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2 Radial basis functions for the solution of hypersingular operators

on open surfaces∗
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Abstract

We analyze the approximation by radial basis functions of a hypersingular integral equa-
tion on an open surface. In order to accommodate the homogeneous essential boundary
condition along the surface boundary, scaled radial basis functions on an extended surface
and Lagrangian multipliers on the extension are used. We prove that our method converges
quasi-optimally. Approximation results for scaled radial basis functions indicate that, for
highly regular radial basis functions, the achieved convergence rates are close to the one
of low-order conforming boundary element schemes. Numerical experiments confirm our
conclusions.
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grangian multiplier
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1 Introduction

This paper is about the approximation by radial basis functions of functions in Sobolev spaces
subject to a Dirichlet boundary condition. To the best of our knowledge this is the first time that
such functions are used and analyzed for problems with essential boundary condition. There
arise several difficulties when imposing or analyzing trace conditions for spaces of radial basis
functions (RBF):

(i) Radial basis functions are selected by their center points on the domain of interest. Their
supports are generally large and overlap with those of several other RBF. Considering
boundary traces of RBF close to the boundary, their shapes and supports on the boundary
vary continuously with the position of the center on the domain. Therefore, the structure
and basis functions of trace spaces is not fixed, neither is there a fixed intrinsic basis on
the boundary.
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(ii) Analysis of stability and approximation properties of RBF and related operators is based
on Fourier analysis in the so-called native space. Depending on the choice of RBF, this
native space is a Sobolev space of high regularity. Considering domains with, e.g., Lipschitz
boundary there is no obvious way to employ arguments from native spaces to traces.

(iii) Traditional arguments from finite element analysis (like locality and equivalence of norms
in finite dimensional spaces) are difficult to apply to RBF for their very nature. That
is why the native space is of central importance. In trace spaces of RBF, however, such
arguments (locality, equivalence of norms) are even harder to come by due to the varying
structure of functions, cf. (i).

In this paper we propose a mixed method employing RBF and finite elements (as Lagrangian
multipliers) to deal with essential boundary conditions. We analyze non-conforming approxima-
tions with scaled radial basis functions in a fractional order Sobolev space with homogeneous
essential boundary condition. The underlying model problem is the hypersingular integral equa-
tion on an open surface for the solution of the Laplacian in the exterior domain (with Neumann
boundary condition). The energy space of this problem is a Sobolev space of order 1/2 on the
surface with the condition that functions can be extended by 0.

The analysis comprises two principal problems. One is the approximation theory for radial
basis functions in fractional order Sobolev spaces with essential boundary condition; the other
is the necessity of a non-conforming approach in a fractional order Sobolev space.

Radial basis functions are well studied, mainly for the interpolation of scattered data but
also for the approximation of partial differential equations. For some overviews see, e.g., [7,
21, 22, 30]. In particular, Wendland studies the approximation for second order equations with
Neumann boundary condition [29], and multiresolution properties of scaled radial basis functions
[31]. Neumann boundary conditions allow for extending the approximation analysis to the full
space where standard arguments apply (using the native space of the radial basis functions). To
the best of our knowledge there exists no analysis for boundary value problems with essential
boundary condition. In this paper we tackle this problem for a Sobolev space of order 1/2.
Let us note that spherical radial basis functions (on the closed sphere) in this space are well
analyzed, see [20, 19, 25, 26]. In this paper we consider the case of a general open smooth surface
with the particular problem of incorporating an essential boundary condition.

This boundary condition appears in a natural way when dealing with boundary integral
equations on open surfaces. In the case of a Neumann problem the unknown of the integral
equation is the jump across the surface of the solution to the exterior problem [24]. Since the
jump of this solution vanishes at the boundary of the surface the underlying energy space has to
incorporate this condition. However, there is no well-defined trace operator in the corresponding
Sobolev space H1/2 so that this condition appears as part of the norm; the corresponding space

is denoted by H̃1/2, sometimes also referred to as H
1/2
00 . Conforming approximations require that

approximating functions vanish at the boundary of the surface. This causes no difficulty when
using piecewise polynomials; the corresponding method is called the boundary element method
(BEM). When using radial basis functions, however, a conforming and converging method is
difficult to construct since conformity requires that the centers of the functions stay away from
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the boundary. This requirement is unrealistic because in practice centers can stay close to
or even on the boundary. We thus propose a non-conforming approach where the essential
boundary condition is implemented by a Lagrangian multiplier. For the BEM such procedures
have been studied, with resulting almost quasi-optimal convergence, see [10, 12, 14]. Here we
use a different approach where the surface is extended to a larger surface so that supports of
radial basis functions remain inside the extended surface. We then use a Lagrangian multiplier
on the extended part of the surface to make the approximating functions vanish there. This
idea is similar to a penalty or fictitious domain method.

An overview of the rest of the paper is as follows. In the next section we recall Sobolev
spaces, present our model problem and give an equivalent mixed formulation which will be
used for the discretization with radial basis functions. In Section 3 we introduce scaled radial
basis functions and the discrete scheme, and we list our theoretical results which are proved in
subsequent sections. In Section 4 we prove the quasi-optimal convergence of our scheme, and in
Section 5 we present an approximation theory for scaled radial basis functions. In Section 6 we
resume our theoretical results and conclude that the resulting convergence order tends to the
one of a standard BEM when the regularity of the radial basis functions grows. This conclusion
is based on numerical evidence of boundedness of an additional stability term that arises in our
analysis. Finally, in Section 7 we report on some numerical results that underline the convergence
properties of our method.

Throughout the paper, the symbol . will be used in the usual sense. In short, a(h, k, r) .
b(h, k, r) when there exists a constant C > 0 independent of discretization or scaling parameters
h, k, r (except otherwise noted) such that a(h, k, r) ≤ Cb(h, k, r). The double inequality a .

b . a is simplified to a ≃ b.

2 Model problem and mixed formulation

In order to introduce our model problem and its mixed formulation we need to recall the defi-
nition of some Sobolev spaces.

We consider standard Sobolev spaces of integer order and define fractional order spaces by
interpolation, using the real K-method, see [2]. For a Lipschitz domain Ω and 0 < s < 1 we use
the spaces

Hs(Ω) := [L2(Ω),H
1(Ω)]s, H̃s(Ω) := [L2(Ω),H

1
0 (Ω)]s

where the norm in H1
0 (Ω) is the H1(Ω)-semi-norm. For orders s > 1, the spaces are defined

by interpolation between L2(Ω) and a correspondingly higher integer order Sobolev space. For
s ∈ (0, 1/2), ‖ · ‖H̃s(Ω) and ‖ · ‖Hs(Ω) are equivalent norms whereas for s ∈ (1/2, 1) there holds

H̃s(Ω) = Hs
0(Ω), the latter space consisting of functions whose traces on ∂Ω vanish. Generally,

H̃s(Ω) consists of functions which are continuously extendable by zero onto a larger domain.
For s > 0 the spaces H−s(Ω) and H̃−s(Ω) are the dual spaces of H̃s(Ω) and Hs(Ω), respectively.
Similarly we define Sobolev spaces on surfaces.

