
Bounding the Čebyšev Functional for the Riemann-
Stieltjes Integral via a Beesack Inequality and 
Applications

This is the Published version of the following publication

Cerone, Pietro and Dragomir, Sever S (2008) Bounding the Čebyšev 
Functional for the Riemann-Stieltjes Integral via a Beesack Inequality and 
Applications. Research report collection, 11 (2).  

The publisher’s official version can be found at 

Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/17612/ 



BOUNDING THE µCEBY�EV FUNCTIONAL FOR THE
RIEMANN-STIELTJES INTEGRAL VIA A BEESACK

INEQUALITY AND APPLICATIONS

P. CERONE AND S.S. DRAGOMIR

Abstract. Lower and upper bounds of the µCeby�ev functional for the Riemann-
Stieltjes integral are given. Applications for the three point quadrature rules
of functions that are n�time di¤erentiable are also provided.

1. Introduction

In 1975, P.R. Beesack [1] showed that, if y; v; w are real valued functions de-
�ned on a compact interval [a; b] ; where w is of bounded variation with total
variation

Wb
a (w) ; and such that the Riemann-Stieltjes integrals

R b
a
y (t) dv (t) andR b

a
w (t) y (t) dv (t) both exist, then

m

Z b

a

y (t) dv (t) +

b_
a

(w) � inf
a��<��b

"Z �

�

y (t) dv (t)

#
(1.1)

�
Z b

a

w (t) y (t) dv (t)

� m
Z b

a

y (t) dv (t) +
b_
a

(w) � sup
a��<��b

"Z �

�

y (t) dv (t)

#
;

where m := inft2[a;b] fw (t)g :
The second of the inequalities above extends a result of R. Darst and H. Pollard

[5] who dealt with the case y (t) = 1; t 2 [a; b] and v (t) continuous on [a; b] :
In [6], S.S. Dragomir has introduced the following µCeby�ev functional for the

Riemann-Stieltjes integral :

(1.2) T (f; g;u) :=
1

u (b)� u (a)

Z b

a

f (t) g (t) du (t)

� 1

u (b)� u (a)

Z b

a

f (t) du (t) � 1

u (b)� u (a)

Z b

a

g (t) du (t) ;

provided u (b) 6= u (a) and the involved Riemann-Stieltjes integrals exist.
It has been shown in [6] that, if f; g are continuous, m � f (t) �M for each t 2

[a; b] and u is of bounded variation, then the error in approximating the Riemann-
Stieltjes integral of the product in terms of the product of integrals, as described
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2 P. CERONE AND S.S. DRAGOMIR

in the de�nition of the µCeby�ev functional (1.2), satis�es the inequality:

(1.3) jT (f; g;u)j

� 1

2
(M �m) � 1

ju (b)� u (a)j

g � 1

u (b)� u (a)

Z b

a

g (s) du (s)


1

b_
a

(u) ;

where the constant 12 is best possible and k�k1 is the sup-norm.
Moreover, if f; g are continuous, m � f (t) �M for t 2 [a; b] and u is monotonic

nondecreasing on [a; b] ; then:

(1.4) jT (f; g;u)j

� 1

2
(M �m) 1

ju (b)� u (a)j �
Z b

a

�����g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

����� du (t)
and the constant 12 here is also sharp.
Finally, if f; g are Riemann integrable and u is Lipschitzian with the constant

L > 0 then also

(1.5) jT (f; g;u)j

� 1

2
(M �m) L

ju (b)� u (a)j �
Z b

a

�����g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

����� dt:
The constant 12 is also best possible in (1.5) (see [7] and [8]).
The main aim of the present paper is to provide other bounds for the µCeby�ev

functional T (f; g;u) by utilising the Beesack inequality (1.1). Applications for three
point quadrature rules of functions that are (n� 1)�di¤erentiable (n � 1) with the
derivative f (n�1) absolutely continuous are given as well.

2. The Results

The following result may be stated.

