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Practical band-limited extrapolation relying
on Slepian series and compressive sampling

Laurent Gosse

TAC-CNR “Mauro Picone” (sezione di Bari)
Via Amendola 122/I - 70126 Bari, Italy

Abstract

We consider a rather simple algorithm to address the fascinating field of numerical
extrapolation of (analytic) band-limited functions. It relies on two main elements:
namely, the lower frequencies are treated by projecting the known part of the signal
to be extended onto the space generated by “Prolate Spheroidal Wave Functions”
(PSWF, as originally proposed by Slepian), whereas the higher ones can be handled
by the recent so—called “Compressive Sampling” (CS, proposed by Candes) algo-
rithms which are independent of the largeness of the bandwidth. Slepian functions
are recalled and their numerical computation is explained in full detail whereas
Compressive Sampling techniques are summarized together with a recent iterative
algorithm which has been proved to work efficiently on so—called “compressible sig-
nals” which appear to match rather well the class of smooth bandlimited functions.
Numerical results are displayed for both numerical techniques and the accuracy of
the process consisting in putting them altogether is studied for several test-signals.

Key words: Band-limited extrapolation, Prolate spheroidal wave functions,
Slepian series, analytic continuation, finite Fourier transform, compressive
sampling, sparse and compressible signals recovery.

1991 MSC: 42A16; 41A58; 65D15; 68P30

1 Introduction

Band-limited functions are lying at the very core of various questions arising in many areas
of application, especially signal processing, information and approximation theories. Let us
begin by recalling that any function f belonging to L*(R) or L?(R) is said to be band-limited
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if there exists a positive number o such that:

VieR,  f() = [ F(€)explite).dt,

T or s

the Fourier transform f being defined according to the functional space! of f. The number
o € Rt is called the bandwidth of f; it is not an obvious task to decide whether or not
real-life signals are endowed with a finite bandwidth, see [30]. The classical Paley-Wiener
theorem states that any such function belonging to L?(R) extends to the whole complex
plane as an entire function of exponential type; more precisely, there holds (see e.g. [43])

vzeC,  |f(z)] <sup|f(t)]exp(o3(2)).
teR

As a consequence of analytic continuation theory for functions of complex variable, the
knowledge of such a function restricted to any arbitrary interval of R allows to deduce all
the remaining values corresponding to any z € C.

Despite this very neat theory, numerical extrapolation of band-limited functions remains a
delicate practical problem having quite a long history; several survey papers are available,
like for instance [16,24,35,43]. Two main approaches coexist relying on different algorithmic
methodologies: iterative methods generally follow the classical Gerchberg-Papoulis algo-
rithm [28,12], but recently, a renewed interest grew around non-iterative methods relying
on the so—called Slepian series [32,33]. Iterative routines for scale-limited extrapolation have
been developed around similar ideas and led to a so—called “generalized Gerchberg-Papoulis
algorithm”: see [22,23,37]. In the present text, we shall not deal with iterative extrapolation
routines for band-limited functions; instead we refer to existing papers [12,16,28,35,40] and
references therein. It turns out that, for a long time, iterative methods have gained from
the fact that extrapolation algorithms based on Slepian’s Prolate functions (outlined in
the paper [31], page 388) were far beyond practical computing possibilities. However, the
situation has changed dramatically nowadays and several papers have been recently pub-
lished to present feasible algorithms for the computation of Slepian series: see for instance
[3,15,17,18,25,36,38]. We aim at taking advantage of them in order to propose a realizable
and efficient numerical scheme to extrapolate accurately smooth band-limited functions.

Compressive Sensing differs greatly from the aforementioned algorithms in the sense that
it doesn’t rely on the straightforward projection of a recorded signal onto the specific basis
of some Hilbert functional space; its way of proceeding goes more like correlating it with a
collection of randomly chosen but perfectly known test-signals. Hence Compressed Sensing
is less naturally an extrapolation method because it needs unknown values to be located on
the complementary of a random set of points. In most cases, unknown values are located
in a connected domain (or two of them, each one around the edges of some observations
interval). At this level, what saves the day is that CS can reconstruct signals which are
strongly under-sampled: hence in many cases one can manage a random set of observations
not seeing the whole interval containing the unknown values. For instance, in case there is
a collection of 100 measures and it is to deduce the 10 ones located on the right, one needs
for CS to work one particular random sequence of measures taken inside the whole set of
110 values but seeing only the 100 first ones. This can easily happen when one needs to
measure only a very small subset of values, the smallness being directly related to the sparse
character of (for instance) the Fourier transform of the signal to extrapolate. This is in this
sense that we propose here to exploit CS algorithms to handle efficiently extrapolation
problems involving high frequencies which typically aren’t easy to process by the standard
Gerchberg-Papoulis method; to the best of our knowledge, this idea seems to be new.

I one could even consider f in a space of tempered distributions S’ on R, like for

instance the Zakai class [41,21,4] but this is out of the scope of the present paper.



The paper is organized as follows. In §2.1, we recall useful theoretical considerations con-
cerning the derivation of Prolate functions and present an extrapolation algorithm following
Slepian [31]. An illustration of these functions together with their L? norm is given in §2.1.3.
§2.2 is devoted to surveying some important results in the theory of Compressed Sensing;
especially the so—called Restricted Isometry Property, a crucial feature of certain random
matrices, is recalled in §2.2.1 and recovery theorems are stated in §2.2.2. §2.2.3 shows a nu-
merical illustration of the perfect recovery phenomenon for a sparse signal. In §3, we explain
in detail how to set up a practical algorithm to conduct extrapolation of any band-limited
(preferably low frequency) signal relying on the projection of the Paley-Wiener subspace
of L?(R) generated by Prolate functions. Coefficients are computed using Gauss-Legendre
quadrature. Several numerical test-cases are shown in §3.3. Extrapolation of higher frequen-
cies relying on Compressed Sensing techniques are dealt with in §4. In §4.1, we introduce
the useful class of “compressible signals” and state recovery results for them. In §4.2, we
present a simple but efficient iterative recovery algorithm called ROMP endowed with good
stability properties. The issue of finding convenient random sequences of observations is
discussed in §4.3 where also a comparison between CS and standard Gerchberg-Papoulis
recovery methods is made (see Remark 4). Numerical test-cases are presented in §4. In §5,
we display the numerical outcome of an overall extrapolation process where the signal to
be treated is first split between a “trend” and a “fluctuation” being processed by Prolate
functions and Compressed Sensing respectively; two test-cases are considered. Results are
to be checked on Figures 12 and 13. Conclusive remarks are given in §6.