In the analysis we need some more norms. In the literature different definitions of Sobolev
norms are being used and we have to be careful to check their equivalence when combining
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different results. Apart from interpolation norms, on a domain Σ ⊂ IR2 (Σ = IR2 is allowed),
we also need the Sobolev-Slobodeckij norm. For s = m+ σ with integer m ≥ 0 and σ ∈ (0, 1)
we define

‖v‖s,Σ :=
(

‖v‖2m,Σ + |v|2s,Σ

)1/2

with semi-norm

|v|s,Σ =
(

∑

|α|=m

∫

Σ

∫

Σ

|Dαv(x)−Dαv(y)|2

|x− y|2+2σ
dx dy

)1/2

and multi-index α = (α1, α2). Here, ‖ · ‖m,Σ is the standard Sobolev norm, as before,

‖v‖2m,Σ =
∑

|α|≤m

‖Dαv‖2L2(Σ).

Our model problem is as follows. For given f ∈ H−1/2(Γ) find φ ∈ H̃1/2(Γ) such that

Wφ(x) := −
1

4π

∂

∂nx

∫

Γ
φ(y)

∂

∂ny

1

|x− y|
dSy = f(x), x ∈ Γ. (2.1)

Here, Γ is a smooth open surface with piecewise smooth Lipschitz boundary and n is a normal
unit vector on Γ. We refer to [24] for the setting of this model problem and the error analysis
of its conforming approximation by boundary elements.

Later we will extend Γ to a larger surface and use the notation W for the hypersingular
operator on the extended surface as well.

For ease of presentation we restrict ourselves to the case of a flat surface and assume that Γ is
a polygonal Lipschitz domain in IR2. Then, in particular, Γ satisfies an interior cone condition.

We intend to approximate the solution φ to (2.1) by radial basis functions. The conformity
condition that approximation spaces be subspaces of H̃1/2(Γ) requires that discrete functions
vanish at the boundary γ of Γ. This means that points for the definition of radial basis functions
could not be freely selected since one wants to take radial basis functions of uniform radius which
cannot be too small, as is well known. In order to be able to freely choose center points we
extend the domain Γ to a larger domain Γ̃ so that, for a given parameter r > 0 there holds
dist(γ, γ̃) > r. Here, γ̃ denotes the boundary of Γ̃ and we assume that Γ̃ is at least Lipschitz.
Later, the parameter r will be the scaling parameter for the radial basis functions. Scaling the
basis functions appropriately, we will be able to select center points anywhere on Γ̄ and the
discrete spaces of radial basis functions will be subspaces of H̃1/2(Γ̃).

A standard variational formulation of (2.1) is: find φ ∈ H̃1/2(Γ) such that

〈Wφ,ψ〉Γ = 〈f, ψ〉Γ ∀ψ ∈ H̃1/2(Γ). (2.2)

However, to give the setting for the discrete method we consider a non-standard formulation on

the extended domain Γ̃: find (φ̃, λ) ∈ H̃1/2(Γ̃)× H̃
−1/2
γ (Γc) such that

〈Wφ̃,ψ〉Γ̃ − 〈λ, ψ〉Γc = 〈f0, ψ〉Γ̃ ∀ψ ∈ H̃1/2(Γ̃),

〈µ, φ̃〉Γc = 0 ∀µ ∈ H̃
−1/2
γ (Γc).

(2.3)
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Here, Γc := Γ̃\ Γ̄ with boundary γ∪ γ̃ consisting of two connected components (Γc is an annular
domain). Also, we use the following notation for the dual space:

H̃−1/2
γ (Γc) :=

(

H̃
1/2
∂Γc\γ(Γ

c)
)′

=
(

H̃
1/2
γ̃ (Γc)

)′

where
H̃

1/2
γ̃ (Γc) := [L2(Γ

c),H1
0,γ̃(Γ

c)]1/2

with H1
0,γ̃(Γ

c) being the space of H1(Γc)-functions whose traces on γ̃ vanish. In particular, any

ψ ∈ H̃
1/2
γ̃ (Γc) is extendable by zero to a function ψ0 ∈ H1/2(IR2 \ Γ̄). Below, we will use this

notation, instead of Γc, also on extended domains Γck depending on a mesh parameter k.

Note that H̃1/2(Γ) = H̃
1/2
γ (Γ) and

H̃−1/2
γ (Γ) = (H̃

1/2
∅ (Γ))′ = (H1/2(Γ))′ = H̃−1/2(Γ).

Also, for f defined on Γ, f0 denotes the extension of f by 0 onto Γ̃ (we will use this generic
notation throughout for the extension to any domain which will be clear from the particular
situation).

There obviously holds the following result.

Proposition 2.1 Let f ∈ H−1/2(Γ) so that f0 ∈ H−1/2(Γ̃). Then the formulations (2.2) and
(2.3) are equivalent and have unique solutions. There holds φ̃|Γ = φ and φ̃|Γ̃\Γ̄ = 0, i.e. φ̃ = φ0,

and λ =Wφ0 on Γ̃ \ Γ̄.

3 Discrete method and theoretical results

We solve (2.3) by approximating φ̃ by radial basis functions and λ by piecewise constant func-
tions. To this end let Φ denote a non-negative radial basis function centered around x = 0 with
compact support B̄(0, 1) (B(y, s) is the disc {x ∈ IR2; |x− y| < s}) and Fourier transform

F(Φ)(ξ) = Φ̂(ξ) ≃ (1 + |ξ|2)−τ , ξ ∈ IR2 (3.1)

for τ > 1. The parameter τ is fixed throughout. We consider scaled radial basis functions

Φr(x) := r−2Φ(x/r), r > 0, x ∈ IR2,

so that
Φ̂r(ξ) ≃ (1 + r2|ξ|2)−τ . (3.2)

Selecting a finite set of nodes X := {x1, . . . , xN} ⊂ Γ̄ we define the discrete space

HX,r := span{φ1, . . . , φN} where φi(x) := Φr(x− xi), i = 1, . . . , N.
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Since the nodes can be near to or even on the boundary of Γ, the supports of the scaled radial
basis functions are not necessarily subsets of Γ. We extend Γ to a fixed larger domain Γ̃ satisfying
supp(φi) ⊂ Γ̃ for any φi ∈ HX,r, any chosen set X and any r ∈ (0, r0] where r0 > 0 is fixed.

We also need the mesh norm hX,Σ (for Σ ⊂ IR2) defined by

hX,Σ := sup
x∈Σ

dist(x,X).

We extend Γ by a strip of shape-regular, quasi-uniform quadrilateral elements T of diameter
proportional to k as indicated in Figure 3.1. We require that the minimum diameter and length
of the smallest edge on γ are not smaller than k. With shape-regularity we refer to elements
whose minimum (respectively, maximum) interior angles are bounded from below (respectively,
from above) by a positive constant less than π. We denote this mesh by Tk and require that
Tk is geometrically conforming with γ: each element T ∈ Tk has either one or more entire
edges in common with γ, or T̄ ∩ γ is a vertex of Γ and of T . The latter case happens at most
once for each vertex of Γ.

The extended domain is denoted by Γ̃k:

Γ̃k = interior(Γ̄ ∪ {T̄ ; T ∈ Tk}).

In the following, we choose the mesh size k accordingly to the scaling parameter r: k > r and
k is small enough so that Γ̃k ⊂ Γ̃ and no element touches two vertices of Γ. The assumption
k > r guarantees that the supports of the scaled radial basis functions are within Γ̃k.

