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The deformation of an initially spherical capsule, freely suspended in simple shear flow, can
be computed analytically in the limit of small deformations [D. Barthés-Biesel, J. M. Rallison, The
Time-Dependent Deformation of a Capsule Freely Suspended in a Linear Shear Flow, J. Fluid Mech.
113 (1981) 251-267]. Those analytic approximations are used to study the influence of the mesh
tessellation method, the spatial resolution, and the discrete delta function of the immersed boundary
method on the numerical results obtained by a coupled immersed boundary lattice Boltzmann finite
element method. For the description of the capsule membrane, a finite element method and the
Skalak constitutive model [R. Skalak et al., Strain Energy Function of Red Blood Cell Membranes,
Biophys. J. 13 (1973) 245-264] have been employed. Our primary goal is the investigation of the
presented model for small resolutions to provide a sound basis for efficient but accurate simulations
of multiple deformable particles immersed in a fluid. We come to the conclusion that details of the
membrane mesh, as tessellation method and resolution, play only a minor role. The hydrodynamic
resolution, i.e., the width of the discrete delta function, can significantly influence the accuracy
of the simulations. The discretization of the delta function introduces an artificial length scale,
which effectively changes the radius and the deformability of the capsule. We discuss possibilities
of reducing the computing time of simulations of deformable objects immersed in a fluid while

maintaining high accuracy.

PACS numbers: 47.11.-j, 47.57.-s, 47.63.-b

I. INTRODUCTION

Understanding the hydrodynamics of blood is certainly
one of the major motivations for the simulation of de-
formable particles immersed in a fluid. Aside from the
desire to investigate this aspect of fundamental research
in more detail, there are many relevant applications in
biology and medical sciences. The ultimate goal is the
simulation of the human microcirculation up to the cen-
timeter scale including the full dynamics of the cells, their
interactions with each other and the blood vessel walls,
and the impact of their microscopic properties on the
macroscopic behavior of blood over the entire shear rate
range. The complexity and scale-bridging of the coupled
system of hydrodynamics and cell membrane dynamics
requires numerical approaches to obtain meaningful re-
sults.

Capsules are elastic membranes filled with a fluid. The
investigation of the dynamical response of capsules in flu-
ids is not trivial since the hydrodynamic properties of
the internal and external fluids, the constitutive model
of the capsule membrane, and its shape affect the out-
come. Fortunately, there are analytic solutions available
for small deformations of single capsules in shear flow
[1,[2]. Experimental results for the behavior of artificial
capsules have been obtained by Chang and Olbricht B]
and Walter et al. [4]. Pozrikidis [5] numerically stud-
ied those problems using the boundary element method
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(BEM). This method, in different formulations, has also
been employed by, e.g., Kraus et al. ﬂa], Ramanujan and
Pozrikidis ﬂ%], Diaz et al. |§], Barthés-Biesel et al. [d],
and Lac et al. [10]. The BEM is only valid in Stokes flow
and cannot be applied to flow situations with inertia.
Fluid-capsule interactions using the immersed boundary
method have been studied by Eggleton and Popel ]
Sui et al. ﬂﬂ] have implemented a combined immersed
boundary lattice Boltzmann method with grid refinement
to study the transient deformation of capsules in simple
shear flow at high resolutions. Pozrikidis ﬂﬁ] consid-
ered bending resistance in capsule simulations. He states
the importance of the presence of bending stiffness in bi-
ological cells. Simulations of multiple blood cells have
been performed by, e.g., Dupin et al. M] and Doddi and
Bagchi [15].

Although the processing power of present-day comput-
ers is large compared to that one or two decades ago,
computing resources are still limited. In simulations of
multiple deformable particles in flow, the spatial resolu-
tion must be kept sufficiently small in order to limit the
computing time to a reasonable period. This calls for effi-
cient numerical methods which are capable of capturing
the dominant physical properties of the problem, even
at small resolutions. Therefore, we aim at a better un-
derstanding of the behavior of the simulation technique
employed in this paper, especially at smaller resolutions.

The lattice Boltzmann method (LBM) is a compara-
bly new method to solve the full Navier-Stokes equations
ﬂﬁ—@] The starting point is the lattice Boltzmann equa-
tion which is an approximate and discretized form of the
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Boltzmann equation. Virtual particles, also called popu-
lations, are moving on a lattice and collide at the fixed
lattice nodes of the regular grid. In the macroscopic
limit, the Navier-Stokes equations can be recovered from
the well-defined collision rules of those particles. This
method is particularly straightforward to implement, and
it has proven to be accurate and applicable to many hy-
drodynamic problems, e.g., ﬂz_ll—lﬂ]

Peskin developed the immersed boundary method
(IBM) [25, 26] to model blood flow in the heart. The
strength of this method is that the immersed material is
intrinsically deformable and that the Navier-Stokes equa-
tions do not need to be modified in the presence of the
material, except for the inclusion of a body force. The
IBM has especially attracted the attention of the scien-
tists due to its capability to model thin and elastic mem-
branes and therefore red blood cells and capsules in ar-
bitrary external flow fields. In an attempt to benchmark
and test the accuracy and convergence behavior of IBM,
the IBM has been applied to stiff objects m—@] How-
ever, there are numerical limits to the applicability of
IBM to stiff materials, and it requires some effort to do
so. On the contrary, the lattice Boltzmann bounce-back
(BB) scheme unrolls its benefits in the case of stiff obsta-
cles in flow [18, |, and it is much more demanding
to capture deformable objects with BB.

In order to efficiently simulate deformable membranes
immersed in a fluid, we use an approach combining the
LBM as fluid solver, the IBM for the coupling of the
fluid and the membranes, and a finite element method
(FEM) for the computation of the membrane response to
deformations (IBLBFEM). This approach has been em-
ployed successfully by other scientists, e.g., Zhang et al.
135 or Sui et al. [12]. A similar method, with another
Navier-Stokes solver, has also been applied by Eggleton
and Popel [11] and Doddi and Bagchi [15]. The advan-
tage of this combined IBLBFEM is that the computa-
tions of the fluid and membranes are decoupled and that
the meshes of the fluid and the membranes do not have
to match. No remeshing is required for the membranes.
The implementation is straightforward, and the method
is powerful to simulate O(100) deformable particles in
flow solving the full Navier-Stokes equations and obtain-
ing velocity, pressure, and shear stress information locally
and at finite Reynolds numbers.

We use an explicit IBM coupling scheme which is ef-
ficient in terms of computing time. However, the no-
slip condition at the membrane surface is not perfectly
obeyed, and a drift of the capsules’ volume can occur
136, [37]. For the simulation of stiff objects in flow (which
is not the case here), modified IBM schemes exactly obey-
ing the no-slip condition are known m, @] It is also of-
ten argued that the IBM is unstable in the limit of high
stiffness HE] There are methods to increase stability us-
ing either implicit or semi-implicit methods m, @] Due
to the softness of the capsules and the relatively short
simulations in the present paper, instabilities do not oc-
cur, and the volume drift is negligible. We do not in-

tent to comment on IBM-related stability issues or an
improved implementation of the no-slip condition in this
work.

When it comes to the discretization of the capsule,
the question arises whether a structured or unstructured
mesh should be used and how this mesh should be cre-
ated. Structured meshes usually contain coordinate sin-
gularities whereas on unstructured meshes gradients have
to be approximated. Diaz et al. [§] and Lac et alHE] have
used structured meshes whereas Kraus et al. [6], Navot
[42), and Ramanujan and Pozrikidis [7] have employed
unstructured grids for the capsule. We use an unstruc-
tured mesh tessellation in this paper.

This paper is not targeted at finding new physics of
capsules in shear flow. We rather wish to better under-
stand the behavior of the combined IBLBFEM and the
membrane tessellation on the accuracy and the numeri-
cal efficiency of the simulation of deformable capsules at
small resolutions. This is the main difference between
our recent effort and the work by Sui et al. ﬂﬁ] who have
not discussed the behavior of their numerical method at
small resolutions. Of special interest are the impact of the
IBM interpolation stencil, the mesh tessellation, and the
ratio between the average mesh node distance and the
lattice constant of the LBM grid. We will also shortly
discuss the importance of a well-chosen BGK LBM re-
laxation parameter. Those considerations are important
for a correct setup of efficient simulations containing a
large number of deformable objects with relatively coarse
meshes. Therefore, our investigations are hoped to be
useful for future simulations of multiple deformable par-
ticles in flow employing the IBM. We simulate the time
evolution of the deformation of an initially spherical cap-
sule freely suspended in an unbound simple shear flow.
The interior and exterior fluids have the same properties,
and they are Newtonian. The capsules have no bending
resistance. For comparison, the approximated analytic
steady-state solutions by Barthes-Biesel ﬂ] and Barthes-
Biesel and Rallison [2] are used.