2 “Adiabatic decoupling” between lower and higher frequencies

Part of our methodology relies on the assumption that a quite general class of interesting
signals allow for being split between a “trend” corresponding to lower frequencies and a
“fluctuation” which accounts for higher frequencies. Moreover, we shall also assume in all
what follows that higher frequencies don’t have much effect on low ones during a limited
amount of time. Put in another way, extrapolating on an interval of moderate length permits
to uncouple between low and high frequencies inside the signal. This is quite appealing
because modern numerical strategies to handle economically low and high frequencies are
quite different and such a decoupling opens the way of taking the best from each of them to
treat both parts of the observed signal. We used the terminology “adiabatic decoupling” in
a loose sense to underline the fact that high frequencies are separated from the rest of the
signal and that they are not supposed to have a sensible effect on the lower ones during a
limited amount of time; this is strongly reminiscent of the adiabatic theory as encountered in
quantum mechanics, for instance in the context of molecular dynamics where light particles
are driven by the movement of heavier ones (consult e.g. [34] for details in this direction).

Moreover, this framework is also well suited for other multiscale phenomena being of a
given size d, but which are dominated by only the ¢ < d trend’s Fourier coefficients (see
e.g. [1,44]). In this paper, we shall limit ourselves to check whether or not such a frequency
splitting is appropriate or not based on the elementary signals correlation. More precisely,
assume that we know a signal ¢t — f(t) € R inside some observation interval [a, b] and there

is a possible decomposition f = fj, + fr; such that the convex hull of the support of f;, and
the support of fj; are disjoint. Then this splitting will be admissible if moreover,

2 fio(t) fri(t)-dt
= 2 1
" | fioll2 (a,b) | frill L2 (a,) M)

is lower that some threshold value €y < 1 in modulus. By Cauchy-Schwarz inequality, we
have that k € [—1,1] with || = 1 if and only if there exists & € R such that fj, = afp.



2.1 The theory of Prolate Spheroidal Wave Functions (PSWF)

We begin by presenting a theoretical framework adapted to the processing of low frequencies.

2.1.1 Several equivalent definitions

We now briefly resume the derivation and the main properties of Slepian’s Prolate func-
tions, following various survey articles, see [25,19,24,31,36,38]. Originally, these functions
were sought as possible real-valued solutions of the maximum concentration problem for

bandlimited functions raised by Shannon himself (see [24], first page): for any 7' € RT,
consider the highest value of

o/ __ oY
- [1for

Assuming f to be o-bandlimited, this expression rewrites as: (* denotes complex conjugate)

0<a(T)

/ 7 dt [ f(&)explite)de [ f(¢)" exp(ite')dg’
Ol(T)2 = 2 —0o — Y
- If(©)dg

/70 d . mwE=¢) F&)f(gh de

GIHGRE

The last step is completed by integration in the ¢ variable. A maximizing f has to satisfy
the following Fredholm equation of the second kind:

F(€)de' — a(T)2f(€) = 0.

Ve € [0, 0], /” sin (€ — &)

—0 7'('(5 - 5/)

After easy changes of variables, this reduces to the well-known eigenvalue problem:

v € [-1,1],

/ ww@/)df/ =M(E), A>0,c=To. (2)

1 m(E-¢)

This presentation clearly shows that Prolate functions are indeed objects defined in the
Fourier domain, even if many authors use the generic variables x or ¢ to write them down,
possibly suggesting the opposite. As the “sinc” kernel is symmetric positive definite, the
integral operator is compact and equation (2) has countably many solutions A, ¥, n € N,
which satisty furthermore:

e\, >0, > >...>2\,>...and \, = 0asn— +oo,
e real-valued eigenfunctions 1, constitute a complete orthogonal system of L?(—1,1).

We stress that besides the index n, eigenvalues and eigenfunctions A, 1, do heavily depend
on the parameter c. At this point, it has been qualified as a “lucky accident” by Slepian
himself that these Prolate functions ¢, also furnish solutions bounded on (—1,1) of the



eigenvalue problem for the following differential operator:

d 2 Y 2,2
Ve e [-1,1], dx((l x)dx)—&—cxw—xz/), x > 0. (3)
This fact is of great utility when it comes to computing numerically the functions 1), as dis-
cretizing directly the convolution equation (2) yields a matrix which coefficients decay very
slowly to zero; hence standard algorithms won’t be able to furnish accurately its eigenvalues
and eigenvectors. If one plugs ¢ = 0 inside (3), one obtains the differential equation leading
to the orthogonal polynomial basis of Legendre on [—1,1] with x, = n(n + 1). For this
reason, Prolate functions with ¢ > 0 are sometimes seen as a “bandlimited generalization of
Legendre polynomials”; one has to be careful with this terminology as the Legendre basis
is not primarily defined in the Fourier domain.

2.1.2  Orthogonal bases of both L?(—1,1) and L*(R)

Another amazing property is that, contrary to Legendre polynomials, Prolate functions can
be easily extended so as to furnish an orthogonal system in L?(R). Following Slepian, we
define for any n € N:

1 - et
v > 1 v =5 [ 2D e

They can be normalized so as to satisfy:

1
/ I ()b (E)E = Gy, / U (€ ()E = A, (4)
R —1

with 6., », the Kronecker symbol. With such a normalization, eigenvalues can be interpreted
as the fraction of the total mass which is concentrated in the interval [—1, 1]. Eigenfunctions
constitute therefore an orthonormal basis of a subset of L?(R) called the Paley-Wiener
space, constituted of c-bandlimited functions endowed with a finite L?(R) norm. It has
been believed for long time that Slepian’s functions were the unique ones to possess this
surprising property: another example of such a system has been found only recently in [42].

