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Abstract

The theory of multidimensional persistent homology was initially devel-
oped in the discrete setting, and involved the study of simplicial complexes
filtered through an ordering of the simplices. Later, stability properties of
multidimensional persistence have been proved to hold whentopological
spaces are filtered by continuous functions, i.e. for continuous data. This
paper aims to provide a bridge between the continuous setting, where sta-
bility properties hold, and the discrete setting, where actual computations
are carried out. More precisely, a stability preserving method is developed
to compare rank invariants of vector functions obtained from discrete data.
These advances confirm that multidimensional persistent homology is an ap-
propriate tool for shape comparison in computer vision and computer graph-
ics applications. The results are supported by numerical tests.

Keywords: Multidimensional persistent homology; axis-wise interpolation; fil-
tration; matching distance; topological aliasing
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1 Introduction

In this paper we present a discrete counterpart of the theoryof persistent homol-
ogy of vector functions that still guarantees stability properties as the continuous
framework. The theory of multidimensional persistence wasdeveloped in the dis-
crete setting in [8], and involved the study of simplicial complexes filtered through
an ordering of the simplices. On the other hand stability properties of multidi-
mensional persistence are proved to hold when triangulablespaces are filtered by
continuous functions, i.e. for continuous data [20, 9]. This paper aims to be a
bridge between the continuous setting, where stability properties hold, and the
discrete setting, where actual computations are carried out. More precisely, we
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develop a method to compare persistent homologies of vectorfunctions obtained
from discrete data. We show that in the passage from the continuous to the discrete
framework stability is preserved. These advances support the appropriateness of
multidimensional persistent homology for shape comparison by functions.

The problem of comparing shapes is well-studied in computervision and com-
puter graphics and many algorithms have been developed for this purpose. A
widely used scheme is to associate a shape with a shape descriptor, or a signa-
ture, and comparing shapes by measuring dissimilarity between descriptors. An
important class of shape descriptors, which may be calledshape-from-functions
methods, is based on the common idea of performing a topological exploration
of the shape according to some quantitative geometric properties provided by a
(measuring) function defined on the shape and chosen to extract shape features
[4].

The simplest topological attribute of a space is the number of its connected
components. A well-known mathematical tool to count the number of connected
components is the homology groupH0. More complex topological features are
revealed by higher homology groups.

Persistent homology is a shape-from-functions method for shape description
involving homology groups of any degree. The idea is to filtera space by the sub-
level sets of the function and to analyze the homological changes of the sublevel
sets across this filtration, due to the appearance or disappearance of topological
attributes, such as connected components. Features with a short persistence along
the filtration can be regarded as negligible information dueto noise or very fine
details. For application purposes, it is often sufficient todisregard the group struc-
ture of persistent homology and retain only the rank information. This gives rise
to the notions ofrank invariant[8], persistent Betti numbers [19], size functions
[25].

The topic has been widely studied in the case of filtrations induced by scalar
continuous functions (i.e. one-dimensional persistence), especially in connection
with the stability problem [13, 12, 14, 15].

This theory has been generalized to a multidimensional situation in which a
vector-valued function characterizes the data as suggested in [17, 18]. Results in
this area are given in [3, 8, 5, 9]. This generalization is quite natural in view of
the analogous generalization of Morse Theory [24]. Moreover, it is motivated by
applications where data are more completely described by more than one function
(e.g., curvature and torsion for space curves).

The passage from scalar to vector-valued functions presents new challenges.
To begin with, critical points are no longer isolated even innon-degenerate situ-
ations [17]. Although the relevant points for persistent homology of vector func-
tions are a subset of the critical points, precisely the Pareto critical points, these
are still non-isolated [11]. For example, in the case of the spherex2+ y2+ z2 = 1
with the functionf = (y, z), the Pareto critical points are those in the setx = 0,
y2 + z2 = 1, yz ≥ 0.

Another delicate issue is passing from the comparison of continuous models
to that of discrete models. This is an essential passage, andthe core of this pa-
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per. Indeed, for two given real-world objectsX andY , modeled as triangulable
topological spaces (e.g., manifolds), we usually only knowsimplicial descrip-
tionsK andL of them, affected by approximation errors. For example, acquiring
3D models of real-world objects for computer graphics applications needs to ac-
count for errors due to sensor resolution, noise in the measurements, inaccuracy
of sensor calibration [1]. Moreover, different techniquesfor reconstructing the
geometry and topology of the scanned object yield differentpolyhedral approxi-
mations. Analogous considerations hold for any continuousmeasuring functions
f : X → R

k andg : Y → R
k, because we could only consider approximations

ϕ̃ : K → R
k, ψ̃ : L → R

k of f andg defined on finite polyhedra. Depending on
the context of a specific application, these functions may ormay not be given by
explicit formulas. In either case, it is legitimate to assume that we are able to com-
pute their values on vertices ofK andL. Hence, we only know the discrete maps
ϕ : V(K) → R

k, ψ : V(L) → R
k which are the restrictions of̃ϕ andψ̃ to vertices.

Therefore a natural question is whether shape comparison bypersistent homology
of vector functions is numerically stable, i.e. whether thecomputation of a dis-
tance between rank invariants of discrete models gives a good approximation of
the ideal distance between rank invariants of continuous models.

Our main result, Theorem 4.5, gives an affirmative answer to this question. It
states that, in the passage from continuous to discrete data, the distance between
rank invariants does not increase, provided that stabilityholds for the continuous
model. We underline that at least one stable distance between rank invariants of
continuous vector functions exists as proved in [9]. In order to profit from the
stability theory in the continuous case, we give a new construction of axis-wise
linear interpolationϕq which is generic in the sense that its persistent homology is
exactly equal to that of the mapϕ defined on vertices. In addition, this axis-wise
interpolation can be used with stable distances to obtain a measure of how much
a model can be simplified in order to ease the computation of shape signatures.
Indeed, the computation time can become prohibitive when using large simpli-
cial complexes to represent models, which is why using coarser representations
can become necessary. Since doing so comes at a cost in terms of accuracy, we
can, given an allowed error threshold, determine the level of precision required to
respect this threshold.

The paper is organized as follows. In Section 2 the necessarybackground
notions concerning persistence are reviewed and put in the context of our aims.
Section 3 starts with the description of the simplicial framework and with Exam-
ple 3.1 which is a simplicial analogue of the sphere example pointed above. The
same example shows that, in the vector case, the linear extension of a map defined
on vertices does not satisfy the genericity property described above. Topological
artifacts of an interpolation method have been observed before. This phenomenon
can be referred to astopological aliasing. Our example motivates the construction
of our axis-wise linear interpolation. We next prove Theorem 3.3 on the deforma-
tion retraction of continuous sublevel sets ofϕq onto the simplicial sublevel sets
of ϕ. We introduce the notion of homological critical value for vector functions.
As in the sphere example, the set of critical values need not be discrete, but we
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prove in Theorem 3.5 that in the case ofϕq it has to be contained in a finite union
of hyperplanes, thus it is a nowhere dense set and itsk-dimensional Lebesgue
measure is zero (Corollary 3.6).