We introduce the notation Γck for the strip Γ̃k \ Γ̄ and γ̃k := ∂Γ̃k for the boundary of Γ̃k.
Let us collect the assumptions we have made:

(A1) The scaling parameter r and mesh parameter k are bounded, r ∈ (0, r0], r < k < k0.
Tk is a quasi-uniform mesh of shape-regular quadrilaterals of diameter proportional to k
with minimum diameter not less than k and with edges on γ of length not less than k.
Moreover, Tk is geometrically conforming with γ and no element touches two vertices of
Γ.

Now, for the approximation of the Lagrangian multiplier λ we take piecewise constant func-
tions,

Mk := {µ ∈ L2(Γ
c
k); µ|T = const ∀T ∈ Tk}.

Using these discrete spaces, the boundary element scheme with radial basis functions and La-
grangian multiplier for the approximate solution of (2.3) is: find (φN , λk) ∈ HX,r ×Mk such
that

〈WφN , ψ〉Γ̃k
− 〈λk, ψ〉Γc

k
= 〈f0, ψ〉Γ̃k

∀ψ ∈ HX,r,

〈µ, φN 〉Γc
k

= 0 ∀µ ∈Mk.
(3.3)

Defining the subspace

VX,r := {ψ ∈ HX,r; 〈µ,ψ〉Γc
k
= 0 ∀µ ∈Mk},
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Γ

Figure 3.1: Domain Γ extended by strip Γck with mesh Tk.

and assuming an inf-sup condition for the bilinear form 〈·, ·〉Γc
k
on Mk×HX,r, (3.3) is equivalent

to: find φN ∈ VX,r such that

〈WφN , ψ〉Γ̃k
= 〈f0, ψ〉Γ̃k

∀ψ ∈ VX,r.

Apart from assumption (A1) we will need some more properties of X for our analysis. We
must be able to fix a constant function on any given element by testing with a radial basis
function.

To make this precise, let C ⊂ Tk denote the set of elements T such that the closure T
intersects γ only at a vertex of Γ. For instance, in the example of Figure 3.1 there are five such
elements, at five of the six convex vertices. Further we denote E := Tk \ C. Then we assume:

(A2) ∀T ∈ E ∃xi ∈ X : supp(φi) ∩ Γck ⊂ T

(A3) ∀T ∈ C : T has exactly two neighbors T1, T2 ∈ E ,
∃xi ∈ X : supp(φi) ∩ T 6= ∅, supp(φi) ∩ T̃ = ∅ ∀T̃ ∈ Tk \ {T, T1, T2}

For any T ∈ Tk there may be more than one xi ∈ X satisfying either (A2) or (A3). We will
denote one of these points xi by xi(T ).

Moreover, we assume that there is substantial overlap between HX,r and Mk:

(A4) ∃κ > 0 : meas(supp(φi(T )) ∩ T ) ≥ κ meas(supp(φi(T ))) = κπr2 ∀T ∈ Tk

Remark 3.1 Note that the discrete scheme is defined on the domain Γ̃k which depends on k.
But this causes no difficulty since, under the assumptions made, all the domains Γ̃k can be
extended to the fixed domain Γ̃ and the spaces involved allow for extension by zero of their
elements to Γ̃. More precisely, there holds

HX,r ⊂ H̃1/2(Γ̃k) ⊂ H̃1/2(Γ̃), Mk ⊂ H̃−1/2
γ (Γck) ⊂ H̃−1/2

γ (Γc)
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where the latter inclusions are to be understood as the uniformly continuous injections of the
respective extension by zero.

Theoretical results. Based on assumptions (A1)–(A4) we prove the following results.

• The discrete scheme (3.3) converges quasi-optimally; see Theorem 4.1.

• The error of the best approximation by radial basis functions in the constrained space VX,r
(mean value zero on elements of the extension) can be bounded by the error of the best
approximation in the unconstrained spaceHX,r on Γ plus a stability term; see Theorem 4.3.

• We prove an error estimate for the best approximation by scaled radial basis functions
(Theorem 5.4) which appears to be sharp according to our numerical results in Section 7.

We are unable to show an appropriate bound for the stability term |ψ|Ht(Γc
k)

in Theorem 4.3.
Based on our numerical tests, however, we conjecture that this term is appropriately bounded

so that we conclude for the choice k ≃ r ≃ h
1−t/τ
X,Γ the overall error estimate

‖φ− φN‖H1/2(Γ) ≤ C h
(t−1/2−ǫ)(1−t/τ)
X,Γ ǫ > 0, t ∈ (1/2, 1]. (3.4)

The constant C would depend on t, ǫ and τ but not on X and hX,Γ under the assumptions
made. We refer to Section 6, in particular (6.6), for more details.

Remark 3.2 In our case of an open surface Γ, the solution φ of (2.1) has strong singularities
along γ. This limits the convergence order of approximation schemes. Measuring regularity
in standard Sobolev spaces, the h-version of the standard boundary element method with quasi-
uniform meshes (and mesh size h) converges like

‖φ− φh‖H̃1/2(Γ) . ht−1/2‖φ‖Ht(Γ), (3.5)

cf. [27]. Since φ ∈ Ht(Γ) for any t < 1 but φ 6∈ H1(Γ) in general there is an upper limit 1/2
for the convergence order in h. An optimal error estimate making use of the type of appearing
singularities is

‖φ− φh‖H̃1/2(Γ) . h1/2,

again for quasi-uniform meshes, see [4]. In our case of radial basis functions the mesh size h
corresponds to the mesh norm hX,Γ and for quasi-uniform distribution of nodes this parameter is
equivalent to h for quasi-uniform meshes. The estimate (3.4) exactly reflects the error estimate
(3.5) for large τ . Selecting sufficiently smooth radial basis functions, which corresponds to large
τ , one gets as close as wanted to the convergence order 1/2. The use of lower regularity of radial
basis functions results in a lower convergence order. Our numerical experiments reported below
confirm the predicted influence of τ .
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4 Quasi-optimal convergence

We prove the quasi-optimal convergence of (3.3) for the approximation of φ. Later, in Section 5
we study the approximation problems for φ and λ to derive convergence orders. We do not
bound the Galerkin error for the Lagrangian multiplier λ since, on the one hand, proving a
discrete inf-sup condition for the bilinear forms 〈·, ·〉Γc

k
is an open problem and, on the other

hand, the function λ is of no physical interest. We will therefore analyze (3.3) without using a
discrete inf-sup condition.

Theorem 4.1 Let the assumptions (A1)–(A3) be satisfied. Then there exists a unique solution
to (3.3) and there holds the quasi-optimal error estimate

‖φ0 − φN‖H̃1/2(Γ̃k)
. inf

ψ∈VX,r

‖φ0 − ψ‖H̃1/2(Γ̃k)
+ inf
µ∈Mk

‖λ− µ‖
H̃

−1/2
γ (Γc

k)
.

Proof. The existence and uniqueness of (φN , λk) ∈ HX,r×Mk follows from the Babuška-Brezzi
theory. Specifically, uniformly in k,

(i) 〈W ·, ·〉Γ̃k
is bounded:

〈Wv,ψ〉Γ̃k
= 〈Wv0, ψ0〉Γ̃ . ‖v0‖H̃1/2(Γ̃)‖ψ

0‖H̃1/2(Γ̃) ≃ ‖v‖H̃1/2(Γ̃k)
‖ψ‖H̃1/2(Γ̃k)

(4.1)

for any v, ψ ∈ H̃1/2(Γ̃k)

(ii) 〈W ·, ·〉Γ̃k
is elliptic:

〈Wψ,ψ〉Γ̃k
= 〈Wψ0, ψ0〉Γ̃ & ‖ψ0‖2

H̃1/2(Γ̃)
≃ ‖ψ‖2

H̃1/2(Γ̃k)
∀ψ ∈ H̃1/2(Γ̃k) (4.2)

(iii) 〈·, ·〉Γc
k
is bounded:

〈µ,ψ〉Γc
k
≤ ‖µ‖

H̃
−1/2
γ (Γc

k)
‖ψ‖

H̃
1/2
γ̃k

(Γc
k)

≤ ‖µ‖
H̃

−1/2
γ (Γc

k)
‖ψ‖H̃1/2(Γ̃k)

(4.3)

for any µ ∈ H̃
−1/2
γ (Γck) and ψ ∈ H̃1/2(Γ̃k)

(iv) The linear form defined by f0 is bounded, i.e.

