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Abstract

Unidirectional start-up flow of a viscoelastic fluid in a pipe with frac-

tional Maxwell’s model is studied. The flow starting from rest is driven by

a constant pressure gradient in an infinite long straight pipe. By employ-

ing the method of variable separations and Heaviside operational calculus,

we obtain the exact solution, from which the flow characteristics are in-

vestigated. It is found that the start-up motion of fractional Maxwell’s

fluid with parameters α and β, tends to be at rest as time goes to infinity,

except the case of β = 1. This observation, which also can be predicted

from the mechanics analogue of fractional Maxwell’s model, agrees with

the classical work of Friedrich and it indicates fractional Maxwell’s fluid

presents solid-like behavior if β 6= 1 and fluid-like behavior if β = 1. For

an arbitrary viscoelastic model, a conjecture is proposed to give an intu-

itive way judging whether it presents fluid-like or solid-like behavior. Also

oscillations may occur before the fluid tends to the asymptotic behavior

stated above, which is a common phenomenon for viscoelastic fluids.

Keywords: Viscoelastic fluid; fractional Maxwell’s model; start-up flow; pipe flow;

Heaviside operational calculus.

1 Introduction

‘All things are movable and in a fluid state’, which is a famous quotation from
Thales of Miletos, the first philosopher of ancient Greece.

Indeed, besides the most familiar fluids such as water and gas, most mate-
rials in nature and industry, such as milk, oil, lava, etc., can be treated and

∗The first submission was in July 2008. A second submission was to Computers and Math-

ematics with Applications in April 2009. This is a revised edition of the second submission.
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investigated as fluids. However, some of them not only have the viscosity like
Newtonian fluid, but also exhibit Hooke’s elasticity. They are viscoelastic ma-
terials. Different models of viscoelastic materials were obtained and studied
during the past hundreds of years; for example, Maxwell’s model, constructed
by a spring and a dashpot in serial, was largely investigated in the last century.

Recently, fractional Maxwell’s model, constructed by two fractional element
models in serial, attracts a lot of researchers’ interests[1][2][3][4][5][15][18][19][20].
Let σ be the shear stress and ǫ be the shear strain. The constitutive equation
for fractional Maxwell’s model is given by

σ + λα dα

dtα
σ = Eλβ dβ

dtβ
ǫ, 0 ≤ α ≤ β ≤ 1, (1)

where E the shear modulus, and λ is the relaxation time.1

In the case of α = 0, equation (1) degenerates to

σ =
1

2
Eλβ dβ

dtβ
ǫ,

which is just the constitutive relation of a fractional element model with the
shear modulus E/2. In fact, the usual expression for a fractional element model
was first introduced by Scott Blair[6][7]

σ = Esλ
β dβ

dtβ
ǫ, (2)

where Es is the shear modulus. The mechanics analogue of a fractional element
model can be found in [1][2][8][10].

In the case of α = β = 1, equation (1) degenerates to the constitutive
relationship of classical Maxwell’s model.

Physically, fractional Maxwell’s model can be considered as two fractional
element models in serial, with orders γ1 and γ2 satisfying

α = |γ1 − γ2|, β = max{γ1, γ2}. (3)

Fig.1 gives the mechanics analogue of fractional Maxwell’s model, where a tri-
angle denotes a fractional element model.

The continuous interest of fractional Maxwell’s model is perhaps due to the
special known and unknown property of this model and due to the rapid de-
velopment of fractional calculus during the last fifty years. Palade et. al. in
[15] derived fractional Maxwell’s model from the linearization of the objective
equation and discovered the anomalous stability behavior of the rest state in
three dimensions. Tan et. al. in [3][9] studied four unsteady flows of a vis-
coelastic fluid with generalized Maxwell’s model between two infinite parallel
plates. Vieru et. al. in [18] studied flow of a generalized Oldroyd-B fluid due
to a constantly accelerating plate, which includes generalized Maxwell’s model

