density functions altogether

provide information on how the system reaches the equilibrium state.

Table 2 lists the CPU time for different r values with a comparison between iterative and direct linear

system solvers. It shows that for this model problem the direct solver (UMFPACK, the unsymmetric

multifrontal method for sparse LU factorization) performs better than the iterative solver (BiCGSTAB, the

biconjugate gradient stabilized method).

Further analysis shows that for direct linear system solvers the computation mainly involves two parts:

LU factorization and triangular system solve. Since the same sparse matrix is used in each step, only one

LU factorization is needed. For example, for r = 5, the CPU time is 1.3s ≈ 0.7s + 5× 0.06s + 0.3s. The LU

factorization takes 0.7, triangular system solve takes 5 × 0.06s, and the remaining 0.3s is for initialization

and I/O. The run time of LU factorization and triangular system solve mainly depends on the structure

of the sparse matrix, which implies that one LU factorization or one triangular system solve takes almost

the same amount of time for different r and different steps. Therefore, the total run time increases nearly
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Fig. 5 Toggle switch computational results. The initial condition is (x1, x2) = (60, 10) and the final time tf

is 2.0 × 105s. (A) Contour plot for π
(10)
20 . (B) Contour plot for π

(20)
20 . (C) Contour plot based on 100,000

SSA simulations. (D) Contour plot based on 1,000,000 SSA simulations.

Table 2: CPU time (sec) for different r and different linear system solvers.

r iterative direct

5 21.3 1.3

10 31.8 1.6

20 40.5 2.3

40 50.4 3.6

80 59.1 6.1

linearly as r increases. Fig. 6 displays the run time for different r at each step if the iterative solver is used.

It shows that the run time decreases almost at the same magnitude step by step for different r; this decrease

is expected since the iterates π
(i)
r are converging to π

(r)
r , so the starting points get better and better.
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Fig. 6 CPU time (sec) for different r values at each step of sparse linear system solving.

4.4 A prototypical cell cycle model

A simple deterministic cell cycle model can be described by the normalized phenomenological rate

equations ([33], [34]):

d

dt
Y1 = κ1m − (κ′

2 + κ′′
2Y2)Y1,

d

dt
Y2 =

κ′′
3Y3(1 − Y2)

Γ3 + (1 − Y2)
− κ4Y1Y2

Γ4 + Y2
,

d

dt
Y3 = κ′

5 + κ′′
5

Y 2
1

Γ2
5 + Y 2

1

− κ6Y3.

In the above equations, Y = (XCycB, XCdh1, XCdc20) and XS = [S]/cS is the normalized concentration

of species S and cS is the characteristic concentration of the species. The equations also assume that the

normalized concentration of total Cdh1 is 1, so that the concentration of the phosphorylated form can be

written as XCdh1P = 1 − XCdh1. The variable m reflects the fact that CycB is assumed synthesized at

a supralinear rate and thus its concentration increases with cell mass. In terms of numbers of molecules

y = (xCycB, xCdh1, xCdc20) of a given species, the equations are:

d

dt
y1 = k1mVs − (k′

2 +
k′′
2

Vs
y2)y1,

d

dt
y2 =

k′′
3y3(cCdh1Vs − y2)

J3Vs + (cCdh1Vs − y2)
− k4y1y2

J4Vs + y2
,

d

dt
y3 = k′

5Vs + k′′
5Vs

y2
1

(J5Vs)2 + y2
1

− k6y3,

where the parameter Vs is equal to the nominal volume of the cell times Avogadro’s number and here equals

18 molecules/nMolar. The relationships between the normalized and unnormalized parameters, as well as

the values of the normalized parameters, are given in Table 3.
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Table 3: Relationships between the normalized and unnormalized parameters and the

values of the normalized parameters.

κ1 k1/cCycB 0.01 min−1

κ′
2 k′

2 0.04 min−1

κ′′
2 k′′

2 cCdh1 1.0 min−1

κ′′
3 k′′

3 cCdc20/cCdh1 10.0 min−1

κ4 k4cCycB/cCdh1 35 min−1

κ′
5 k′

5/cCdc20 0.005 min−1

κ′′
5 k′′

5/cCdc20 0.2 min−1

κ6 k6 0.1 min−1

Γ3 J3/cCdh1 0.04

Γ4 J4/cCdh1 0.04

Γ5 J5/cCycB 0.3

To produce an accurate stochastic model of this system, unpack it into elementary chemical reactions

without intermediates and with variable propensities.