〈f0, ψ〉Γ̃k
≤ ‖f0‖H−1/2(Γ̃k)

‖ψ‖H̃1/2(Γ̃k)
. ‖f0‖H−1/2(Γ̃)‖ψ‖H̃1/2(Γ̃k)

∀ψ ∈ H̃1/2(Γ̃k).

Here, we used several uniform norm-equivalences, e.g. ‖v‖H̃1/2(Γ̃k)
≃ ‖v0‖H̃1/2(Γ̃) since H̃

1/2(Γ̃k)

(resp., H̃1/2(Γ̃)) is defined by interpolation between L2(Γ̃k) and H1
0 (Γ̃k) (resp, between L2(Γ̃)

and H1
0 (Γ̃)), and

‖v‖H1
0 (Γ̃k)

= |v|H1(Γ̃k)
= |v0|H1(Γ̃) = ‖v0‖H1

0 (Γ̃)
∀v ∈ H1

0 (Γ̃k).

Rather than proving a discrete inf-sup condition for the bilinear form 〈·, ·〉Γc
k
we only show

injectivity. More precisely,
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(v) 〈·, ·〉Γc
k
is discrete injective:

(

µ ∈Mk : 〈µ,ψ〉Γc
k
= 0 ∀ψ ∈ HX,r

)

⇒ µ = 0 (4.4)

To see this we proceed as follows. Let µ =
∑

T∈Tk
cTχT (with characteristic function χT

on element T ) satisfy (4.4). For an element T ∈ E , i.e. T has at least an entire edge in
common with γ, there exists, due to assumption (A2), a basis function φi ∈ HX,r whose
support overlaps only with the element T . Then 〈µ, φi〉Γc

k
= cT 〈χT , φi〉Γc

k
= 0 so that

cT = 0. Therefore, µ vanishes on all those elements. Elements not having an entire edge
in common with γ can only be at convex vertices of Γ and are isolated. By assumption
(A3) we can again choose a basis function for each of those elements T , this time with the
only condition that there is some overlap between T and the support of the corresponding
basis functions. Since we already know that µ vanishes on the neighboring elements, the
argument from before implies that µ vanishes also on the remaining vertex elements. This
proves (4.4).

The Babuška-Brezzi theory then implies that there exists a unique solution (φN , λk) of (3.3).
To prove the quasi-optimal convergence we first derive a Strang-type error estimate. Follow-

ing the standard procedure, we use the triangle inequality and the uniform ellipticity (4.2) to
conclude that for any ψ ∈ VX,r there holds

‖φ0 − φN‖H̃1/2(Γ̃k)
≤ ‖φ0 − ψ‖H̃1/2(Γ̃k)

+ ‖φN − ψ‖H̃1/2(Γ̃k)

. ‖φ0 − ψ‖H̃1/2(Γ̃k)
+ sup
ϕ∈VX,r\{0}

〈W (φN − ψ), ϕ〉Γ̃k

‖ϕ‖H̃1/2(Γ̃k)

. ‖φ0 − ψ‖H̃1/2(Γ̃k)
+

sup
ϕ∈VX,r\{0}

〈W (φ0 − ψ), ϕ〉Γ̃k

‖ϕ‖H̃1/2(Γ̃k)

+ sup
ϕ∈VX,r\{0}

〈W (φ0 − φN ), ϕ〉Γ̃k

‖ϕ‖H̃1/2(Γ̃k)

.

Then, using the uniform boundedness (4.1), we find

‖φ0 − φN‖H̃1/2(Γ̃k)
. inf

ψ∈VX,r

‖φ0 − ψ‖H̃1/2(Γ̃k)
+ sup
ϕ∈VX,r\{0}

〈W (φ0 − φN ), ϕ〉Γ̃k

‖ϕ‖H̃1/2(Γ̃k)

. (4.5)

This is the Strang-type error estimate for a non-conforming approximation. For a conforming
method the latter term above vanishes.

It remains to bound the non-conformity term. Combining (2.3) and (3.3) one finds that
there holds (note that φ̃ = φ0 by Proposition 2.1)

〈W (φ0 − φN ), ϕ〉Γ̃k
= 〈λ− λk, ϕ〉Γc

k
= 〈λ− µ,ϕ〉Γc

k
∀ϕ ∈ VX,r, ∀µ ∈Mk.

Combination with (4.5) and application of (4.3) yields

‖φ0 − φN‖H̃1/2(Γ̃k)
. inf

ψ∈VX,r

‖φ0 − ψ‖H̃1/2(Γ̃k)
+ inf
µ∈Mk

‖λ− µ‖
H̃

−1/2
γ (Γc

k)
.
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This finishes the proof. �

In the next step we analyze the approximation error in the constrained space.

Lemma 4.2 Let the assumptions (A1)–(A4) be satisfied and let s, t ∈ (1/2, 1] with s < t. Then
for any φ ∈ H̃t(Γ) there holds

inf
ψ∈VX,r

‖φ0 − ψ‖H̃s(Γ̃k)
≤ C(s, t) inf

ψ∈HX,r

(

‖φ− ψ‖Hs(Γ) + δ(s, t, k, r)|ψ|Ht(Γc
k)

)

with
δ(s, t, k, r) := k1+tr−(1+s) + kt−s

(

1 + k1+tr−(1+t)
)

.

Proof. Let ψ1 ∈ HX,r be a minimizer of

‖φ− ψ‖Hs(Γ) + δ(s, t, k, r)|ψ|Ht(Γc
k)

among the elements ψ ∈ HX,r. We will construct a function ψ2 ∈ HX,r such that

〈µ,ψ1 − ψ2〉Γc
k
= 0 ∀µ ∈Mk, (4.6)

that is ψ := ψ1 − ψ2 ∈ VX,r, and such that

‖φ0 − ψ‖H̃s(Γ̃k)
≤ C(s, t)

(

‖φ− ψ1‖Hs(Γ) + δ(s, t, k, r)|ψ1|Ht(Γc
k)

)

. (4.7)

To this end recall the notation of C for elements that touch γ only at a vertex and of E for
elements touching γ with at least an edge. Let us denote by E0 ⊂ E the set of elements which
do not touch any element of C.

By assumption, the radial basis functions are non-negative. We consider the normalized
functions φ∗i := φi/‖φi‖L1(T ) for i = i(T ) so that ‖φ∗i ‖L1(T ) = 1. This normalization is well
defined since there is substantial overlap between supp(φi(T )) and T by assumption (A4). We
make the ansatz

ψ2 =
∑

T∈Tk

cTφ
∗
i(T ).