1Some studies on fractional Maxwell’s model only concern the particular case with β = 1,

i.e., the so called generalized Maxwell’s model.
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Figure 1: Mechanics analogue of fractional Maxwell’s model. A triangle denotes
a fractional element model.

as a limiting case. Hayat et al. [5] also discussed fractional Maxwell’s model
and studied three types of unidirectional flows which were induced by general
periodic oscillations of a plate. Hernández-Jiménez et. al. gave some experi-
mental results for oscillating flows with fractional Maxwell’s model [4], which
encourage more studies. Yin and Zhu [1] studied the oscillating flow with frac-
tional Maxwell’s model in an infinitely long pipe and found interesting results,
for example, the resonance peaks was discovered to be different with those of
ordinary Maxwell’s model.

A lot of interests and studies were also given to the unidirectional start-up
pipe flows, which has a significant practical and mathematical meaning. Zhu and
Lu et. al. in [14] studied characteristics of the velocity filed and the shear stress
field for an ordinary Maxwell’s fluid and discovered the oscillation phenomenon.
Fetecau in [17] studied the analytic solution for an ordinary Oldroyd-B fluid and
several limiting cases such as ordinary Maxwell’s fluid; the velocity profiles for
the steady state are the same in all types of fluid they studied. Further, Tong
et. al. in [16] studied the exact solution for the fractional Oldroyd-B model in
an annular pipe by using Hankel-Laplace transform. Using similar but different
methods, Zhu and Yang et. al. in [13] studied the exact solution and flow
characteristics for the fractional element model2 with parameter β, the most
fundamental model in all fractional derivative models. They found oscillation
phenomenon and solid-like behavior for certain β.

As far as we know, the characteristics of start-up pipe flow with fractional

Maxwell’s model have not been well-studied yet. In this paper, we investigate
basic characteristics of such flows through studying the exact solution. The
fluid is quiescent in the beginning in an infinitely long pipe, and then it will
be suddenly started by a pressure gradient which remains constant after the
starting moment.

The start-up pipe flow with a dashpot model (i.e. Newtonian fluid) is clas-
sical in fluid dynamics; with ordinary Maxwell’s model the motion would be

2We mention that the fractional Oldroyd-B model in the study of Tong et. al. does not

include the fractional element model as a limiting case.
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very interesting because of the occurrence of oscillations [14]; and with the
fractional element model solid-like behavior was discovered [13] as we already
mentioned above. One must be curious what the interesting phenomena for
fractional Maxwell’s model are and whether we can summarize a way to deduce
the characteristic of a certain viscoelastic model if just given the constitutive
relation.

This paper is organized as follows. In section 2, we present the governing
equations and initial boundary conditions, and solve this initial boundary value
problem through the method of variable separation and Heaviside’s operational
calculus. In section 3, we discuss the flow characteristics and give some obser-
vations. In section 4, we make the conclusion and propose a conjecture.

2 Governing equation and exact solution

We consider the start-up flow of a fractional Maxwell fluid in an infinitely long
pipe with the radius a. In the beginning, the fluid in the pipe is at rest; then
it is suddenly started by a constant pressure gradient. Take the pipe axial
direction as the z-axis. We construct a column coordinate system (r, θ, z) and
let V (r, θ, z, t) denote the flow field.

Since the flow is axisymmetric, we assume V only has the axial component
and does not depend on θ, i.e.,

V = u(r, t)ez. (4)

The governing equations of the motion are given by the continuous equation

∇ · V = 0, (5)

as well as the momentum equation

ρ
dV

dt
= −∇p+∇ · σ, (6)

where d
dt is the material derivative, ρ is the density of the fluid, p is the pressure

field and σ is the stress tensor field.
The start-up flow considered is driven by the pressure gradient field given

by
∂p

∂z
(t) = −Gh(t), (7)

where G is a constant and h(t) is the Heaviside function, defined by h(t) =
0, t < 0; h(t) = 1, t ≥ 0.