A property which reveals itself of crucial importance for extrapolation goes as follows: any
Prolate function ,, also satisfies

1
eR [ espliett)vn(de = pavalt), € C (5)

-1

Besides emphasizing the bandlimited character of these functions, this feature expresses
that, up to a change of scale, the function 1,, has the same shape as its Fourier transform.
The values of u, and A, are related through:

Aul€) = 5 -la () (6)

Concerning extrapolation purposes, the expression (5) opens the way to completing the
program outlined by Slepian in [31]. Namely, it allows for expressing the value of v, (t),
for any t € R, relying only on the knowledge of this function restricted in the interval
[—1, 1], restriction that can be computed accurately thanks to the eigenvalue problem for
the differential operator given in (3). So, as a consequence of this, since we know that v,
constitute an orthogonal system of both L?(—1,1) and of the subset of L?*(R) made of
c-bandlimited functions, a practical extrapolation routine for a c-bandlimited function f
known only in [—1,1] will work as follows:



compute as accurately as possible \,, and v, restricted to [—1, 1],
express f in the orthogonal basis made of ,, through the formula:

Ve -1l f) = futn(t), fn:)\—ln / () )

neN

extend the definition of 1, by means of (5) to any other interval of R,
the extrapolation f of f is then given by:

Vt €] = oo, —1[Ul, 400, f(t) =D fatu(t) =) Z—” [1exp(ict§)wn(§)d§. (8)

neN neN

The passage from [—1,1] to R could be also achieved by means of the formula (2) which
may look more interesting because in this last case, only the nonnegative A, values are
needed; however, we found that, relying on the algorithms proposed in [38], the computing
cost of the u, values was equivalent to the one of the A,. Therefore, the aforementioned
extrapolation algorithm is completely operational as soon as one has reliable numerical
algorithms to compute the Prolate functions ,, the complex values pu, and the scalar
products f,, for any c-bandlimited function f known on [—1,1] only.

2.1.3 Numerical examples

We shall present some reliable algorithms in §3 of the present paper. Before that, we display
some numerical simulations to illustrate the behavior of both Prolate functions and their
corresponding eigenvalues. On the left of Fig. 1, we display the first even/odd Prolate
functions on the interval [—1, 1] for the bandwidth parameter ¢ = 7. For this moderate value,
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Fig. 1. Slepian functions (left) with ¢ = 7 and repartition of eigenvalues \,, (right).

we observe that the first eigenfunctions, besides looking rather similar to ordinary Legendre
polynomials, are quite spread across the interval [—1, 1]. Their absolute values grow strongly
when approaching the edges +1. The corresponding eigenvalues \,, are arranged like a step
function (which explains why trying to solve directly a discretized version of (2) cannot be
considered a good way of deriving Slepian functions) with a sharp transition zone between
zero and one. It is a well-known fact that this transition occurs around the value n* such that



An* =~ ¢; accordingly, this value of ¢ has been drawn with a vertical red line on both figures 1
and 2. Figure 2 deals with the higher value ¢ = 21. In this case, the bandwidth is larger and
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Fig. 2. Slepian functions (left) with ¢ = 21 and repartition of eigenvalues A, (right).

consequently, Prolate functions are more peaked and more concentrated inside the interval
[—1,1]. For moderate values of n € N, their moduli remain bounded in the vicinity of the
edges £1, which also differs from the preceding case. Eigenvalues A, still display their “step
function” profile, but the numerical transition zone is now located before the value ¢, which
reflects some difficulties in the task of computing them accurately as ¢ grows (see e.g. [25]).

2.2 Some important results of Compressed Sampling (CS) theory

Compressive Sampling (or Compressed Sensing) consists now in a set of firmly founded
mathematical algorithms which allow to reconstruct a so—called sparse signal out of a sur-
prisingly restricted number of its observations, regardless to its possibly high frequencies.
Roughly speaking, the required number of observed values is proportional only to sparsity,
that is to say the amount of nonzero coefficients one needs in order to describe the signal
in a supposedly well-suited base; of course, a signal can be sparse in a given basis and not
in another one. For an introductory text, see http://compressedsampling.com/.

2.2.1 The “Restricted Isometry Property” (RIP)

Here, we shall not attempt to give the more advanced theoretical results of Compressed
Sampling; rather we shall try to convey the main ideas underlying the algorithms and state
some of the results having far-reaching consequences for our purposes. Details are to be
found in the original papers [5-9].

A signal f € L2(R) (or belonging to any Hilbert functional space) is said to be s-sparse in
the basis e;(t), i € N if the synthesis of f(t) for any ¢ € R involves only a small number
s € N of elements in this basis. That is,

vVt € R, flt) = Z a;e;(t), s small.
i=0



In the discrete case, given a suitable basis €;, i € {1,2,...,d} of R? we shall deal with
s-sparse vectors U which satisfy 0 = Y7 _, «;€; and s < d. For any 7 € R?, we also define its
s-sparse approximation Zs as the vector made of the s largest entries of Z. Of course, any
vector ¥ € R? being fixed, one can always consider an ad hoc basis such that its coordinates
read (1,0, ...0); here we work with the unitary Inverse Discrete Fourier Transform (IDFT)

reading (exp(i(k — 1)(j — 1)/d)/V/d)g=1.....d, j=1....a Or the canonical basis of R,
This being said, it makes sense to state the following definition:
Definition 1 (Candés [6]) For any integer d > s € N, the restricted isometry constant s

of a (possibly rectangular) matriz ® is defined as the smallest number such that it holds for
every s-sparse vector &: (we recall that for 1 < p < +o0, ||Z|e = (Z?:o |xl|p)%)

(1 =02l < 1277 < (1+ 65)[1Z]17- 9)

A wvector € R is said to be s-sparse if it has at most s < d non-zero entries.