For T ∈ E0 we define

cT =

∫

T
ψ1

so that 〈1, ψ1 − ψ2〉T = 0 due to the chosen normalization.
If C 6= ∅ then there remain elements in E which are associated with vertices of Γ. Let us pick

one vertex where this happens, i.e. there is an element T2 ∈ C touching γ at this vertex and
there are two neighboring elements T1, T3 ∈ E \ E0. For illustration see Figure 4.1.

For this vertex we define

cT1 =

∫

T1

ψ1 −

∫

T1

φ∗i(T2)

∫

T2

ψ1, cT2 =

∫

T2

ψ1, cT3 =

∫

T3

ψ1 −

∫

T3

φ∗i(T2)

∫

T2

ψ1.

11



Γ

2

T1

3

T

T

Figure 4.1: Corner elements and supports of associated radial basis functions.

Repeating this construction for all elements T ∈ C we obtain ψ2 ∈ HX,r satisfying (4.6).
It remains to verify (4.7). Since s ∈ (1/2, 1] there holds by [3, Lemma 3.1]

‖φ0 − ψ‖2
H̃s(Γ̃k)

≃ ‖φ0 − ψ‖2
Hs(Γ̃k)

≃ ‖φ0 − ψ‖2
s,Γ̃k

≤ 2‖φ0 − ψ‖2s,Γ + 2‖φ0 − ψ‖2s,Γc
k
.

Here, we used the equivalence of the interpolation norm ‖ · ‖Hs(Γ̃k)
and the Slobodeckij norm

‖ · ‖s,Γ̃k
with constants independent of k due to meas(Γ) ≤ meas(Γ̃k) ≤ 2meas(Γ). However,

they may depend on s and may be unbounded when s→ 1/2. By noting that φ0 = φ on Γ and
φ0 = 0 on Γck, and by using [4, Lemma 3.5] we deduce

‖φ0 − ψ‖2
H̃s(Γ̃k)

. ‖φ− ψ‖2s,Γ +
∑

T∈Tk

(

k−2s‖ψ‖2L2(T )
+ |ψ|2s,T

)

.

Using the triangle inequality with ψ = ψ1 − ψ2 and the equivalence of norms again, this time
on Γ, we obtain

‖φ0 − ψ‖2
H̃s(Γ̃k)

. ‖φ− ψ1‖
2
Hs(Γ) + ‖ψ2‖

2
Hs(Γ) +

∑

T∈Tk

(

k−2s‖ψ‖2L2(T )
+ |ψ|2s,T

)

.

Now, the support of ψ2 is confined to a neighborhood of the boundary of Γ. Therefore, by a
Poincaré-Friedrichs inequality its norms can be replaced by the semi-norm, giving

‖φ0 − ψ‖2
H̃s(Γ̃k)

. ‖φ− ψ1‖
2
Hs(Γ) + |ψ2|

2
Hs(Γ) +

∑

T∈Tk

(

k−2s‖ψ‖2L2(T )
+ |ψ|2s,T

)

.

We finish the proof of the lemma by showing that

|ψ2|Hs(Γ) . k1+tr−(1+s)|ψ1|Ht(Γc
k)

(4.8)
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and
∑

T∈Tk

(

k−2s‖ψ‖2L2(T )
+ |ψ|2s,T

)

. k2(t−s)
(

1 + k1+tr−(1+t)
)2
|ψ1|

2
Ht(Γc

k)
. (4.9)

Proof of (4.8). By a coloring argument and the Cauchy-Schwarz inequality we start bounding

|ψ2|
2
Hs(Γ) .

∑

T∈Tk

c2T |φ
∗
i(T )|

2
Hs(supp(φ∗

i(T )
)). (4.10)

Here we used that only a fixed number (independent of all relevant parameters) of appearing
radial basis functions overlap. By the scaling property of the Hs-semi-norm (see, e.g., [13]) there
holds

|φi(T )|
2
Hs(supp(φi(T )))

≃ r2−2s|φi(T )|
2
L∞(supp(φi(T )))

≃ r2−2sr−4

and by the assumption of substantial overlap (A4) one finds

‖φi(T )‖L1(T ) ≃ 1.

This proves

|φ∗i(T )|
2
Hs(supp(φ∗

i(T )
)) = ‖φi(T )‖

−2
L1(T )

|φi(T )|
2
Hs(supp(φ∗

i(T )
)) ≃ r−2(1+s). (4.11)

Now, for T ∈ E0, again using scaling properties, transforming to a reference element T̂ , de-
noting the transformed function by adding the symbol “ˆ”, and applying a Poincaré-Friedrichs
inequality, we obtain

c2T = (

∫

T
ψ1)

2 ≃ k4(

∫

T̂
ψ̂1)

2 . k4|ψ̂1|
2
Ht(T̂ )

≃ k2+2t|ψ1|
2
Ht(T ). (4.12)

For a corner element T2 ∈ C with neighboring elements T1, T3 ∈ E we obtain

c2T2 . k2+2t|ψ1|
2
Ht(T2)

(4.13)

as before and

c2T1 ≤ 2
(

∫

T1

ψ1

)2
+ 2

(

∫

T1

φ∗i(T2)

∫

T2

ψ1

)2
. k2+2t|ψ1|

2
Ht(T1)

+ k2+2t|ψ1|
2
Ht(T2)

. (4.14)

In the last step we used that
∫

T1
φ∗i(T2) . 1 by the quasi-uniformity of the mesh, the normalization

∫

T2
φ∗i(T2) = 1 and the substantial overlap of supp(φ∗i(T2)) with T2. Accordingly one bounds

c2T3 . k2+2t|ψ1|
2
Ht(T3)

+ k2+2t|ψ1|
2
Ht(T2)

(4.15)

and repeats this procedure for all edges where necessary. Combining (4.11)–(4.15) and recalling
(4.10) we obtain (4.8).
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Proof of (4.9). We use scaling arguments and a Poincaré-Friedrichs inequality as before. By
the integral-mean zero condition (or using that ψ satisfies a homogeneous boundary condition)
and scaling properties we can bound

‖ψ‖2L2(T )
. k2t|ψ|2t,T . k2|ψ̂|2

t,T̂
≃ k2|ψ̂|2

Ht(T̂ )
. k2t|ψ|2Ht(T )

and
|ψ|2s,T . k2(t−s)|ψ|2t,T . k2−2s|ψ̂|2

t,T̂
≃ k2−2s|ψ̂|2

Ht(T̂ )
. k2(t−s)|ψ|2Ht(T )

so that

∑

T∈Tk

(

k−2s‖ψ‖2L2(T )
+ |ψ|2s,T

)

.
∑

T∈Tk

k2(t−s)|ψ|2Ht(T ) . k2(t−s)|ψ|2Ht(Γc
k)
.

Analogously to (4.8) we can bound

|ψ2|Hs(Γc
k)

. k1+tr−(1+t)|ψ1|Ht(Γc
k)
.

Therefore, the representation ψ = ψ1−ψ2 and the triangle inequality, together with the previous
estimate, yield

∑

T∈Tk

(

k−2s‖ψ‖2L2(T )
+ |ψ|2s,T

)

. k2(t−s)
(

|ψ1|Ht(Γc
k)
+ |ψ2|Ht(Γc

k)

)2

. k2(t−s)
(

|ψ1|Ht(Γc
k)
+ k1+tr−(1+t)|ψ1|Ht(Γc

k)

)2
.

This finishes the proof of (4.9). �

We can now state the main result of this section, the quasi-optimal convergence of our scheme
(3.3) in the unconstrained space HX,r ×Mk.

