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Abstract

The theory of multidimensional persistent homology wasdlty devel-
oped in the discrete setting, and involved the study of duoigblcomplexes
filtered through an ordering of the simplices. Later, stgbjproperties of
multidimensional persistence have been proved to hold vibeological
spaces are filtered by continuous functions, i.e. for cootiis data. This
paper aims to provide a bridge between the continuous gettihere sta-
bility properties hold, and the discrete setting, whereaia@lctomputations
are carried out. More precisely, a stability preservinghuodtis developed
to compare rank invariants of vector functions obtainednfidiscrete data.
These advances confirm that multidimensional persistenblagy is an ap-
propriate tool for shape comparison in computer vision andputer graph-
ics applications. The results are supported by numeristd.te
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1 Introduction

In this paper we present a discrete counterpart of the thafgpersistent homol-
ogy of vector functions that still guarantees stabilitygedies as the continuous
framework. The theory of multidimensional persistence dasloped in the dis-
crete setting in[8], and involved the study of simpliciahgalexes filtered through
an ordering of the simplices. On the other hand stabilitypprtes of multidi-
mensional persistence are proved to hold when triangutgizlees are filtered by
continuous functions, i.e. for continuous dé&tal[20, 9]. sTpaper aims to be a
bridge between the continuous setting, where stabilityperies hold, and the
discrete setting, where actual computations are carriéd More precisely, we
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develop a method to compare persistent homologies of v&atotions obtained
from discrete data. We show that in the passage from thereamis to the discrete
framework stability is preserved. These advances supperappropriateness of
multidimensional persistent homology for shape comparisofunctions.

The problem of comparing shapes is well-studied in compuggrn and com-
puter graphics and many algorithms have been developedi®iptrpose. A
widely used scheme is to associate a shape with a shapepdesoor a signa-
ture, and comparing shapes by measuring dissimilarity &etwdescriptors. An
important class of shape descriptors, which may be caltegpe-from-functions
methods, is based on the common idea of performing a topmbgkploration
of the shape according to some quantitative geometric ptiepeprovided by a
(measuring) function defined on the shape and chosen tocestiape features

[4].

The simplest topological attribute of a space is the numbésaonnected
components. A well-known mathematical tool to count the hanof connected
components is the homology grouf,. More complex topological features are
revealed by higher homology groups.

Persistent homology is a shape-from-functions methodHaps description
involving homology groups of any degree. The idea is to fédtepace by the sub-
level sets of the function and to analyze the homologicahgka of the sublevel
sets across this filtration, due to the appearance or dissgpee of topological
attributes, such as connected components. Features witirtgpgrsistence along
the filtration can be regarded as negligible information ttueoise or very fine
details. For application purposes, it is often sufficierdigyegard the group struc-
ture of persistent homology and retain only the rank infdroma This gives rise
to the notions ofank invariant[8], persistent Betti numbers [19], size functions
[25].

The topic has been widely studied in the case of filtratiodsiaed by scalar
continuous functions (i.e. one-dimensional persisteresecially in connection
with the stability problem(T13, 12, 14, 15].

This theory has been generalized to a multidimensionahsatn in which a
vector-valued function characterizes the data as sugtyes{é7,[18]. Results in
this area are given in [3| 9]. This generalization igejniatural in view of
the analogous generalization of Morse Thebry [24]. Moreaté motivated by
applications where data are more completely described lsg than one function
(e.g., curvature and torsion for space curves).

The passage from scalar to vector-valued functions presew challenges.
To begin with, critical points are no longer isolated evemam-degenerate situ-
ations [17]. Although the relevant points for persistentiotogy of vector func-
tions are a subset of the critical points, precisely the tBargtical points, these
are still non-isolated [11]. For example, in the case of fhteeser? + 4% + 22 = 1
with the functionf = (y, z), the Pareto critical points are those in theset 0,
yQ—i—zQ:l,yzZO.

Another delicate issue is passing from the comparison dfimoous models
to that of discrete models. This is an essential passagethancbre of this pa-
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per. Indeed, for two given real-world objecks andY’, modeled as triangulable
topological spaces (e.g., manifolds), we usually only kreamplicial descrip-
tionsC and £ of them, affected by approximation errors. For exampleuaoty
3D models of real-world objects for computer graphics aggtions needs to ac-
count for errors due to sensor resolution, noise in the nieasnts, inaccuracy
of sensor calibrationi [1]. Moreover, different techniqdes reconstructing the
geometry and topology of the scanned object yield diffepaiyhedral approxi-
mations. Analogous considerations hold for any continunaasuring functions
f: X > RF andg : Y — R*, because we could only consider approximations
¢ : K — RF ¢ : L — R¥ of f andg defined on finite polyhedra. Depending on
the context of a specific application, these functions mayay not be given by
explicit formulas. In either case, it is legitimate to assuimat we are able to com-
pute their values on vertices &f and L. Hence, we only know the discrete maps
0 : V(K) — R¥ 4 : V(L) — RF which are the restrictions gf andy) to vertices.
Therefore a natural question is whether shape comparispeisystent homology
of vector functions is numerically stable, i.e. whether toenputation of a dis-
tance between rank invariants of discrete models gives d gpproximation of
the ideal distance between rank invariants of continuoudatso

Our main result, Theorem 4.5, gives an affirmative answehmitoquestion. It
states that, in the passage from continuous to discrete thhatadistance between
rank invariants does not increase, provided that stalhibitgs for the continuous
model. We underline that at least one stable distance batvess invariants of
continuous vector functions exists as proved.in [9]. In ordeprofit from the
stability theory in the continuous case, we give a new coostin of axis-wise
linear interpolationy ' which is generic in the sense that its persistent homology is
exactly equal to that of the mapdefined on vertices. In addition, this axis-wise
interpolation can be used with stable distances to obtaieasore of how much
a model can be simplified in order to ease the computation ajiesisignatures.
Indeed, the computation time can become prohibitive whemgusrge simpli-
cial complexes to represent models, which is why using evaepresentations
can become necessary. Since doing so comes at a cost in teatsucacy, we
can, given an allowed error threshold, determine the leletecision required to
respect this threshold.