A matrix endowed with this Restricted Isometry Property for a certain integer s is con-
stituted such that every set of of its d columns with cardinality less than s approximately
behaves like an orthonormal system. This means in particular that if 05 < 1, then all the
submatrices of ® made of s columns are well conditioned; moreover, (9) is a frame inequality
[10] restricted to s-sparse vectors for the frame defined as the set of d columns of ®.

2.2.2 Recovery theorems: sparse and noisy cases

From this, Candes and his collaborators established the following recovery theorems:

Theorem 1 (Candés [6]) Considerij € RN, N < d, a matriz ® which satisfies do5 < v/2—1,
and Fopr € R the solution of the following ¢* minimization process:

inf || Z]|p1, oF = § € R (10)
ZeR?

Then the following error estimates hold:

" . L " . c,.., .
[Zopt — Tl < CllTs = T, Fopt — Flle2 < —=[17s — T|or

NG
In particular, in case ¥ € RY is s-sparse, the recovery is exact.
A stability result is also available in case the observed vector ¥ is corrupted by noise:

Theorem 2 (Candés [6]) Considerif € RN, N < d, a matriz ® which satisfies das < V2-1,
a noise vector 7 € RN such that ®% = §+ 2, |Z|l;z < € and Zopr € R the solution of the
convexr minimization process:

inf (|7, |7 - 9T <e. (11)
ZER?
Then the following error estimate holds with constants C, C' being explicitly computable:

S » (O
[Fopt = Tle= < %Ilws — o + C'e.



One issue remaining with both these results is that the user has to know in advance whether
or not the observed vector i/ € RY is noisy because depending on the answer to this question,
one of the two programs (10) or (11) will be selected.

Remark 1 The RIP (9) as advocated in both Theorems 1 and 2 has a particular meaning
when ® is any N x d rectangular matriz extracted from the d X d unitary IDFT matriz. The
requirement do5 < \/2—1 means that for any 2s-sparse vector of Fourier coefficients 2 € C?
of a (generally non-sparse) vector z € C%, there holds:

(2- \/§)||ZH?Z(@1) <[ @2)17: ey < \/§||Z||§2(cd)7

where ||2]l¢2cay = ||2]le2(cay by Parseval’s equality and ®% = Z with 2 € CV is obtained by
retaining only the coordinates of z corresponding to the N rows of ®. So, this is a way of
expressing that the original signal z cannot be strongly concentrated on the set of d — N
remaining points; on the contrary, it has to be rather uniformly spread on the whole set of
d points, which is a consequence of zZ being sparse since the Fourier basis, having infinite
support in the time variable, is strongly delocalized. This idea is even reinforced in case the
set of N rows is “generic”, in the sense that it is chosen equally probably as any other set
of N rows among the available d ones: this is somewhat the reason behind exact recovery.

2.2.8 Numerical examples

The Restricted Isometry Property (9), which is actually crucial when it comes to under-
determined recovery, is verified by few classes of matrices only. Well-known examples (see
[5]) are as follows:

e Gaussian measurements: Entries of N X d matrix ® are independently sampled from
the normal distribution (0, +;). Then if N > Cslog(d/N), ® meets the requirements of
Theorems 1 and 2 with probability 1 — C exp(—~d), v > 0.

e Fourier measurements: Rows of N x d matrix ® are randomly chosen among the ones of
the unitary IDFT matrix. The resulting columns are normalized so as to have norm 1 in
2 (and the entries of the resulting vector Zopt may have to be modified accordingly after
the minimization process in case a FFT is necessary afterward). It is recalled in [26] that
for N > Cslog(d)? (v =6 or v =4), Theorem 1 holds with overwhelming probability; it
is conjectured that v = 1 suffices in [5].

As an illustration, we display on Fig. 3 the recovery of a random signal in R?°¢ involving
20 spikes (so s = 20 and d = 256 so this signal is sparse in the canonical basis of R?°%).
We selected a random Gaussian measurement matrix with IV is taken as the integer part
of slog(d): the reconstruction can be considered as perfect. Comparison with a standard ¢2
minimization is also shown for which the numerical outcome is not sparse at all.

3 Extrapolation of low frequencies with Prolate functions
3.1  Numerical computation of Prolate functions inside [—1,1]

The numerical computation of Slepian functions relies on the solving of the differential
Sturm-Liouville equation (3) which is a perturbation of the one admitting the Legendre
polynomials P, as eigenfunctions. Relying on this last feature, it sounds natural to seek 1,
as a Legendre series of the form:

Un(t) = BarPr(t),  Pu(t) = Pe(t)\/r +1/2. (12)

reN
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Fig. 3. Sparse spectrum recovery (left), absolute errors (middle) and £ minimization
(right).

The polynomials P, are called normalized Legendre polynomials and satisfy f_ll |P.(t)|2dt =

1. Plugging (12) inside (3) and rearranging leads to an eigenvalue problem for a symmetric
matrix A; more precisely, we have the following result.

Theorem 3 (Xiao et al. [38]) For any value of ¢ > 0, the numbers x,, and B, are the
eigenvalues and eigenvectors of the endomorphism of £? represented by the infinite matriz
A whose entries are zero except:

2 1) -1 2 1
rir +1) A Ao =Aryo, = r+2)(r+ 1) .

Arr=r(r+1)+ @32 -1 (2r +3)/(2r —1)(2r +5)

Thanks to its particular structure, the matrix A can be split into two submatrices Aecyen
and A,qq containing only even-numbered and odd-numbered rows and columns respectively.
However, truncation of these infinite matrices isn’t straightforward because their entries
don’t decay quickly with increasing rows and columns indexes. But thanks to the rapid decay
in 7 of the scalar products | fil n (t) P.(t).dt|, see Theorem 3.4 in [38], the eigenvectors of
interest can be obtained considering only the leading rows and columns of Agyepn and Aygq.