Theorem 4.3 Let the assumptions (A1)–(A4) be satisfied and let t ∈ (1/2, 1]. There exists a
unique solution φ to (3.3). If φ ∈ H̃t(Γ) then there holds for ǫ > 0 the error estimate

‖φ0−φN‖H̃1/2(Γ̃k)
≤ C(ǫ) inf

ψ∈HX,r

(

‖φ−ψ‖H1/2+ǫ(Γ)+δ(ǫ, t, k, r)|ψ|Ht(Γc
k)

)

+ inf
µ∈Mk

‖λ−µ‖
H̃

−1/2
γ (Γc

k)

where C(ǫ) > 0 depends only on ǫ and with

δ(ǫ, t, k, r) := k1+tr−3/2−ǫ + kt−1/2−ǫ
(

1 + k1+tr−(1+t)
)

.

Proof. The statement is a combination of Theorem 4.1 and Lemma 4.2, setting s = 1/2 + ǫ in
the latter one. �

In the next section an error estimate for the best approximation by scaled radial basis
functions will be derived.
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5 Approximation by scaled radial basis functions

Standard approximation theory of radial basis functions centers around the native space defined
by

NΦ :=
{

v ∈ L2(IR
2);

∫

IR2

|v̂(ξ)|2

Φ̂(ξ)
dξ <∞

}

with norm ‖v‖NΦ
:= ‖Φ̂−1/2v̂‖L2(IR

2)

which, for Φ satisfying (3.1), is identical to the Sobolev space Hτ (IR2) with equivalent norms
when defining

‖v‖Hs
F (IR2) := ‖(1 + | · |2)s/2 v̂(·)‖L2(IR

2) (s ∈ IR).

It is well known that the interpolation operator IX defined by

IXv ∈ HX = span{Φ(· − xi); i = 1, . . . , N}; IXv(xi) = v(xi), i = 1, . . . , N

for v ∈ NΦ, satisfies
‖v − IXv‖NΦ

= min
ψ∈HX

‖v − ψ‖NΦ
,

see [8].
Using the scaled radial basis function Φr the native space NΦr is still identical to Hτ (IR2)

but its norm is uniformly equivalent to the norm

‖v‖Hs
F,r(IR

2) := ‖(1 + r2| · |2)s/2 v̂(·)‖L2(IR
2) (r > 0) for s = τ,

cf. (3.2).
For the analysis, we also need the scaled versions of the norms defined in Section 2. For

s > 0, s = m + σ with integer m ≥ 0 and σ ∈ (0, 1), the scaled Sobolev-Slobodeckij norm is
defined by

‖v‖s,r,Σ :=
(

‖v‖2m,r,Σ + r2s|v|2s,Σ

)1/2
(r > 0)

where Σ is a domain in IR2 and

‖v‖2m,r,Σ :=
∑

|α|≤m

r2|α|‖Dαv‖2L2(Σ)

with multi-index α = (α1, α2). We also define the scaled interpolation spaces

Hs
r (Σ) = [Hm

r (Σ),Hm+1
r (Σ)]σ, (s = m+ σ as before)

with norm denoted by ‖·‖Hs
r (Σ). By the equivalence of the semi-norms |v|s,IR2 and ‖|·|sv̂(·)‖L2(IR

2)

(cf. [16, Lemma 3.15]) and by repeating the arguments of Theorem B.7 in [16] we deduce that

‖v‖s,r,IR2 ≃ ‖v‖Hs
F,r(IR

2) ≃ ‖v‖Hs
r (IR

2) ∀v ∈ Hs(IR2), r > 0, (5.1)

where the constants are independent of r. In particular, when s = τ there holds

‖v‖τ,r,IR2 ≃ ‖v‖Hτ
r (IR

2) ≃ ‖v‖NΦr
∀v ∈ Hτ (IR2), r > 0. (5.2)

Furthermore, we need the following result.
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Lemma 5.1 For any s > 0 there exists a bounded extension operator

E : Hs
r (Γ) → Hs

r (IR
2). (5.3)

As a consequence,there holds

‖v‖s,r,Γ . ‖v‖Hs
r (Γ)

∀v ∈ Hs(Γ). (5.4)

In both cases the boundedness is uniform for r > 0 bounded from above.

Proof. By Stein (see [23, Section 3, Chapter VI]) there is a bounded extension operator
E : Hm(Γ) → Hm(IR2) defined for all non-negative intergers m. It follows that E : Hm

r (Γ) →
Hm
r (IR2). Indeed, for any integer m there hold

‖Ev‖2
Hm

r (IR2)
=

∑

|α|≤m

r2|α|‖Dα(Ev)‖2
L2(IR

2)
≤

∑

|α|≤m

r2|α|‖Ev‖2
H|α|(IR2)

.
∑

|α|≤m

r2|α|‖v‖2
H|α|(Γ)

=
∑

|α|≤m

r2(|α|−|β|)
∑

|β|≤|α|

r2|β|‖Dβv‖2L2(Γ)

.
∑

|α|≤m

∑

|β|≤|α|

r2|β|‖Dβv‖2L2(Γ)
. ‖v‖2Hm

r (Γ),

where in the penultimate step we used the fact that r is bounded above. By interpolation we
obtain the boundedness of E : Hs

r (Γ) → Hs
r (IR

2) for all s > 0, i.e., (5.3).
To prove (5.4) we note that Ev = v on Γ to obtain for any v ∈ Hs(Γ) with s = m+ σ

‖v‖2s,r,Γ =
∑

|α|≤m

r2|α|‖Dαv‖2L2(Γ)
+ r2s|v|2s,Γ =

∑

|α|≤m

r2|α|‖Dα(Ev)‖2L2(Γ)
+ r2s|Ev|2s,Γ

≤
∑

|α|≤m

r2|α|‖Dα(Ev)‖2
L2(IR

2)
+ r2s|Ev|2

s,IR2 = ‖Ev‖2
s,r,IR2 .

By using (5.1) and (5.3) we deduce (5.4). �

In the following we recall and adapt techniques from [18] to bound the approximation er-
ror appearing in Theorem 4.3. We will need the following result; see [18, Theorem 2.12], [1,
Corollary 4.1].

Proposition 5.2 Let k be a positive integer and σ ∈ (0, 1]. Then there exists h0 > 0 such that
for any X with hX,Γ ≤ h0 and for any l = 0, . . . , k there holds

|v|l,Γ ≤ C(k, σ)hk+σ−lX,Γ |v|k+σ,Γ ∀v ∈ Hk+σ(Γ) with v|X = 0.

In the following, ⌊τ⌋ denotes the largest integer smaller than or equal to τ .
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Lemma 5.3 Suppose that assumptions (A1) and (3.1) are satisfied. Then for s ∈ [0, ⌊τ⌋] there
holds

‖v − IXv‖Hs
r (Γ)

≤ C(s, τ)

(

hX,Γ
r

)τ−s

‖v‖Hτ
r (Γ)

∀r ∈ (0, r0].

Proof. Let
E : Hτ

r (Γ) → Hτ
r (IR

2)

be a uniformly (in r) bounded extension operator, cf. Lemma 5.1, and let v ∈ Hτ
r (Γ).