Section 4 starts with Lemma 4.1 that provides an approximation of a distance
between the rank invariants of continuous functions by thatof the rank invariants
of the corresponding axis-wise linear approximations. Thegenericity ofϕq allows
us to introduce the rank invariant forϕ. Although this rank invariant is defined
for a discrete functionϕ and computed using only simplicial sublevel sets, it takes
pairs of real vectors as variables, as it is in the case of the rank invariant for
continuous functions. We show that this new rank invariant for ϕ is equal to that
of ϕq. This allows us to derive the main result of the paper (Theorem 4.5).

Section 5 describes an algorithm which computes an approximate matching
distance. Our algorithm is a modification of the algorithm described in [2], adapted
to the rank invariants. The correctness of the algorithm is guaranteed by the re-
sults of Section 4. We next present tests of the algorithm performed on simplicial
models in the casek = 2. Our tests revealed the same discrepancy as observed
in Example 3.1, thus providing numerical confirmation of topological aliasing.
Finally, as a practical implication of our theoretical results, we present a proce-
dure to predetermine to which extent data resolution can be coarsened in order to
maintain a certain error threshold on rank invariants.

2 Basic notions and working assumptions

Let us consider a triangulable topological spaceX (i.e., a space homeomorphic
to the carrier of a finite simplicial complex). Afiltration of X is a familyF =
{Xα}α∈Rk of subsets ofX that are nested with respect to inclusions, that is:Xα ⊆
Xβ, for everyα � β, whereα � β if and only if αj ≤ βj for all j = 1, 2, . . . , k.

Persistence is based on analyzing the homological changes occurring along
the filtration asα varies. This analysis is carried out by considering, forα � β,
the homomorphism

H∗(i
(α,β)) : H∗(Xα) → H∗(Xβ).

induced by the inclusion mapi(α,β) : Xα →֒ Xβ. We work withČech homology
with coefficients in a given fieldF. When eachXα, α ∈ R

k, is triangulable,
it reduces to simplicial homology. For simplicity of notation we writeH∗(Xα)
for the graded homology spaceH∗(Xα;F) = {Hq(Xα;F)}q∈Z. The choice of a
field is only made in experimentations, the most convenient in computations being
F = Zp, with p a prime number. Thus, for anyq ∈ Z, Hq(Xα) is a vector space
of dimension equal to theq’th Betti number ofXα.

The image of the mapHq(i
(α,β)) is a vector space known as theq’th persistent

homology groupof the filtration at(α, β). It contains the homology classes of
orderq born not later thanα and still alive atβ. The dimension of this vector
space is called aq’th persistent Betti number.
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A rank invariant is a function that encodes the changes in thepersistent Betti
numbers asα andβ vary. Setting

∆k
+ := {(α, β) ∈ R

k × R
k | α ≺ β},

whereα ≺ β if and only ifαj < βj for all j = 1, 2, . . . , k, theq’th rank invariant
of the filtrationF is the functionρqF : ∆k

+ → N ∪ {∞} defined on each pair
(α, β) ∈ ∆k

+ as the rank of the mapHq(i
(α,β)). In other words,ρqF(α, β) =

dim imHq(i
(α,β)).

In this paper, we will use the notationρF to refer to rank invariants of arbitrary
order. Ultimately, the shapes of two triangulable spacesX andY , filtered byF
andG, respectively, can be compared by using an (extended) distanceD between
their rank invariantsρF andρG.

The framework described so far for general filtrations can bespecialized in
various directions. We now review the two most relevant onesfor our paper.

2.1 Persistence of sublevel set filtrations

Given a continuous functionf : X → R
k, it induces onX the so-calledsublevel

set filtration, defined as follows:

Xα = {x ∈ X | f(x) � α}.

We will call the functionf ameasuring functionand denote the rank invariant
associated with this filtration byρf .

SinceX is assumed to be triangulable andf is continuous,ρf (α, β) < +∞
for everyα ≺ β ∈ R

k (cf. [6]).
Among all the (extended) distancesD between rank invariants of filtrations,

we confine our study to those ones that, when applied to sublevel set filtrations,
satisfy the followingstability property:

(S) For everyf, f ′ : X → R
k continuous functions,D (ρf , ρf ′) ≤ ‖f − f ′‖∞

where‖f‖∞ = maxx∈X maxi=1,...,k |fi(x)|.

In [9] it has been shown that there is at least one distance between rank in-
variants, thematching distance, that has the stability property (S). An analogous
stability property for a distance defined between modules ispresented in [22].

The matching distance will be used for computations in the experiments de-
scribed in Section 5. Until then, we will not need to specify which distanceD we
are using, provided it satisfies (S).

2.2 Persistence of simplicial complex filtrations

We consider a simplicial complexK consisting of closed geometric simplices and
its carrier defined by

K = |K| :=
⋃

K. (1)
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The set of all vertices ofK is denoted byV(K) or by V, if K is clear from the
context. Forσ, τ ∈ K, the relationτ is a face ofσ is denoted byτ ≤ σ. For
proper faces, we writeτ < σ.

In this discrete setting, we take a family{Kα}α∈Rk of simplicial subcomplexes
of K, such thatKα is a subcomplex ofKβ, for everyα � β. As a consequence,
their carriers are nested with respect to inclusions, that is: Kα ⊆ Kβ, yielding a
filtration ofK.

In the next section we address the following problem: is any simplicial com-
plex filtration induced by a suitable continuous function?

A positive answer to this question will allow us later to transfer the stability
property ofD from the continuous to the discrete setting.

3 From continuous to discrete vector functions

We let ϕ : V(K) → R
k be a vector-valued function defined on vertices. We

suppose thatϕ is a discretizationof some continuous functioñϕ : K → R
k.

Reciprocally,ϕ̃ is an interpolationof ϕ. In this section we will simply assume
that ϕ̃ is equal toϕ on vertices ofK but, of course, when it comes to comput-
ing, one has to set bounds for the rounding error. Although insome practical
applications of persistent homology to the analysis of discrete multidimensional
dataϕ̃ : K → R

k may be explicitly known, in some other cases we do not even
have an explicit formula for̃ϕ: we assume that such a function exists, that we
can estimate its modulus of uniform continuity (for the sakeof simplicity, say,
its Lipschitz constant), and that we can compute the values of ϕ̃ at grid points of
arbitrary fine finite grids.

In a discrete model, we are interested in simplicial sublevel complexes

Kα := {σ ∈ K | ϕ(v) � α for all verticesv ≤ σ}.

In Section 5, we compute the rank invariants for the discretevector-valued
functionϕ and we use this information for computing the distance between rank
invariants for their continuous interpolations. In order to do this, we need to know
that there exists a continuous function which is ageneric interpolationof ϕ, in the
sense that its rank invariant is exactly equal to that ofϕ.