The LBM will be shortly presented in Sec. [TAl fol-
lowed by an overview of the membrane model and the
used FEM in Sec. The IBM is briefly presented
in Sec. [Tl and the mesh influence is discussed in Sec.
In Sec. [T, the theory of small capsule deformations
is shortly outlined. The simulations, results, and discus-
sions can be found in Sec.[[V] followed by the conclusions

in Sec. [V]

II. NUMERICAL METHODS

The simulation algorithm consists of three major com-
ponents: the fluid solver, the membrane model, and the
coupling of fluid and membrane. For the fluid solver,
we have used the D3Q19 Bhatnagar-Gross-Krook (BGK)
lattice Boltzmann method (LBM). The membrane dy-
namics is derived from a constitutive model, and the
strains in the capsule are evaluated using a finite ele-



ment method (FEM). The interaction of the fluid and
the membrane is captured by the immersed boundary
method (IBM).

The overview of LBM is presented in Sec. [[[Al the
membrane model is outlined in Sec. [IBl and IBM is
shortly covered in Sec. [ICl Since also the discrete par-
ticle mesh plays a role in the simulations, its properties
are briefly discussed in Sec.

A. Lattice Boltzmann method

In the last two decades, the LBM has become a com-
petitive Navier-Stokes solver with increasing prominence
among scientists in the field of computational fluid dy-
namics M, 43, @] Its strength is based on its sim-

fl(:v + CiAt, t+ At) — fi(ilt, t)

in the BGK approximation. The dimensionless relax-
ation parameter 7 of the fluid is connected to the speed
of sound ¢, and the kinematic viscosity v by v = (7 —
1/2)At, where ¢; = /1/3 Ax/At holds. At each time
step t, the populations propagate along the ¢ discretized
velocity vectors ¢; to the next neighbors. At those points,
they collide according to the right-hand side of Eq. ().
The significance of F; is explained below. The equilib-
rium populations are given by

9 3
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This is closely related to the truncated form of the
Maxwell distribution which is a very good approximation
for small Mach numbers. The ¢ factors w; are the lattice
weights, depending on the underlying lattice structure.
Their choice ensures the isotropy of the fluid, a neces-
sity to solve the Navier-Stokes equations asymptotically.
In the present paper, we use a 3D model with 19 ve-
locities, designated D3Q19. The lattice structure, the
corresponding velocities ¢;, and the lattice weights w;
are introduced in HE] A sketch of the D3Q19 lattice is
shown in Fig. [

A body force density f can be incorporated via F; in

Eq. (IID “Ev @]7
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This force density is particularly important for the cou-
pling of the fluid and the immersed membranes, but it is
also commonly used to include gravity. More details are
given in Sec. [LCl

Finally, the macroscopic properties of the fluid have to
be extracted from the populations f;. The density and

ple coding and, since LBM is an automaton, its locality,
making it intrinsically parallelizable.

The lattice Boltzmann equation (LBE), Eq. (), can be
regarded as a discretized form of the Boltzmann equation.
On the other hand, it is an extension of the lattice gas cel-
lular automaton HE] In contrast to conventional Navier-
Stokes solvers, the LBE is not the discretized form of the
Navier-Stokes equations. While conventional methods di-
rectly solve the Navier-Stokes equations in terms of the
pressure p and the velocity u, the LBM introduces a num-
ber of ¢ populations f; (i =0,...,q— 1) streaming along
a regular lattice (lattice constant Ax) in discrete time
steps. Those populations can be regarded as mesoscopic
particle packets propagating and colliding.

The evolution of the populations f; is given by the
LBE, which takes the form

L (@, t) = £, ) + FLAL (1)

T

the velocity can directly be recovered by computing the
zeroth and first moments:

pu_;cifrl-%f, (5)

at each fluid lattice node. The deviatoric shear stress ten-
Zﬁ o can also be computed from the populations locally

].

The simple shear flow required for the present simula-
tions can be realized by using the bounce-back method
for moving walls HE] The fluid is fully periodic along the
z- and y-axes (velocity and vorticity directions, respec-
tively), but it is bound by two plane walls at z = +H/2,
where H is the distance of the walls. Moving the walls
in the z-direction with velocity fu,, (uy, > 0 for z > 0),
the shear rate of the fluid is ¥ = 2u,,/H.

In order to obtain accurate predictions, the limits of
the validity of the LBM must be acknowledged. The
slip velocities u,, have to be chosen sufficiently small so
that the LBM operates in the small Mach number limit.
An even more stringent restriction of the wall speed is
given by the Reynolds number. The theory of small de-
formations of a capsule in simple shear flow is only valid
in Stokes flow, Re < 1. The correct choice of the re-
laxation parameter 7 also influences the accuracy of the
simulations m, @], especially in combination with the
IBM HE] The LBE intrinsically contains the partial time
derivative du /0t of the Navier-Stokes equations. Hence,
Stokes flow can only be reached asymptotically.

A more detailed presentation of the LBM can be found
in the literature, e.g., in the monographs by Succi HE] or
Sukop and Thorne [20].
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Figure 1. Sketch of the D3Q19 lattice structure. All velocity vectors are located in at least one of the three coordinate planes
(light gray). The velocity vectors either point to the next neighbors along the coordinate axes (ci—s, black arrows) or to the
next but one neighbors (e7—1s, dark-gray arrows). The zero velocity ¢g is not shown.

B. Membrane model and force computation

The IBM algorithm requires knowledge of the forces
at the nodes of the tessellated membrane (cf. Sec. [TC]).
For a hyperelastic material, i.e., negligible viscous and
plastic forces, the shear forces can be computed from a
constitutive model for the areal strain energy density w®.
The contributions to the total energy W can generally
be written in the form W = W2 + WEB + WA + WV,
where the superscripts denote strain, bending, surface,
and volume contributions, respectively.

The areal strain energy density w® obeying W9 =
JdAwS (dA is the surface element) can only depend
on the invariants I; = A3 + A3 — 2 and Iy = A\?)\3 — 1 for
a thin membrane with isotropic and homogeneous elastic
properties, i.e., per definition w® is invariant under rota-
tions and translations. A\; and Ao are the local principal
in-plane stretch ratios. Deformations of biological cells
can be large, and thus the linear strain-stress approxi-
mation is not justified in general. Skalak et al. [48] have
suggested an energy model which is able to reproduce
experimental data of red blood cells at both small and
large strains,

k k
S s 2 «a 12

The surface elastic shear modulus ks and area dilation
modulus k, control the strength of the membrane re-
sponse to deformation (shear and dilation). A commonly
used model is the neo-Hookean law which is equivalent
to the zero-thickness shell membrane proposed by Ra-
manujan and Pozrikidis ﬂ] for small deformations. An-
other constitutive model has been proposed by Navot
m] More information about those constitutive laws can

be found in the literature, e.g., E, @] and will not be dis-
cussed here. For all our simulations, we have employed
the Skalak membrane model, Eq. ({@).

The bending energy W can have local and non-local
contributions. We have not considered any bending en-
ergy in the present simulations, i.e., WP = 0 since it is
not, considered in the analytic investigation by Barthes-
Biesel and Rallison @] However, it has been thor-
oughly discussed in the literature that a bending resis-
tance has to be included whenever strong local curva-
tures appear. Elsewise, the membranes can buckle or
collapse ﬂ, , , ] This is especially the case for
more complex geometries and strong deformations as in
the case of red blood cells. More details about the form of
the bending energy are provided in Canham @], Helfrich
[51], Svetina and Zeks ﬂl;j], and Gompper and Schick [53].

The total volume and surface of the membrane may
be restricted. This can be formulated by defining global
volume and surface energies, W" and W4. Those ener-
gies are minimum if the volume and surface equal their
corresponding equilibrium values @] In the present sim-
ulations, we have neither employed a volume nor a sur-
face energy, i.e., WY = W4 = 0. Although the IBM is
not perfectly volume-conserving, cf. Sec.[[IC| the volume
drift is almost negligible in most of the present simula-
tions of a single capsule. The reason is the relatively short
duration of the simulations. We stress that volume and
surface energies may have to be considered to improve
numerical stability in longer simulations with complex
flow fields, large local shear rates, and coarse mesh reso-
lutions.

