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Abstract

Let {Pn}n≥0 be a sequence of monic orthogonal polynomials with re-
spect to a quasi–definite linear functional u and {Qn}n≥0 a sequence of
polynomials defined by

Qn(x) = Pn(x) + sn Pn−1(x) + tn Pn−2(x), n ≥ 1,

with tn 6= 0 for n ≥ 2.
We obtain a new characterization of the orthogonality of the sequence

{Qn}n≥0 with respect to a linear functional v, in terms of the coefficients
of a quadratic polynomial h such that h(x)v = u.

We also study some cases in which the parameters sn and tn can be
computed more easily, and give several examples.

Finally, the interpretation of such a perturbation in terms of the Jacobi
matrices associated with {Pn}n≥0 and {Qn}n≥0 is presented.
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1 Introduction

Let u be a linear functional defined in the linear space P of polynomials with
complex coefficients.

The sequence of complex numbers {un}n≥0 such that un = (u, xn), is said
to be the moment sequence associated with the linear functional u. The corre-
sponding z-transform

∑∞

n=0 un z
−(n+1) defines a function S(z) which is analytic

in a neighbourhood of infinity. This function is known in the literature as Stielt-
jes function associated with the linear functional u (see [17]).

The linear functional u defines a bilinear functional on P×P in the following
way: (p, q)u = (u, pq), for every p, q ∈ P. If H = [(xk, xl)u]

∞
k,l=0 denotes the

Gram matrix of the above bilinear functional with respect to the canonical basis
of P, then H is a Hankel matrix, i.e. the entries in every antidiagonal are equal.

The linear functional u is said to be quasi–definite if the leading principal
submatrices Hn, n ≥ 0 , of H are non singular. In such a situation, there
exists a sequence of monic polynomials {Pn}n≥0 with degPn = n such that
(u, PnPm) = kn δn,m with kn 6= 0. The sequence {Pn}n≥0 is said to be the
sequence of monic orthogonal polynomials (SMOP) with respect to the linear
functional u.

Taking into account that the multiplication operator by x is a symmetric op-
erator with respect to the bilinear functional (., .)u, the SMOP {Pn}n≥0 satisfies
for n ≥ 0, a three–term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x),

with P0(x) = 1 and P−1(x) = 0 where γn 6= 0 for every n ≥ 1. Conversely, if a
sequence of monic polynomials {Pn}n≥0 satisfies a recurrence relation like the
previous one, then there exists a unique quasi–definite linear functional u such
that {Pn}n≥0 is the corresponding SMOP. This result is known in the literature
as Favard’s theorem (see [7]).

For the SMOP {Pn}n≥0 there exists a sequence {νn}n≥0 of linear functionals
such that (νm, Pn) = δnm. This sequence {νn}n≥0 is said to be the dual sequence

of {Pn}n≥0. Notice that νn =
Pn u

(u, P 2
n)

, where for every p ∈ P, p u denotes the

linear functional such that (p u, q) = (u, pq), q ∈ P. The linear functional

ν0 =
u

(u, P 2
0 )

is said to be the normalization of u in the sense that (ν0, 1) = 1.

Moreover, the linear functional (x− a)−1u is defined on P by

((x− a)−1u, P ) = (u,
P (x) − P (a)

x− a
), P ∈ P.

If P = (P0, P1, . . . )
T denotes the column vector associated with an SMOP,

then the three–term recurrence relation reads xP = JP P where JP is a tridi-
agonal matrix such that the diagonal entries are {βn}n≥0, the upper diagonal
entries are 1, and the subdiagonal entries are {γn}n≥1. It is called a monic
Jacobi matrix (see [7]).
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Thus, for a quasi-definite linear functional u we have three characteristic
elements

(i) The Stieltjes function.

(ii) The SMOP {Pn}n≥0.

(iii) The monic Jacobi matrix JP .

The connections between these three basic elements in the theory of orthog-
onal polynomials with Padé rational approximants, quadrature formula, and
spectral theory of symmetric operators have been very fruitful.

In a more general framework, in [24] and [25] the author deals with quasi-
orthogonal polynomial sequences {Qn}n≥0 of order r with respect to a positive
Borel measure µ. They are defined by Qn(x) = Pn(x) + bn,n−1Pn−1(x) + ... +
bn,n−rPn−r(x) with bn,n−r 6= 0, where {Pn}n≥0 is the sequence of orthonormal
polynomials with respect to µ. When the polynomials Qn are characteristic
polynomials of some symmetric tridiagonal matrices with positive subdiagonal
entries, many properties of their zeros can be deduced from such a formulation.
Furthermore, a positive quadrature formula with n nodes which is exact for
polynomials of degree at most 2n − r − 1, 0 ≤ r ≤ n, is based on the zeros
of the quasi-orthogonal polynomial Qn and, as a consequence, for a fixed n,
every positive quadrature formula is a Gaussian quadrature formula for some
nonnegative measure.

Many authors have been interested in the study of SMOP’s associated with
some perturbations of linear functionals. In particular, the so called direct prob-
lems deal with some canonical perturbations of linear functionals. For instance,
the analysis of the parameters of the three-term recurrence relation when a pos-
itive definite linear functional is multiplied by a polynomial (Christoffel trans-
formation) has been done from a numerical point of view in [9], from the point
of view of the corresponding monic Jacobi matrices in [5], and taking into ac-
count the associated Stieltjes functions, in [18] and [21]. The relation between
the corresponding SMOP in the case of quasi-definite linear functionals has
been deduced in [20]. The addition of Dirac masses and their derivatives to a
quasi-definite linear functional is called Uvarov transformation (see [14], [19],
[21]). They play an important role in the spectral analysis of higher order linear
differential operators whose eigenfunctions are SMOP (see [12]). They are re-
lated to bispectral problems and self-similar reductions of differential operators
([18]). The connection between the corresponding monic Jacobi matrices has
been studied in [5].