In the casek = 1, that is, whenϕ has values inR, it can be shown that such an
interpolation can be obtained by extendingϕ to each simplexσ ∈ K by linearity.
We shall denote this interpolation byϕ. In that case, one can show thatKα is
a deformation retract ofKϕ≤α, so the inclusion of one set into another induces
an isomorphism in homology. This result belongs to “mathematical folklore”: it
is often implicitly used in computations without being proved. The arguments
for that case are outlined in [23, Section 2.5] and Theorem 3.3 we prove in this
section contains this result as a special case. Unfortunately, if k > 1, this result is
no longer true as the following example shows:
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Figure 1: The tetrahedron boundary and sketches of two sublevel sets of the linear
interpolationϕ discussed in Example 3.1. The values taken at the displayed edge
are critical.

Example 3.1 LetK be the boundary of the tetrahedron shown in Figure 1, home-
omorphic to the 2D sphere. The corresponding simplicial complexK is made of
all proper faces of the 3D simplex[v0, v1, v2, v3] in R

3, with verticesv0 = (0, 0, 0),
v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (1/2, 0, 1). HenceK = |K| is homeomorphic
to a 2D sphere. Letϕ : K → R

2 be the restriction of the linear functionϕ given
by ϕ(x, y, z) = (x, z) to the four vertices. Letα ∈ R

2 be any value chosen so
that1/2 < α1 < 1 andα2 = 2 − 2α1. It is easy to see thatKα = [v0, v2]. Its ho-
mology is trivial. Note that the setKϕ�α contains one pointx on the edge[v1, v3],
namelyx = (α1, 0, α2), which closes a non-contractible path inKϕ�α. We have
H1(Kϕ�α) ∼= F 6= 0.

The discrepancy between the discrete and linear interpolated models seen in
Example 3.1 has been observed in applications to computer graphics and imaging,
and has been recently referred to as topological aliasing.

Several interesting conclusions can be derived from this. First,Kα is not a de-
formation retract ofKϕ�α. This remains true if we slightly increase the value ofα.
Secondly, if we slightly decreaseα, the setKα does not change but the setKϕ�α

becomes contractible. Hence, in the sense of Definition 3.4 presented further in
this section, any value assumed at a point of the edge[v1, v3] is a homological
critical value. In particular, the set of such values may be uncountable. This is
in contrast with the one-dimensional case, where a piecewise-linear function on a
simplicial complex must have a discrete set of critical values.

We shall now construct a continuous functionϕq : K → R
k calledaxis-wise

linear interpolationof ϕ which will correct the problem encountered with the
linear interpolationϕ in the multidimensional case. First, given anyσ ∈ K, let
µ(σ) ∈ R

k be defined by

µj(σ) = max{ϕj(v) | v is a vertex ofσ}, j = 1, 2, . . . , k. (2)

Note that ifτ ≤ σ, thenµ(τ) � µ(σ).
We will use induction on the dimensionm of σ to defineϕq : K → R

k on σ
and a pointwσ ∈ σ with the following properties:
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Figure 2: The linear (dashed line) and axis-wise linear (continuous line) interpo-
lations of a functionϕ defined on the vertices of the simplexσ = [v0, v1] with
values inR2.

(a) For allx ∈ σ, ϕq(x) � ϕq(wσ) = µ(σ) ;

(b) ϕq is linear on any line segment[wσ, y] with y on the boundary ofσ.

If m = 0, so thatσ = {v} is a vertex,ϕq(v) = ϕ(v) and we putw{v} = v. Let
m > 0 and supposeϕq is constructed on simplices of lower dimensions. Letτ be
a minimal face ofσ such thatµ(τ) = µ(σ). Consider two cases.

(i) If τ 6= σ, thenwτ andϕq(wτ ) are defined by the induction step. We put
wσ = wτ . Sinceσ is convex, anyx in the interior ofσ is on a line segment
joiningwσ to a uniquely definedy(x) on the boundary ofσ. Sinceϕq(y(x))
is defined by the induction step, we extendϕq to [wσ, y(x)] by linearity.

(ii) If τ = σ, then letwσ be the barycenter ofσ and putϕq(wσ) = µ(σ). Again,
anyx 6= wσ in the interior ofσ is on a line segment joiningwσ to a uniquely
definedy(x) on the boundary ofσ and we proceed as before.

The property (a) follows from the fact thatµ(τ) � µ(σ) whenτ ≤ σ, and from
the linearity on joining segments. The property (b) is clearfrom the construction.
By routine arguments from convex analysis, the pointy(x) on the boundary ofσ is
a continuous function ofx ∈ σ \{wσ}, and the constructed function is continuous
onσ. Since we proceeded by induction on the dimension ofσ, the definitions on
any two simplices coincide on their common face, soϕq extends continuously to
K. The property (b) implies that ifk = 1, and in certain cases of vector valued
functions,ϕq is equal toϕ, namely:

(c) ϕq is piecewise linear on each simplexσ. In addition, ifwτ is a vertex ofτ
for eachτ ≤ σ, then it is linear onσ.

The difference between the piecewise linear and the axis-wise linear interpola-
tionsϕ andϕq is illustrated in Figure 2 for a 1-simplexσ = [v0, v1] and a function
ϕ defined on vertices.

Lemma 3.2 The following statements hold:
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(i) For anyα ∈ R
k,Kα ⊂ Kϕq�α.

(ii) Let σ ∈ K andα ∈ R
k. If σ ∩Kϕq�α 6= ∅, thenσ has at least one vertex in

Kα.

PROOF: (i) Let σ ∈ Kα. It is clear from (2) thatµ(σ) � α. It follows from the
property (a) in the definition ofϕq thatσ ⊂ Kϕq�α.

(ii) We follow the induction steps in the construction ofϕq. If dim(σ) = 0, σ
is a vertex and there is nothing to prove. Letdim(σ) = m > 0 and suppose the
statement is proved for lower dimensions. Letx ∈ σ ∩Kϕq�α. If x = wσ, then
wσ ∈ Kϕq�α. By the property (a) ofϕq, all σ is inKα. If x 6= wσ, thenx is on a
line segment joining the pointwσ of σ with a pointy(x) of an (m − 1)–simplex
τ < σ, whereϕq(y(x)) is defined by the induction hypothesis. We know thatϕq

is extended linearly to the line segment[wσ, y(x)]. Also,ϕq(y(x)) � ϕq(wσ) by
the property (a). Henceϕq(y(x)) � ϕq(x) � α. It remains to use the induction
hypothesis fory(x) andτ to deduce thatτ has a vertex inKα.

Theorem 3.3 For any α ∈ R
k, Kα is a strong deformation retract ofKϕq�α.

Consequently, the inclusionKα →֒ Kϕq�α induces an isomorphism in homology.