Theorem 1. Let f; g; u : [a; b] ! R be such that f is of bounded variation and
the Riemann-Stieltjes integrals

R b
a
f (t) g (t) du (t) ;

R b
a
f (t) du (t) and

R b
a
g (t) du (t)

exist. Then

b_
a

(f) � inf
a��<��b

"Z �

�

g (t) du (t)� u (�)� u (�)
u (b)� u (a) �

Z b

a

g (s) du (s)

#
(2.1)

�
Z b

a

f (t) g (t) du (t)� 1

u (b)� u (a) �
Z b

a

f (t) du (t) �
Z b

a

g (t) du (t)

�
b_
a

(f) � sup
a��<��b

"Z �

�

g (t) du (t)� u (�)� u (�)
u (b)� u (a) �

Z b

a

g (s) du (s)

#
;

provided u (b) 6= u (a) :
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Proof. We observe that the following identity holds true (see also [6])

(2.2) [u (b)� u (a)]T (f; g;u)

=

Z b

a

f (t)

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t) :

Since f is of bounded variation, it follows that f is bounded below and if we denote
by m the in�mum of f on [a; b] ; then on applying the Beesack inequality for the
choices

w (t) = f (t) ; y (t) = g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

and v (t) = u (t) ; t 2 [a; b] ; we can write that:

m

Z b

a

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)(2.3)

+

b_
a

(f) � inf
a��<��b

(Z �

�

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)

)
� [u (b)� u (a)]T (f; g;u)

� m
Z b

a

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)

+

b_
a

(f) � sup
a��<��b

(Z �

�

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)

)
:

Since Z b

a

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t) = 0

and

Z �

�

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)

=

Z �

�

g (t) du (t)� u (�)� u (�)
u (b)� u (a) �

Z b

a

g (s) du (s) ;

hence, by (2.3), we deduce the desired result (2.1). �

The following corollary for weighted integrals may be stated:

Corollary 1. Let f; g; w : [a; b] ! R be such that f is of bounded variation and
the Riemann integrals

R b
a
f (t) g (t)w (t) dt;

R b
a
f (t)w (t) dt and

R b
a
g (t)w (t) dt exist.
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Then
b_
a

(f) � inf
a��<��b

"Z �

�

g (t)w (t) dt�
R �
�
w (s) dsR b

a
w (s) ds

�
Z b

a

g (t)w (t) dt

#
(2.4)

�
Z b

a

f (t) g (t)w (t) dt� 1R b
a
w (s) ds

�
Z b

a

f (t)w (t) dt �
Z b

a

g (t)w (t) dt

�
b_
a

(f) � sup
a��<��b

"Z �

�

g (t)w (t) dt�
R �
�
w (s) dsR b

a
w (s) ds

�
Z b

a

g (t)w (t) dt

#
;

provided
R b
a
w (s) ds 6= 0:

Remark 1. For the particular case when w (t) = 1; t 2 [a; b] ; then we get from
(2.4) the following inequality:

b_
a

(f) � inf
a��<��b

"Z �

�

g (t) dt� � � �
b� a �

Z b

a

g (t) dt

#
(2.5)

�
Z b

a

f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt �
Z b

a

g (t) dt

�
b_
a

(f) � sup
a��<��b

"Z �

�

g (t) dt� � � �
b� a �

Z b

a

g (t) dt

#
;

provided f is of bounded variation and the involved Riemann integrals exist.