Using that Ev = v on Γ and thus IXEv = IXv = EIXv on Γ (since X ⊂ Γ̄) one finds
that Ev − IXEv is an extension of v − IXv. Therefore, the property that IX is an orthogonal
projection in NΦr yields, noting (5.2),

‖v − IXv‖Hτ
r (Γ)

. ‖Ekv − IXEkv‖Hτ
r (IR

2) ≃ ‖Ekv − IXEkv‖NΦr

≤ ‖Ekv‖NΦr
≃ ‖Ekv‖Hτ

r (IR
2
)
. ‖v‖Hτ

r (Γ)
. (5.5)

For integer ℓ ≤ ⌊τ⌋, Proposition 5.2, estimate (5.4) and stability (5.5) yield

rℓ|v − IXv|ℓ,Γ . rℓhτ−ℓX,Γ‖v − IXv‖τ,Γ .

(

hX,Γ
r

)τ−ℓ

‖v − IXv‖τ,r,Γ

.

(

hX,Γ
r

)τ−ℓ

‖v − IXv‖Hτ
r (Γ)

.

(

hX,Γ
r

)τ−ℓ

‖v‖Hτ
r (Γ)

.

This proves the assertion for integer s. For non-integer s < τ we interpolate between H
⌊s⌋
r (Γ)

and H
⌊s⌋+1
r (Γ), noting that if s = ⌊s⌋+σ with σ ∈ (0, 1) be such that s ≤ ⌊τ⌋ then ⌊s⌋+1 ≤ ⌊τ⌋.

�

Theorem 5.4 Let assumptions (A1) and (3.1) be satisfied. For t ∈ (0, ⌊τ⌋] with t+ 1/2 being

non-integer, let r ≃ h
1−t/τ
X,Γ . Then for any v ∈ H̃t(Γ) there exists ψ ∈ HX,r such that for

0 ≤ s ≤ t there holds
‖v − ψ‖Hs(Γ) ≤ Ch

(t−s)(1−t/τ)
X,Γ ‖v‖H̃t(Γ).

Here, the constant C is independent of v and hX,Γ but may depend on s, t and τ .

Proof. We follow the proof of [18, Theorem 3.8]. Let v ∈ H̃t(Γ) be given. According to
[17, Proposition 3.6] for any σ > 0, there exists a band-limited function gσ ∈ Bσ := {v ∈
L2(IR

2); supp(v̂) ⊂ B(0, σ)} such that (noting that ‖ · ‖
Hs

F (IR2
)
≃ ‖ · ‖

Hs(IR2
)
)

‖v0 − gσ‖Hs(IR2) ≤ C(s, t)σs−t‖v0‖Ht(IR2). (5.6)
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We then define ψ := IXgσ and obtain, together with Lemma 5.3,

‖v − IXgσ‖Ht(Γ) . ‖v0 − gσ‖Ht(IR2) + ‖gσ − IXgσ‖Ht(Γ)

. ‖v0 − gσ‖Ht(IR2) + r−t‖gσ − IXgσ‖Ht
r(Γ)

. ‖v0‖Ht(IR2) + r−t
(

h

r

)τ−t

‖gσ‖Hτ
r (Γ)

≃ ‖v‖H̃t(Γ) + r−τhτ−t‖gσ‖Hτ
r (Γ)

. (5.7)

Here, and in the rest of the proof, h denotes hX,Γ. Also we used that

‖v‖H̃t(Γ) ≃ ‖v‖Ht(Γ) ∀v ∈ H̃t(Γ) = Ht
0(Γ),

when t+ 1/2 is not an integer, cf. [15].
Since gσ is a band-limited function there holds

‖gσ‖
2
Hτ

r (Γ)
. ‖gσ‖

2
Hτ

r (IR
2)

≃ ‖gσ‖
2

Hτ
F,r(IR

2
)
≃

∫

B(0,σ)
|ĝσ(ξ)|

2(1 + r2|ξ|2)τ dξ

≤ (1 + r2σ2)τ−t
∫

B(0,σ)
|ĝσ(ξ)|

2(1 + r2|ξ|2)t dξ ≃ (1 + r2σ2)τ−t‖gσ‖
2
Ht

r(IR
2)
.

Again using (5.6), we obtain

‖gσ‖Ht
r(IR

2) . ‖gσ‖Ht(IR2) ≤ ‖v0 − gσ‖Ht(IR2) + ‖v0‖Ht(IR2) . ‖v0‖Ht(IR2) ≃ ‖v‖H̃t(Γ),

so that with the previous estimate,

‖gσ‖Hτ
r (Γ)

. (1 + r2σ2)(τ−t)/2‖v‖H̃t(Γ).

Combination with (5.7) yields

‖v − IXgσ‖Ht(Γ) .
(

1 + r−τhτ−t(1 + r2σ2)(τ−t)/2
)

‖v‖H̃t(Γ). (5.8)

By the same arguments and using the same construction we bound

‖v − IXgσ‖L2(Γ) ≤ ‖v0 − gσ‖L2(IR
2) + ‖gσ − IXgσ‖L2(Γ)

. σ−t‖v‖H̃t(Γ) +

(

h

r

)τ

‖gσ‖Hτ
r (Γ)

. σ−t‖v‖H̃t(Γ) + r−τhτ (1 + r2σ2)(τ−t)/2‖v‖H̃t(Γ)

= (σ−t + r−τhτ (1 + r2σ2)(τ−t)/2)‖v‖H̃t(Γ). (5.9)

Now choosing σ = 1/r in (5.8) and (5.9), and taking r = hα with α = 1− t/τ , we obtain

‖v − IXgσ‖Ht(Γ) .
(

1 + r−τhτ−t
)

‖v‖H̃t(Γ) = 2 ‖v‖H̃t(Γ)
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and
‖v − IXgσ‖L2(Γ) . (rt + r−τhτ )‖v‖H̃t(Γ) = (hαt + ht)‖v‖H̃t(Γ) . hαt‖v‖H̃t(Γ).

Interpolation gives

‖v − IXgσ‖Hs(Γ) . ‖v − IXgσ‖
s/t
Ht(Γ)‖v − IXgσ‖

1−s/t
L2(Γ)

. hαt(1−s/t)‖v‖H̃t(Γ) = h(1−t/τ)(t−s)‖v‖H̃t(Γ).

This proves the theorem. �

6 Conclusions

Before presenting numerical experiments let us draw some conclusions.
Based on Assumptions (A1)–(A4) we have proved the quasi-optimal convergence of the

discrete scheme (3.3) (cf. Theorem 4.1). The best approximation of the Lagrangian multiplier is
taken in the natural space of order −1/2 on the domain of definition of the Lagrangian multiplier
(outside Γ). The best approximation of the sought solution φ is measured in the natural space
of order 1/2, on an extended domain and taken among scaled radial basis functions of the
constrained space, i.e. with piecewise mean value zero on the extension. With Theorem 4.3 we
managed to replace the latter term (best approximation of φ) with the best approximation in
the unconstrained space on the original domain Γ. The price to pay is an additional stability
term that measures the approximant on the extension, where the unknown solution vanishes.
We were able to bound the best approximation error on the original domain by a term that
shows a convergence order that is close to the one of a standard boundary element method when
the regularity τ of the native space becomes large, cf. Theorem 5.4.

We were unable to show an appropriate bound for the stability term |ψ|Ht(Γc
k)

in Theorem 4.3.
The natural tool to estimate |ψ|Ht(Γc

k)
= |IXgσ|Ht(Γc

k)
is switching to the norm of the native

space. (Recall that gσ is a band-limited function that approximates the solution of the integral
equation.) This switch produces a factor of r−τ for the L2(Γ)-norm of gσ which we cannot
control efficiently as we can with the other higher order term |gσ|Hτ

r (Γ)
.