PROOF: Note thatKϕq�α is contained in a union of simplicesσ ∈ K such that

σϕq�α := σ ∩Kϕq�α 6= ∅. (3)

Given any suchσ, consider the simplexσα defined as the convex hull of the set of
verticesv of σ such thatϕ(v) � α. By the hypothesis onσ and by Lemma 3.2(ii) ,
σα 6= ∅. Given anyσ ∈ K for which σϕq�α 6= ∅, we shall define a strong
deformation retraction

Hσ : σϕq�α × [0, 1] → σϕq�α

with r = H(·, 1) being a retraction ofσϕq�α ontoσα.
The construction goes by induction on the dimensionm of σ following the

induction steps in the construction of the functionϕq. If dim(σ) = 0, σ is a vertex
and there is nothing to prove. Now letm > 0. Suppose that the deformation
retractionHτ : τϕq�α × [0, 1] → τϕq�α is defined for simplicesτ of dimension
m′ < m with τϕq�α 6= ∅ in such a way thatHτ(x, t) = x for any (x, t) ∈
τϕq�α × [0, 1/2m

′

], and the values ofϕq on Hτ (x, t) are decreasing witht. By
“decreasing” we mean the weak inequality “�”. This hypothesis guarantees that
the deformation has values in the setτϕq�α.

Let x ∈ σϕq�α. If x is on a boundary ofσ, we defineHσ(x, t) = Hτ (x, t),
whereτ is the smallest face ofσ containingx andHτ is defined by the induction
hypothesis. Supposex is in the interior ofσ. Let wσ and y(x) be the points
identified in the definition ofϕq. Note that, ifϕq(wσ) � α, thenσϕq�α = σ,
hence the deformation must be defined as the identity map for eacht:

Hσ(x, t) := x for all (x, t) ∈ σ × [0, 1].

9



Therefore, we may suppose thatwσ /∈ σϕq�α. Consider the smallest faceτ of σ
containingy(x). Sincey(x) is on the boundary ofσ, τ is a proper face ofσ of
dimension, say,m′ < m. By the construction ofϕq,

ϕq(y(x)) � ϕq(x) � ϕq(wσ). (4)

Sinceϕq(x) � α, we getϕq(y(x)) � α soy(x) ∈ τϕq�α 6= ∅. By the induction
hypothesis, a deformation retraction

Hτ : τϕq�α × [0, 1] → τϕq�α ⊂ σϕq�α

is defined so that the values ofϕq onHτ (x, t) decrease witht, andHτ(x, t) = x
for t ∈ [0, 1/2m

′

].
For anyt ∈ [0, 1] and forx in the interior ofσ we define

Hσ(x, t) :=





x if 0 ≤ t < 1/2m

(2mt− 1)y(x)− (2mt− 2)x if 1/2m ≤ t < 1/2m−1

Hτ (y(x), t) if 1/2m−1 ≤ t ≤ 1
.

It is easily checked thatHσ(x, 1/2
m) = x, Hσ(x, 1/2

m−1) = y(x). Sinceϕq

is linear on[wσ, y(x)], the inequality (4) implies that the values ofϕq onHσ(x, t)
decrease witht.

Thus we have definedHσ both whenx is on the boundary ofσ and when it
is in the interior ofσ. By construction, for everyx ∈ σϕq�α, Hσ(x, 0) = x,
andHσ(x, 1) belongs toσα, and moreover, for everyx ∈ σα, Hσ(x, 1) = x. In
order to conclude thatHσ is a deformation retraction ofσϕq�α ontoσα we must
prove thatHσ is continuous. The continuity at a given point(x0, t0) with x0 in the
interior of σ follows from the continuity ofy(x) in x. The continuity at(x0, t0)
with x0 on the boundary ofσ follows from the condition thatHτ (x, t) = x for any
t ∈ [0, 1/2m

′

] and from the induction hypothesis.
In order to continuously extendHσ to a deformation

H : Kϕq�α × [0, 1] → Kϕq�α,

it is enough to prove that, given two simplicesσ1 andσ2 intersectingKϕq�α and
τ = σ1 ∩ σ2, the mapsHσ1 andHσ2 agree at anyx ∈ τϕq�α. It is clear from the
definition thatHσ1(x, t) = Hσ2(x, t) = Hτ (x, t) for x ∈ τ and for allt, provided
thatHτ is defined. But this is true, becausex ∈ τϕq�α, so this is a nonempty set.

In the next section, we use Theorem 3.3 to show that any distance between
rank invariants of continuous functions that has property (S) can be approximated
by the distance between rank invariants of discrete functions. We end this section
with another application of Theorem 3.3 of interest in itself: a theorem on the
structure of the set of critical values of the axis-wise interpolationϕq. The follow-
ing definition generalizes the notion of homological critical value given in [13]
to vector functions. In plain words we call homological critical any valueα for
which any sufficiently small neighborhood contains two values whose sublevel
sets are included one into the other but cannot be retracted one onto the other.
Neighborhoods are taken with respect to the norm‖α‖ = maxj=1,2,...,k |αj| in R

k.
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Definition 3.4 Let ϕ̃ : K → R
k be a continuous vector function. A valueα ∈ R

k

is a homological critical valueof ϕ̃ if there exists an integerq such that, for all
sufficiently small real valuesǫ > 0, two valuesα′, α′′ ∈ R

k can be found with
α′ � α � α′′, ‖α′ − α‖ < ǫ, ‖α′′ − α‖ < ǫ, such that the map

Hq(Kϕ̃�α′) → Hq(Kϕ̃�α′′)

induced by the inclusionKϕ̃�α′ →֒ Kϕ̃�α′′ is not an isomorphism. If this condition
fails,α is called ahomological regular value.

Also note that, by the long exact sequence for the relative homology (see e.g.
[21, Chapter 9]) the critical value definition is equivalentto the following condi-
tion on the graded relative homology

H∗(Kϕ̃�α′, Kϕ̃�α′′) 6= 0.

For anyj = 1, 2, . . . , k and a vertexv ∈ V(K), consider the hyperplane ofRk

given by the equationαj = ϕq

j(v) and a positive closed coneCj(v) contained in
it, given by the formula

Cj(v) := {α ∈ R
k | αj = ϕq

j(v) andαi ≥ ϕq

i(v) for all i = 1, 2, . . . , k}.

Theorem 3.5 The set of homological critical values ofϕq is contained in the finite
union of the described cones, namely, in the set

C :=
⋃

{Cj(v) | v ∈ V(K) andj = 1, 2, . . . , k}.

PROOF: Consider anyα /∈ C. We need to show thatα is a homological regular
value. SinceC is a closed set, anǫ > 0 exists such that the set̄Q(α, ǫ) = {β ∈
R
k | ‖α− β‖ ≤ ǫ} does not meetC. If ‖α− β‖ ≤ ǫ, then

Kβ = Kα. (5)

Indeed, if this were not true, the segment joiningα andβ should contain a point
of C, against the choice ofǫ.

Now, let us assume thatα′ � ϕ(v) � α′′, ‖α − α′‖ ≤ ǫ and‖α − α′′‖ ≤
ǫ. It follows from equation (5) and from Theorem 3.3 that the inclusionsi′ :
Kα = Kα′ →֒ Kϕq�α′ andi′′ : Kα = Kα′′ →֒ Kϕq�α′′ induce isomorphisms in
homology. The inclusioni(α

′,α′′) : Kϕq�α′ →֒ Kϕq�α′′ can be written asi(α
′,α′′) =

i′′ ◦ r′, wherer′ is the retraction homotopically inverse toi′. By the functoriality
of homology,H∗(i

(α′,α′′)) = H∗(i
′′) ◦H∗(r

′), hence it is also an isomorphism.