On the other hand, given a quasi-definite linear functional u and polynomi-
als p, q the analysis of the quasi-definiteness of a linear functional v such that
pv = qu has been done in the framework of the so-called generalized Christof-
fel formula when u is a positive definite linear functional and q/p is a positive
rational function in the support of u (see [9]). In such a case the connection
between the monic Jacobi matrices has been done in [8]. For the quasi-definite
case, the relation between the corresponding SMOP has been given in [20].
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In the general situation, if deg p = 1 and q is a constant, necessary and
sufficient conditions for the quasi-definite character of v have been done in [17].
There, the expression of the perturbed SMOP in term of the initial one as well
as the relation between the parameters of the three-term recurrence relation
is stated. This perturbation is called Geronimus transformation. The relation
between the corresponding monic Jacobi matrices is analyzed in [5] and [19].
Finally, for the Stieltjes functions associated with u and v the connection is
given in [21].

When deg p = deg q = 1, the relation between the SMOP associated with u
and v is stated in [2].

Eventually, when p(x) = x2 and q is a constant, in [4] the authors focus the
attention in the invariance of the semiclassical character for such a transforma-
tion.

All these cases correspond to the so called direct problems, i.e., how a per-
turbation in a linear functional concerns to Stieltjes functions, monic Jacobi
matrices, and orthogonal polynomials, respectively.

The study of inverse problems, i.e. to find the relation between two linear
functionals assuming their corresponding SMOP’s are related in terms of an
algebraic expression, that it is said to be of type k-j, Qn(x) + an,n−1Qn−1(x) +
... + an,n−k+1Qn−k+1(x) = Pn(x) + bn,n−1Pn−1(x) + ... + bn,n−j+1Pn−j+1(x)
has been firstly considered by Geronimus in [11] in the case 1-2. Later on, the
relation 1-3 has been analyzed in [6] as well as in [13] from the point of view
of the corresponding parameters of the three–term recurrence relation. In this
last contribution the authors also deduce the second order linear differential
equation satisfied by the perturbed sequence of orthogonal polynomials when
the initial sequence is a classical one. We also point out that in [22] and [23]
the authors focus the attention in the study of these perturbed families when
the initial orthogonal polynomial sequences are the Chebyshev polynomials of
first and second kind, respectively. In particular, the integral representation of
the corresponding linear functional is obtained. Such a kind of relations appear
in the framework of coherent pairs of linear functionals related to Sobolev inner
products. This problem has been pointed out in [16]. Relations of type 2-
2 have been completely studied in [1]. In a very recent paper [3], the authors
solved a problem studied in a particular case by Grinshpun (see [10]), concerning
the orthogonality of sequences of monic polynomials {Qn}n≥0 with Qn(x) =
Pn(x) + sPn−1(x) + tPn−2(x) where {Pn}n≥0 is a given SMOP.

In [1] and [16], the orthogonality of the sequence of monic polynomials Qn

is given in terms of the some constant sequences. Moreover, these constants
are those appearing in the polynomial which relates the corresponding linear
functional associated with {Pn}n≥0 and {Qn}n≥0. More precisely, in [16] for a
case 1-2 the authors proved the following results:

Let {Pn}n≥0 be an SMOP with respect to a quasi-definite linear functional
u with recurrence coefficients {βn}n≥0 and {γn}n≥1. We define a sequence
of monic polynomials {Qn}n≥0 by Qn = Pn + µnPn−1, n ≥ 1, where µn are
complex numbers and µ1 6= 0. The sequence {Qn}n≥0 is an SMOP with respect
to a quasi-definite linear functional v if and only P ∗

n(x1;x1 − β0 + µ1, 0) 6= 0
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for all n ≥ 1 and µn = −
P∗

n
(x1;x1−β0+µ1,0)

P∗

n−1
(x1;x1−β0+µ1,0)

, where {P ∗
n(x;x1 − β0 + µ1, 0)}n≥0

denotes the co-recursive sequence at level zero corresponding to the sequence
{Pn}n≥0 (see [7], [15]), and x1 = β1 − µ2 −

γ1

µ1
.

This condition is equivalent to the fact that for n ≥ 1 the parameters µn do
not vanish and satisfy

βn − µn+1 −
γn
µn

= x1, n ≥ 1. (1.1)

Moreover, (x− x1)v = (β0 − x1 − µ1)u. (See [16, Theorem 2]). This result will
be used many times in this paper.

In the same way in [1], the authors studied the relations 2-2 (Pn+snPn−1 =
Qn + tnQn−1). They obtained the characterization of the orthogonality of the
polynomials Qn in terms of the existence of two constant sequences. Besides,
these constants a, ã are the values appearing in the relation between the two
linear functionals, i.e. (x− ã)u = k(x− a)v, (a, ã, k ∈ C).

A natural question is: Do these constant sequences depend on the coefficients
of the polynomial relating the two linear functionals for more general cases?

The aim of our contribution is twofold. First, we find necessary and suffi-
cient conditions that the sequence {Qn}n≥0, with Qn(x) = Pn(x)+snPn−1(x)+
tnPn−2(x), must satisfy in order to be orthogonal with respect to a linear
functional v. Indeed, if u is the linear functional such that {Pn}n≥0 is the
corresponding SMOP, then there exists a monic quadratic polynomial h(x) =
x2 + ax + b such that h(x)v = k u. We prove that in this case, there exist two
constant sequences and the values of these constants a and b are precisely the
coefficients and not the zeros of the quadratic polynomial h(x) = x2 + ax + b
such that h(x)v = k u. A connection between the corresponding monic Jacobi
matrices is stated.

Second, we obtain necessary and sufficient conditions in order to the above
relation 1-3 can be decomposed in two relations 1-2 and then proceed by itera-
tion. This is related with a two step Geronimus transformation. In this case, we
prove that the constant sequences can be decomposed in another two simplest
constant sequences, associated with the zeros of the polynomial h(x). Also, as
a consequence, a matrix interpretation using LU and UL factorization is done.
Finally, when {Pn}n≥0 is a symmetric SMOP, i.e. Pn(−x) = (−1)nPn(x) and
we assume sn = 0, then we prove that the 1-3 relation yields two 1-2 relations.