Hence a feasible algorithm to compute v, through the Legendre series representation (12)
goes as follows: solving the eigenvalue problems following Theorem 3:

(Aeven - X2n-Id)B'2n,. = 67 (Aodd - X2n+1~[d)g2n+1,. = 67 n e N7

and then generating efficiently the values of the normalized Legendre polynomials P, (t)
at particular abscissas. Especially, it is interesting to derive values of P, at points t, k =
1,2, ..., K corresponding to Legendre-Gauss quadrature [20]. For computing the nodes t; and
weights wy, of Gaussian quadrature rules, the fundamental tool is the three-term recurrence
relation satisfied by the set of orthogonal polynomials associated to the corresponding weight
function. In case P, is the monic orthogonal polynomial of degree r, it is a well-known fact
that such orthogonal polynomials are related through a three-terms recurrence relation

vVt € [—1,1], PT+1<t)+(LTPT(t)+bTPT_1(t) :tPT(t), Ph=1, P_,=0.

10



One introduces therefore the so—called Jacobi K x K matrices reading,

ag 1 0 - --- 0 ag Vb 0 -+ - 0

bl ay 1 0 --- 0 \/E aq \/E 0o --- 0
Jl— . 5 J2: )

0 b2 as 1 0 . 0 \/E ag \/@ 0

and if P = (Po(tr), Pi(tx), Pa(ts), ... P —1(t))T, then J P =t,P. Following [13] (see also
[20]), the nodes of a Gaussian quadrature can actually be computed as the eigenvalues
of the tridiagonal symmetric matrix J,, and also the weights through the corresponding
eigenvectors. This is the approach proposed by Gubner [15] in order to compute efficiently

Fig. 4. Nodes (left) and weights (right) for Gauss-Legendre quadrature and K = 256.

any scalar product of the form which is exactly what is required for (7),

1 K 2N, 2N+1
/1 FOpn(t).dt =Y wief(te) Y BurPr(ts),  NEN, (13)
- k=1 r=0,1

with f any smooth function defined on [—1,1] and (wg, tx)k=1,....k the weights and nodes
of a Legendre-Gauss quadrature rule (see Fig. 4). The summation on index r is carried out
according to the parity of n; MATLAB codes are also furnished in the papers [15] and [20].
Because of (12) and the convention which normalizes eigenvectors with unit £2 norm, both
[38] and [15] present algorithms which involve Prolate functions normalized so as to be of
unit norm in the interval [—1, 1], on the contrary of (4).

3.2 FEigenvalues: how to pass from [—1,1] to any abscissa of R

We saw before in §2.1.2 that one of the key points to complete the extrapolation process
is the efficient computation of eigenvalues appearing in either (2) or (5); following [38] and
taking advantage of our knowledge of the functions 1), restricted to the interval [—1, 1], we
present now a concrete way to complete this step. According to formula (5), it suffices to
discretize the Fourier integral to produce the value of v, (z) for any € R. This can be
done accurately exploiting the Gaussian quadrature rule derived in the preceding section;
namely, we write that:

K 2N,2N+1
Vo ER,  Pn() =Y wpexplicaty) »  BurPrlty),
k=1 r=0,1
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which is just a special case of (13). All the problem of setting up (8) reduces therefore in
extracting accurately the eigenvalues p, in (5). Following [38], we recall an useful result:

Theorem 4 (Xiao et al. [38]) For any value of ¢ > 0 and m,n € N? such that m # n (mod
2), there holds:

iml? 2 0 () (2) .t

il [ (800, (2).dt

It becomes possible to compute the eigenvalues by induction: first, A\g can be derived through

potbo(t = 0) :/_1 Yo(§)dE.

Then, all the successive values of |y, |, n > 1 can be obtained relying on Theorem 4 by using
again the Gaussian quadrature derived in §3.1. At last, we recall from [38] that u,, = i"|un,|
and it remains to use (6). The figures 1 and 2 have been produced this way.

Remark 2 Another algorithm to derive eigenvalues i, follows from the primary knowledge
of Prolate functions 1, obtained from solving the diagonalization problem raised by Theorem
3: from the numerical values ¥, (tr) known on the Gaussian quadrature points, one can
compute through (13) the Fourier integral in (5) by the same quadrature rule. Thus it suffices
to divide and compute an average to derive each corresponding eigenvalue. Numerical results
are similar to those coming from the algorithm by Xiao et al.

3.8  Numerical results

3.8.1 A simple test-case

We aim at completing a 15% extrapolation of the following simple and C*°(R) (but not
rigorously bandlimited) function,

foro(t) = %exp(ﬁt?) cos(5rt), te[-1,1], (14)

that is to say, finding its numerical values on the interval ]1,1.3] by means of its Prolate
expansion following equations (7), (8) and the numerical procedures explained in the pre-
ceding sections. The result is shown in Fig. 5 with the choice ¢ = 30 for the bandwidth. One
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Fig. 5. Extrapolation (left), absolute errors (middle) and Prolate coefficients (right).

can observe that for this value, the compression is very good since roughly 10 coefficients



acting on even Prolate functions (fp,, is clearly even) suffice to get a very good approxima-
tion: absolute errors inside the interval [—1, 1] are of the order of 10714: this agrees with the
values indicated in Table 1 and Theorem 3.11 of [29]. Coeflicients for odd Prolate functions
are of the order of 10716, When it comes to the extrapolation, errors grow no more than
values around 1073, which is still satisfying. Gaussian quadrature was used with 256 nodes.