For the sake of visualization, in Figure 3 the setC is shown in a simple case.
From the formula forC, we instantly get an analogy of a well-known result

from differential geometry [24].

Corollary 3.6 The set of homological critical values ofϕq is a nowhere dense set
in R

k. Moreover itsk-dimensional Lebesgue measure is zero.

11
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Figure 3: The setC defined in Theorem 3.5 is the union of closed cones with
vertices at the values taken byϕ. The setΛ introduced in Proposition 4.6 is a
finite set whose elements are the highlighted points.

4 Approximation of distances between rank invari-
ants

The goal of this section is to show that shape comparison by persistent homology
of vector functions is numerically stable. In this passage from real (continuous)
objects to their discretizations, the approximation errordoes not grow to be much
larger when we compute the distanceD between the rank invariants ofϕ andψ
instead of the distanceD between the rank invariants off andg (Theorem 4.5).
To this end, the stability property (S) ofD defined in Section 2.1 in the continuous
setting is crucial.

A description of this approximation procedure in concrete examples together
with experiments exploiting the numerical stability of thecomparison by persis-
tent homology will be given in Section 5.

We end the section by showing that the set of homological critical values, al-
though uncountable, admits a finite representative set.

We start from the following approximation lemma. It may happen thatD (ρϕ̃, ρψ̃)
andD (ρϕq, ρψq) are equal to+∞. In the case of the matching distance, this occurs
whenH∗(K) 6= H∗(L). In such a case, we adopt the convention∞−∞ = 0.

Lemma 4.1 Let ϕ̃ : K → R
k, ψ̃ : L → R

k be two continuous measuring func-
tions on the carrier of complexesK andL. For anyǫ > 0, there existsδ > 0 such
that if

max{diamσ | σ ∈ K or σ ∈ L} < δ (6)

then
|D (ρϕ̃, ρψ̃)−D (ρϕq, ρψq)| < ǫ. (7)

PROOF: SinceK andL are compact,̃ϕ, ψ̃, ϕq, andψq are uniformly continuous.
Hence for anyǫ > 0, there existsδ > 0 such that if (6) is satisfied then

max{diamϕ̃(σ) | σ ∈ K} < ǫ/4 (8)
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and the same inequality holds forψ̃, ϕq, andψq. The diameters of̃ϕ(σ) andσ are
measured with respect to the maximum norm in the respective ambient spaces.
Sinceϕ is the restriction of̃ϕ to the vertices, andϕq interpolatesϕ on the vertices,
given anyx ∈ σ ∈ K, and any vertexv of σ, from (8) we get

‖ϕ̃(x)− ϕq(x)‖ ≤ ‖ϕ̃(x)− ϕ(v)‖+ ‖ϕ(v)− ϕq(x)‖ < ǫ/2. (9)

Hence, by the choice of the maximum norm inRk, ‖ϕ̃ − ϕq‖∞ < ǫ/2. By the
same arguments,‖ψ̃ − ψq‖∞ < ǫ/2. By the stability property (S) ofD ,

D (ρϕ̃, ρψ̃) ≤ D (ρϕ̃, ρϕq) + D (ρϕq, ρψq) + D (ρψq, ρψ̃)

≤ ‖ϕ̃− ϕq‖∞ +D (ρϕq, ρψq) + ‖ψq − ψ̃‖∞

< D (ρϕq, ρψq) + ǫ.

Reversing the roles of̃ϕ, ψ̃ andϕq, ψq, we getD (ρϕq, ρψq) < D (ρϕ̃, ρψ̃) + ǫ and
the conclusion follows.

Knowing Lemma 4.1, we now turn our attention to computingD (ρϕq, ρψq).

The following definition sets the notation for the rank invariant of the simpli-
cial complex filtration obtained from a discrete mapϕ. Next, we show that this
definition gives a rank invariant coinciding with the rank invariant of the contin-
uous functionϕq. Thus it is a first step in the passage from the stability of rank
invariants for continuous functions to that of discrete ones. Moreover, this defini-
tion is the one which we use to implement the reduction algorithm of [5] in our
computations in Section 5.

Definition 4.2 Consider the discrete mapϕ : V(K) → R
k defined on vertices of

a simplicial complexK. Theq’th real space variable rank invariantor, shortly,
q’th real rank invariantof ϕ is the functionρqϕ : ∆k

+ → N defined on each pair
(α, β) ∈ ∆k

+ as the rank of the map

Hq(j
(α,β)) : Hq(Kα) → Hq(Kβ)

induced by the inclusion mapj(α,β) : Kα →֒ Kβ on simplicial sublevel sets.

Theorem 4.3 Given any discrete functionϕ : V(K) → R
k on the set of vertices

of a simplicial complexK and its axis-wise interpolationϕq, we have the equality
of q’th real rank invariants

ρqϕ = ρq
ϕq .

PROOF: Consider any(α, β) ∈ ∆k
+, the inclusion mapsi(α,β) : Kϕq≤α →֒ Kϕq≤β,

andj(α,β) : Kα →֒ Kβ . Theorem 3.3 implies that for everyq ∈ Z we have the
following commutative diagram

Hq(Kϕq�α)
Hq(i(α,β))
−→ Hq(Kϕq�β)y∼=

y∼=

Hq(Kα)
Hq(j(α,β))
−→ Hq(Kβ)
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where the vertical arrows are the isomorphisms induced by the corresponding
retractions. Thus rankHq(i

(α,β)) = rankHq(j
(α,β)).

In the sequel, we will once again useρϕ to refer to real rank invariants of arbi-
trary order. In conclusion we obtain that the distance between the rank invariants
of two measuring (or interpolation) functions can be approximated using only the
corresponding simplicial sublevel sets.

Corollary 4.4 Let ϕ̃ : K → R
k, ψ̃ : L → R

k be two continuous measuring
functions on the carriers of complexesK andL and letϕ : V(K) → R

k, ψ :
V(L) → R

k be the discretizations of̃ϕ and ψ̃ on the sets of vertices ofK andL,
respectively. For anyǫ > 0 there existsδ > 0 such that if

max{diamσ | σ ∈ K or σ ∈ L} < δ

then
|D (ρϕ̃, ρψ̃)− D (ρϕ, ρψ)| < ǫ. (10)

PROOF: Immediate from Lemma 4.1 and Theorem 4.3.

We are now ready to give the main result of this section.

Theorem 4.5 Let X and Y be homeomorphic triangulable topological spaces,
and letf : X → R

k, g : Y → R
k be continuous functions. Let(K, ϕ̃) and(L, ψ̃),

with K andL carriers of complexesK′ andL′, and ϕ̃ : K → R
k, ψ̃ : L → R

k

continuous measuring functions, approximate(X, f) and (Y, g), respectively, in
the following sense: For a fixedǫ > 0, there exist a homeomorphismξ : K → X
with ‖ϕ̃− f ◦ ξ‖∞ ≤ ǫ/4 and a homeomorphismζ : L→ Y with ‖ψ̃− g ◦ ζ‖∞ ≤
ǫ/4. Then, for any sufficiently fine subdivisionK of K′ andL ofL′,

|D (ρf , ρg)−D (ρϕ, ρψ)| ≤ ǫ,

ϕ : V(K) → R
k, ψ : V(L) → R

k being restrictions of̃ϕ and ψ̃ on the set of
vertices ofK andL, respectively.