The structure of the manuscript is the following. In Section 2 we present
the basic background and we give a new characterization of the orthogonality
of the sequence {Qn}n≥0 (Theorem 2.2) in terms of some constant relations for
{βn}, {γn}, {sn}, and {tn}. They have not yet studied in the literature. In
Section 3 we deduce necessary and sufficient conditions for the split of a 1-3
relation in two 1-2 relations. The matrix interpretation of this problem in terms
of monic Jacobi matrices is done. Some illustrative examples are considered.
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2 A new characterization of orthogonality

From now on, {Pn}n≥0 will denote an SMOP with respect to a quasi-definite
linear functional u which satisfies the three–term recurrence relation

Pn+1(x) = (x − βn)Pn(x) − γnPn−1(x), n ≥ 0, (2.1)

P0(x) = 1, P−1(x) = 0,

where {βn}n≥0 and {γn}n≥1 are sequences of complex numbers with γn 6= 0 for
n ≥ 1.

Given two sequences of complex numbers {sn}n≥1 and {tn}n≥2 we define for
n ≥ 1 the sequence of monic polynomials {Qn}n≥0 such that

Qn(x) = Pn(x) + snPn−1(x) + tnPn−2(x), with tn 6= 0, n ≥ 2. (2.2)

First, we characterize the orthogonality of the sequence {Qn}n≥0.

Proposition 2.1 Let {Pn}n≥0 an SMOP with recurrence coefficients {βn}n≥0

and {γn}n≥1. We define a sequence {Qn}n≥0 of monic polynomials by formula
(2.2), i.e.,

Qn(x) = Pn(x) + snPn−1(x) + tnPn−2(x), n ≥ 1,

where sn and tn are complex numbers with tn 6= 0, for all n ≥ 2. Then {Qn}n≥0

is an SMOP with recurrence coefficients {β̃n}n≥0 and {γ̃n}n≥1, γ̃n 6= 0, if and
only if the following formulas hold:

sn−1γ̃n = snγn−1 + tn(βn−2 − β̃n), n ≥ 2 , (2.3)

tn−1γ̃n = tnγn−2, n ≥ 3 , (2.4)

where the coefficients β̃n and γ̃n are defined by

β̃n = βn + sn − sn+1, n ≥ 0 , (2.5)

γ̃n = γn + tn − tn+1 + sn(βn−1 − β̃n), n ≥ 1, (2.6)

with s0 = t0 = t1 = 0.

Proof. Inserting formula (2.1) in (2.2) and applying (2.2) to xPn(x), we get

Qn+1(x) = xQn(x) + (sn+1 − sn − βn)Pn(x)

+ (tn+1 − γn − snβn−1 − tn)Pn−1(x)

− (snγn−1 + tnβn−2)Pn−2(x)− tnγn−2Pn−3(x), n ≥ 1 ,

provided we substitute there xPn−1(x) and xPn−2(x), using again (2.1). Now,
formula (2.2) applied to Pn(x) and the definition of β̃n (see (2.5)), yield
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Qn+1(x) = (x− β̃n)Qn(x)

+ [(tn+1 − γn − tn − sn(sn+1 − sn − βn + βn−1)]Pn−1(x)

− [snγn−1 + tn(sn+1 − sn − βn + βn−2)]Pn−2(x)

− tnγn−2Pn−3(x), n ≥ 1 .

So {Qn}n≥0 is an SMOP if and only if there exists a sequence of complex
numbers (γ̃n)n≥1, with γ̃n 6= 0 for n ≥ 1, such that

[tn+1 − γn − tn − sn(sn+1 − sn − βn + βn−1)]Pn−1(x)

− [snγn−1 + tn(sn+1 − sn − βn + βn−2)]Pn−2(x)− tnγn−2Pn−3(x)

= −γ̃nQn−1(x).

Furthermore, β̃n and γ̃n are the coefficients of the three–term recurrence relation
for Qn.

Using again (2.2), straightforward calculations yield (2.3) and (2.4). ✷

This result can be also seen in [6].

Remark. Observe that the conditions γ̃n 6= 0, ∀n ≥ 3 , follow from (2.4).

If the sequence {Qn}n≥0 given by (2.2) is an SMOP with respect to a quasi-
definite linear functional v, then it is well known that the linear functional u
is a quadratic polynomial modification of v, that is, h(x)v = k u with h(x) =
x2 + ax+ b and k a nonzero complex number.

In the next theorem, we show that the orthogonality of the sequence {Qn}n≥0

can be characterized by the fact that there are two sequences depending on
the parameters sn, tn, βn, γn which remain constant and these constants are
precisely the coefficients a and b of the polynomial h.

Theorem 2.2 Let {Pn}n≥0 be an SMOP with recurrence coefficients {βn}n≥0

and {γn}n≥1. We define a sequence {Qn}n≥0 of monic polynomials by the
formula (2.2), i.e.,

Qn(x) = Pn(x) + snPn−1(x) + tnPn−2(x), n ≥ 1,

where sn and tn are complex numbers with tn 6= 0, for all n ≥ 2 and s0 = t0 =
t1 = 0. Then the following statements are equivalent:

(i) {Qn}n≥0 is an SMOP.

(ii) There exist two constant sequences {An}n≥1 and {Bn}n≥1 such that, for
n ≥ 1,

An =
sn
tn+1

[γn+1 + tn+1 − tn+2 + sn+1(βn − βn+1 − sn+1 + sn+2)] (2.7)

+ sn+1 − βn−1 − βn = a,

7



Bn =
1

tn+1
[γn+1 − tn+2 + sn+1(βn − βn+1 − sn+1 + sn+2)] (2.8)

× [γn + tn − tn+1 + sn(sn+1 − βn)] + tn − γn−1 + (sn+1 − βn)(sn − βn−1) = b,

where, by convention, we take γ0 = 0. Besides, the values of γ̃1 and γ̃2 in (2.6)
have to be different from zero.

Furthermore, if u and v are the linear functionals associated with the se-
quences {Pn}n≥0 and {Qn}n≥0, respectively, normalized by 〈u, 1〉 = 〈v, 1〉 = 1,
then

(x2 + ax+ b)v = k u. (2.9)

with k ∈ C \ {0} .