The capsule membrane is numerically described by a
number Ny of flat triangular face elements, which remain
flat even at large deformations. While the deformation
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Figure 2. Tllustration of (a) the equilibrium face (defined by lo, Iy, and ¢o), (b) its deformed shape (accordingly defined by I,
', and ¢), and (c) both transformed to the same zy-plane. The displacement vector v; is identically zero, and the other two
are shown in subfigure (c¢). The deformation state (A1, A2) of the face is then uniquely defined.

state is a property of the faces, the membrane forces have
to be known at the corners of the faces (nodes). The first
step in the computation of the strains A; 2 of a given
face element is the identification of the displacements wv;
(i =1,2,3) of the nodes. The deformed and undeformed
elements are transformed to a common plane (here: xy-
plane) in such a way that the edges [, and [’ are aligned,
cf. Fig. There is no restriction since translations and
rotations do not change the energy of an element. The
basic assumption is that the displacement gradient ten-
sor (Dag) = (6ap + 03vq) is spatially constant over the
entire face element. This can be realized by introduc-
ing a linear shape function N;(z,y) = a;x + by + ¢
(1 = 1,2,3) for each node. The coefficients are found
by letting N;(z;,y,) = 0i; (4,7 = 1,2,3), i.e., each shape
function N; is unity at the location of the correspond-
ing node ¢, but zero at the two nodes other than i. The
linear displacement field of the face element can then be
written as

’U(,T, y) = Nyv1 + Novy + N3vg, (7)

and the displacement gradient tensor D can be com-
puted. Its components do not depend on z or y, but on
the shape function coefficients a; and b; which are fixed
by the shape of the undeformed element only, i.e., a; and
b; are constant in time for each node in the face. It is
straightforward to show that the displacement gradient
tensor then has the form (D,p) = (%) with [53]

a=—, (8)
lo
1 U l
b= — - — 9
o~ <l(/3 cos I cos gpo) , (9)
I si
sin ¢ (10)

c= —— .
1§, sin g

Here, [ and I’ are the lengths of two arbitrary edges of the
face, and ¢ is the angle between those edges, cf. Fig.
The zero index (g, Ij, and o) denotes the undeformed
values. The current deformation of a face is evaluated

from the equations

NA2 = a?c?, (11)
M4+ A2 =a®+ 0% + 2 (12)

since A2 +\% = tr DTD and A?)\3 = det DT D. Note that
the product DT D is rotationally invariant. For more
details, we refer to Charrier et al. @ , Shrivastava and
Tang [53], and Gompper and Schick Né]

The total energy in the present simulations has shear
contributions only, W = W?°. The strain energy W? is
computed from the areal energy density w®, Eq. (@), and
the local reference area Ay of the membrane face elements

5354,

faces

WS = Z Aoj’wf. (13)
J

Once the energy of the membrane is known, the forces
acting on the fluid exerted by node i at position x; can
be computed from the principle of virtual work,

W (w)

This procedure is equivalent to the approach explained
in details in [54, [53].

C. Immersed boundary method

The IBM was originally proposed by Peskin m, @]
The basic idea is to couple the Eulerian coordinate sys-
tem of the fluid lattice and the arbitrary Lagrangian co-
ordinate system of a surface which is not conform to the
regular lattice. The IBM is a front-tracking coupling
method.

Caused by its deformations, the membrane exerts a
force Fj(t) on the fluid at time step ¢. The fluid lattice
nodes have fixed positions X and the membrane nodes
i are located at x;(t). In the discretized description, the



Figure 3. Illustration of the immersed boundary method in
two dimensions. The membrane mesh (light gray) moves on
top of the fixed fluid lattice (black). If the 2-point interpo-
lation stencil is used, only the four lattice nodes enclosed by
the dashed square with side length 2Ax are required for the
spreading and interpolation steps of membrane node ¢ located
at x;(t) (dark-gray).

Eulerian body force density f(X,t) is computed from
the Lagrangian force F;(¢) by the spreading operation

fF(X,1) :ZE(t) O(X — zi(1))- (15)

The lattice force density f(X,t) is then used in the lat-
tice Boltzmann equation, Eq. (), via the force coupling,
Eq. @). The kernel 6(X — x;(t)) is a discretized Dirac
delta function with a finite support. Peskin [26] has
shown that this function has to obey some basic prop-
erties to maintain momentum and angular momentum
conservation. Still, the width of the function is not re-
stricted a priori, and it can be considered as a free pa-
rameter of the IBM. We use the common decomposi-
tion 8(r) = ¢(x)p(y)¢(z). Among others [26, [56], the
most popular interpolation functions ¢, with a support
of n = 2,3, 4 lattice nodes along each coordinate axis are

e R )
3 (1+V1I=3r) 0<|r[ <3

b3(r) = & & (5= 3r| = =2+ 61T —37) L<i<d, (17)
0 5 <Irl
L 3—2|r|+\/m) 0<|r <1

¢a(r) = L 5—2|T|—\/—7+12|T|—47’2) 1< | <2 (18)
0 2<r|

Completing the coupling of the fluid and the membrane,
the new velocities u;(t + 1) of the membrane nodes i are
computed in the interpolation step, using the new lattice
velocities but the old node positions,

wit+A) = u(X,t+ A1) 5(X —ai(t).  (19)
X

Here, the no-slip condition is assumed to be valid at the
location of the membrane, i.e., the membrane moves with
the ambient fluid velocity. The interpolation functions in
Eqgs. (I3) and ([I9) are the same. The principle of the IBM
is illustrated in Fig.[Bl Finally, the membrane nodes ¢ are
advected explicitly by the Euler rule

zi(t+ AL) = 2 (t) + wi(t + At)At. (20)

We have found that the Adams-Bashforth scheme

iIti(t + At) = wl(t) + (gul(t + At) — %uz(t)) At (21)

which has been used by Doddi and Bagchi ﬂﬂ] does not
change the results for simulations of short duration. Yet,

it provides additional accuracy for long-time simulations
since it is a second-order scheme.

Although the no-slip condition at the membrane sur-
face can be exactly fulfilled in the continuous limit, this
is not the case in the discretized, explicit version of IBM.
Even for an incompressible velocity field, the standard
interpolation algorithm shown in this section does not
assure that the volume of a closed membrane remains ex-
actly constant in time. This problem has been recognized
early, and improved immersed boundary approaches have
been proposed for example by Peskin and Printz @] and
Wu et al. @] Due to the comparably short simulation
times in the present paper, there is no need to counteract
the volume drift.

In conclusion, each time step of the combined
IBLBFEM scheme consists of the following sub-steps (we
set At = 1).

1. At the beginning of time step ¢, the membrane node
positions x;(t) and the entire fluid state w(X,1t),
p(X,t) are known. From the displacements of the
membrane nodes, the forces F;(t) are computed us-
ing the FEM (Sec. [TB).
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Figure 4. Illustration of the mesh subdivision. The face de-
fined by the nodes n;, nj, and ni (dark-gray) is subdivided.
First, the edges are halved and new nodes n;, n.m,, n, are cre-
ated. The six nodes are connected in such a way that four
faces of equal area are produced (dashed lines). Finally, the
nodes n;, nm, and n, are radially shifted, until they are lo-
cated on the sphere enclosing the body. The four final faces
are shown in light gray.

2. The membrane forces F;(t) are spread to the Eu-
lerian grid via IBM, Eq. (&), and the body force
density f(X,t) is obtained.

3. f(X,t) is used in the LBM to compute the new
state of the fluid, w(X,t + 1), p(X,t + 1) (Sec.

[TA).

4. The new velocities u;(t+ 1) of the membrane nodes
are computed in the framework of IBM, Eq. (IJ).

5. The new positions of the membrane nodes x; (t+1)
are found by evaluating Eq. (20).

6. Information on the membrane and fluid state after
time step ¢ may be written to the disk, using x; (¢t +
1), u(X,t+ 1), etc. Get back to the first sub-step
and recompute for time step ¢ + 1.

D. Membrane tessellation

The question arises whether the detailed properties of
the mesh tessellation have a significant impact on the
quality of the simulation results or not. There are dif-
ferent approaches for the generation of a spherical mesh.
We will focus on three of them:

1. tessellation of an implicit surface using the CGAL
libraries [59],

2. finite element mesh generation using Gmsh [60],

3. successive subdivision, starting from a coarse mesh
of high symmetry.

7

The CGAL libraries [59] allow the user to tessellate the
surface defined by the zero level set of any implicit func-
tion F(x,y, z). For a sphere with radius r, this function
reads F(z,y,z) = 22+ y*+ 22 —r?. One has control over
the number of faces and the distance between neighboring
nodes, but the mesh suffers from a reduced homogeneity
and isotropy. The advantage of this method is that any
implicit surface can be tessellated without much effort.

Gmsh @] is not able to tessellate implicit surfaces,
but the user can construct geometric objects like spheres.
The surface of those shapes can then be tessellated. Also
here, the high isotropy of the initial sphere is not com-
pletely captured by the mesh.