PROOF: By the triangle inequality

D (ρf , ρg) ≤ D (ρf , ρf◦ξ)+D (ρf◦ξ, ρϕ̃)+D (ρϕ̃, ρψ̃)+D (ρψ̃, ρg◦ζ)+D (ρg◦ζ, ρg).

Sinceρf = ρf◦ξ andρg = ρg◦ζ , we haveD (ρf , ρf◦ξ) = 0 andD (ρg◦ζ , ρg) = 0.
Moreover, by the stability property (S), since‖ϕ̃− f ◦ ξ‖∞ ≤ ǫ/4 and‖ψ̃ − g ◦
ζ‖∞ ≤ ǫ/4, we haveD (ρf◦ξ, ρϕ̃) ≤ ǫ/4 andD (ρψ̃, ρg◦ζ) ≤ ǫ/4. Therefore,

D (ρf , ρg) ≤ D (ρϕ̃, ρψ̃) + ǫ/2.

By Corollary 4.4, there existsδ > 0 such that, ifK andL are subdivisions ofK′

andL′ with max{diamσ | σ ∈ K or σ ∈ L} < δ, thenD (ρϕ̃, ρψ̃) ≤ D (ρϕ, ρψ) +
ǫ/2. In conclusion we have proved thatD (ρf , ρg) ≤ D (ρϕ, ρψ) + ǫ.
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Reversing the roles off , g andϕ, ψ, we getD (ρϕ, ρψ) ≤ D (ρf , ρg) + ǫ,
yielding the claim.

We turn now to the question of the structure of the critical set of ϕq. Recall
from the previous section that whenk > 1, the set of homological critical values of
a function onK with values inRk may be an uncountable set, although contained
in a nowhere dense setC by Theorem 3.5. However, the family{Kα}α∈Rk of all
subcomplexes ofK is finite. Thus there exists a finite representative setΛ ⊂ R

k

for C as the following proposition states.

Proposition 4.6 For anyα ∈ C, there existsλ in

Λ = {λ ∈ C | ∀ j = 1, 2, . . . , k, ∃ v ∈ V(K) : λj = ϕj(v)}

such thatKα = Kλ.

PROOF: Sinceα ∈ C, V(Kα) 6= ∅ and there existsj such thatαj = ϕj(v̄j)
for somev̄j ∈ V(K), andαi ≥ ϕi(v̄j), for 1 ≤ i ≤ k. For eachi 6= j, let us
take a vertex̄vi ∈ V(Kα) such thatϕi(v̄i) ≥ ϕi(v) for everyv ∈ V(α). Now
we setλ = (λ1, . . . , λk), with λj = ϕj(v̄j). By constructionλ belongs toΛ.
Furthermore, it holds thatKα = Kλ. Indeed, obviously,Kλ ⊆ Kα. Moreover,
for everyv ∈ Kα, by definition ofv̄i it holds thatϕi(v̄i) ≥ ϕi(v) for 1 ≤ i ≤ k.
Equivalently,λi ≥ ϕi(v) for 1 ≤ i ≤ k, implying thatv ∈ Kλ.

The structure of setΛ is visualized in Figure 3. The previous proposition
prompts for the following definition.

Definition 4.7 Consider the discrete mapϕ : V(K) → R
k defined on vertices of

K. Thediscrete rank invariantof ϕ is the restriction of the real rank invariantρϕ
to the finite domainΛ2

+ := ∆k
+ ∩ (Λ× Λ).

Definition 4.7 gives a discrete rank invariant which is similar to the one defined
in [8, 7], except for the fact that we are using a different homological structure.

Defining a distanceD directly on the basis ofk-dimensional rank invariants
would be a task impossible to accomplish. Even whenk = 2, a pair of complexes
K andL with an order of thousand vertices would result in computingranks of
millions of maps induced by inclusions. This motivates the one-dimensional re-
duction method described in the next section to compute the matching distance.

5 Algorithm and experimentation

For experimentation purposes, we now fix the distance between rank invariants
that we will use to be the matching distanceDm defined in [5].

The one-dimensional reduction method presented in [5] to compute the match-
ing distance consists of applying the one-dimensional rankinvariant along the
lines t 7→ ~b + t~l parameterized byt and determined by pairs of vectors(~l,~b) in
a chosen grid inRk × R

k, where~b is an initial point and~l directs the line. It is
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assumed that all components of~l are positive, and that~l · 1 = 1,~b · 1 = 0, where
1 = (1, 1, . . . , 1). For all (α, β) ∈ ∆k

+, there exists a unique such pair, which
will be calledlinearly admissible pairor simplyadmissible pair, the set of which
will be denotedLadmk. Also denote byg(~l,~b) : K → R andh(~l,~b) : L → R

the one-dimensional functions given byg(~l,~b)(x) = maxi (ϕ
q

i (x) − bi)/li and

h(~l,~b)(x) = maxi (ψ
q

i (x) − bi)/li, whereli and bi are thei-th components of~l

and~b, respectively. For ease of notation, the pair(~l,~b) may be left out ofg andh
if it is unambiguous. By [5, Lemma 1], ifα = ~b+ s~l, then

Kϕq�α = Kg≤s.

This and Theorem 4.3 implies

Corollary 5.1 Consider(α, β) = (~b + s~l,~b + t~l) ∈ ∆k
+, for some(s, t) ∈ ∆1

+.
Then

ρϕ(α, β) = ρg(s, t).

The above theorem shows that it is legitimate to apply the reduction method of
[5] to simplicial sublevel sets. Following [5, Definition 11], we define themulti-
dimensional matching distancebetween the rank invariantsρϕ andρψ to be

Dm (ρϕ, ρψ) = sup
(~l,~b)∈Ladmk

min
i=1,...,k

liDm (ρg
(~l,~b)
, ρh

(~l,~b)
).