Proof. For simplicity we write the proof of this theorem in terms of β̃n and
γ̃n and then it is enough to use (2.5) and (2.6).

(i) ⇒ (ii) :
If {Qn}n≥0 is an SMOP, by Proposition 2.1, (2.3) and (2.4) hold. Inserting

in (2.3) the expression of γn−1 in terms of γ̃n+1 given by (2.4) we get for n ≥ 2,

sn−1

tn
γ̃n − β̃n−2 − β̃n−1 + sn−2 =

sn
tn+1

γ̃n+1 − β̃n−1 − β̃n + sn−1 (2.10)

and then we get (2.7).
Now, we will deduce (2.8).
From definition of γ̃n, using (2.4) we have

γ̃n =
tn+1

tn+2
γ̃n+2 + tn − tn+1 + sn(β̃n−1 − sn−1 + sn − β̃n) , n ≥ 1 .

Multiplying in the above expression by γ̃n+1/tn+1

γ̃nγ̃n+1

tn+1
+(sn−1−β̃n−1)

snγ̃n+1

tn+1
=

γ̃n+1γ̃n+2

tn+2
+(sn−β̃n)

snγ̃n+1

tn+1
+

(

tn
tn+1

− 1

)

γ̃n+1 .

Using (2.10), for n+ 1 instead of n, in the expression
snγ̃n+1

tn+1
which appears in

the right hand side of the above formula, for n ≥ 1 we obtain

γ̃nγ̃n+1

tn+1
+ (sn−1 − β̃n−1)

(

snγ̃n+1

tn+1
− β̃n

)

=
γ̃n+1γ̃n+2

tn+1
+ (sn − β̃n)

(

sn+1γ̃n+2

tn+2
− β̃n+1

)

+

(

tn
tn+1

− 1

)

γ̃n+1 + sn(β̃n−1 + sn − sn−1 − β̃n) .

Besides, from (2.4) and according to the definition of γ̃n−1 we have, for
n ≥ 1,

tn
tn+1

γ̃n+1 = γ̃n−1 − tn−1 + tn − sn−1(β̃n−2 + sn−1 − sn−2 − β̃n−1)
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and, therefore,

γ̃nγ̃n+1

tn+1
+ (sn−1 − β̃n−1)

(

snγ̃n+1

tn+1
− β̃n

)

+ tn−1 − γ̃n−1 − γ̃n + sn−1(β̃n−2 + sn−1 − sn−2 − β̃n−1) (2.11)

=
γ̃n+1γ̃n+2

tn+1
+ (sn − β̃n)

(

sn+1γ̃n+2

tn+2
− β̃n+1

)

+ tn − γ̃n − γ̃n+1 + sn(β̃n−1 + sn − sn−1 − β̃n).

Thus, by straightforward computations, using (2.5) and (2.6) we obtain (2.8).
(ii) ⇒ (i) :
First, we will prove that (2.10) and (2.11) yield (2.4). Taking into account

the new expression of
sn+1γ̃n+2

tn+2
, obtained from (2.10) written for n+1 instead

of n, we can reformulate (2.11)

γ̃nγ̃n+1

tn+1
+ (sn−1 − β̃n−1)

(

snγ̃n+1

tn+1
− β̃n

)

+ tn−1 − γ̃n−1 + sn−1(β̃n−2 + sn−1 − sn−2 − β̃n−1)

=
γ̃n+1γ̃n+2

tn+1
+
(

sn − β̃n

)

[

snγ̃n+1

tn+1
− β̃n−1 + sn−1 − sn

]

+ tn − γ̃n+1 + sn(β̃n−1 + sn − sn−1 − β̃n) .

Using the definition of γ̃n−1 in the left hand side of the above expression and
simplifying we get

γ̃n+1

tn+1

[

γ̃n + sn(β̃n − sn + sn−1 − β̃n−1) + tn−1

]

= γn−1 +
γ̃n+1γ̃n+2

tn+2
.

Using again the definition of γ̃n we have

γ̃n+1

tn+1
(γn + tn) = γn−1 +

γ̃n+1γ̃n+2

tn+2
,

that is, for n ≥ 1

γ̃n+1

tn+1

(

γn −
tn+1

tn+2
γ̃n+2

)

= γn−1 +
tn+1

tn+2
γ̃n+1 . (2.12)

Since γ0−
t1
t2
γ̃2 = 0, we deduce γn = tn+1

tn+2
γ̃n+2, for n ≥ 1, and therefore (2.4)

holds. Finally, we point out that from (2.10) and (2.4) we can derive (2.3).
To conclude the proof it remains to deduce the relation between the func-

tionals u and v in terms of the constants a and b.
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If we expand the linear functional u in the dual basis

{

Qjv

〈v,Q2
j〉

}

j≥0

of the

polynomials {Qj}j≥0 (see [19]) and taking into account (2.2), then

u =

2
∑

j=0

〈u,Qj〉

〈v,Q2
j 〉
Qjv =

(

t2
γ̃1 γ̃2

Q2 +
s1
γ̃1

Q1 + 1

)

v .

Introducing the explicit expression of the polynomials Q2 and Q1 given by the
three–term recurrence relation we obtain

u =
t2

γ̃1γ̃2

[

(x2 + (
s1γ̃2
t2

− β̃0 − β̃1)x+

(

γ̃1γ̃2
t2

− β̃0
s1γ̃2
t2

− γ̃1 + β̃0β̃1

)]

v . ✷

Remark. The proof of the theorem has been written in terms of β̃n and γ̃n not
only for simplicity. If we work in a similar way as above but trying to look for
that all the expressions appearing therein depend only on βn and γn, then we
can obtain similar formulas for a and b but a problem appears when we want
to come back. Indeed, instead of (2.12) we obtain

γn−1

tn

[

γ̃n − tn
γ̃n−2

tn−1

]

= γ̃n+1 + tn+1
γn−1

tn
, n ≥ 3 ,

and so we can not achieve (2.4). The main reason is that the trivial extension
of (2.4) to n = 2 (t1 = γ0 = 0) allows us to obtain the value of γ0 in terms of γ̃2
as γ0 = t1

γ̃2

t2
but not conversely, i.e. γ̃2 in terms of γ0.