Our numerical results for the choice k ≃ r ≃ h
1−t/τ
X,Γ and t = 1 (cf. Figures 7.2–7.4) in-

dicate that |ψ|Ht(Γc
k)

asymptotically behaves, for the discrete solution φN , exactly as the best
approximation error. Note that for the chosen parameters,

δ(ǫ, t, k, r)|ψ|Ht(Γc
k)

≃ kt−1/2−ǫ|ψ|Ht(Γc
k)

≃ h
(t−1/2−ǫ)(1−t/τ)
X,Γ |ψ|Ht(Γc

k)
, (6.1)

so that it is enough to have boundedness of |ψ|Ht(Γc
k)

to obtain the optimal approximation order,
cf. the final estimate (6.6) below. Based on the assumption that the minimizer ψ ∈ HX,r of
‖φ− ψ‖H1/2+ǫ(Γ) has bounded semi-norm |ψ|Ht(Γc

k)
, i.e.,

inf
ψ∈HX,r

(

‖φ− ψ‖H1/2+ǫ(Γ) + δ(ǫ, t, k, r)|ψ|Ht(Γc
k)

)

≃ inf
ψ∈HX,r

‖φ− ψ‖H1/2+ǫ(Γ), (6.2)
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let us deduce a final error estimate. Under assumption (6.2), Theorem 4.3 gives

‖φ0 − φN‖H̃1/2(Γ̃k)
≤ C(ǫ) inf

ψ∈HX,r

‖φ− ψ‖H1/2+ǫ(Γ) + inf
µ∈Mk

‖λ− µ‖
H̃

−1/2
γ (Γc

k)
. (6.3)

By Theorem 5.4 we bound

inf
ψ∈HX,r

‖φ− ψ‖H1/2+ǫ(Γ) . h
(t−1/2−ǫ)(1−t/τ)
X,Γ ‖φ‖H̃t(Γ). (6.4)

There holds λ = (Wφ0)|Γc , cf. Proposition 2.1. Now, φ0 ∈ H̃t(Γ̃) so that λ|Γc
k
∈ Ht−1(Γck) by

the mapping properties of W , cf. [16]. A standard approximation result (see [5, Lemma 2.3] for
the p-result on an element; this immediately generalizes to the present case) yields

inf
µ∈Mk

‖λ− µ‖
H̃

−1/2
γ (Γc

k)
. kt−1/2‖λ‖Ht−1(Γc

k)
. (6.5)

Combining (6.4) and (6.5) with k ≃ h
1−t/τ

X,Γ̃k
, and using the estimate (6.3), this leads to

‖φ− φN‖H1/2(Γ) ≤ ‖φ0 − φN‖H̃1/2(Γ̃k)
≤ C h

(t−1/2−ǫ)(1−t/τ)
X,Γ ǫ > 0, t ∈ (1/2, 1]. (6.6)

The constant C would depend on t, ǫ and τ but not on X and hX,Γ under the assumptions
made.

7 Numerical results

We consider the model problem (2.1) with Γ = (0, 1) × (0, 1) and f = 1. The nodes of X
are distributed uniformly on Γ̄ where Γ is extended by a strip of uniform squares (with side
length k) as in Figure 7.1. The support of the scaled radial basis functions is indicated in one
case. The setup is selected so that assumptions (A1)–(A4) are satisfied and with mesh norm

h = h
1−1/τ
X,Γ ≃ r ≃ k, according to (3.4). We use scaled radial basis functions with the radial basis

functions defined in [28] (for the case d = 2 there which corresponds to functions in IR2). These
functions satisfy relation (3.1) with τ = 3/2+m where m is the parameter of the corresponding
regularity C2m. The degree of the corresponding univariate function is 2 + 3m.

We calculate the errors in an approximating (and heuristic) manner. For a conforming
method, by making use of the symmetry of the hypersingular operator, one obtains

‖φ0 − φN‖
2
H̃1/2(Γ̃)

≃ 〈W (φ0 − φN ), (φ
0 − φN )〉Γ̃

= 〈Wφ0, φ0〉Γ̃ − 〈WφN , φN 〉Γ̃ = 〈Wφ,φ〉Γ − 〈WφN , φN 〉Γ̃.

The last term is available through the stiffness matrix of the problem and the term 〈Wφ,φ〉Γ
can be approximated by extrapolation, cf. [9]. In our case of a non-conforming (or mixed)
approximation, this calculation has a perturbation which is due to the term λ = (Wφ0)|Γc

k
6= 0.
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k

r

h

Γ

∼
Γ

Figure 7.1: Uniformly distributed nodes X on Γ̄, and uniform mesh generating Γck and extending
Γ to Γ̃.

Since we do not know the exact solution φ so that λ cannot be calculated we approximate the
relative error in the energy norm by the expression

(

‖φ‖2ex − 〈WφN , φN 〉Γ̃

)1/2
/‖φ‖ex. (7.1)

Here, ‖φ‖2ex denotes the extrapolated value substituting 〈Wφ,φ〉Γ.
For different values of τ , we present the approximated errors on double logarithmic scales

along with the expected convergence rates (upper limit) according to (3.4). For comparability
we use the same scales in all the figures. Table 7.1 lists the values of τ with corresponding
figure number, data (regularity C2m and polynomial degrees as mentioned before) and the limit
1/2(1 − 1/τ) for the expected convergence rates.

τ figure no. regularity polynomial degree exp. conv. rate 1
2(1−

1
τ )

3/2 7.2 C0 2 1/6
5/2 7.3 C2 5 3/10
7/2 7.4 C4 8 5/14

Table 7.1: Values of τ in the numerical experiments with corresponding data, expected conver-
gence rates and figures.

Figures 7.2–7.4 confirm quite precisely the predicted convergence. The lines indicated by
“error” give the approximate relative errors calculated by (7.1) whereas the lines “stab term”
give the values of the stability term δ(ǫ, t, k, r)|ψ|Ht(Γc

k
for ǫ = 0, t = 1 (the limit of the regularity)

and ψ the calculated RBF approximation, cf. (6.1). The lines “expected” plot the expected
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convergence rates as listed in Table 7.1. They correspond to our conclusion (6.6) for ǫ = 0 and
t = 1. All results indicate that the errors have the predicted convergence rates and that the
stability term (6.1) fulfills our conjecture (6.2).

We have implemented the method by numerical integration with an overkill of number of
integration nodes. We used transformation to polar coordinates so that the singularity from the
fundamental solution cancels in the diagonal entries of the stiffness matrix. Nevertheless, note
that the polynomial degrees for larger values of τ are large (8 in the case τ = 7

2) which makes
their implementation a non-trivial task.

In the case τ = 7
2 there is a large pre-asymptotic range (Figure 7.4). Note also that for τ = 3

2
we were not able to calculate the stability term for the whole range of unknowns (about 30,000).
In this case the radial basis functions are only continuous and the numerical calculation of the
H1-semi-norm becomes unstable.

 0.01

 0.1

 1

 10  100  1000  10000

dim(H_h)

error (C0)
stab term (C0)
expected (C0)

Figure 7.2: Relative error and theoretical convergence rate for τ = 1.5.
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Figure 7.3: Relative error and theoretical convergence rate for τ = 2.5.
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Figure 7.4: Relative error and theoretical convergence rate for τ = 3.5.
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