In this section, the valuemini=1,...,k liDm (ρg
(~l,~b)
, ρg

(~l,~b)
)will be denoteddm(ρϕ, ρψ)

or dm(~l,~b)(ρϕ, ρψ) and referred to as therescaled one-dimensional matching dis-
tance. The computational problem is, given a threshold valueǫ > 0, com-
puting an approximate matching distancẽDm (ρϕ, ρψ) on a suitable finite subset
A ⊂ Ladmk such that

D̃m (ρϕ, ρψ) ≤ Dm (ρϕ, ρψ) ≤ D̃m (ρϕ, ρψ) + ǫ. (11)

5.1 Algorithm

Our algorithm’s inputs consist of lists of simplices ofK andL of highest di-
mension together with their adjacency relations and vertices, and of the values of
normalized measuring functionsϕ : V(K) → R

2 andψ : V(L) → R
2, as well as

a toleranceǫ.1 In our computations, we have confined ourselves to the case where
K andL are triangular meshes. Its output is an approximate matching distance
D̃m (ρϕ, ρψ). To compute the one-dimensional persistent homology on admissi-
ble pairs, we use the persistent homology software JPlex [16]. By default, JPlex
computes the persistent Betti numbers overZ11 of a discretely indexed filtration of
simplicial complexes. We build this filtration by adding simplices in the following

1Due to the finite precision of computer arithmetic, the codomain of the functionsϕi andψi is
in reality 10−p

Z rather thanR. In our computations we tended to usep = 6, that is, a precision
of up to six digits after the decimal point.
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recursive way. We first order the values attained by the one-dimensional measur-
ing functiong in increasing order,{g1, . . . , gN}. A finite filtration {K1, . . . ,KN}
is then built by inserting simplicesσ ∈ K. If σ = {v}, wherev is a vertex, we put
{v} intoKi if g(v) ≤ gi. Otherwise,σ ∈ Ki if all its vertices are inKi. Similarly,
the functionh is used to build a finite filtration{L1, . . . ,LM} using simplices of
L.

The set of admissible pairsLadm2 is the set of quadruples(a, 1− a, b,−b) ∈
R

2 × R
2 such that0 < a < 1. As described in [2, Remark 3.2], it is possible to

avoid computation of the one-dimensional matching distance over a large portion
of Ladm2. Since the functionsϕ andψ are normalized,C = max{‖ϕ‖, ‖ψ‖} =
1. LetLadm∗

2 be the set of admissible pairs such that|b| < 1. Then, to compute
the maximal value ofDm (ρg, ρh) overLadm2\Ladm

∗
2, it is sufficient to consider

the two admissible pairs(a, 1−a, b,−b) = (1/2, 1/2, 2,−2)and(1/2, 1/2,−2, 2).
The details can be found in [2].

It follows from a generalization of the Error Bound Theorem ([2, Theorem 3.4]
and [10]) to persistent homology of arbitrary order that if for (~l,~b) and(~l′,~b′) ∈

Ladm2, ‖(~l,~b)− (~l′,~b′)‖ ≤ δ, then for normalized functionsϕ andψ

| dm(~l,~b)(ρϕ, ρψ)− dm(~l′,~b′)(ρϕ, ρψ)| ≤ 18δ.

This suggests that in order to satisfy Equation (11), it suffices to choose admissible
pairs (~l,~b) ∈ Ladm∗

2 at a distance withinǫ/9 of each other, guaranteeing that
every member ofLadm∗

2 is within ǫ/18 of a tested pair. In practice, our algorithm
is reminiscent of the grid algorithm shown in Section 3 of [2], in the sense that
we take pairs at a distance of1/2N of each other withN sufficiently large. We
observe that the setLadm2 is in bijective correspondence with{(a, b) ∈ R

2 | a ∈
(0, 1), b ∈ R}, and so we will speak of computingdm(ρϕ, ρψ) at a pointP = (a, b)
of the preceding set. The lattice of points on which we compute this rescaled
matching distance is chosen as follows: chooseN ∈ N such that1/2N ≤ ǫ/18,
and choosePij = (ai, bj), i = 0, . . . , 2N − 1, j = 0, . . . , 2N+1 − 1 such that
ai = (2i+ 1)/2N+1, bj = 1− (2j + 1)/2N+1.

5.2 Examples of topological aliasing

Our experimentations have been made on triangular meshes ofcompact 2D sur-
faces. In doing so, the influence on experimental results of the concept of topo-
logical aliasing discussed in Section 3 became apparent. Namely, we used our
algorithm to compare in a pairwise manner 10 cat models, a selection of which
is found in Figure 4. We used forϕi andψi, i = 1, 2, the following functions.
Assume that the modelK is such that its vertex setV(K) = {v1, . . . , vn} and
compute the following principal vector:

~w =

∑n
i=1(vi − c)‖vi − c‖2∑n

i=1 ‖vi − c‖22
,

wherec is the centre of mass ofK defined by taking the weighted average of
the centres of each triangle. Letd be the line passing throughc having ~w as its
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direction vector, and letπ be the plane passing throughc having ~w as its normal
vector. We defined

ϕ1(vi) = 1−
dist(vi, d)

maxj=1,...,n dist(vj, d)

and

ϕ2(vi) = 1−
dist(vi, π)

maxj=1,...,n dist(vj , π)
,

wheredist(v, d) anddist(v, π) are defined in the usual way, as the minimal Eu-
clidean distance betweenv and the points ond orπ. The functionsψ1 andψ2 were
defined similarly using the modelL. We then repeated the same procedure on the
barycentric subdivisions of the models, with the value of the function at the new
vertices defined using the linear interpolant. We found out that in this case the
computed matching distance did not always yield the same result as when using
the original unsubdivided models. However, replacing the linear interpolant by
the axis-wise linear interpolant allowed us to retrieve thesame results.

We show in Table 1 a selected subset of our results, and in Figure 4 images
of the five models for which results are shown. The first two rows of numbers
in each table represent the 1D matching distance computed using each ofϕi and
ψi for i = 1, 2 respectively, while the last three rows represent the approximated
2D matching distance computed for three different tolerance levelsǫ. The col-
umn named “Nonsub” shows the distances computed on the original model, while
“Linear” and “Axis-wise” show those computed on the subdivided models with re-
spectively the linear and axis-wise linear interpolants. “Diff” and “% Diff” show
the difference and relative difference between the matching distance results for
the unsubdivided models and subdivided models with linear interpolation.

We can see that while the matching distance computed using the axis-wise lin-
ear interpolant is, for every tolerance level, equal to the matching distance between
the original models, the matching distance computed using the linear interpolant
can be quite different, and this both using 0th- and 1st-order persistent homology.
However, this phenomenon is only seen when computing the 2D matching dis-
tance: the 1D matching distances (the numbers in the first tworows of each table)
are always the same. Given that in our context topological aliasing can only be
observed when using multi-measuring functions, this follows our expectations.

5.3 Application to model precision concerns

When computing the matching distance between the multidimensional persistence
diagrams of two models, the computation time can easily become prohibitive if
the simplicial complexes representing the models are very large. For this reason,
using coarser representations may be necessary. However, doing so comes at a
cost in terms of accuracy. Nevertheless, using the stability property (S) of sub-
section 2.1 with the axis-wise interpolation, we can estimate or bound the error
caused by coarsening the model, and also calculate the modelprecision required
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to reach a given error threshold. This step can be done once for every dataset,
using statistical tools to obtain the expected required model precision.

We demonstrate this method using the following two datasets.