In the sequel, we present a matrix interpretation of these results in terms of
the monic Jacobi matrices associated with the SMOP’s {Pn}n≥0 and {Qn}n≥0,
respectively.

Let P = (P0, P1, . . . )
T and Q = (Q0, Q1, . . . )

T be the column vectors asso-
ciated with these orthogonal families, and JP and JQ the corresponding monic
Jacobi matrices. Then, the three–term recurrence relations for such SMOP’s
read xP = JP P and xQ = JQ Q.

Next, we will describe a method to find the matrix JQ using the matrix JP
and the polynomial h(x) = x2 + ax+ b.

Taking into account Q = MP where M = (mk,j) is a banded lower triangu-
lar matrix such that mk,k = 1 and mk,j = 0 for k− j > 2, then xMP = JQMP
and, as a consequence, JPP = M−1JQMP . Thus, we get

MJP = JQM.

On the other hand, from the classical Christoffel formula (see [9]) we can
express h(x)P using the matrix representation

h(x)P = NQ

where N is a banded upper triangular matrix such that nk,k+2 = 1 and nk,j = 0
for j − k > 2. Thus h(x)P = NMP , and then

J2
P + aJP + bI = NM. (2.13)

10



But, from h(x)Q = MNQ, we get

J2
Q + aJQ + bI = MN . (2.14)

As a conclusion, we can summarize our process as follows

Step 1: Given JP , we find the polynomial matrix J2
P + aJP + bI.

Step 2: From M and (2.13) we find N .
Step 3: From (2.14) we obtain the polynomial matrix J2

Q + aJQ + bI.
Step 4: Taking into account JQ is a tridiagonal matrix, from step 3 we can

deduce JQ, since
(

JQ + a
2 I

)2
= MN −

(

b− a2

4

)

I.

A similar analysis for the truncated matrices yields the principal submatrices
of JQ can be deduced from a rank–one perturbation of the corresponding leading
principal submatrices of JP .

Let denote (P)n = (P0, P1, . . . , Pn)
T and (Q)n = (Q0, Q1, . . . , Qn)

T . Then
the corresponding three–term recurrence relations read

x (P)n = (JP )n+1(P)n + Pn+1en+1 , (2.15)

x (Q)n = (JQ)n+1(Q)n +Qn+1en+1 , (2.16)

where the symbol (A)n stands for the truncation of any infinite matrix A at
level n, that is, (JP )n+1 denotes the leading principal submatrrix of JP of size
(n+ 1)× (n+ 1), and en+1 = (0, . . . , 0, 1)T ∈ R

n+1.
Taking into account

(Q)n = (M)n+1(P)n , (2.17)

and replacing (2.17) in (2.16) we get

x (M)n+1(P)n = (JQ)n+1(M)n+1(P)n + (Pn+1 + sn+1Pn + tn+1Pn−1)en+1

= [(JQ)n+1(M)n+1 + en+1(sn+1e
T
n+1 + tn+1d

T
n+1)](P)n + Pn+1en+1 ,

where dn+1 = (0, . . . , 0, 1, 0)T ∈ R
n+1.

Thus, from (2.15)

(M)n+1(JP )n+1 = (JQ)n+1(M)n+1 + en+1(sn+1e
T
n+1 + tn+1d

T
n+1) .

So, in order to obtain (JQ)n+1 we proceed in three steps.

Step 1: Obtain (M)n+1(JP )n+1.
Step 2: Subtract to the previous one the rank–one matrix en+1(sn+1e

T
n+1 +

tn+1d
T
n+1). This leads to a matrix Gn+1.

Step 3: (JQ)n+1 = Gn+1[(M)n+1]
−1.

In the case of quasi-orthogonal polynomials associated with positive Borel
measures, this approach has been considered in [24] and [25] for symmetric tridi-
agonal matrices. Nevertheless, not every quasi-orthogonal polynomial can be
represented as the characteristic polynomial of a symmetric tridiagonal matrix.
Indeed, in [25, Theorem 3.3] a sufficient condition for such a representation is
given.
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3 Reducible cases

Let {Pn}n≥0 be an SMOP with respect to a quasi-definite linear functional u,
and {Qn}n≥0 a sequence of monic polynomials strictly quasi-orthogonal of order
two, satisfying the relation (2.2).

As a consequence of the Proposition 2.1 we have that {Qn}n≥0 is an SMOP
if and only if the parameters sn and tn satisfy, for n ≥ 3,

tn+1 = tn(1−
γn−2

tn−1
) + γn + sn(βn−1 − βn + sn+1 − sn) ,

sn+1 = −
sn
tn

γn−1 + βn − βn−1 + s3 +
s2
t2
γ1 − β2 − β1 ,

with some initial conditions.
In this section we will study two particular situations where the computa-

tions of these parameters can be simplified.

3.1 Iterative case

Notice that if {Qn}n≥0 satisfies (2.2), then the polynomials Qn cannot be repre-
sented as a linear combination of the two consecutive polynomials Pn and Pn−1.
A natural question arises: Can the SMOP {Qn}n≥0 be generated from {Pn}n≥0

in two steps with the help of an intermediate SMOP? In other words: Do exist
two sequences of nonzero complex numbers {λn}n≥1 and {µn}n≥1 such that
{Rn}n≥0 defined by Rn = Pn + µnPn−1 is an SMOP and Qn = Rn + λnRn−1?
The interest of this question is to simplify the computation of the parameters
sn and tn, in this case via the parameters λn and µn.

If the answer is positive, then we will say that the representation (2.2) is
iterative. For these cases we have sn = λn + µn and tn = λnµn−1.

Now, we give a characterization of the iterative representations when both
{Pn}n≥0 and {Qn}n≥0 are SMOP’s.