The paper is organized as follows. In Sectidn 2 the necesssrkground
notions concerning persistence are reviewed and put indh&ext of our aims.
Sectior B starts with the description of the simplicial femmork and with Exam-
ple[3.1 which is a simplicial analogue of the sphere exampietpd above. The
same example shows that, in the vector case, the linearstateof a map defined
on vertices does not satisfy the genericity property dbsdrabove. Topological
artifacts of an interpolation method have been observeateeT his phenomenon
can be referred to dspological aliasing Our example motivates the construction
of our axis-wise linear interpolation. We next prove Theoi&3 on the deforma-
tion retraction of continuous sublevel setsofonto the simplicial sublevel sets
of . We introduce the notion of homological critical value factor functions.
As in the sphere example, the set of critical values need aatiscrete, but we
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prove in Theorerh 3]5 that in the casesofit has to be contained in a finite union
of hyperplanes, thus it is a nowhere dense set anél-dsnensional Lebesgue
measure is zero (Corollary 3.6).

Sectiorl 4 starts with Lemnia 4.1 that provides an approxonaif a distance
between the rank invariants of continuous functions by ¢f&e rank invariants
of the corresponding axis-wise linear approximations. géwericity ofy ' allows
us to introduce the rank invariant far. Although this rank invariant is defined
for a discrete functiop and computed using only simplicial sublevel sets, it takes
pairs of real vectors as variables, as it is in the case of dh& mvariant for
continuous functions. We show that this new rank invariantfis equal to that
of ¢ . This allows us to derive the main result of the paper (Thed4e).

Section[b describes an algorithm which computes an appaigimatching
distance. Our algorithm is a modification of the algorithraatéed in[[2], adapted
to the rank invariants. The correctness of the algorithmusrgnteed by the re-
sults of Sectioil4. We next present tests of the algorithrfopmed on simplicial
models in the cask = 2. Our tests revealed the same discrepancy as observed
in Example[ 3.1, thus providing numerical confirmation ofdtmgical aliasing.
Finally, as a practical implication of our theoretical ritssuwe present a proce-
dure to predetermine to which extent data resolution carobesened in order to
maintain a certain error threshold on rank invariants.

2 Basic notions and working assumptions

Let us consider a triangulable topological spacdi.e., a space homeomorphic

to the carrier of a finite simplicial complex). ltration of X is a family 7 =

{ X4 }acrr Of subsets o that are nested with respect to inclusions, thakis:C

Xg, for everya < 3, wherea < gifandonlyifa; < g;forallj =1,2,... k.
Persistence is based on analyzing the homological chargesring along

the filtration asx varies. This analysis is carried out by considering,doK S,

the homomorphism

H, (P . H.(X4) — H.(X3).

induced by the inclusion ma? : X, — Xz. We work with Cech homology
with coefficients in a given field. When eachX,, a € R, is triangulable,
it reduces to simplicial homology. For simplicity of notati we write H,(X,)
for the graded homology spacdé.(X,;F) = {H,(X.:;F)},cz. The choice of a
field is only made in experimentations, the most convenieabimputations being
F = Z,, with p a prime number. Thus, for anye Z, H,(X,) is a vector space
of dimension equal to thgth Betti number ofX,,.

The image of the mag/, (i) is a vector space known as thith persistent
homology groupf the filtration at(a, 3). It contains the homology classes of
orderg born not later tharvy and still alive at5. The dimension of this vector
space is called &th persistent Betti number



A rank invariant is a function that encodes the changes impénsistent Betti
numbers as and/ vary. Setting

AY = {(a, B) e R"* x R" | a < B},

wherea < gifandonly ifa; < g; forall j =1,2,..., k, theq'th rank invariant
of the filtration 7 is the functionp%Z : A* — N U {co} defined on each pair
(o, B) € AL as the rank of the magl,(i<). In other words,p%(a, 3) =
dim imH,, (i().

In this paper, we will use the notatign- to refer to rank invariants of arbitrary
order. Ultimately, the shapes of two triangulable spakeandY’, filtered by F
andg, respectively, can be compared by using an (extendedndisia between
their rank invariantg = andpg.

The framework described so far for general filtrations carsjpecialized in
various directions. We now review the two most relevant daesur paper.

2.1 Persistence of sublevel set filtrations

Given a continuous functiofi : X — R”, it induces onX the so-calledsublevel
set filtration defined as follows:

Xo={zxe X | f(zx) Xa}.

We will call the functionf ameasuring functioand denote the rank invariant
associated with this filtration by;.

Since X is assumed to be triangulable afids continuousy(a, 5) < 400
for everya < 3 € R* (cf. [6]).