A method to produce a spherical mesh of high homo-
geneity and isotropy is subdivision of a highly symmetric
mesh of low resolution. We have used a regular icosa-
hedron, one of the five Platonic solids. It has 20 equi-
lateral triangles as faces, 12 nodes and 30 edges of equal
length. The numbers of nodes NV,, and faces Ny of any
closed surface consisting only of triangles are related by
2N,, = Ny + 4. Ramanujan and Pozrikidis ﬂﬂ] and Sui
et al. ﬂﬂ have used a similar approach, starting from
a regular octahedron. The subdivision scheme starts at
creating a new node at the middle of each edge. Those
initially 30 new nodes (in case of an icosahedron) are
then radially shifted until they are located on the cir-
cumsphere of the body and connected to form additional
faces. This procedure can be repeated numerous times.
It is illustrated in Fig. Ml It has to be noted that each
subdivision step increases the number of faces according
to Nf* = N¢-4™, where m is the number of subdivisions
and N}J = 20 for an icosahedron and 8 for an octahedron.
Although the resulting mesh has surpassing properties in
terms of edge length, face area, and angle distributions,
one cannot create a mesh with an arbitrary number of
faces. This restriction can somewhat be relaxed by start-
ing from another body of lower symmetry and another
number of faces.

In Tab. [ the properties of the meshes created by the
presented methods are listed and compared for the case
of a sphere with Ny ~ 1280 faces. The meshes are il-
lustrated in Fig. Obviously, the subdivided mesh has
the smallest scatter in face area, edge length, normal-to-
normal angle, and edge-to-edge angle distributions. By
default, we use the mesh obtained from the icosahedron
if not elsewise stated.

IIT. THEORY

We assume that the ambient fluid and the fluid inside
the capsule are Newtonian and have the same properties,
especially the same density (p = pin = pout) and viscosity
(A = Min/Nout = 1 and in = Tout)- Lhis commonly
adopted assumption ﬂa E ﬁ | significantly simplifies the
computations without losing too much generality. In the



(b) Gmsh

(c) icosahedron

(a) CGAL

Figure 5. Meshes produced by CGAL, |(b)| Gmsh, and successive icosahedron subdivision. The meshes have N; = 1278,
1284, and 1280 faces, respectively. Mesh |(c)| has superior isotropy and homogeneity properties.

Table 1. Properties of spherical meshes, created with CGAL, Gmsh, and a successive subdivision of a regular icosahedron. The
spheres have Ny ~ 1280 nodes each. Ny, and N, are the smallest and largest number of neighboring nodes to any node found
for the given mesh. A is the face area, ! is the edge length, ¢, is the angle between neighboring face normals, and ¢, is the
angle between neighboring edges (both being members of a common face). The bar indicates the average of a quantity taken
over the entire mesh, o denotes the standard deviation. Clearly, the mesh based on the icosahedron has superior quality in

terms of isotropy and homogeneity.

quantity CGAL Gmsh subdivision
Ny 1278 1284 1280
Ny Nim 4,10 4,8 5, 6
oa/A 25.8% 21.2% 8.6%
o/l 19.0% 14.3% 6.5%
O, [Pn 42.5% 26.2% 15.9%
oo | Pe 25.1% 17.2% 9.3%

limit of Stokes flow, the capsule Reynolds number
Re= """ (22)

is small, and inertia effects can be neglected. The only
physical parameter left is the dimensionless shear rate

G=1 (23)
ks
where 4 is the shear rate of the unperturbed ambient
fluid, and r and ks are the radius and the surface elastic
shear modulus of the initially spherical capsule.

Due to the presence of the external shear flow, the
membrane deforms. The generated membrane tensions
oppose the shear forces exerted by the fluid. For G <
1, a small membrane deformation suffices to compen-
sate the shear forces, and the capsule shape is only
slightly perturbed. In a simple shear flow, after an ini-
tial transient, steady tank-treading motion of an initially
spherical capsule, deformed to an ellipsoid, is observed
ﬂj, E, , B, |6__1|] Tank-treading has been described first
by Schmid-Schénbein and Wells @] The shape and dy-
namics of the capsule can then be defined by three con-
stant parameters: the Taylor deformation parameter D,

the inclination angle #, and an angular velocity w. The
stationary geometry is shown in Fig.

The inclination angle 6 of the membrane is taken be-
tween its largest semiaxis r, and the z-axis, the direction
of the fluid velocity. Dupin et al. ﬂﬂ] have extracted 6
from an ellipsoid fit of the membrane cross-section on
the zz-plane. A common alternative is the comparison
of the capsule shape with an ellipsoid with the same in-
ertia tensor I. Following Ramanujan and Pozrikidis ﬂﬂ],
its components are given by

faces

1 Z Ai (r?&a,@r,y — Tiariﬂri’y) Ny (24)

log = :
where r; is the centroid of face ¢ and n; its normal. The
diagonalized inertia tensor of an ellipsoid with unit mass
and constant density is I = diag(rZ+r2,r2+r2 r2+r2)/5.
rq and 7. are the largest and smallest semiaxis of the el-
lipsoid, and 7 is the intermediate semiaxis. Assuming
that the symmetry axes of the deformed capsule coincide
with the principal axes of the inertia tensor, the ellip-
soid’s principal semiaxes and the inclination angle can
be computed. For small deformations, this is an excel-
lent approximation.
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Figure 6. Sketch of the tank-treading geometry. The capsule
cross-section is shown in the xy-plane. It is deformed with
major and minor semiaxes 7, and r.. The inclination angle 6
is taken between the major semiaxis and the z-axis (velocity
direction of the external flow). The membrane rotates about
its spatially fixed shape with angular velocity w. The flow
direction of the unperturbed ambient fluid is also shown (dark
gray arrows).

The Taylor deformation index is defined as

D="a""c5 (25)
Tq + Te

It is a measure for the deformation of the capsule, and
D = 0 holds for a sphere. In the case of small deforma-
tions in Stokes flow (G, Re < 1), the shape of the capsule
can be described analytically é] In simple shear flow in
the steady state, the relation between the dimensionless
shear rate G and the deformation parameter D is

30&2 —|— 4@3
1(3as + bag) + 2as(as + as)

D= Za G+ O(G?). (26)

The coefficients a1, aq, and ag can be extracted from the
constitutive model, Eq. (@), by expansion,

1
w [ky = wo + a1 Ay + 5(042 +a1)A? + az(Ap — Ag) + O(A3, AgAy, AD), (27)

where A, = In(A1A2) and 2A, = A2 + A3 — 1. This leads
to a; =0, ap = 2/3, and a3 = 1/3 for the neo-Hookean
law and for Skalak’s law, Eq. (@), with ks = k. Barthes-
Biesel @] has also found an analytic expression for the
deviation of the inclination angle at small G,

g°  w/4—0 15
=——— =3 G (28)
for a neo-Hookean membrane and Skalak’s law with ks =
ko. In the limit G — 0, the angle approaches § = 7 /4.
The opposite angle 0° is the relevant angle in this problem
since it is proportional to GG. It is the deviation from the
inclination angle of a stiff sphere, where 6 = 7 /4.

In the steady state, the membrane nodes rotate about
the fixed shape of the capsule. This tank-treading be-
havior can be quantified by the rotation period T or the
angular velocity w in the steady state. Kraus et al. ﬂa]
have measured the time between two successive vertex
crossings of the zy-plane. This time corresponds to half
the rotation period. However, this value is time inte-
grated and cannot resolve possible numerical fluctuations
of the angular velocity. Another approach is the direct
computation of the angular velocity of a membrane node
by w; = Ag;/At, where Ayp; is the angle swept by that
node projected on the zz-plane during time At. For a
stiff sphere, the angular velocity is w = %/2, but w < 4/2
holds for deformable capsules.

Additionally to the approach using the inertia tensor,
we have computed the deformed capsule shape by a linear

fit of the membrane node positions. Minimizing

nodes

X2 = Z (CEIZQ + nyzQ + CZZZQ = 2Qu2izi — 1)2 (29)

%

with respect to the fit parameters (;, (y, (., and (;. and
diagonalizing the matrix

Cz O _sz
Q=| 0 ¢ 0 |, (30)
_sz 0 <z

one can directly compute the semiaxes, the deformation
parameter, and the inclination angle about the y-axis.
For convenience, we have not allowed rotations about
the z- or the z-axis in Eq. (29). Comparing the results
obtained from the inertia tensor and the linear fit, we
observe that both the inclination angle and the deforma-
tion parameter are virtually identical. For that reason,
we will show the data obtained from the inertia tensor
only. However, the values of the semiaxes r,, 7, and
r. are slightly underestimated by the inertia tensor. The
reason is the discretization of the mesh and the use of flat
triangular elements. Since the semiaxes are not explic-
itly required for the characterization of the deformation
and the values of D and 6 are correct, we have not at-
tempted to improve the results obtained by the inertia
tensor method.