∅ k1mVs⇀↽
k′

2

xCycB

xCycB + xCdh1
k′′

2 /Vs→ xCdh1

xCycB + xCdh1

k4
J4Vs+xCdh1→ xCycB + xCdh1P

xCdc20 + xCdh1P

k′′

3
J3Vs+xCdh1P→ xCdc20 + xCdh1

∅
k′

5Vs+k′′

5 Vs

x2
CycB

(J5Vs)2+x2
CycB

⇀↽
k6

xCdc20











































































.

The propensity functions are

a1(x) = k1mVs,

a2(x) = k′
2xCycB,

a3(x) =
k′′
2

Vs
xCycBxCdh1,

a4(x) =
k4xCycBxCdh1

J4Vs + xCdh1
,

a5(x) =
k′′
3 xCdc20(cCdh1Vs − xCdh1)

J3Vs + (cCdh1Vs − xCdh1)
,

a6(x) = k′
5Vs + k′′

5Vs

x2
CycB

(J5Vs)2 + x2
CycB

,

a7(x) = k6xCdc20.
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Fig. 7 One trajectory for the cell cycle model (tf = 150 min). CycB, grey line. Cdh1, solid line. Cdc20,

dotted line.

In the numerical experiments the characteristic concentrations cCycB = 5.0nM , cCdh1 = 5.0nM ,

cCdc20 = 5.0nM . The system is initialized with x = (xCycB, xCdh1, xCdc20) = (5, 5, 5) and m = 1.5. Fig. 7

and Fig. 8 display the numerical results, while Table 4 and Table 5 list the computational costs. The nu-

merical results from the proposed method match the histograms obtained from SSA simulations and are

smoother. The result π
(10)
10 has accuracy comparable to the Monte Carlo methods but at about half the cost.

5. Conclusions and Future Work

In the theory of Markov processes, determining the value of the state probability vector at any time

before the system reaches the stable state is called transient analysis. In contrast to steady state analysis,

transient analysis requires solving linear differential equations instead of linear algebraic equations, which

makes transient analysis much more difficult. Nevertheless, many methods have been proposed for transient

analysis, based on traditional ODE solvers, the exponential of a matrix, Laplace transforms, Krylov sub-

spaces, and uniformization ([17], [35]). The uniformization method was proposed by Jensen and has become

very popular in the last twenty years. This paper has investigated a variant of the standard uniformiza-

tion method, called the external uniformization method. Numerical results here show that for a number of

problems, especially problems with two or three species, the external uniformization method is numerically

efficient and accurate.

One important feature of (external) uniformization method is its simplicity. Only an efficient sparse

linear system solver is needed. In the examples here, direct linear system solvers outperform iterative solvers,

but this may not be the case for higher dimension problems or problems with more irregular structures.

Generally, the performance of iterative linear solvers depends crucially on preconditioning, but that has not

been explored here.
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Fig. 8 Cell cycle computational results. Comparisons of estimations for marginal probability distributions.

The histograms (dotted lines) are based on 10,000 SSA simulations. The solid lines are based on π
(10)
10

computed from the proposed method. The final time is 1000 min. (A) CycB. (B) Cdh1. (C) Cdc20.
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Table 4: CPU time (sec) for different Monte Carlo algorithms (StochKit). The error

control epsilon in the adaptive τ-leaping method equals 0.03.

103 runs 104 runs

SSA 240.9 2400.7
Adaptive τ -leaping 246.8 2464.0

Table 5: CPU time (sec) for different r using the direct linear system solver (UMF-

PACK). The run time is decomposed as factorization + triangular system solve +

other.

r = 10 : 1203.0 = 1078.8 + (7.2 + 9 × 11.4) + 14.4

r = 20 : 1271.9 = 1009.0 + (7.9 + 19 × 12.7) + 13.7

r = 40 : 1526.2 = 1008.7 + (7.9 + 39 × 12.7) + 14.3

Note that π
(r)
r is approximately a left eigenvector of I − 1

λQ corresponding to the dominant eigenvalue

one, hence an Arnoldi method [36] may be a viable way to approximate π
(r)
r for large r. Eigentheory for

large sparse matrices has also not been considered here.

Like other direct methods for the chemical master equations, the major computational challenge for the

external uniformization method comes from the curse of dimensionality. Combining the method with model

reduction techniques, like sparse grid approximation for the state space, and novel techniques for efficiently

computing π
(r)
r , holds promise. The next step is to attempt to solve the master equation for a state of the

art cell cycle model such as the 46 ODE budding yeast model [37].
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