Among all the (extended) distancBs between rank invariants of filtrations,
we confine our study to those ones that, when applied to selbdet filtrations,
satisfy the followingstability property

(S) For everyf, f/ : X — R* continuous functions (ps, pr) < IIf — f'll~
where|| f||o = maxzex max;—;__x | fi(x)].

In [Q] it has been shown that there is at least one distancedeet rank in-
variants, thanatching distancethat has the stability property (S). An analogous
stability property for a distance defined between modulesdsented in [22].

The matching distance will be used for computations in thgedrments de-
scribed in Sectionl5. Until then, we will not need to specifyieh distancéd we
are using, provided it satisfies (S).

2.2 Persistence of simplicial complex filtrations

We consider a simplicial compleék consisting of closed geometric simplices and
its carrier defined by

K =|K|:= K. (1)
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The set of all vertices ok is denoted by (KC) or by V, if K is clear from the
context. Foro, 7 € K, the relationr is a face ofo is denoted byr < o. For
proper faces, we write < o.

In this discrete setting, we take a fam{liC,, } ,cr+ Of simplicial subcomplexes
of K, such thattC, is a subcomplex ok’s, for everya < 3. As a consequence,
their carriers are nested with respect to inclusions, #1ak}, C K3, yielding a
filtration of K.

In the next section we address the following problem: is ampkcial com-
plex filtration induced by a suitable continuous function?

A positive answer to this question will allow us later to ts&r the stability
property ofD from the continuous to the discrete setting.

3 From continuous to discrete vector functions

We lety : V(K) — R* be a vector-valued function defined on vertices. We
suppose thap is a discretizationof some continuous functiop : K — R*.
Reciprocally,p is aninterpolationof ¢. In this section we will simply assume
that ¢ is equal top on vertices offC but, of course, when it comes to comput-
ing, one has to set bounds for the rounding error. Althougkoime practical
applications of persistent homology to the analysis ofréigcmultidimensional
datap : K — R¥ may be explicitly known, in some other cases we do not even
have an explicit formula fop: we assume that such a function exists, that we
can estimate its modulus of uniform continuity (for the sakesimplicity, say,
its Lipschitz constant), and that we can compute the val@iesai grid points of
arbitrary fine finite grids.

In a discrete model, we are interested in simplicial subleemplexes

Ko :={0 € K| pv) < aforall verticesv < o}.

In Section[b, we compute the rank invariants for the discvetor-valued
functiony and we use this information for computing the distance betweank
invariants for their continuous interpolations. In ordedb this, we need to know
that there exists a continuous function which geaeric interpolatiorof o, in the
sense that its rank invariant is exactly equal to thas.of

In the casé: = 1, that is, whenp has values iR, it can be shown that such an
interpolation can be obtained by extendingo each simplex € IC by linearity.
We shall denote this interpolation ky. In that case, one can show that, is
a deformation retract of(;<,, S0 the inclusion of one set into another induces
an isomorphism in homology. This result belongs to “mathigrabfolklore”: it
is often implicitly used in computations without being peov The arguments
for that case are outlined ih [23, Section 2.5] and Thedre3na& prove in this
section contains this result as a special case. Unfortiyndté > 1, this result is
no longer true as the following example shows:
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Figure 1: The tetrahedron boundary and sketches of twogeildets of the linear
interpolationy discussed in Example 3.1. The values taken at the displajgsl e
are critical.

Example 3.1 Let K be the boundary of the tetrahedron shown in Figlire 1, home-
omorphic to the 2D sphere. The corresponding simplicialglernk” is made of
all proper faces of the 3D simpléxy, vy, vo, v3] in R3, with verticesy, = (0,0, 0),
vy = (1,0,0), v = (0,1,0), v3 = (1/2,0,1). HenceK = |K| is homeomorphic
to a 2D sphere. Lep : K — R? be the restriction of the linear functiangiven
by #(x,y,2) = (,2) to the four vertices. Letv € R? be any value chosen so
thatl/2 < a; < 1 andas = 2 — 2a4. Itis easy to see that, = [vy, vo]. Its ho-
mology is trivial. Note that the sét;<, contains one point on the edgguv,, vs],
namelyz = (4,0, ap), which closes a non-contractible path/if<,. We have
Hy(Kjza) 2 F #0.

The discrepancy between the discrete and linear integablaiodels seen in
Exampld 3.1l has been observed in applications to computphgs and imaging,
and has been recently referred to as topological aliasing.

Several interesting conclusions can be derived from thist,H,, is not a de-
formation retract of<;<,. This remains true if we slightly increase the valuevof
Secondly, if we slightly decrease the setk’, does not change but the g€t<,,
becomes contractible. Hence, in the sense of Definiitidn Bedemted further in
this section, any value assumed at a point of the ddges| is a homological
critical value. In particular, the set of such values may beountable. This is
in contrast with the one-dimensional case, where a pieeeliviear function on a
simplicial complex must have a discrete set of critical ealu

We shall now construct a continuous functipn: K — R* calledaxis-wise
linear interpolationof ¢ which will correct the problem encountered with the
linear interpolatiory in the multidimensional case. First, given anye K, let
w(o) € R¥ be defined by

pi(o) = max{p;(v) |visavertexob},j=1,2,... k. 2)

Note that ifr < o, thenu(7) < u(o).
We will use induction on the dimension of o to definey' : K — R* ono
and a pointv, € o with the following properties:



Figure 2: The linear (dashed line) and axis-wise linear tjoous line) interpo-
lations of a functiony defined on the vertices of the simplex= [v,, v1] with
values inR2.