3. Applications for Three Point Quadratures

Recall that in [4] (see also [9, p. 223]) P. Cerone and S.S. Dragomir estab-
lished the following identity concerning a three point quadrature rule for n�time
di¤erentiable functions f : [a; b]! R:

(3.1)
Z b

a

f (t) dt =
nX
k=1

1

k!

n
(1� )k

h
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+ k
h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

io
+ (�1)n

Z b

a

Cn (x; t) f
(n) (t) dt;

where the Peano kernel is given by:

(3.2) Cn (x; t) :=

8>>><>>>:
[t� (x+ (1� ) a)]n

n!
if t 2 [a; x] ;

[t� (x+ (1� ) b)]n

n!
if t 2 (x; b];

and  2 [0; 1] ; x 2 [a; b] :
We note that the above representation generalised the interior point quadrature

rule obtained in 1999 by Cerone et al. in [2] for  = 0 and the trapezoid type rule
obtained in 2000 by Cerone et al. in [3] for  = 1:
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The function Cn (x; �) is of bounded variation for each �xed x 2 [a; b] and a
simple calculation reveals that

(3.3)
b_
a

((�1)nCn (x; �))

=

Z x

a

����dCn (x; t)dt

���� dt+ Z b

x

����dCn (x; t)dt

���� dt
=

Z x

a

jt� (x+ (1� ) a)jn�1

(n� 1)! dt+

Z b

x

jx+ (1� ) b� tjn�1

(n� 1)! dt

=
1

n!
(x� a)n [n + (1� )n] + 1

n!
(b� x)n [n + (1� )n]

=
1

n!
[n + (1� )n] [(b� x)n + (x� a)n]

for any x 2 [a; b] :
Also,

Z b

a

Cn (x; t) dt(3.4)

=
1

n!

Z x

a

[t� (x+ (1� ) a)]n dt+ 1

n!

Z b

x

[t� (x+ (1� ) b)]n dt

=
1

(n+ 1)!

n
[x� (x+ (1� ) a)]n+1 � [a� (x+ (1� ) a)]n+1

+ [b� (x+ (1� ) b)]n+1 � [x� (x+ (1� ) b)]n+1
o

=
1

(n+ 1)!

n
(1� )n+1 (x� a)n+1 � (�1)n+1 n+1 (x� a)n+1

+ n+1 (b� x)n+1 � (�1)n+1 (1� )n+1 (b� x)n+1
o

=
1

(n+ 1)!

n
(b� x)n+1

h
n+1 + (�1)n (1� )n+1

i
+ (�1)n

h
n+1 + (�1)n (1� )n+1

i
(x� a)n+1

o
=

1

(n+ 1)!

h
(b� x)n+1 + (�1)n (x� a)n+1

i h
n+1 + (�1)n (1� )n+1

i

for any x 2 [a; b] :
We can state the following result:
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Theorem 2. Let f : [a; b]! R be an (n� 1)�di¤erentiable function (n � 1) with
the derivative f (n�1) absolutely continuous on [a; b] : Then we have

(3.5)
Z b

a

f (t) dt =
nX
k=1

1

k!

n
(1� )k

h
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+ k
h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

io
+

1

(n+ 1)!

�
f (n�1) (b)� f (n�1) (a)

b� a

� h
(b� x)n+1 + (�1)n (x� a)n+1

i
�
h
(�1)n n+1 + (1� )n+1

i
+ En (f; x; ; a; b) ;

where the remainder En (f; x; ; a; b) (which is de�ned implicitly by (3.5))satis�es
the bounds:

(3.6)
1

n!
[n + (1� )n] [(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� En (f; x; ; a; b)

� 1

n!
[n + (1� )n] [(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)]

and

(3.7) �n (f ;�; �) = f
(n�1) (�)� f (n�1) (�)� � � �

b� a

h
f (n�1) (b)� f (n�1) (a)

i
;

where  2 [0; 1] and x 2 [a; b] :

Proof. Apply the inequality (2.5) for the functions f = (�1)n Cn (x; �) and g = f (n)
to get

1

n!
[n + (1� )n] [(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)](3.8)

� (�1)n
Z b

a

Cn (x; t) f
(n) (t) dt� 1

b� a (�1)
n
Z b

a

Cn (x; t) dt �
Z b

a

f (n) (t) dt

� 1

n!
[n + (1� )n] [(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)] :