Proposition 3.1 Let {Pn}n≥0 and {Qn}n≥0 be two SMOP’s with respect to the
quasi-definite linear functionals u and v, respectively, which are related by (2.2).
In this case, the linear functionals satisfy (x2+ax+b)v = (x−x1)(x−x2)v = k u.
We denote by {βn}n≥0, {γn}n≥1 and {β̃n}n≥0, {γ̃n}n≥1 the coefficients of the
three–term recurrence relation of {Pn}n≥0 and {Qn}n≥0, respectively.

Then, the representation (2.2) is iterative if and only if there is a sequence
of complex numbers {µn}n≥1, with µ1 6= s1 and µn 6= 0, n ≥ 1, such that

Cn = βn − µn+1 −
γn
µn

= x1 (or x2) , n ≥ 1 , (3.1)

and

µn+1 = sn+1 −
tn+1

µn
, n ≥ 1. (3.2)
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Proof. If the representation is iterative then there exists a sequence of
complex numbers {µn}n≥1, with µn 6= 0, such that Rn = Pn + µnPn−1 is an
SMOP. Then, from Theorem 2 in [16],

Cn = βn − µn+1 −
γn
µn

= x1 (or x2), n ≥ 1 .

Substituting Rn in (2.2), we get

Qn(x) = Rn(x) + (sn − µn)Rn−1(x) + [tn − µn−1(sn − µn)]Pn−2(x), n ≥ 2,

and, since Qn is a linear combination of Rn and Rn−1, (3.2) follows.
Conversely, given {µn}n≥1 in the above conditions, from [16, Theorem 2],

(3.1) implies that the sequence {Rn}n≥0 defined by Rn = Pn + µnPn−1, n ≥
1, is an SMOP with respect to a quasi-definite linear functional w such that
(x− x1)w = k1u where k1 ∈ C \ {0}.

Taking λn = sn−µn, n ≥ 1, we have λn 6= 0, n ≥ 1, and tn = λnµn−1, n ≥ 2.
So, we can write

Qn = Pn + (λn + µn)Pn−1 + λnµn−1Pn−2 = Rn + λnRn−1, n ≥ 1 .

This means that (2.2) is iterative. ✷

Remark. There is another constant sequence involved in this topic. Indeed, as
a consequence of the above proof and according to [16, Theorem 1], we get

Dn = β̃n − λn −
γ̃n+1

λn+1
= x2, (or x1), n ≥ 0 ,

with λ0 = 0. Moreover, we point out that, in general, the characterization
of the orthogonality of a family of polynomials {Qn}n≥0 defined by (2.2) can
be given (see Theorem (2.2)) in terms of two sequences {An} and {Bn} which
remain constant and these constant values are precisely the coefficients of the
quadratic polynomial h(x) which appears in the relation h(x)v = k u. But if we
have an iterative representation those sequences {An} and {Bn} (which in fact
are very complicated) can be decomposed in two other simplest sequences {Cn}
and {Dn} associated with the zeros of the polynomial h(x). More precisely,
when the formula (2.2) is iterative then Cn +Dn = −An and CnDn = Bn.

Observe that, from (3.2), µn can be expressed as a finite continued fraction

µn+1 = sn+1 −
tn+1

sn −
tn

. . .

s2 −
t2

µ1

.

Next, as a sake of example we are going to construct a family of monic poly-
nomials orthogonal with respect to a quasi-definite linear functional v satisfying
x2v = xαe−x and which has an iterative representation.
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Example. Laguerre polynomials.

Let {Lα
n}n≥0 be the sequence of monic Laguerre polynomials orthogonal

with respect to the positive definite linear functional u defined by the weight
function xα e−x with α > 0. We can take the auxiliary polynomials Rn = Lα−1

n

satisfying Rn(x) = Lα
n(x) + nLα

n−1(x) (see [7]) and the new polynomials Qn

such that Qn(x) = Rn(x) + λn Rn−1(x). Then the polynomials Qn satisfy the
relation (2.2) with sn = n + λn and tn = (n − 1)λn, n ≥ 1. It is well known
that the recurrence coefficients of Lα−1

n , α > 0, are βn = 2n + α, n ≥ 0 and
γn = n(n+ α− 1), n ≥ 1.

Using formula (1.1) for this case, by induction we can derive that, for α > 0
and α 6= 1, the values of the parameters λn in terms of λ1 are

λn = n
Γ(α)(α − λ1) + (λ1 − 1)Γ(n+α)

Γ(n)

Γ(α)(α − λ1) + (λ1 − 1)Γ(n−1+α)
Γ(n)

, (3.3)

and then v is quasi-definite if and only if

Γ(n)Γ(α)(α − λ1) + (λ1 − 1)Γ(n− 1 + α) 6= 0, n ≥ 1.

Notice that if α ∈ N \ {1} then λn is a rational function of n, namely,

λn = n
Γ(α)(α − λ1) + (λ1 − 1)(α+ n− 1) . . . (n+ 1)

Γ(α)(α − λ1) + (λ1 − 1)(α+ n− 2) . . . n
.

If α = 1, then, by induction, we can also obtain, for n ≥ 1

λn = n
(λ1 − 1)(1 + 1/2 + · · ·+ 1/n) + 1

(λ1 − 1)(1 + 1/2 + · · ·+ 1/(n− 1)) + 1
, (3.4)

and v is quasi-definite if and only if

(λ1 − 1)(1 + 1/2 + · · ·+ 1/n) + 1 6= 0, n ≥ 1.

The quasi-definite linear functional v is given in terms of the Laguerre linear
functional by

v

v0
=

α− λ1

Γ(α)
x−1 (xα−1 e−x) + δ0

for α > 0. In particular for α > 1, we can write

v

v0
=

α− λ1

Γ(α)
xα−2 e−x +

λ1 − 1

α− 1
δ0.

Next, as in the general case, we also present a matricial interpretation for
these iterative cases.