(@) Forallz € o, p'(z) < ¢ (wy) = (o) ;
(b) ¢ is linear on any line segmeft,, y] with y on the boundary of.

If m =0, sothate = {v} is a vertexy '(v) = p(v) and we putwg,, = v. Let
m > 0 and suppose ' is constructed on simplices of lower dimensions. t&e
a minimal face o such thaju(7) = u(o). Consider two cases.

(i) If 7 # o, thenw, andy '(w,) are defined by the induction step. We put
w, = w,. SiNcec is convex, any: in the interior ofs is on a line segment
joining w, to a uniquely defineg(x) on the boundary of. Sincep '(y(z))
is defined by the induction step, we extepdto [w,, y(z)] by linearity.

(i) If 7= o, then letw, be the barycenter of and puty '(w,) = u(o). Again,
anyzx # w, in the interior ofo is on a line segment joining,, to a uniquely
definedy(z) on the boundary of and we proceed as before.

The property (a) follows from the fact tha{7) < n(o) whenr < o, and from
the linearity on joining segments. The property (b) is ckeam the construction.
By routine arguments from convex analysis, the pgiat) on the boundary of is

a continuous function of € o\ {w, }, and the constructed function is continuous
ono. Since we proceeded by induction on the dimension,dhe definitions on
any two simplices coincide on their common facesaextends continuously to
K. The property (b) implies that # = 1, and in certain cases of vector valued
functions,y ' is equal tap, namely:

(c) ¢ is piecewise linear on each simplexIn addition, ifw, is a vertex ofr
for eachr < ¢, then itis linear ornv.

The difference between the piecewise linear and the axgs-liviear interpola-
tionsp andy ' is illustrated in Figur&l2 for a 1-simplex= [vy, v;] and a function
© defined on vertices.

Lemma 3.2 The following statements hold:



(i) Foranya € R*, K, C K <,.

(i) Leto € Kanda € R*. If o N K<, # 0, theno has at least one vertex in
K,.

PROOF. (i) Leto € K,. Itis clear from[2) thaji(c) < «. It follows from the
property (a) in the definition of ' thato C K ,<,.

(i) We follow the induction steps in the constructionef. If dim(c) = 0, o
is a vertex and there is nothing to prove. ldéi(c) = m > 0 and suppose the
statement is proved for lower dimensions. ket o N K, <,. If 2 = w,, then
w, € K, <,. By the property (a) of ', all o is in K,,. If z # w,, thenz ison a
line segment joining the point, of o with a pointy(x) of an (m — 1)—simplex
T < o, wherey (y(x)) is defined by the induction hypothesis. We know that
is extended linearly to the line segmeéat,, y(z)]. Also, v '(y(z)) = ¢ (w,) by
the property (a). Hence (y(x)) < ¢ '(z) = a. It remains to use the induction
hypothesis for(x) andr to deduce that has a vertex if,. O

Theorem 3.3 For any a € R*, K, is a strong deformation retract ok .
Consequently, the inclusidid, — K<, induces an isomorphism in homology.

PrROOF. Note thatK -, is contained in a union of simplicesc K such that
Opza =0 N K2, #0. (3)

Given any sucla, consider the simplex, defined as the convex hull of the set of
verticesv of o such thatp(v) < a. By the hypothesis oa and by Lemma 3J@),

oo # 0. Given anyo € K for whicho,--, # 0, we shall define a strong
deformation retraction

H, 0,24 % [0,1] = 0,72,

with » = H(-, 1) being a retraction of -, ontoo,,.

The construction goes by induction on the dimensiomf o following the
induction steps in the construction of the function If dim(c) = 0, o is a vertex
and there is nothing to prove. Now let > 0. Suppose that the deformation
retractionH. : 7, -, x [0,1] — 7,7, is defined for simplices of dimension
m' < m with 7,2, # 0 in such a way that{,(z,t) = « for any (z,t) €
T, < % [0,1/2™], and the values op ' on H,(z,t) are decreasing with By
“decreasing” we mean the weak inequality™ This hypothesis guarantees that
the deformation has values in the sgt.,,.

Letz € o, <,. If zis on a boundary ofr, we defineH,(x,t) = H.(x,1),
wherer is the smallest face of containingz and H.; is defined by the induction
hypothesis. Suppose is in the interior ofo. Let w, andy(x) be the points
identified in the definition ofp". Note that, ify (w,) < «, theno, <, = o,
hence the deformation must be defined as the identity ma@tdrte

Hy(z,t) ;= forall (z,t) € o x [0,1].
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Therefore, we may suppose that ¢ o,--,. Consider the smallest faceof o
containingy(x). Sincey(x) is on the boundary of, 7 is a proper face of of
dimension, sayy’ < m. By the construction op ',

' (y(@) = ¢ (z) =9 (wo). (4)
Sincey (z) < o, we gety (y(z)) < a soy(z) € 7,7, # 0. By the induction
hypothesis, a deformation retraction
Hr Ty X [0,1] = 7,02, COuiza
is defined so that the values @f on H,(x,t) decrease with, andH,(x,t) = x
fort € [0,1/2™].
For anyt € [0, 1] and forz in the interior ofc we define

T if 0<t<1/2™
Hy(x,t) :=< (2™t — V)y(x) — (2™t —2)z if 1/2m <t <1/2m7!
H,(y(x),t) if 1271 <t<1

It is easily checked thatl, (z,1/2™) = x, H,(x,1/2™7 1) = y(x). Sincep’
is linear on[w,, y(z)], the inequality[(#) implies that the valuesof on H,(x,t)
decrease with.