3.3.2  First composite problem

We are now interesting in extrapolating more involved signals, for which we shall split be-
tween lower and higher frequencies, each one being treated by means of a specific algorithm.
The examination of absolute errors made on the global problem will be deferred to §5. First,
we consider the following smooth function for ¢ € [—1,1]:

4
f(t) =exp (2> sin(7t) 4 0.15[sin(137t) — 0.5 cos(237t) + 0.3 cos(77t)] . (15)
Vv i (t
flo(t) fh ( )

In order to check whether or not the splitting between low and high frequencies is admissible,
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Fig. 6. Extrapolation (left), absolute errors (middle) and Prolate coefficients (right).

we computed the empirical correlation between these two parts following (1) where integrals
are obtained with the Gaussian quadrature like (13): we found that for a = —1, b = 1,
Kk =~ 0.0014 which can be considered as satisfying. The first part is to be treated by the
extrapolation algorithm based on Prolate functions with the bandwidth parameter ¢ = 7.
The numerical outcome for an extrapolation of 15% (up to ¢ = 1.3) is shown in Fig. 6.
Prolate coefficients are equally spread among even and odd PSWEF. The reconstruction
error inside the interval [—1,1] is very low (of the order of 10716); the extrapolation error
is bigger, but remains at acceptable levels (of the order of 107%). These results can be
considered as being satisfying.

3.8.8  Second composite problem

As a second test-case, we consider the quite intricate smooth function:

Vt € [-1,1], f(t) = exp(—2t%) exp(3t) sin(7t) cos(3nt) + 0.5[sin(57t) — cos(7xt)]. (16)
fio(t) Tri(t)

Similarly as in the preceding example, we checked (1): with a = —1, b = 1, k ~ —0.019.
Here, we aim at extrapolating the first Gaussian-modulated part from the observed interval
[-1,1] to ]1,1.3] by means of PSWF with the bandwidth parameter ¢ = 20. Numerical
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Fig. 7. Extrapolation (left), absolute errors (middle) and Prolate coefficients (right).

results are displayed on Fig. 7. One can see that reconstruction errors inside [—1, 1] are still
very small, but extrapolation errors for 1 < ¢ < 1.3 are bigger compared to the preceding
example since they are now of the order of 1072, Few Prolate coefficients are needed to
represent the function (7) despite the fact it is not rigorously band-limited because of the
Gaussian function involved. Results are still satisfying though.

4 Extrapolation of higher frequencies with Compressed Sampling
4.1 The class of compressible signals

Roughly speaking, compressible signals correspond to a subclass for which there exists a
convenient Hilbert basis allowing to represent each of them with a very limited number of
coeflicients; in this case, one says that these signals are “well compressed” in this basis. This
notion is clearly dependent on the choice of the aforementioned basis since, in the case one
considers Fourier or wavelet bases, smoothness in the time variable implies compressibility
in both these bases. With the Fourier transform, it is possible to give a precise meaning to
the subclass of “signals being compressible in the Fourier basis”:

Proposition 1 Let f € CP(R) and suppose that f) belongs to L'(R) or to L*(R), then
forall € R, |f(&)| < Cp(1+ |€])7P for a suitable constant C), € RT.

Consequently, the class of compressible signals for which the approximate recovery theorems
hold contains all the signals having a certain number of derivatives when expressed within
the temporal variable. A property of the same flavor would also hold for wavelet bases.
Hence we can introduce a discrete analogue of this notion:

Definition 2 Let ¥ € RY; we say that it is a compressible vector in a given basis if its
coefficients decay according to a power law. More precisely, there exists p > 1 such that for
any k < d, the modulus of the k' largest coefficient of & is bounded by Cpk~P.

Being correctly oversampled, bandlimited functions clearly yield discrete compressible sig-
nals in the Fourier basis since their Fourier transform has compact support. The first result
concerning recovery of randomly sampled but compressible signals has been given in [9]:

Theorem 5 (Optimal recovery of weak-(?, [9]) Let ¥ € R a compressible vector in the
sense of Definition 2 with p > 1 or ||Z]|pn < Cy for p =1, and let « > 0 be a sufficiently
small number. Assume we are given N random measurements X, then with probability 1,
the minimizer Top: of (10) is unique. Furthermore, with probability at least 1 —O(d~ =), the
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following error bound holds:

logd\""?
Og) . a7

I~ Zonlir < CpaCy (%
Remark 3 Theorem 5 doesn’t refer to the RIP despite an earlier but similar concept ap-
pears in its proof. Its conclusion is probabilistic, as were the ones of the results proved in [7]:
it says that given O(slogd) measurements, one is able to retrieve through (' minimization
an approzimation which is as good as if the s largest entries of & were known in advance.
Moreover, the recovery algorithm (10) doesn’t need to know the quantities p and Cp.

4.2 Regularized Orthogonal Matching Pursuit (ROMP)

Both theorems stated in §2.2.2 rely on the numerical solving of a ¢! minimization program.
Despite the fact powerful methods now exist for completing this task, we prefer to turn
to lighter iterative solvers, like the so—called ROMP routine introduced in [26,27]. In this
section, we recall two recovery theorems for ROMP, adapted to the kind of problems we
want to process; the measurement N x d matrix is still denoted by .

Theorem 6 (Needell et al. [26]) Consider f € RN, N < d and the matriz ® which satisfies
825 < 0.03/+/logs. For any & € R with ij = ®%, ROMP outputs a set I such that supp(Z) C
I, |I| < 2s in at most s iterations.

This case corresponds to exact sparse recovery; we note that Theorem 2.1 in [26] gives
rigorous bounds in terms of RIP for widely used random measurement matrices. Concerning
the stability when measurements or the original (supposedly sparse) signal is perturbed, we
state the result in the context of compressible signals for which no algorithmic changes are
required (contrary to (10) and (11)):

Theorem 7 (Needell et al. [27]) Consider ij € RN, N < d and the matriz ® which satisfies
8gs < 0.01/\/logs. For any compressible vector ¥ € R? in the sense of Definition 2 with
iy = ®x + e, ROMP produces an approximation to T satisfying:

sp

C -
|Zromp — Zllez < 1/log s ( _p% + C||5||42> . (18)