Since, by (3.3)

b_
a

((�1)n Cn (x; �)) =
1

n!
[n + (1� )n] [(b� x)n + (x� a)n]

and by (3.4)

(�1)n
Z b

a

Cn (x; t) dt

=
1

(n+ 1)!

h
(b� x)n+1 + (�1)n (x� a)n+1

i h
(�1)n n+1 + (1� )n+1

i
;

then, on utilising the inequality (3.8), we have
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(3.9)
1

n!
[n + (1� )n] [(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� (�1)n
Z b

a

Cn (x; t) f
(n) (t) dt

� 1

(n+ 1)!

h
(b� x)n+1 + (�1)n (x� a)n+1

i h
(�1)n n+1 + (1� )n+1

i
�
�
f (n�1) (b)� f (n�1) (a)

b� a

�
� 1

n!
[n + (1� )n] [(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)] :

Now, due to the fact that, by the representation (3.1) we have

(3.10) (�1)n
Z b

a

Cn (x; t) f
(n) (t) dt

=

Z b

a

f (t) dt�
nX
k=1

1

k!

n
(1� )k

h
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+ k
h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

io
then, on making use of remainder�s representation En (f; x; ; a; b) (which is de�ned
implicitly by (3.5)), we deduce from (3.9) the desired result (3.6). �

Remark 2. For  = 0; we get from Theorem 2:

(3.11)
Z b

a

f (t) dt =
nX
k=1

1

k!

h
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+
1

(n+ 1)!

�
f (n�1) (b)� f (n�1) (a)

b� a

� h
(b� x)n+1 + (�1)n (x� a)n+1

i
+ Fn (f; x; a; b) ;

where the remainder satis�es the bounds

(3.12)
1

n!
[(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� Fn (f; x; a; b)

� 1

n!
[(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)]

for x 2 [a; b] :
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For  = 1
2 ; we get from Theorem 2 that:

(3.13)
Z b

a

f (t) dt =
nX
k=1

1

2kk!

nh
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+
h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

io
+
[1 + (�1)n]
2n+1 (n+ 1)!

�
�
f (n�1) (b)� f (n�1) (a)

b� a

� h
(b� x)n+1 + (�1)n (x� a)n+1

i
+Gn (f; x; a; b) ;

where the remainder satis�es the inequality:

(3.14)
1

2n�1n!
[(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� Gn (f; x; a; b)

� 1

2n�1n!
[(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)] ;

for x 2 [a; b] :
Finally, for  = 1; we obtain from Theorem 2 that:

(3.15)
Z b

a

f (t) dt =
nX
k=1

1

k!

h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

i
+

(�1)n

(n+ 1)!

�
f (n�1) (b)� f (n�1) (a)

b� a

� h
(b� x)n+1 + (�1)n (x� a)n+1

i
+Hn (f; x; a; b)

where the remainder Hn (f; x; a; b) satis�es the bounds:

(3.16)
1

n!
[(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� Hn (f; x; a; b)

� 1

n!
[(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)]

for x 2 [a; b] :

The following particular case may be useful in applications:
If n = 1 and f : [a; b]! R is an absolutely continuous function on [a; b] then we

have the representation:

(3.17)
Z b

a

f (t) dt = (1� ) (b� a) f (x) +  [(x� a) f (a) + (b� x) f (b)]

+ [f (b)� f (a)]
�
a+ b

2
� x

�
(1� 2) + E (f; x; ; a; b)

and the remainder E (f; x; ; a; b) satis�es the bounds

(3.18) (b� a) inf
a��<��b

[� (f ;�; �)] � E (f; x; ; a; b) � (b� a) sup
a��<��b

[� (f ;�; �)]
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where

� (f ;�; �) := f (�)� f (�)� � � �
b� a [f (b)� f (a)] ;

and x 2 [a; b] while  2 [0; 1] :
One must observe that for n = 1 the bounds for the error are independent of x

and . However, this quality is not inherited for the quadrature rules with n � 2:
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