Example 5.2 (Circle) Let fi : S1 → R
2, i = 1, . . . , 105 be a set of random

functions on the circle obtained in the following way: ifS1 is parametrized by the
functionsx = cos t, y = sin t, t ∈ [0, 2π), then

f̃i(x, y) =

(
6∑

i=1

(αi,1 cos(i t) + βi,1 sin(i t)) ,

6∑

i=1

(αi,1 cos(i t) + βi,2 sin(i t))

)
,

where theα’s andβ’s are pseudo-random numbers uniformly distributed in[−1, 1).
The functionfi is then obtained from̃fi by normalizing it so that both its com-
ponents take0 and 1 as minimum and maximum. It can be plotted as a (not
necessarily simple) closed curve in[0, 1]2 touching the four sides of this square.
ForN = 2, 3, . . . , 9, we obtainϕi,N by samplingfi at the2N -th roots of unity
on S1. On the triangulationKN where1-simplices join successive2N -th roots
of unity,ϕq

i,N can be computed, and property (S) and Theorem 4.3 guarantee that
‖ϕq

i,N − fi‖∞ is an upper bound for the matching distanceDm (ρϕi,N
, ρfi). The

following table shows the average and standard deviation ofthis upper bound over
the dataset of105 functions. Another line shows the sum of mean and standard
deviation, which in our tests appears to be an effective upper bound in82 to 86%
of cases. For normally distributed data, it would be such an effective upper bound
in nearly85% of cases. Figure 5 plots this effective error bound in function of the
percentage of original simplices kept.

N 2 3 4 5
µ 0.748324 0.592222 0.346717 0.193834
σ 0.117896 0.104408 0.067729 0.032303

µ+ σ 0.866220 0.696630 0.414446 0.226138

N 6 7 8 9
µ 0.101172 0.051487 0.025936 0.013012
σ 0.015632 0.007552 0.003679 0.001812

µ+ σ 0.116804 0.059039 0.0296155 0.014824

Example 5.3 (Torus) Let fi : T → R
2, i = 1, . . . , 5000 be a set of random

functions on the torus obtained thusly: if a torus is parametrized by the equations
x = (2+ 1/2 cos t) cosu, y = (2+ 1/2 cos t) sin u, z = 1/2 sin t, t, u ∈ [0, 2π),
then

f̃i(x, y, z) =(∑6
i=1 (αi,1 cos(it) + βi,1 sin(it)) (2 + 1/2

∑6
j=1 (γj,1 cos(ju) + δj,1 sin(ju))),

∑6
i=1(αi,2 cos(it) + βi,2 sin(it))(2 + 1/2

∑6
j=1(γj,2 cos(ju) + δj,2 sin(ju)))

)
,
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where theα’s, β’s, γ’s andδ’s are pseudo-random numbers uniformly distributed
in [−1, 1). Here again,fi is then obtained from̃fi by normalizing it so that both
its components take0 and1 as minimum and maximum. GivenN = 4, 5, . . . , 9,
we build a uniform triangulation of the space[0, 2π]2 with the identifications
0 ∼ 2π in both variablest and u, where vertices are the points(ti, uj) with
ti = 2π i/2N and uj = 2π j/2N−2, and where triangles have as vertices the
points(ti, uj), (t(i+1) mod 2N , uj) and(t(i+1) mod 2N , u(j+1) mod 2N−2), or (ti, uj),
(ti, u(j+1) mod 2N−2) and(t(i+1) mod 2N , u(j+1) mod 2N−2), i = 0, . . . , 2N − 1, j =
0, . . . , 2N−2 − 1. This space being homeomorphic toT , this triangulation corre-
sponds to a triangulation of the torus. Samplingfi at the vertices of the triangu-
lation, we obtain the functionϕi,N , on whichϕq

i,N can be computed. As in the
previous example, the following table shows the average andstandard deviation,
as well as their sum, of‖ϕq

i,N − fi‖∞ over the dataset of5000 functions. Figure 6
further plotsµ+ σ in function of the percentage of original simplices kept.

N 4 5 6 7 8 9
µ 0.384139 0.299501 0.178587 0.097746 0.050357 0.025411
σ 0.060352 0.054141 0.033503 0.017958 0.009268 0.004672

µ+ σ 0.444491 0.353643 0.212090 0.115704 0.059625 0.030083
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Département de mathématiques
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Figure 4: The models cat0, cat0-tran1-1, cat0-tran1-2, cat0-tran2-1 and cat0-
tran2-2 are shown along with the values ofϕ1 andϕ2. Models are courtesy of
the authors of [2].
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cat0 vs. cat0-tran1-1
Nonsub Linear Axis-wise Diff % Diff

0.031129 0.031129 0.031129 0.000000 0.000000
0.039497 0.039497 0.039497 0.000000 0.000000

H1 0.039497 0.039497 0.039497 0.000000 0.000000
0.046150 0.039497 0.046150 -0.006653 -16.844317
0.046150 0.040576 0.046150 -0.005574 -13.737185
0.118165 0.118165 0.118165 0.000000 0.000000
0.032043 0.032043 0.032043 0.000000 0.000000

H0 0.194217 0.177001 0.194217 -0.017216 -9.726499
0.224227 0.203102 0.224227 -0.021125 -10.401178
0.225394 0.207266 0.225394 -0.018128 -8.746249

cat0-tran1-2 vs. cat0-tran2-1
Nonsub Linear Axis-wise Diff % Diff

0.017272 0.017272 0.017272 0.000000 0.000000
0.026101 0.026101 0.026101 0.000000 0.000000

H1 0.026101 0.028686 0.026101 0.002585 9.903835
0.034314 0.028686 0.034314 -0.005628 -19.619327
0.034314 0.029188 0.034314 -0.005126 -17.562012
0.182985 0.182985 0.182985 0.000000 0.000000
0.018951 0.018951 0.018951 0.000000 0.000000

H0 0.192872 0.188365 0.192872 -0.004507 -2.392695
0.207480 0.202844 0.207480 -0.004636 -2.285500
0.208451 0.204511 0.208451 -0.003940 -1.926547

cat0-tran2-1 vs. cat0-tran2-2
Nonsub Linear Axis-wise Diff % Diff

0.022001 0.022001 0.022001 0.000000 0.000000
0.034288 0.034288 0.034288 0.000000 0.000000

H1 0.034288 0.034288 0.034288 0.000000 0.000000
0.045545 0.035702 0.045545 -0.009843 -27.569884
0.045545 0.037061 0.045545 -0.008484 -22.891989
0.095677 0.095677 0.095677 0.000000 0.000000
0.032966 0.032966 0.032966 0.000000 0.000000

H0 0.178776 0.182322 0.178776 0.003546 1.983488
0.202770 0.196977 0.202770 -0.005793 -2.940952
0.212733 0.208097 0.212733 -0.004636 -2.227807

Table 1: The approximated matching distance computed by ouralgorithm for
three decreasing tolerance values (ǫ = 9/8, 9/16 and9/32) is shown for a few test
cases (unsubdivided, subdivided withϕ and subdivided withϕq), with 0th- and
1st-order rank invariants.
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Figure 5: Plot ofµ + σ in function of the percentage of simplices kept from the
original model, Example 5.2. Horizontal axis is logarithmic.
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Figure 6: Plot ofµ + σ in function of the percentage of simplices kept from the
original model, Example 5.3. Horizontal axis is logarithmic.
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