The constitutive equation (1) gives:

σrz + λα ∂α

∂tα
σrz = Eλβ ∂β−1

∂tβ−1

∂u

∂r
. (8)

The initial and boundary conditions are given by

u(a, t) = 0, u(0, t) < ∞, u(r, 0) =
∂u

∂t
(r, 0) = 0, t > 0, 0 ≤ r ≤ a. (9)
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Substituting (4) to equations (5) and (6), and considering (7) and (8), we
find

ρ
(

1 + λα ∂α

∂tα

)∂u

∂t
=

(

1 + λα ∂α

∂tα

)

Gh+ Eλβ ∂β−1

∂tβ−1

(1

r

∂u

∂r
+

∂2u

∂r2

)

. (10)

Let the radius a be the characteristic length, ρa2/Eλ be the characteristic
time, and Ga2/Eλ be the characteristic velocity. By simple algebraic manip-
ulations, we get the dimensionless governing equation and the dimensionless
initial-boundary conditions3:

∂u

∂t
+ λα ∂α+1

∂tα+1
u− λβ−1 ∂β−1

∂tβ−1

(1

r

∂u

∂r
+

∂2u

∂r2

)

= 1 + λα t−α

Γ(1− α)
, (11)

0 ≤ r < 1, t > 0,

and

u(1, t) = 0, u(0, t) < ∞, t > 0, (12a)

u(r, 0) =
∂u

∂t
(r, t) = 0, 0 ≤ r < 1. (12b)

We use the method of variable separation and Heaviside operational calculus
solving equations (11) and (12). Let

u(r, t) = v(r)T (t). (13)

Substituting this expression to the homogenous equation of equation (11), we
obtain

1

v

(1

r
v′(r) + v′′(r)

)

=
T ′(t) + λαTα+1(t)

λβ−1T β−1(t)
= −k2, (14)

where k is some appropriate constant to be determined. Solving the eigenvalue
problem:

1

r
v′(r) + v′′(r) + k2v = 0, (15a)

v(1) = 0, v(0) < ∞, (15b)

we obtain the discrete eigenvalues

k1 < k2 < k3 < ..., (16)

as well as the corresponding eigenfunctions:

vm = J0(kmr), m = 1, 2, ..., (17)

3We still use notations u, r, t but here they denote dimensionless quantities. In the follow-

ings we only consider dimensionless quantities, so this change of notations will not bring any

confusions.
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where km is the mth positive root of the zeroth Bessel function.
The final solution is constructed by

u(r, t) =

∞
∑

m=1

AmTm(t)J0(kmr), (18)

where Am, m = 1, 2, 3, ..., are constants to be determined and Tm(t) are func-
tions of t to be determined. Substituting this expression of u(r, t) to equation
(11), we find

∞
∑

m=1

Am

(

T ′

m(t)+λαTα+1(t)+k2mλβ−1T β−1
m (t)

)

J0(kmr) = h(t)+
λαt−α

Γ(1− α)
; (19)

since

h(t) +
λαt−α

Γ(1− α)
=

(

h(t) +
λαt−α

Γ(1− α)

)

∞
∑

m=1

2J0(kmr)

kmJ1(km)
, (0 < r < 1), (20)

comparing the coefficients of the eigenfunctions appearing in equations (19) and
(20) we have

Am =
2

kmJ1(km)
, (21)

as well as

T ′

m(t) + λαTα+1
m (t) + k2mλβ−1T β−1

m (t) = h(t) +
λαt−α

Γ(1− α)
. (22)

We solve equation (22) by applying Heaviside operational calculus4. Let
p = d

dt and let Tm(t) = Y h(t) where Y is an operator to be determined. Noting
that

pλh(t) =
t−α

Γ(1− α)
, (23)

we have

Y =
1 + λαpα

p+ λαpα+1 + k2mλβ−1pβ−1
. (24)

As a result,

Tm(t) =
1 + λαpα

p+ λαpα+1 + k2mλβ−1pβ−1
h(t). (25)

By the definition of the Heaviside operator [11], it yields

Tm(t) =
1

2π
√
−1

∫

L

1 + λαzα

z2 + λαzα+2 + k2mλβ−1zβ
eztdz. (26)

4Heaviside operational calculus is in fact equivalent to Laplace transform method, but the

former method is more intuitive: The spectral parameter has a clear meaning.
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where L is a contour in complex z-plane parallel with the imaginary axis, and
is determined by the requirement that there be no singularities of the integrant
on the right of L.