IV. SIMULATIONS AND RESULTS

All distances are made dimensionless using the lattice
constant Ax as characteristic length scale. As mentioned
above, from the constitutive law, Eqs. (@) and (27), the
expansion parameters a; = 0, as = 2/3, and a3 = 1/3
follow for ks = k,. Inserting these values in Eq. (28]), one
obtains D/G = 25/4 in the linear regime. We restrict
ourselves to the Skalak model, Eq. (@), with ks = kq
in all the simulations. If not otherwise stated, the lattice
Boltzmann relaxation parameter is set to 7 = 1, and thus
the time step scales like At < Az? (diffusive scaling).
The simulation box is a cube with H? fluid lattice nodes.
The capsule with initial radius r is placed at the center of
the box. We choose the z-axis as the velocity direction
and the y-axis as the vorticity direction. The velocity
gradient is along the z-axis. The bounding plates are
located at z = +H/2.

In Sec. IV Al we first determine the effects of the rel-
ative simulation box size H/r, the Reynolds number Re,
the reduced shear rate G, and the LBM relaxation pa-
rameter 7 on the deformation state of the capsule. Based
on those first results, the influence of the membrane tes-
sellation is analyzed in Sec. VBl In Sec. V(] we test
the influence of the interpolation stencils on the numer-
ical results and specify the convergence behavior of the
IBLBFEM scheme.

A. General simulation parameters

We note that, in the limit Re <« 1, H/r > 1, and
G < 1, all curves D(kt)/G, with k = 4/G, collapse on
the same master curve. This can be used to study the
impact of finite size effects (H/r % 1), inertia (Re <« 1),
nonlinear contributions (G 4 1) from the constitutive
membrane model, and the LBM relaxation parameter 7
by inspecting the deviations from the master curve. For
all simulations in this section, the 4-point stencil ¢4, Eq.
(1), and an icosahedron-based mesh with Ny = 1280
faces and r = 5 have been used.

Similar to Sui et al. [12], we have first determined
the minimum system size in terms of H/r to safely ne-
glect self-interaction of the capsule or interactions with
the walls. The simulation parameters are Re = 0.02,
G = 0.01, and 7 = 1. We have examined the cases
H/r = 6,8,10, and 12. The resulting time evolution
of the Taylor parameter is shown in Fig. We come
to the same conclusion as Sui et al. [12] that a box size
of H/r =10 is sufficient for modeling unbounded simple
shear flow. The difference between the plateau values of
the Taylor parameter for H/r = 10 and 12 is less than
0.5%. For this reason, the system size is taken to be
H/r = 10 in all following simulations. However, it is
obvious that the deformation parameters are too large.
The expected value, D/G = 6.25, is shown in Fig.[1l We
will see in this section that this is not related to effects
caused by inertia, nonlinear membrane response, or the
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relaxation parameter. This observation will be discussed
in more detail in the following sections, and the explana-
tion will be given in Sec. [V.Cl

In the next step, we have investigated the validity of
the Stokes flow assumption. A series of simulations with
H/r =10,G = 0.01, and 7 = 1 has been carried out. The
tested Reynolds numbers are Re = 0.01, 0.02, 0.05, and
0.1. Sui et al. [12] have observed that inertia effects are
small up to a Reynolds number of about 0.025. We come
to a similar conclusion. In Fig. the deformation
parameter is shown for different Re. Differences between
Re = 0.01 and 0.02 can only be noticed slightly in the
transient evolution. Since we are interested in the steady-
state behavior, the Reynolds number will be set to 0.02
in all subsequent simulations. We have also studied the
time evolution if the equilibrium in Eq. @) is linearized,
i.e., substituted by

Y= wip(l+3c-u). (31)

One can show that this leads to the removal of the ad-
vection term u - Vu in the Navier-Stokes equations. Still,
the partial time derivative du /90t is present. Within the
kinematic framework of LBM, the time derivative cannot
be removed, and exact Stokes flow cannot be simulated.
We have observed that the time evolution of the defor-
mation parameter does not change when the advection
term is removed with respect to the cases where the full
equilibrium has been considered (data not shown). We
thus assume that the Reynolds number effects visible in
Fig. are due to the partial time derivative and not
the advective term. Still, neglecting the second-order
term in the equilibrium, the computing time for LBM
could be decreased significantly (= 25%). This observa-
tion can be useful for high performance simulations at
small Reynolds numbers. However, since we have tested
the first-order equilibrium afterwards, for the remaining
simulations the second-order equilibrium has been em-
ployed.

Additionally, we have tested up to which value of the
reduced shear rate G the linearity assumption, Eq. (26]),
is valid. In Fig. the time evolution of D is shown.
The simulation parameters are Re = 0.02, H/r = 10,
and 7 = 1. The reduced shear rates are G = 0.005,
0.01, 0.02, and 0.04. We find that G = 0.01 is sufficient
to ensure the validity of the linear approximation. For
G > 0.02, the deviations become significant, and second-
order correction terms should be included. In all the
following simulation, we have chosen G = 0.01. Note
that the plateau values of D/G between G = 0.005 and
0.01 differ by less than 2%.

It is known that the BGK LBM relaxation parameter
7 plays a critical role in the correct setup of the simula-
tions. Both the accuracy of the bulk LBM and the no-
slip bounce-back boundary conditions depend on its value
[44, 146, [63]. Recently, Le and Zhang [47] reported that
combined IBM-LBM simulations are strongly affected by
the magnitude of 7, especially if 7 > 1. We address this
issue by comparing simulations with different values of
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Figure 7. Influence of finite size, inertia, nonlinear membrane response, and LBM relaxation parameter on the deformation
parameter, which is shown as a function of the reduced time t, where K = ¥/G. @ finite size: Re = 0.02, G = 0.01, 7 = 1,
and H/r = 6,8,10,12; @ inertia: H/r =10, G = 0.01, 7 = 1, and Re = 0.01, 0.02, 0.05, 0.1; nonlinear membrane response:
Re = 0.02, H/r = 10, 7 = 1, and G = 0.005, 0.01, 0.02, 0.04; @ relaxation parameter: Re = 0.02, H/r = 10, G = 0.01,
and 7 = 0.6,0.8,1.0,1.5,2.0. In all simulations, Ny = 1280, » = 5, and ¢4 have been used. The influence of the finite box is
negligible for H/r > 10, and inertia effects are unimportant for Re < 0.02. The inset in subﬁgure shows the final value of
D/@ versus the reduced shear rate G. The dashed line is the analytic result for small deformations. For G > 0.02, nonlinear
effects become obvious, but G = 0.01 is a good approximation for a small deformation. The relaxation parameter 7 should
not be much larger than unity. It can be seen from the inset of subfigure @ that the final value of D/G strongly depends
on 7, if 7 > 1. The theoretical value, D/G = 6.25, is shown in all subfigures. One notices that the deformation parameters

consequently are too large.

the relaxation parameter for Re = 0.02, H/r = 10, and
G = 0.01. The results are shown in Fig. It can
clearly be seen that the results are relatively indepen-
dent of 7 for 7 < 1. If 7 becomes significantly larger than
unity, the solutions start to diverge. This effect may be
related to the single relaxation time (BGK) LBM which
has been employed. Having the efficiency of the simula-
tions in mind, it is desired to keep the simulation time
as short as possible. This can be achieved by increasing
the time step At. From

T—1/2 Ax?
3 At

we can see that increasing 7 also increases At, if the

(32)

kinematic viscosity v and the spatial resolution Ax are
kept fixed. This reduces the number of necessary time
steps in the simulations. However, if 7 becomes too large,
drastic numerical artifacts appear, and the simulations
become unreliable. It seems to be a compromise to choose
T~ 1.

Summing up, we come to the first conclusion that a
cubic box of length H/r = 10, a Reynolds number of
Re = 0.02, a reduced shear rate of G = 0.01, and a LBM
relaxation parameter of 7 = 1 are excellent approxima-
tions to the unbound Couette flow at vanishing Reynolds
number in the linear elastic limit. However, the deforma-
tion parameters are larger than expected. Theory pre-
dicts D/G = 25/4 = 6.25 for the Skalak membrane with



ks = ka, but typical values are D/G =~ 7.0 in the pre-
sented simulations. The expectation value is also shown
in Fig. @ There are two possible reasons for this dis-
crepancy: first, the membrane mesh may be too coarse.
Second, the interpolation and spreading, required for the
coupling between Lagrangian and Eulerian meshes, may
introduce numerical artifacts which effectively lead to a
softer or, equivalently, larger capsule. We stress that the
IBM generates an artificial length scale L related to the
width of the interpolation. If this length scale is not small
with respect to the length Ljs of significant changes in
fluid velocity and membrane tensions, a detrimental ef-
fect of the interpolation and spreading is expected. In
Sec. [[V B, we first test the effect of the mesh discretiza-
tion. Afterwards, in Secs. [V.Cl we turn to the influence
of the IBM interpolation stencil on the simulations.