Thus we have defined, both whenz is on the boundary of and when it
is in the interior ofo. By construction, for every € o,<,, H,(z,0) = =,
and H,(z, 1) belongs tas,, and moreover, for every € o,, H,(x,1) = z. In
order to conclude thal/,, is a deformation retraction of, -, ontoo, we must
prove thatH, is continuous. The continuity at a given point, ¢,) with z, in the
interior of o follows from the continuity ofy(z) in z. The continuity at(z, t,)
with zo on the boundary of follows from the condition thatZ, (z, t) = z for any
t € [0,1/2™] and from the induction hypothesis.

In order to continuously extenfl,, to a deformation

H Kapjja X [O, 1] — Kgo—ljou

it is enough to prove that, given two simplicesando, intersectingk’,- -, and
T = 01 N oy, the maps,, andH,, agree at any € 7,,. Itis clear from the
definition thatH,, (z,t) = H,,(x,t) = H.(z,t) for x € 7 and for allt, provided
that 1, is defined. But this is true, becausec 7,,.<,, S0 this is a nonempty set.

O

In the next section, we use Theorém]3.3 to show that any disthatween
rank invariants of continuous functions that has propeshycan be approximated
by the distance between rank invariants of discrete funsti@Ve end this section
with another application of Theorem 8.3 of interest in its@l theorem on the
structure of the set of critical values of the axis-wiseliptéationy . The follow-
ing definition generalizes the notion of homological cativalue given in[[13]
to vector functions. In plain words we call homological ical any valuex for
which any sufficiently small neighborhood contains two eslwhose sublevel
sets are included one into the other but cannot be retractednto the other.

.....
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Definition 3.4 Let$ : K — R* be a continuous vector function. A valuec R”
is ahomological critical valueof ¢ if there exists an integer such that, for all
sufficiently small real values > 0, two valuesa’, o” € R* can be found with
o a=xd | —al <e || — al <€ such that the map

Hy(Kp=ar) = Hy(Kp=<ar)

induced by the inclusioK <. — Kz<, is notan isomorphism. If this condition
fails, « is called ahomological regular value

Also note that, by the long exact sequence for the relativediogy (see e.g.
[21l, Chapter 9]) the critical value definition is equivalémthe following condi-
tion on the graded relative homology

H*(K¢ja/, K@ja") 7é 0.

Foranyj = 1,2,...,k and a vertew € V(K), consider the hyperplane &"
given by the equation; = ¢ ;(v) and a positive closed cor& (v) contained in
it, given by the formula

Ci(v) ={a e R* |y = ¢ ;(v) ande; > ¢ ;(v) foralli =1,2,...,k}.

Theorem 3.5 The set of homological critical values of is contained in the finite
union of the described cones, namely, in the set

C = J{Ci(w)|veV(K)andj=1,2,... k}.

PROOF.  Consider anyr ¢ C'. We need to show that is a homological regular
value. Sincg is a closed set, an > 0 exists such that the sél(a,e) = {f €
R* | || — B]| < €} does not meet. If o — || < ¢, then

Kp = K,. (5)

Indeed, if this were not true, the segment joiningnd 5 should contain a point
of C, against the choice af

Now, let us assume that < ¢(v) =< o, [[a — /|| < eand|a — | <
e. It follows from equation[(b) and from Theorem B.3 that thelisions:’ :
Ky = Ky — K,y andi’ : K, = Ko — K<, induce isomorphisms in
homology. The inclusion® ") : K -, < K, can be written ag®"*") =
1" o r’', wherer’ is the retraction homotopically inverse #o By the functoriality
of homology,H., (i ")) = H.(i") o H.(r"), hence it is also an isomorphism

For the sake of visualization, in Figure 3 the 6eis shown in a simple case.
From the formula forC, we instantly get an analogy of a well-known result
from differential geometry [24].

Corollary 3.6 The set of homological critical values @f is a nowhere dense set
in R*. Moreover itsk-dimensional Lebesgue measure is zero.
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Figure 3: The set defined in Theorerh 3.5 is the union of closed cones with
vertices at the values taken ky The setA introduced in Proposition 4.6 is a
finite set whose elements are the highlighted points.

4  Approximation of distances between rank invari-
ants

The goal of this section is to show that shape comparison tsrgtent homology
of vector functions is numerically stable. In this passagenfreal (continuous)
objects to their discretizations, the approximation ed@&s not grow to be much
larger when we compute the distanidebetween the rank invariants gfand
instead of the distande between the rank invariants ¢fandg (Theoreni4.b).
To this end, the stability property (S) bf defined in Section 211 in the continuous
setting is crucial.

A description of this approximation procedure in concretaneples together
with experiments exploiting the numerical stability of tt@mparison by persis-
tent homology will be given in Sectidn 5.

We end the section by showing that the set of homologicatativalues, al-
though uncountable, admits a finite representative set.

We start from the following approximation lemma. It may happhatD (o, pi)
andD (p,-, p,) are equal to-oo. In the case of the matching distance, this occurs
whenH,(K) # H.(L). In such a case, we adopt the convention- co = 0.