The final solution we construct is given by

u(r, t) =
1

2π
√
−1

∞
∑

m=1

2J0(kmr)

kmJ1(km)

∫

L

1 + λαzα

z2 + λαzα+2 + k2mλβ−1zβ
eztdz. (27)

Substituting this equation to equation (8) and assuming the shear stress field is
zero at t = 0, we obtain

σrz =
Eλβ

2π
√
−1

∞
∑

m=1

−2J1(kmr)

J1(km)

∫

L

zβ−1

z2 + λαzα+2 + k2mλβ−1zβ
eztdz. (28)

In the case of α = 0, i.e., the case of the fractional element model, solution
(27) reduces to

u(r, t) =
1

2π
√
−1

∞
∑

m=1

2J0(kmr)

kmJ1(km)

∫

L

2

2z2 + k2mλβ−1zβ
eztdz. (29)

By an inverse formula given in [10][p.p. 271-273], we can simplify expression
(29):

u(r, t) =

∞
∑

m=1

2J0(kmr)

kmJ1(km)
tE2−β,2(−k2mλβ−1t2−β/2), (30)

where E2−β,2 is the Mittag-Leffler function. Note that the Newtonian fluid
corresponds to the particular case of (α = 0, β = 1). Substituting β = 1 to
equation (30), we obtain

u(r, t) =

∞
∑

m=1

4J0(kmr)

k3mJ1(km)

(

1− e−k2

m
t/2

)

=
1

2
(1 − r2)−

∞
∑

m=1

4J0(kmr)

k3mJ1(km)
e−k2

m
t/2,

(31)
which is the classical dimensionless solution.

In the case of α = β = 1, i.e., the case of ordinary Maxwell’s model, our
solution agrees with the solution obtained by Zhu et. al. [14].

3 Results and discussions

Due to the simplicity of the fractional element model, which also plays the
fundamental role of constructing different fractional models, we first recall some
results in [13] of start-up pipe flow for the fractional element model (Scott Blair’s
model). Without lost of generality, we take λ = 1 in equation (30). As Fig.2
shows, for the case

0 < β < 1,
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oscillations occur just after the fluid is started; the smaller the parameter β is,
the stronger the elasticity is. And as t goes to infinity, the center velocity tends
to be 0. In fact, recall the asymptotic formula for E2−β,2 [10]:

E2−β,2(−z) =
1

Γ(β)

1

z
+O(z−2), z → +∞, (32)

We know from this formula that the series expression (30) is uniformly conver-
gent at least for any fixed r. Let t → ∞; we obtain that

lim
t→∞

u(r, t) = 0, 0 ≤ r ≤ 1. (33)

The only exception is the case of β = 1, i.e. the case of Newtonian fluid. No
oscillations would occur and as t goes to infinity, the center velocity will tend
to be a steady constant 0.5. In this classical case,

lim
t→∞

u(r, t) =
1

2
(1− r2), 0 ≤ r ≤ 1. (34)

Fig. 3a) and 3b) shows the velocity profiles of different t, with β = 0.4 and

Figure 2: Center velocity with respect to t for the fractional element model.

β = 1 respectively, which gives intuitive pictures in mind.
Based on these discussions of of the fractional element model, the mechanics

analogue of fractional Maxwell’s model (see Fig.1) would help us do further
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a. β = 0.4 b. β = 1

Figure 3: Velocity profiles at different t for the fractional element model.

investigates. This idea will be directly applied in the following discussions. Still
we will take λ = 1 without loss of generality. And we discuss the start-up flows
with different α and β through studying equation (27).