B. Mesh discretization

In Sec. [V Al we have stated that the deformation pa-
rameters are larger than expected from linear theory.
From the discussions there, finite size effects of the sim-
ulation box, nonlinear membrane responses, and inertia
effects could be excluded. Also the choice of the LBM
relaxation parameter cannot be responsible for the devi-
ations. The most probable explanations are spatial dis-
cretizations due to the membrane tessellation (cf. Sec.
D) or the discrete delta functions for interpolation and
spreading, Egs. ([I8)—(I8). Since length and time scales in
the LBM are strongly coupled ﬂﬂ, ], spatial and tempo-
ral discretization errors cannot be studied independently.

In order to test the influence of the details of the mesh
resolution, we have performed three simulations with
identical parameters (Re = 0.02, H/r = 10, G = 0.01,
7=1,r =5, and ¢4), but different meshes (icosahedron-
based, Ny = 320, 1280 and 5120 faces). As a conse-
quence, the average distances between neighboring mesh
nodes (i.e., the average edge length of the face elements)
differ: {/Az = 1.50 for the coarsest, 0.75 for the interme-
diate, and 0.38 for the finest mesh. The results for the
deformation parameter, the inclination angle, and the an-
gular velocity are shown in Fig. 8l All curves for D nearly
collapse. Thus, the mesh discretization can be dropped
as explanation for the numerical softening of the capsules
since the difference between the meshes with Ny = 320
and 5120 faces is small. The results for the inclination
angles are very similar, but all of them show a deviation
from the expected value as well. We will come back to
this point in Sec. [V.Cl A good approximation of the an-
gular velocity w can only be provided by a large number
of face elements.

At this point, we do not see any reason why the av-
erage distance between nodes should be less than Az/2,
which is sometimes claimed in the literature m] This
result is very important from an efficiency point of view.
In a simulation of a dense suspension of deformable parti-
cles, most of the computing time is required for the IBM
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interpolation and spreading. Since the number of IBM
calculations is proportional to the number of mesh nodes,
it is worth examining to which extent the membrane res-
olution can be reduced at fixed fluid lattice resolution
without significantly decreasing the accuracy of the sim-
ulations. As a consequence, the computing time could be
decreased. It has to be noted that, independent of this
result, a finer mesh has to be used when the radius is sig-
nificantly increased since the average distance between
neighboring nodes would become too large eventually.
Additional tests have been performed to analyze the
effect of different mesh tessellations (cf. Sec. [IIDI]). The
simulation parameters are as above, but Ny = 1280
(icosahedron-based), 1284 (Gmsh), and 1278 (CGAL).
The results are collected in Fig.[@ There is no difference
in the evolution of the deformation parameter, but the
inclination angle is not correctly captured at small de-
formations when the Gmsh- and CGAL meshes are used.
Strong deviations can be seen in the time evolution of
the angular velocity for the mesh created by Gmsh. The
reason is that the computation of w is most susceptible
to numerical artifacts caused by reduced homogeneity of
the mesh. However, the general behavior of the capsules
is similar, and the deformation state is not strongly in-
fluenced by the details of the mesh tessellation.
Concluding this section, it is found that details of the
mesh (tessellation method and resolution) do not sig-
nificantly change the deformation state of the capsule.
Thus, the deviation of the deformation parameter from
the expected analytic value cannot be caused by the dis-
cretization of the capsule membrane. Even a small mesh
resolution is sufficient to accurately describe its deforma-
tion behavior, at least at small values of G, cf. Fig.
Some details of the capsule are not correctly captured
by the Gmsh and CGAL meshes. We will employ the
icosahedron-based mesh in all remaining simulations.

C. Interpolation and spreading

We have examined the influence of the discrete mem-
brane mesh on the simulations in Sec. [V Blwhere only the
4-point interpolation stencil ¢4 has been employed. The
conclusion is that the discrepancy between the observed
and predicted steady-state values of the deformation pa-
rameter D and inclination angle 6 should be related to
the interpolation stencil of the IBM. This open point will
now be discussed in more detail. For convenience and
clarity, we define a numerical capsule radius N, = r/Axz,
indicating the number of fluid lattice nodes covered by
the actual radius 7.

A consequence of the presence of the interpolation
stencils, Eqs. ([[8)—(X), is the finite numerical width
of the membrane. Consequently, the computed solu-
tions should converge to the analytic predictions for
L;/Ly — 0. Here, Ly is the length scale associated
with the numerical membrane thickness, and Lj; can be
regarded as the radius of the membrane. The values of L;
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Figure 8. Effect of the icosahedron-based mesh resolution on @ the deformation parameter, @ the inclination angle, and
the angular velocity. The simulation parameters are Re = 0.02, H/r = 10, G = 0.01, 7 = 1, and r = 5. The 4-point
interpolation stencil has been used. There is virtually no change in the deformation parameter when the 5120-element mesh is
replaced by the 1280- or the 320-element mesh. The same is valid for the inclination angle. The angular velocity is extremely
sensitive to the number of face elements, but convergent behavior is evident. The expected analytic values for the deformation
parameter and the inclination angle are also shown in the subfigures.

for the available interpolation stencils may be identified
with Az, 3Az/2, and 2Az for ¢o, ¢3, and ¢4, respec-
tively. Since numerical width effects can also be seen in
multiphase simulations, we refer to a review about diffuse
interface methods by Anderson et al. [64].

As discussed before, one can find comments on the ra-
tio of mesh and lattice resolution //Ax in the literature.
Peskin @] suggests that two adjacent nodes on the mem-
brane mesh should have a mean distance [ < Az /2. This
way, it is argued, no fluid could leak between the ‘holes’ in
the mesh. However, a more stringent motivation is miss-
ing. In Sec. IV Bl we have not found evidence supporting
this claim. The results indicate that also an average node
distance of [/Ax = 1.5 may lead to a reasonable accu-
racy. We stress that a necessity for smaller distances [
may arise in the limit of stiff particles or strongly de-
formed membranes.

Beside the choice of the interpolation stencil ¢, the ra-
tio [/Ax of the mesh and lattice resolutions is the only

freedom left in the IBM. If [/Ax becomes too large, fluid
will eventually leak through the membrane. On the other
hand, if [ is chosen to be too small, the spatial hydrody-
namic resolution becomes worse since less fluid lattice
nodes cover the capsule, and the ratio L;/Lj; increases.
Within the framework of IBM, there is no obvious, sim-
ple way of estimating the optimum value of I/Az. In-
tuitively, both limiting cases restrict the accuracy of the
simulations. Therefore, it is important to understand in
which range it is safe to operate.

In order to quantify the dependence of the deforma-
tion parameter D and the inclination angle 8 on L;/Lyy,
we have performed two different kinds of studies, each
employing ¢2, ¢3, and ¢4. The simulation parameters
always are Re = 0.02, G = 0.01, H/r = 10, and 7 = 1.

a. Convergence for fized mesh resolution Ny In this
simulation series, we study the influence of the hydrody-
namic resolution N, alone, i.e., we keep the mesh reso-
lution N constant, and [/Ax changes. This way, it is
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Figure 9. Effect of the tessellation method on @ the deformation parameter, @

the inclination angle, and the angular

velocity. The simulation parameters are the same as those in Fig. 8 but Ny = 1280 (icosahedron-based), 1284 (Gmsh), and
1278 (CGAL). The deformation parameter is not influenced by the type of the mesh, but the inclination angle and the angular
velocity are detrimentally affected. The inclination angle is shown at early times only to reveal the deviations. Due to the
reduced homogeneity of the meshes, the correct inclination angle is not captured at small deformations where it should be
0/m =~ 0.25. Also the angular velocity shows unphysical behavior, especially for the mesh created with Gmsh.

possible to study the effect of a varying ratio [/Axz. The
employed mesh resolutions are Ny = 320 and 1280.

For the mesh with 320 faces, we have tested N, = 3,
4, 5, and 6, corresponding to I/Az = 0.90, 1.20, 1.50,
and 1.80, respectively. The results are shown in Fig.
Although the mesh resolution Ny is small and the mesh
ratio [/Ax significantly larger than 0.5, it can be seen
that the physics of the system is roughly captured. The
accuracy of the solutions increases with a larger magni-
tude of N,.. For ¢9, fluctuations are visible. The smallest
radius, N, = 3, yields inaccurate results. In this case,
L; and Lj; are comparable. It is interesting to note that
even for [/Ax = 1.80 no detrimental effects appear. The
fluid still does not seem to penetrate the membrane.