Lemma4.l Letp : K — RF, 4 : L — R¥ be two continuous measuring func-
tions on the carrier of complexds and L. For anye > 0, there exist$ > 0 such
that if

max{diamo |c € Koro e L} <§ (6)

then

|D (ps57 pq/;) -D (pcpjv pwj) <€ (7)

PROOF SinceK andL are compactp, ¢, ¢, andy)" are uniformly continuous.
Hence for any > 0, there exist$ > 0 such that if[(6) is satisfied then

max{diamg (o) | o0 € K} < ¢/4 (8)
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and the same inequality holds for ¢, andy)". The diameters op(c) ando are
measured with respect to the maximum norm in the respectildent spaces.
Sincey is the restriction ofs to the vertices, ang ' interpolatesy on the vertices,
given anyz € o € K, and any vertex of o, from (8) we get

16(z) — @ (@)l < 1¢(x) = (@)l +llp(v) — ¢ (@) < /2. 9)
Hence, by the choice of the maximum normR&f, ||¢ — ¢ [l < €/2. By the
same argument§y) — ¢ || < €/2. By the stability property (S) ob ,
< D(pg,p,") + D (pyr.py) + D (py, pg)
< @ =¢ oo +D(pgs pyr) + 10 = ¥l
< D(py py) + e

Reversing the roles af, ¢ andy ', v, we getD (p,, p,) < D (pg, pg) +¢and
the conclusion follows. 0

D (pg, p3)

Knowing Lemmad 4.11, we now turn our attention to computing,.-, p,).

The following definition sets the notation for the rank inaat of the simpli-
cial complex filtration obtained from a discrete map Next, we show that this
definition gives a rank invariant coinciding with the rankaniant of the contin-
uous functiony . Thus it is a first step in the passage from the stability okran
invariants for continuous functions to that of discretesoridoreover, this defini-
tion is the one which we use to implement the reduction aflgoriof [5] in our
computations in Sectidd 5.

Definition 4.2 Consider the discrete map: V(K) — R* defined on vertices of
a simplicial complexXC. Theq'th real space variable rank invariarar, shortly,
¢'th real rank invariantof ¢ is the functionp?, : A% — N defined on each pair
(o, B) € Ak as the rank of the map

Hy(j ")) : Hy(Ka) — Hy(Kp)
induced by the inclusion mapp*? : K,, — Kz on simplicial sublevel sets.
Theorem 4.3 Given any discrete functiop : V(K) — R* on the set of vertices

of a simplicial compleXC and its axis-wise interpolatiop ', we have the equality
of ¢'th real rank invariants

— 4
Py = P
PROOFR Consider anya, 3) € A%, the inclusion mapg*? : K ., < K, g,

and;j@# . K, < K. Theoreni-313 implies that for everyc Z we have the
following commutative diagram

Hq(im’ﬁ))
Hq(ﬁ@ja) q(ﬁwjjm
Hq( '(a’ﬁ))
Hq(Ka> ]—> Hq(KB)
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where the vertical arrows are the isomorphisms induced byctirresponding
retractions. Thus rank,(i‘*#)) = rankH, ().

O
In the sequel, we will once again uggto refer to real rank invariants of arbi-
trary order. In conclusion we obtain that the distance betwbe rank invariants

of two measuring (or interpolation) functions can be appr@ted using only the
corresponding simplicial sublevel sets.

Corollary 4.4 Letp : K — RF ¢ : L — R* be two continuous measuring
functions on the carriers of complexésand £ and lety : V(K) — R, ¢ :
V(L) — R* be the discretizations af and ¢ on the sets of vertices &f and £,
respectively. For any > 0 there exist® > 0 such that if

max{diame |c € Koro € L} <

then
1D (g, pg) = D (py, py)| < e (10)
PROOF. Immediate from Lemm@a4.1 and Theoreml4.3. O

We are now ready to give the main result of this section.

Theorem 4.5 Let X and Y be homeomorphic triangulable topological spaces,
andletf : X — R*, g : Y — R* be continuous functions. Lék, ¢) and(L, ),
with K and L carriers of complexe&’ and £/, and¢ : K — RF, ¢ : L — RF
continuous measuring functions, approximatg /) and (Y, g), respectively, in
the following sense: For a fixed> 0, there exist a homeomorphigm K — X
With [|¢ — f 0|l < €/4 and a homeomorphist: L — Y with [|1) — g o (||s0 <

¢/4. Then, for any sufficiently fine subdivisitinof ' and £ of £/,

1D (ps, pg) — D (py, pp)| <€,

¢ : V(K) — R* 4 : V(L) — R* being restrictions ofs and ) on the set of
vertices oflC and £, respectively.

PROOF By the triangle inequality

D (ps,pg) <D (ps, proe) + D (prog, pz) +D (pg: pg) +D (s Pgoc) +D (pgocs pg)-

Sinceps = proc @Ndpg = pgoc, We haveD (py, proc) = 0 @ndD (pgec, pg) = 0.
Moreover, by the stability property (S), Sing@ — f o {|| < €¢/4 and|jy) — g o
Clloo < €/4, we haveD (pyee, pg) < €/4andD (pg, pyoc) < €/4. Therefore,

D (o, pg) <D (pg, pj) +€/2.