If w denotes the corresponding linear functional for {Rn}n≥0, then (x −
x1)w = k1u where x1 is a zero of h(x) as well as (x − x2)v = k2w where x2 is
the other zero of h(x).
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It is well known (see [9]) that

(x − x1)Pn = Rn+1 + rnRn, n ≥ 0 , (3.5)

as well as
(x− x2)Rn = Qn+1 + r′nQn, n ≥ 0 ,

with rn, r
′
n 6= 0.

As before, P = (P0, P1, . . . )
T , R = (R0, R1, . . . )

T , and Q = (Q0, Q1, . . . )
T ,

and then the corresponding three–term recurrence relations read as

xP = JP P , xR = JR R, xQ = JQ Q. (3.6)

On the other hand, from Rn = Pn + µnPn−1 and (3.5) we have the matrix
representations

R = L1P , (x− x1)P = U1R (3.7)

where L1 is a lower bidiagonal matrix with 1 as diagonal entries and U1 is an
upper bidiagonal matrix with 1 as entries in the upper diagonal.

Notice that from (3.6) and (3.7) we get

JP − x1I = U1L1 (3.8)

as well as L−1
1 (JR − x1I)R = U1R. In other words

JR − x1I = L1U1. (3.9)

Proceeding in a similar way

Q = L2R, (x− x2)R = U2Q

where L2 is a lower bidiagonal matrix with 1 as entries in the diagonal and U2

is an upper bidiagonal matrix with 1 as entries in the upper diagonal. Thus, we
get

JR − x2I = U2L2 (3.10)

and
JQ − x2I = L2U2 (3.11)

As a consequence we can summarize the process as follows.
Step 1: Given JP , from L1 and (3.8) we get U1.
Step 2: From (3.9) we get JR.
Step 3: Given JR, from L2 and (3.10) we get U2.
Step 4: From (3.11) we get JQ.

Notice that this is essentially the iteration of the so–called Geronimus trans-
formation in the framework of linear spectral transformations of Stieltjes func-
tions associated with quasi–definite linear functionals (see [26]].

Now, as in the general case, we analyze the case of the truncated matrices.
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The three–term recurrence relation for the sequence {Rn}n≥0 reads

x (R)n = (JR)n+1(R)n +Rn+1en+1 . (3.12)

Since
(R)n = (L1)n+1(P)n , (3.13)

where (L1)n+1 is a lower bidiagonal matrix, namely, the (n+1)×(n+1) leading
principal submatrix of L1, replacing (3.13) in (3.12)

x (P)n = [(L1)n+1]
−1[(JR)n+1(L1)n+1 + µn+1en+1e

T
n+1](P)n + Pn+1en+1 .

Thus, from (2.15) we get (L1)n+1(JP )n+1 = (JR)n+1(L1)n+1 + µn+1en+1e
T
n+1 ,

i.e.

(JR)n+1 = (L1)n+1[(JP )n+1 − µn+1en+1e
T
n+1][(L1)n+1]

−1 .

As a consequence, (JR)n+1 is similar to the matrix

(JP)n+1 − µn+1en+1e
T
n+1

that is, to the matrix obtained when we substract µn+1 in the entry (n + 1)×
(n+ 1) of the Jacobi matrix (JP)n+1 and the other entries remain invariant.

On the other hand, we have

(x− x1) (P)n = (U1)n+1(R)n + Rn+1en+1 , (3.14)

where (U1)n+1 is an upper bidiagonal matrix.
According to (2.15) and (3.13), (3.14) reads

((JP)n+1−x1In+1)(P)n+Pn+1en+1 = (U1)n+1(L1)n+1(P)n+(Pn+1+µn+1Pn)en+1 .

Equivalently,

(JP )n+1 − µn+1en+1e
T
n+1 − x1In+1 = (U1)n+1(L1)n+1 .

But from (3.14)

[(L1)n+1]
−1((JR)n+1 − x1In+1)(L1)n+1 = (U1)n+1(L1)n+1 .

Thus,
(JR)n+1 − x1In+1 = (L1)n+1(U1)n+1 .

In a similar way,

(JR)n+1 − λn+1en+1e
T
n+1 − x2In+1 = (U2)n+1(L2)n+1 ,

and then
(JQ)n+1 − x2In+1 = (L2)n+1(U2)n+1 .
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3.2 The symmetric case

Assume that the sequence {Pn}n≥0 is orthogonal with respect to a symmet-
ric linear functional u. Then βn = 0, n ≥ 0, and there exist two polynomial
sequences {Vn}n≥0 and {V ∗

n }n≥0 such that for all n, P2n(x) = Vn(x
2) and

P2n+1(x) = xV ∗
n (x

2)
It is known (see [7]) that {Vn}n≥0 and {V ∗

n }n≥0 are SMOP’s with respect
to the linear functionals σu and xσu where (σu, x

n) = (u, x2n), n ≥ 0.
If the sequence {Qn}n≥0 is defined by (2.2), in general, the polynomials Qn

are not symmetric. More precisely, Qn are symmetric polynomials if and only
if sn = 0 for all n ≥ 1.

Again, if {Qn}n≥0 is an SMOP with respect to a symmetric linear func-
tional v, then by a symmetrization process there exist {Rn}n≥0 and {R∗

n}n≥0

SMOP’s with respect to σv and xσv , respectively, satisfying Q2n(x) = Rn(x
2)

and Q2n+1(x) = xR∗
n(x

2). In this case, from (2.2), we have for ≥ 1

Rn(x) = Vn(x) + t2nVn−1(x) (3.15)

R∗
n(x) = V ∗

n (x) + t2n+1V
∗
n−1(x) (3.16)

and the coefficients t2n and t2n+1 can be computed using the Theorem 2 in [16].
Besides, as a consequence of the Theorem 2.2, we get a = 0 and the relation
between the linear functionals u and v is: (x2 + b)v = k u.

Now, we construct some families of monic symmetric orthogonal polynomials
which have reducible representations but not iterative representations.

Examples

Hermite generalized polynomials.

Let {Hµ
n}n≥0 be the sequence of monic Hermite generalized polynomials

orthogonal with respect to the positive definite linear functional u defined by
the weight function |x|2µ e−x2

with µ > −1/2. Consider the sequence of monic
polynomials {Qn}n≥0 orthogonal with respect to a symmetric quasi-definite
functional v satisfying x2v = k u. Notice that, now the representation (2.2) is
clearly not iterative because xv is not a quasi-definite linear functional.