Fig.4 gives the curves of the center velocity with respect to t when α = 0.6. It
can be seen that for 0.6 ≤ β < 1, the center velocity of the pipe will tend to be 0,
which means the corresponding fractional Maxwell’s model will finally represents
solid-like property; for β = 1, the center velocity will tend a constant 0.25 and
the fractional Maxwell model finally represents fluid-like property. Furthermore,
the smaller β is, i.e., the stronger the elasticity of the larger order fractional
element is, the stronger the oscillating phenomenon is.

Fig.5 is similar with Fig.4 but the phenomenon is more clear. It gives the
relation curve of center velocity with respect to t with different α, when β = 0.6.
It can be seen that, as t goes to infinity, the center velocity of the pipe tends to
be 0, which indicates the corresponding fractional Maxwell’s model represents
solid-like property. When α increases, i.e. the difference between the orders of
the two fractional elements increases, or say the elasticity of the smaller order
fractional element strengthens, the oscillating phenomenon becomes stronger,
which helps the fluid to be at rest, although in short time it accelerates the fluid
more.

Fig.6 shows the relation curve of the center velocity with respect to t in the
case of β = 1. We see that if 0 < α ≤ 1, the center velocity will tend to a
constant 0.25 as t goes to infinity; if α = 0, i.e., the case of Newtonian fluid, the
center velocity will tend to 0.5. In both cases, fractional Maxwell’s fluid will
represent fluid-like property for large t. And when α 6= 0, oscillation also occurs
which means the fluid also has elasticity, however, since β = 1, the fluid-like
property will lead the way.

It deserves to point out that these results partly agree with Friedrich’s [12],
who first pointed out that the fractional Maxwell model represents solid-like
property as long as β < 1.

An intuitive way to deduce whether a fractional model would exhibit solid-

9



Figure 4: Center velocity with respect to t for the fractional Maxwell model in
the case of α = 0.6.

like or fluid-like property is to consider the fractance of the mechanics analogue
of the model. According to the analysis of the fractal construction of these
models [10][2], we can indeed deduce solid-like property without calculations: A
fractional model (which itself is not a string) presents solid-like behavior if and
only if there exists a spring path from one side to the other in any spring-dashpot
fractance of its mechanics analogues.

4 Conclusions

An exact solution of the start-up pipe flow with fractional Maxwell’s model is
obtained and the flow characteristics are discussed.

In the case of β 6= 1, the motion of fractional Maxwell’s fluid in a pipe tends
to be at rest as time goes to infinity; otherwise if β = 1 the flow will have a
parabolic-like profile as t goes to ∞.

Indeed, for a Scott-Blair’s model (fractional element model) with parameter
β, as long as β < 1, the model presents a solid-like property. This was showed
by Zhu and Yang et. al. in [13] in the study of start-up pipe flow.

For a fractional Maxwell model, i.e., two fractional element models in a

10



Figure 5: Center velocity with respect to t for the fractional Maxwell model in
the case of β = 0.6.

serial connection, the fluid will present a solid-like property as long as the two
fractional elements both present solid-like behaviors. On the other hand, if
one of the fractional elements in serial is Newtonian, even the other one is a
spring, the serial compound will be of fluid-like property and the flow will keep
a stationary velocity profile after infinitely long time. Our result agrees with
the results in [12], but from different points of views.

Moreover, the stronger the elasticity of any of the fractional element models
in the serial connection is, the stronger the oscillation of the corresponding
fractional Maxwell model is.

From these results for the case of fractional Maxwell’s model, we conjecture
that a viscoelastic model presents a solid-like behavior if for any spring-dashpot
fractance of its mechanics analogues, there exists a spring path(a path with only
springs) from one side to the other. This conjecture, if proved, will generalize
Friedrich’s result in [12].

Acknowledgements We are very grateful to the referee for suggestions and
constructive comments.
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Figure 6: Center velocity with respect to t for the fractional Maxwell model in
the case of β = 1.
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