By Corollary[4.4, there exists > 0 such that, ifk and £ are subdivisions ok’
and£’ with max{diamo | 0 € K oro € L} < §,thenD (p;z, p;) < D (py, py) +
€/2. In conclusion we have proved that(ps, p,) < D (p,, py) + €.
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Reversing the roles of, g and g, ¢, we getD (p,, py) < D (pr,py) + €,
yielding the claim. m

We turn now to the question of the structure of the criticalafey . Recall
from the previous section that whén> 1, the set of homological critical values of
a function onK with values inR* may be an uncountable set, although contained
in a nowhere dense sétby Theoreni 3J5. However, the fami{y<, } ,cg+ Of all
subcomplexes ok is finite. Thus there exists a finite representative/set R*
for C as the following proposition states.

Proposition 4.6 For anya € C, there exists\ in
A:{)\GC‘ijl,Q,,k, E'UEV(]C) )\JIQOJ(’U)}
such thatk, = K.

PROOF  Sincea € C, V(K,) # 0 and there existg such thatr; = ¢;(v;)
for somev; € V(K), ando,; > ¢;(v;), for 1 < i < k. For eachi # j, let us
take a vertexy; € V(K,) such thatp;(v;) > ¢;(v) for everyv € V(«). Now
we seth = (Aq,...,\;), with \; = ¢;(7;). By construction\ belongs toA.
Furthermore, it holds thak’, = K,. Indeed, obviouslyK, C K,. Moreover,
for everyv € K,, by definition ofy; it holds thaty;(v;) > ¢;(v) for 1 < i < k.
Equivalently,\; > ¢;(v) for 1 < < k, implying thatv € K,. 0

The structure of sed is visualized in Figuré]3. The previous proposition
prompts for the following definition.

Definition 4.7 Consider the discrete map: V(K) — R* defined on vertices of
K. Thediscrete rank invarianof ¢ is the restriction of the real rank invarignt
to the finite domaim? := A% N (A x A).

Definition[4.7 gives a discrete rank invariant which is santb the one defined
in [8,[7], except for the fact that we are using a different lotwgical structure.

Defining a distanc® directly on the basis of-dimensional rank invariants
would be a task impossible to accomplish. Even when 2, a pair of complexes
K and £ with an order of thousand vertices would result in computigks of
millions of maps induced by inclusions. This motivates tihe-dimensional re-
duction method described in the next section to compute ttelimg distance.

5 Algorithm and experimentation

For experimentation purposes, we now fix the distance betweek invariants
that we will use to be the matching distarieg defined in[5].

The one-dimensional reduction method presented in [5]nopzde the match-
ing distance consists of applying the one-dimensional ramériant along the
linest — b+ tl parameterized by and determined by palrs of vecto(risb) in
a chosen grid ilR¥ x R*, whereb is an initial point and directs the line. It is
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assumed that all componentsfoire positive, and thdt 1 =1,b-1 = 0, where
1= (1,1,...,1). Forall(a,3) € Ak, there exists a unique such pair, which
will be calledlinearly admissible paior simplyadmissible pairthe set of which
will be denotedLadm,. Also denote byy;; : K — Randhg; : L — R

the one-dimensional functions given by (z) = max; (;(z) — b;)/l; and
hip(z) = max; (1 (z) — b;)/l;, wherel; andb; are thei-th components of
andb, respectively. For ease of notation, the gaib) may be left out ofy andh
if itis unambiguous. Byi[5, Lemma 1], it = b + s, then

Kz = Kg<s.
This and Theorem 4.3 implies

Corollary 5.1 Consider(a, ) = (b+ sl,b+ tl) € Ak, for some(s, t) € AL,
Then
ps&(a7 5) - pg(sv t)

The above theorem shows that it is legitimate to apply theiagon method of
[5] to simplicial sublevel sets. Followin@l[5, Definition JLve define themulti-
dimensional matching distantetween the rank invariants andp,, to be

D, (psmpw) = sup z:rrlunk lz Dy (pg(ﬁg)vph(ag))~

In this section, the valugin;_; _;{; Dy, (pgm , pgm) will be denotedl,, (p,, py)

or du 5 (py, py) and referred to as thescaled one-dimensional matching dis-
tance The computational problem is, given a threshold value- 0, com-
puting an approximate matching diStaﬂ/D\é(/}@, py) ON a suitable finite subset
A C Ladm,, such that

D (P P6) < Din (pr py) < Din (P py) + €. (11)

5.1 Algorithm

Our algorithm’s inputs consist of lists of simplices &f and £ of highest di-
mension together with their adjacency relations and vestiand of the values of
normalized measuring functiogs: V(K) — R? andv : V(L) — R?, as well as
a tolerance [l In our computations, we have confined ourselves to the caseawh
K and £ are triangular meshes. Its output is an approximate majatiistance
D (py, py). To compute the one-dimensional persistent homology onissitm
ble pairs, we use the persistent homology software JPlex By default, JPlex
computes the persistent Betti numbers d&grof a discretely indexed filtration of

simplicial complexes. We build this filtration by adding sitices in the following

Due to the finite precision of computer arithmetic, the codomnof the functionsy; ands); is
in reality 107 Z rather tharR. In our computations we tended to yse- 6, that is, a precision
of up to six digits after the decimal point.
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recursive way. We first order the values attained by the omegsional measur-
ing functiong in increasing order g1, . . ., gy }. A finite filtration {/Cy, ..., Ky}
is then built by inserting simplices € K. If o = {v}, wherev is a vertex, we put
{v}into K; if g(v) < g;. Otherwiseg € K; if all its vertices are irC,. Similarly,
the functionf is used to build a finite filtratioR L4, . . ., £} using simplices of
L.