We used the same letter p in both Proposition 1 and Definition 2 on purpose since the
discrete Fourier transform converts smoothness into fast coefficients decay. Hence, assuming
we deal only with smooth signals, and under a strong RIP restriction, Theorem 7 gives us an
error control which compares with (17) onto the output of the ROMP algorithm in a case
where the original vector & isn’t sparse. The authors of [27] conjecture that the logarithmic
factor in front of ¢ is unnecessary, and that a bound like the one of Theorem 2 actually
holds. We point out that a MATLAB code for ROMP is available at the following location:
http://www.math.ucdavis.edu/ dneedell/romp.m

4.8 The choice of convenient random matrices

The first articles [7-9] insist on the fact that the spectacular results of CS stem from the
combined use of random sensing on the one hand and sparse recovery through ¢ minimiza-
tion on the other hand. In order to achieve good numerical quality, the randomness of @ is
crucial; however, in the context of extrapolation, it is not completely obvious how to meet
this requirement. Since ® is obtained by randomly selecting N = O(slogd) rows inside the
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unitary d x d IDFT matrix and further renormalizing its columns so as to be of unit £? norm,
one can easily understand that not all random sequences can be used. Actually, we only
know a fraction of d,ps < d values; moreover, the d — d,ps unknown values are all packed at
the end of the observations interval in a strongly non-random manner. Hence, in order to set
up correctly the CS algorithms, we must work with sensing matrices ¢ obtained with those
particular random sequences of N rows among d which don’t perceive the unknown d — dps
values located on the right of the observations interval. Clearly, this puts a limitation on
the size of the ratio & = d/dops > 1 as it will become more and more difficult to find such
sequences for increasing a’s while keeping constant the number N = O(slogd). We stress
that according to the results of [7,9], the simple idea of selecting a random sequence of N
rows among the dps first ones (corresponding to the observed values) isn’t convenient; in-
deed, the selected chosen measurement ensemble of N values has really to be equally likely
as any other one (see [7], page 492 and Remark 1).

Remark 4 It is interesting to observe that compared to the classical extrapolation tech-
niques based on variants of Gerchberg-Papoulis (GP) algorithm [12,28,16,35], the use of CS
techniques allows to handle cases which would be intractable otherwise. In [11], a bound is
given for uniqueness and perfect recovery using GP; within our notation, it reads:

1
N 1——.
sa(1-5)

This is highly more restrictive than the restriction N > O(slogd) which suffices to apply
the theorems in [7-9] holding for €* minimization and random Fourier measurements.

Usual random sequences possibly contain the abscissas to be extrapolated, which is a prob-
lem because they correspond to unknown values of the signal (these values we precisely
want to discover through the extrapolation process). Hence it may be tempting to restrict
random sequences to the set of abscissas corresponding to the observed part only, which is
the most straightforward way to proceed. However, such a choice leads to numerical results
showing a sharp transition in terms of absolute errors when the edge of the observations
interval is crossed. It resulted more efficient to generate global random sequences and, as
a post-processing, to discard the subset of which perceiving something inside the unknown
part. This seemingly differs in terms of numerical accuracy because the transition zone be-
tween observed and extrapolated parts of the signal is less noticeable; see for instance the
figure 10 for which the signal is extrapolated in the area ¢ €]1,1.3].

Finally, a simple extrapolation algorithm based on Compressed Sensing techniques reads:

e Evaluate the sparsity s of the Fourier transform of the signal # € R to be reconstructed,
for which there are d,ps known values and d — d,ps values to be extrapolated (generally
located in one or two connected sets).

e Compute the length N = O(slogd) of the random sequence to be used to under-sample
Z in order to produce ¥; decreasing the ratio o = d/dps in case no convenient sequence
can be found may be necessary.

e Build up the sensing matrix ® = \/—%(exp(i(kz —1)(j —1)/d))k random of length N, j=1,....d
and g: (mk:)k random of length N -

e Compute the optimal Z,,; by ¢! minimization or Z;om, through the ROMP algorithm.

e In general, one has to multiply this vector by v/N in order to produce the extrapolated
signal by carrying out its FFT afterward.
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4.4 Numerical results

4.4.1 The simple test-case

We repeat the simple test-case of producing a 15% (i.e. a = 1.15) extrapolation of the
function (14) observed in the interval [—1, 1] using the ROMP algorithm. The sparsity level
has been fixed as s = 8 and a Fourier measurement matrix was used with N the integer
part of slog(K) where K = 256 is the number of discretization points in [—1, 1]. Results are
shown in Fig. 8 which can be directly compared to Fig. 5 which involved an extrapolation
based on Prolate functions. The outcome is less satisfying, especially inside the observation

-o. — T —— —— T T —— ——
-1.0 —0.5 0.0 0.5 1.0 1.5 10_-1.0 —o0.5 0.0 o.5 1.0 1.5
—— Reconstruction ROMP

Fig. 8. Extrapolation with ROMP (left) and absolute errors (right).

interval since the absolute errors in this region are of the order of 10~3; the absolute errors
in the extrapolation region are around 10~2. We stress that the Fourier basis we used isn’t
optimal for such a signal which isn’t periodic; even if the difference | fpro(1.3) — fpro(—1)]
isn’t big, the numerical Fourier transform won’t be rigorously sparse. Hence we believe
that part of the extrapolation error comes from this fact because the ROMP algorithm
seeks an extrapolation endowed with a s-sparse representation in the Fourier basis. This
phenomenon should decrease when considering signals of higher frequency since the accuracy
of Compressed Sensing doesn’t depend on it (on the contrary of Prolate functions which
heavily depends on the bandwidth). This experiment confirms our choice of extrapolating
lower frequencies by means of Prolate functions; compare Fig. 8 with Fig. 5.

Remark 5 There is a special case for which the Fourier basis is especially well adapted,
namely the one involving signals being periodic with a period equal to the Lebesgue measure
of the whole interval (in our context |(—1,1.3)] = 2.3). For instance, we briefly consider
fper(t) = cos(8m(t+1)/2.3) +sin(14w(t +1)/2.3); from observations of f inside the interval
[—1,1], we aim at extrapolating in ]1,1.3] using the ROMP algorithm with N = 1.5slogd
random measures where s = 6, d = 295. Many convenient random sequences exist and the
numerical results are displayed in Fig. 9. The salient feature is that for this particular class
of signals, the transition between the absolute errors inside the observations interval and
the ones in the extrapolation domain is hardly noticeable. This particular case shows how
crucial is the choice of the basis for the quality of recovery and extrapolation.