Additionally, we have tested the mesh with 1280 faces
and N, = 3, 5, 7, and 9, corresponding to f/Ax = 0.45,
0.75, 1.06, and 1.36, respectively. The results are shown
in Fig.[[dIl The overall behavior of the numerical results is
similar to those of the series with Ny = 320. The smallest

radius, IV,, = 3, is less accurate, and no penetration of the
fluid is visible in the presented parameter range.

We have observed that the 2-point interpolation sten-
cil ¢ fails when I[/Az > 2 (data not shown). At this
point, the spacing between neighboring mesh nodes is
so large that fluid can penetrate the capsule membrane.
For ¢3 and ¢4, we have not observed a similar behavior at
I/Ax = 2. The probable explanation is the larger range
of the interpolations, still keeping the fluid from passing
through the membrane.

The above studies strongly suggest that the mesh ra-
tio can be safely chosen somewhere between 0.5 and 1.5
without compromising the impermeability of the capsule.
This is an important result since it allows us to reduce the
computational requirements by a proper choice of I/ Az
without loss of accuracy.

b. Convergence for fized mesh ratio [/Axz In this
second series, we investigate the coupled convergence
when both the mesh and the hydrodynamic resolutions
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Figure 10. Behavior for varying mesh ratios I/Az for a fixed mesh with Ny = 320 faces with the interpolation stencils ¢2

in subfigures @ and ¢3 in subfigures and and ¢4 in subfigures @ and N, = 3, 4, 5, and 6 correspond to

I/Az = 0.90, 1.20, 1.50, and 1.80, respectively.

are increased by the same rate, i.e., the mesh ratio [/Ax
is fixed. The mesh and hydrodynamic resolutions are
Ny = 1280 and H = 35, Ny = 5120 and H = 70, and
Ny = 20480 and H = 140, respectively. Note that for

Ny = 320, a mesh ratio of [/Az = 0.53 leads to quite in-
acceptable results. This is closely related to the fact that
the hydrodynamic radius becomes too small compared
to the numerical width of the membrane. Here, we see
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Figure 11. Behavior for varying mesh ratios I/Az for a fixed mesh with Ny = 1280 faces with the interpolation stencils ¢2

in subfigures @ and ¢3 in subfigures and and ¢4 in subfigures @ and N, =3, 5, 7, and 9 correspond to
l/Az = 0.45, 0.75, 1.06, and 1.36, respectively.

again that using the freedom in the choice of [/ Az allows steady-state magnitudes of D and 6 converge to their an-
us to use mesh resolutions which would not be available  alytic values (D,/G = 6.25 and 6, /7 ~ 0.231). In order
otherwise. The mesh ratio is I[/Az = 0.53 in all cases. to quantify the results, the errors at xt = 120 are listed
The results are shown in Fig. It is obvious that the  in Tab.[[land graphically shown in Fig. The conver-
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Figure 12. Convergence of the IBLBFEM for the interpolation stencils ¢2 in subﬁgures@ and @ ¢3 in subﬁgures and @
and ¢4 in subﬁgures@ and The mesh ratio I/Ax is 0.53 in all simulations. The mesh and fluid resolutions are Ny = 1280
and H = 35 (dotted lines), Ny = 5120 and H = 70 (dashed lines), and Ny = 20480 and H = 140 (solid lines), respectively.
Convergence to the analytic predictions is observed in all cases. The numerical errors at xt = 120 (k = 4/G) are also shown in
Tab. [I] and Fig. 131
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Table II. Convergence of the IBLBFEM for the interpolation stencils ¢2, ¢3, and ¢4. The deviations of the deformation
parameter D and the inclination angle 0 at xt = 4t/G = 120 are shown. The relative deviations are defined as 6D =
(Ds — Dq)/Dq and 060° = (03 — 03)/0;. The subscripts s and a denote ‘simulation’ and ‘analytic’. The angle 6° « G is the
opposite angle to 0, defined in Eq. (28). The convergence order « is taken from a fit to the function 6D, §0° o< N~ . For §66°
and ¢2, a meaningful convergence order could not be obtained due to early mesh degradation. A graphic representation of this

table is shown in Fig. I3l

b2 ¢s3 ®a
H Ny 0D 00° 0D 06° 0D 00°
35 1280 13.2% 12.0% 13.5% 20.9% 17.0% 30.8%
70 5120 41% 4.5% 4.5% 4.9% 7.3% 8.5%
140 20480 1.2% 3.0% 1.0% 0.9% 2.0% 1.7%
convergence order 1.7 N/A 1.9 2.2 1.5 2.1
N N,
1280 5120 20480 1280 5120 20480
T T T T T T
+ 1k .
T . il . . !
35 70 140 35 70 140
H H

(a) deformation parameter

(b) inclination angle

Figure 13. Convergence of the IBLBFEM for the interpolation stencils ¢2, ¢3, and ¢4. In subfigure the error of the
deformation parameter, 6D, is shown for increasing mesh and fluid resolutions with fixed [/Az = 0.53. The analog results for
the error of the inclination angle, §6°, are shown in subfigure @ The data is taken from Tab. [

gence order is clearly better than 1, cf. Tab.[[Il The only
exception is the inclination angle with ¢o. This is caused
by mesh degradation, cf. Sec. Since the LBM is
second-order accurate and the IBM for sharp interfaces
formally first order, the convergence order of the coupled
system should be between 1 and 2 as observed here. Un-
fortunately, we are not aware of any theory which could
predict the convergence behavior of the coupled system.

c. Effective deformability and rescaling From the re-
sults in this section, we draw two main observations.

First, the numerical magnitudes of the deformation pa-
rameter D and the inclination angle 6 approach the ex-
pected values when the hydrodynamic resolution N, is
increased. Within the valid region of [/Az, this state-
ment also holds if only the hydrodynamic resolution is
increased and the mesh resolution is kept constant. How-
ever, the formally correct approach is to gradually refine
both meshes simultaneously. The IBLBFEM accurately
captures the physics of deformable capsules in an ambient
fluid within the chosen parameter ranges and in the limit
of infinite resolution. The convergence order is between

1.5 and 2, cf. Tab. [ and Fig. I3

Second, we conclude that the deviations between ex-
pected and analytical values are an IBM artifact. The
average deviations are usually smaller for a narrower in-
terpolation stencil, cf. Tab. [ (except ¢2 at large resolu-
tion). This supports the idea that the numerical width
of the interpolation stencil affects the deformation be-
havior of the capsule. The reason for the effect of ¢5 at
large resolutions is an accelerated mesh degradation. We
will come back to this point in Sec. On the first
glance, a narrower interpolation stencil does a better job
in capturing the physics of the problem. However, one
finds that fluctuations are more pronounced when ¢3 and
especially ¢o are employed since those interpolations are
not as smooth as ¢4. This can be seen in the plots of 6 in
Figs. [0, 01l and Making a good choice for the inter-
polation stencil means balancing the strengths and weak-
nesses of those stencils. We have also seen that, even for
coarser resolutions, the numerical results are sound and
reliable, as long as the presence of the finite membrane
thickness is properly taken into account.
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Table I11. Effective reduced shear rates G/G and effective errors 66° = (02 — 02(())/02(G) of the opposite angle. G is defined
in such a way that the deformation parameter has no error, i.e., Ds = Do(G). The effective deviations 60° are clearly reduced

compared to the raw data in Tab. [l

y ®2 y 3 @3 ~ y ®a y
H Ny G/G 56° G/G 56° G/G 56°
35 1280 1.13 —1.1% 1.14 6.5% 1.17 11.8%
70 5120 1.04 0.4% 1.05 0.4% 1.07 1.1%
140 20480 1.01 1.8% 1.01 —0.1% 1.02 —0.3%

It is worthwhile to discuss the deviations of the defor-
mation parameter D and the opposite inclination angle
6°, Eq.28 in more details. While the deviations D and
060 become smaller when the hydrodynamic resolution N,
is increased, 0D and 00° are always of the same order.
Since D o< G and 0° o< G, this enables us to introduce an
effective reduced shear rate G to partially counteract the
effect of the finite membrane thickness due to the pres-
ence of the interpolation stencil. Starting from Eq. ([23]),
the effective reduced shear rate can be written as

5 e
G: =, 33
v (33)

i.e., the transition G — G can be due to a transition
r — 7 or ks — ks. We claim that the fluid properties
4 and 7 are well defined, thus, we do not allow their ef-
fective modification. In the present simulations, we have
the choice to define an effective radius 7 or an effective
stiffness kg in such a way that the simulation data are
more accurate. It is left for future research whether a
redefinition of r or kg is more useful. In the present
simulations, both approaches are equivalent, but due to
particle-particle interactions in simulations with multi-
ple capsules, the effect of the finite membrane width is
more complex and a simple redefinition of r or ks may be
not straightforward. In general, the rescaling factor G/G
is a function of the interpolation stencil ¢ and the hy-
drodynamic and the mesh resolutions, N, and Ny. The
factor G/G can be obtained from Tab. [l In order to
investigate this idea further, we have defined G for each
simulation in Tab. [l in such a way that the deviation
0D := (Ds — Dy(G))/D.(G) is identically zero. The cor-
responding error 60° := (8% — 6°(G))/02(G) is shown in
Tab. [ All effective errors 46 are considerably smaller
than the original errors given in Tab. [[I} stating that the
redefinition of G can be used to compensate—at least
partially—the numerical width effect due to the interpo-
lation stencil. It is expected that for interacting capsules
with more complex shape, e.g., red blood cells, a sim-
ple rescaling is not as straightforward as for an isolated
spherical capsule.