By a symmetrization process, σu is defined by the weight function xµ−1/2 e−x

and we can write Hµ
2n(x) = L

µ−1/2
n (x2), Hµ

2n+1(x) = xL
µ+1/2
n (x2).

From (3.3) and (3.4) we get the explicit expressions of the parameters t2n in
terms of t2, for µ > −1/2, µ 6= 1/2, and µ = 1/2, respectively.

Otherwise, the relation between the two linear functionals u and v yields
xσv = k σu. Then the polynomials R∗

n are orthogonal with respect to xµ−1/2 e−x

and thus t2n+1 = n for all n ≥ 1. Moreover the quasi-definite linear functional
v is given in terms of the generalized Hermite linear functional u by

v

v0
=

µ+ 1/2− t2
Γ(µ+ 1/2)

x−2(|x|2µ e−x2

) + δ0
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for µ > −1/2. In particular, for µ > 1/2

v

v0
=

µ+ 1/2− t2
Γ(µ+ 1/2)

|x|2µ−2 e−x2

+
t2 − 1

µ− 1/2
δ0.

Chebyshev polynomials of the second kind.

Let {Un}n≥0 be the sequence of monic Chebyshev polynomials of the second
kind, orthogonal with respect to the positive definite linear functional u defined
by the weight function (1 − x2)1/2χ(−1,1)(x), with the recurrence coefficients

βn = 0, n ≥ 0 and γn = 1
4 , n ≥ 1. Consider the SMOP {Qn}n≥0 orthogonal

with respect to a symmetric quasi-definite linear functional v satisfying (x2 −
1)v = k u.

By the symmetrization process described above, we have {Vn}n≥0, {Rn}n≥0

are SMOP’s orthogonal with respect to the linear functionals σu and σv, re-
spectively, where σu is defined by the weight function (1− x)1/2x−1/2χ(0,1)(x).
Besides, the recurrence coefficients for the polynomials Vn are, for n ≥ 1,
βσu

n = γ2n + γ2n+1 = 1/2, γσu

n = γ2n γ2n−1 = 1/16, and βσu

0 = γ1 = 1/4.
Moreover, the relation between the two linear functionals (x2 − 1)v = k u,

yields (x−1)σv = k σu. Now, applying in (3.15) Theorem 2 in [16], the parame-

ters t2n satisfy βσu

n −t2n+2−
γσu

n

t2n
= 1 for all n ≥ 1, i.e. t2n+2 = −(12 +

1
16t2n

) and

k = −(34 + t2)
v0
u0
. Thus, by induction, we can derive the values of parameters

t2n in terms of t2. Indeed

t2n = −
1

4

n(4t2 + 1)− 1

(n− 1)(4t2 + 1)− 1
. (3.17)

On the other hand, since (x − 1)xσv = k xσu, we can apply in (3.16) Theorem

2 in [16]. Thus, the parameters t2n+1 satisfy βxσu

n − t2n+3 −
γxσu

n

t2n+1
= 1 for all

n ≥ 1, i.e. t2n+3 = −(12 + 1
16t2n+1

) . Again, by induction, we can derive the

values of parameters t2n+1 in terms of t3, and taking into account that t2 and
t3 are related by t3 = 12t2+1

4(1−4t2)
we have

t2n+1 = −
1

4

2n(4t2 + 1) + (4t2 − 1)

2(n− 1)(4t2 + 1) + (4t2 − 1)
. (3.18)

Moreover, if t2 ∈ C \ {0, 1/2,−3/4} then the linear functional v is quasi-definite
if and only if, for n ≥ 1

n(4t2 + 1)− 1 6= 0, and 2n(4t2 + 1) + (4t2 − 1) 6= 0.

The expression of v in terms of u is

v

v0
=

2

π
(3/4 + t2) (1− x2)−1/2χ(−1,1)(x) − (t2 + 1/4)δ1 − (t2 + 1/4)δ−1.

See also [23].

18



Chebyshev polynomials of the first kind.

Let {Tn}n≥0 be the sequence of monic Chebyshev polynomials of the first
kind, orthogonal with respect to the positive definite linear functional u defined
by the weight function (1 − x2)−1/2χ(−1,1)(x). The recurrence coefficients are

βn = 0, n ≥ 0, γn = 1
4 , n ≥ 2, and γ1 = 1/2. Consider an SMOP {Qn}n≥0 or-

thogonal with respect to a symmetric quasi-definite linear functional v satisfying
(x2 − 1)v = k u.

Thus, {Vn}n≥0, {Rn}n≥0 are SMOP’s with respect to the linear function-
als σu and σv, respectively, where σu is defined by the weight function (1 −
x)−1/2x−1/2χ(0,1)(x). Besides, the recurrence coefficients for the polynomials
Vn are, βσu

n = 1/2, γσu

n = 1/16, n ≥ 2, and γσu

1 = 1/8.
Since (x−1)σv = k σu, applying in (3.15) Theorem 2 in [16], the parameters

t2n are

t2n = −
1

4

n(2t2 + 1)− 1

(n− 1)(2t2 + 1)− 1
, n ≥ 2. (3.19)

Using the same arguments, from (3.16) we obtain

t2n+1 = −
1

4

2n(2t2 + 1) + (2t2 − 1)

2(n− 1)(2t2 + 1) + (2t2 − 1)
, (3.20)

where we have used that t3 = 1
4

6t2+1
1−2t2

.
Furthermore, if t2 ∈ C \ {0, 1/2,−1/2} then v is quasi-definite if and only if,

for n ≥ 1

n(2t2 + 1)− 1 6= 0, and 2n(2t2 + 1) + (2t2 − 1) 6= 0.

v is given in terms of u by

v

v0
=

(1 + 2t2)

2π
(1− x2)−1((1 − x2)−1/2χ(−1,1)(x)) + δ1 + δ−1.

. See also [22].
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