4.4.2  First composite problem
We now deal with the oscillatory part of (15) which reads:
Vi e [-1,1], fri(t) = 0.15[sin(137t) — 0.5 cos(23wt) + 0.3 cos(7nt)].

We carry out a 15% extrapolation of this strongly band-limited function by means of the
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Fig. 10. Extrapolation with ROMP (left) and absolute errors (right).

ROMP algorithm with parameters s = 12 and the choice N = 1.1slog(d) where d = 295.
In particular, finding convenient random sequences as explained in §4.3 is possible only
for N < 1.2slog(d) ~ 82. The results displayed in Fig. 10 show that these CS techniques
handle such an extrapolation problem quite well; the absolute recovery errors are spread
rather uniformly inside the interval [—1,1.3] with a slight increase close to its edges. When
comparing with Fig. 8, one sees that the Fourier basis isn’t really adapted to the present case
as well; however, the results are still rather good because the salient feature of the signal
is its frequencies. And since there’s no limitation in Compressed Sensing related to the
bandwidth (only the sparsity of the Fourier transform matters), higher frequencies allows
to get a slightly oversampled signal as an input.

4.4.8 Second composite problem

The oscillatory part of (16) has lower frequencies involved and reads:
1.
vt e [-1,1], fri(t) = §[sm(57rt) — cos(7mt)].

We treat its extrapolation from [—1,1] to |1,1.3] by means of ROMP with s = 7 and a
slightly lower number of random observations, namely N = slog(295) ~ 40. Results are
shown in Fig. 11. This case contains frequencies lower than the preceding one, but its
structure is a bit simpler as only 2 trigonometric functions are involved. Fig. 11 shows that
the reconstruction is rather good uniformly in the computational domain, but there is a
slight increase of absolute errors close to the edges of the interval [—1,1] of observations.
Starting from ¢ ~ 0.8, there are some small high-frequencies oscillations which don’t perturb
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Fig. 11. Extrapolation with ROMP (left) and absolute errors (right).

very much the overall quality of the extrapolated signal.

5 Putting the pieces altogether

By doing a byproduct of Theorem 3.11 in [29] (see also Theorem 3 in [2]) and Theorem
7, it would be possible to derive an error estimate for the recovery of the original signal f
by means of both algorithms put together inside the observations interval only. Indeed, it
seems that no rigorous error estimates exist concerning the extrapolation of a band-limited
signal through a truncated Prolate series of the type (8), even if in our context, (17) and
(18) provide a reliable indication of the discrepancy coming from the Compressed Sensing
part. This may constitute a direction for future research.

5.1 First composite problem

We now present the results of combined extrapolation algorithms on problem (15) in Fig. 12
together with the corresponding absolute errors on the whole interval [—1, 1.3]. We observe

-10 -05 00 05 10 15 1010 -05 00 05 10 15

Fig. 12. First case: global extrapolation (left) and absolute errors (right).

that the overall quality is quite good from both viewpoints of recovery (inside the interval
[-1,1]) and extrapolation (inside |1, 1.3]). Absolute errors are uniformly distributed inside
the whole interval [—1,1.3] and their amplitudes vary roughly between 1073 and 107!; es-
pecially, there is no sharp transition when passing the edge t = 1. From Fig. 6, we know
that absolute errors inside [—1, 1] come in very large part from the ROMP algorithm since
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the reconstruction errors for Prolate functions are negligible. In [—1,1.3], both algorithms
are endowed with roughly the same amount of numerical errors, and they accumulate when
adding lower and higher parts of the signal. However, the numerical outcome can be con-
sidered as globally satisfying.

5.2 Second composite problem

The extrapolation of function (16) is shown in Fig. 13. This test-case is slightly more

N
LR

B T T T T
-10 -05 00 [ 10 15

Signal réel

Signal reconstitué et extrapolé

Fig. 13. Second case: global extrapolation (left) and absolute errors (right).

difficult because the correlation between f;, and fj; is stronger, which means that the
difference between the lower and higher frequencies parts in the signal f is less sharp. As
a consequence, it is less straightforward to make a clean separation between its “trend”
and its “fluctuation” (compare with Figures 6, 10 and 12). There are spurious oscillations
of high frequency around the location ¢ = 0.5 and this comes from the recovery of ROMP
since the reconstruction errors of Prolate functions are once again negligible (see Fig. 7).
Absolute errors oscillate between 10~2 and 10~! which amounts to a relative error around
10% except in this instability area where it comes close to % It is quite satisfying that,
similarly as the preceding example, no visible transition appears when crossing the abscissa
t = 1 separating measures from extrapolation.

6 Conclusion and outlook

We have presented in this paper a practical methodology to carry out the extrapolation
of smooth and compressible signals relying on modern numerical techniques, namely the
computation of Slepian’s Prolate functions which are well suited for processing the reason-
ably low frequency signals and the Compressive Sampling techniques recently developed by
Candes et al. which are independent of the size of the bandwidth hence are endowed with
enough robustness to treat higher frequencies, especially when they can be expressed by
means of a sparse Fourier representation. Each method has been tested independently and
then, the absolute errors obtained by gluing together both algorithms have been studied.
It came out that in order for this numerical method to deliver good results, several restric-
tions should be met: the correlation (1) between between low and high frequencies should
be weak, the high frequencies should have a sparse representation in the Fourier basis (see
§2.2.1 and Definition 2), and the size of the extrapolation domain should be reasonable
(see 84.3). When these three points are met, numerical results are far better than those
which could be obtained by standard methods, like e.g. Gerchberg-Papoulis methods at
least because they wouldn’t be able to treat such high frequencies (see Remark 4).
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