To sum up the above findings, we note that the domi-
nant source of numerical deviation from the analytic so-
lution in the combined IBLBFEM is the presence of the
interpolation stencils. They introduce a numerical width
of the membrane, leading to slightly modified physical

behavior. Those deviations could in principle be counter-
acted by introducing an effective radius or effective stiff-
ness of the capsule. In the limit of infinite resolution, the
IBLFFEM accurately captures the physics of the coupled
system of capsule and fluid. The influence of the choice
of [/Ax is small over a wide range, 0.5 < [/Ax < 1.5.
This introduces a freedom to the numerical implemen-
tation which can be used to decrease the computational
cost of the simulations.

D. Mesh degradation and volume drift

In this section, we will address some issues which have
not been covered in the discussion about the mesh influ-
ence and the convergence studies in Secs. [VAHIVC]

Although we have claimed that the mesh resolution
does not have a significant influence on the results (cf.
Sec. [[VB]), we have reported different deviations of the
deformation parameter D and the inclination angle 6
when ¢ and varying mesh resolutions are used (cf. Tab.
M. The reason is that the values in Tab. [[Il are taken
at time xt = 120 where the mesh has already started to
degrade when ¢s is employed. This effect seems to be
most severe when the hydrodynamic resolution is small-
est (i.e., small radius N, and large number of faces Ny).
A similar behavior is only weakly noticeable for ¢3 and
¢4, indicating that those interpolation stencils do a bet-
ter job in preserving the mesh. This observation is an
indication that the average node distance //Ax should
not be too small. The mesh degradation can be captured
by computing the average face element area and its stan-
dard deviation. For a degrading mesh, one expects those
values to leave the steady state gradually. Our findings
are illustrated in Fig. 4 Only a few curves are shown.
The major observation is that increasing the mesh resolu-
tion but keeping the hydrodynamic resolution unchanged
leads to an accelerated and undesired mesh degradation.
Although the physical behavior of the capsule is indepen-
dent of the mesh resolution at small times (cf. Sec. [V B),
numerical artifacts become progressively more important
at later times. For long-time simulations, the shear en-
ergy W* may be not sufficient to control the mesh.

Taking the results of the simulations presented in Sec.
[V we have observed typical volume deviations 6V/Vy
between 2-10~% and 8- 10~ for ¢y, between 5-107° and
2-10~% for ¢3, and between 9-107% and 3 - 107° for ¢,
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Figure 14. Time evolution of average and standard deviation of the relative face area deviation dA/A. At ¢t = 0, all faces

are undeformed and hence 6A/A = 0 and 054,4 = 0. Due to the deformation of the capsule, @ the average area deviation

dA/A increases until it reaches a steady state. The steady state eventually collapses when the mesh degrades. This is most
significant for ¢2 at the highest resolution of the membrane mesh (N; = 20480). The degradation is much less significant
for ¢2 and Ny = 5120, indicating that too fine a mesh (i.e., too coarse a hydrodynamic resolution) is detrimental. The
standard deviation o54,4 of the relative area deviation increases with time, especially for a mesh with high resolution but poor

hydrodynamic resolution.

at kt = 120. As expected, the largest deviations corre-
spond to the smallest radius V,- and vice versa. Clearly,
the 4-point interpolation function is much more appro-
priate to control the capsule volume without taking addi-
tional measures. A higher hydrodynamic resolution also
reduces the volume drift.

In the present simulations, the volume drift is negli-
gible. However, in long-time simulations with smaller
resolution, the volume drift could become a significant
problem. Taking into account restoring forces originat-
ing from volume, surface, and bending energies may help
to avoid this deficiency.

V. CONCLUSIONS

We found that the choice of the LBM relaxation pa-
rameter 7 can have a detrimental effect on the combined
IBM-LBM simulations. As long as 7 < 1, the simula-
tion results barely depend on the actual magnitude of 7.
For larger relaxation parameters, strong deviations can
be observed, and the simulation results obtained by dif-
ferent 7 are no longer comparable. On the other hand,
we have seen that the choice of 7 strongly affects the
simulation time since 7 can be used to change the LBM
time step. We have used 7 = 1 in the simulations as a
compromise between accuracy and efficiency.

The common assumption that the average node dis-
tance [ should be smaller than half a fluid lattice con-
stant Az could not be supported in our investigations.
This leads to the important consequence that, at least
within a certain range, the hydrodynamic resolution and
the mesh resolution can be changed independently with-
out significantly changing the physics in the simulations.

Due to its locality and purely algebraic structure, the
LBM algorithm is fast and efficient. It is well known that
the computing speed of pure LBM simulations is usually
restricted by memory access, but not by CPU power.
Considering the capsule immersed in the fluid, the com-
putation of the membrane forces, the velocity interpola-
tion, and the force spreading is computationally more de-
manding and basically limited by the CPU power. In the
present simulations, the fluid volume is large compared to
the membrane area, and nearly all the computing time
is consumed by the LBM component. For simulations
with moderate or high particle volume fractions, how-
ever, the IBM consumes most of the computer resources.
We have observed that the computing time for the ve-
locity interpolation and spreading of the forces is much
larger than that for the computation of the membrane
forces itself. The number of IBM interpolations at each
time step is 2m?N,, in d dimensions, using a stencil ¢,,
with a support of m lattice nodes along each direction
and a total of IV,, membrane nodes. One way to save
computing time is to choose an interpolation stencil with
smaller support. Although the relevant physics seems
to be captured with the 2-point stencil as well, stronger
fluctuations are introduced, and the mesh undergoes an
accelerated degradation (cf. Secs. [V.Cl and [[VD)). How-
ever, a smaller support is also equivalent to a smaller
numerical thickness of the membranes, which could be of
advantage in a dense suspension of deformable particles
where the distances between the membranes are small.

The major discretization error is introduced by the
IBM interpolation stencil ¢, but not by the discretization
of the membrane itself. The hydrodynamic resolution is
more important than the mesh resolution. This observa-
tion leads to the following conclusion: if the accuracy of



the simulation shall be increased, it is the optimum ap-
proach to first increase the number of fluid lattice nodes
for fixed mesh resolution. If on the other hand the com-
puting time of the simulation should be decreased, the
hydrodynamic resolution should be kept and the mesh
resolution be reduced.

We observed that the presence of the interpolation
stencils ¢ effectively changes the membrane properties of
the capsules due to the numerical thickness of the mem-
brane. This can be captured by defining an effective re-
duced shear rate G' by considering an effective capsule
radius 7 or an effective stiffness kg. The numerical mem-
brane width decreases when the hydrodynamic resolution
is refined, i.e., when the number NN, of fluid lattice nodes
covered by the capsule radius is increased. The numer-
ical results converge to the analytically expected values
for large N,.. Consequently, making use of the knowledge
of an effective radius 7 or stiffness ks in principle allows
for the reduction of the hydrodynamic resolution with-
out a significant loss of accuracy. This approach may be
used to massively save computing time in simulations of
multiple deformable particles immersed in a fluid.

We stress that, in this paper, only small deformations
of a single capsule have been considered. The mesh res-
olution plays only a minor role in this case. However,
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the number of mesh points may be of higher importance
in simulations with large membrane deformations since
the faces remain always flat. For that reason, the analy-
sis of the influence of the mesh resolution should also be
performed for large deformations. The effect of particle-
particle interactions in dense suspensions on an effective
radius or stiffness caused by the interpolation stencils is
also not obvious at this point. Those investigations are
left for future research.

The present paper contains new contributions: regard-
ing the effect of the interpolation stencils on the capsules’
deformation behavior, the significance of the hydrody-
namic resolution compared to the mesh resolution, and
how those insights may be used to boost the efficiency
of the related simulations. These results are hoped to be
useful for the simulation of multiple deformable objects
immersed in a fluid.
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