The set of admissible paifsadm, is the set of quadrupl€s, 1 — a,b, —b) €
R? x R? such that) < a < 1. As described in[[2, Remark 3.2], it is possible to
avoid computation of the one-dimensional matching distaner a large portion
of Ladm,. Since the functiong andy are normalized' = max{||¢||, [[¢[} =
1. Let Ladm; be the set of admissible pairs such tftat< 1. Then, to compute
the maximal value oD, (p,, p) over Ladms\ Ladm}, it is sufficient to consider
the two admissible pait@, 1—a, b, —b) = (1/2,1/2,2,—2)and(1/2,1/2, -2, 2).
The details can be found inl[2].

It follows from a generalization of the Error Bound Theord@) Theorem 3.4]
and [10]) to persistent homology of arbitrary order thatoif @ﬂ 5) and (17, 5’) €
Ladm, ||(I,b) — (I',¥)]| < &, then for normalized functions andz)

| Az (Per Pw) = dmp ) (P, py)| < 180.

This suggests that in order to satisfy Equation (11), it seffto choose admissible
pairs (ﬁ 5) € Ladm} at a distance withir/9 of each other, guaranteeing that
every member of.adm is within ¢/18 of a tested pair. In practice, our algorithm
is reminiscent of the grid algorithm shown in Section 3[df, [iB] the sense that
we take pairs at a distance of2"¥ of each other withV sufficiently large. We
observe that the sétadms is in bijective correspondence wifffa, b) € R?|a €
(0,1),b € R}, and so we will speak of computinfy, (p,, p,,) at a pointP = (a, b)

of the preceding set. The lattice of points on which we comphis rescaled
matching distance is chosen as follows: chodse N such thatl /2V < /18,
and choose?;; = (a;,b;),i = 0,...,2Y — 1,57 = 0,...,2"¥" — 1 such that
a; = (27, + 1)/2N+1,bj =1- (2] + 1)/2N+1.

5.2 Examples of topological aliasing

Our experimentations have been made on triangular meshmsgdact 2D sur-
faces. In doing so, the influence on experimental resulte®ftbncept of topo-
logical aliasing discussed in Sectibh 3 became apparentmeNawe used our
algorithm to compare in a pairwise manner 10 cat models,ecteh of which

is found in Figurd 4. We used far; and);, « = 1,2, the following functions.
Assume that the modé( is such that its vertex set(K) = {vy,...,v,} and

compute the following principal vector:

> i (i = A)|lvi — clls

i llvi—cllz
wherec is the centre of mass ok defined by taking the weighted average of
the centres of each triangle. Létbe the line passing throughhaving as its

W=
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direction vector, and let be the plane passing througlinaving« as its normal
vector. We defined

diSt(UZ', d)
=1-— .
P1(vi) max;—, ., dist(v;, d)
and dist (v;, )
18t(v;, T
SDQ(%‘) =1-

n dist(v;, m)’

wheredist(v, d) anddist(v, ) are defined in the usual way, as the minimal Eu-
clidean distance betweerand the points ord or 7. The functions); andi, were
defined similarly using the modél. We then repeated the same procedure on the
barycentric subdivisions of the models, with the value @f filnction at the new
vertices defined using the linear interpolant. We found bat tn this case the
computed matching distance did not always yield the samdtras when using
the original unsubdivided models. However, replacing thedr interpolant by
the axis-wise linear interpolant allowed us to retrievegame results.

We show in Tablé]l a selected subset of our results, and ird{gjimages
of the five models for which results are shown. The first twog@k numbers
in each table represent the 1D matching distance compuied each ofp; and
; for i = 1, 2 respectively, while the last three rows represent the aqpmiated
2D matching distance computed for three different tolegalegelse. The col-
umn named “Nonsub” shows the distances computed on thealigiodel, while
“Linear” and “Axis-wise” show those computed on the subded models with re-
spectively the linear and axis-wise linear interpolaniBiff* and “% Diff” show
the difference and relative difference between the matcHistance results for
the unsubdivided models and subdivided models with lingarpolation.

We can see that while the matching distance computed usgraxik-wise lin-
ear interpolant s, for every tolerance level, equal to tla¢aming distance between
the original models, the matching distance computed usiadimear interpolant
can be quite different, and this both using Oth- and 1stygudesistent homology.
However, this phenomenon is only seen when computing the aizhimg dis-
tance: the 1D matching distances (the numbers in the firstdaws of each table)
are always the same. Given that in our context topologicasialg can only be
observed when using multi-measuring functions, this fei@ur expectations.

max;—=1

.....

5.3 Application to model precision concerns

When computing the matching distance between the multidsnoaal persistence
diagrams of two models, the computation time can easily iecprohibitive if

the simplicial complexes representing the models are \&gel For this reason,
using coarser representations may be necessary. Howeweg sb comes at a
cost in terms of accuracy. Nevertheless, using the stalpitiperty (S) of sub-
section 2.1l with the axis-wise interpolation, we can estinta bound the error
caused by coarsening the model, and also calculate the mpasta$ion required
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to reach a given error threshold. This step can be done omcevéwy dataset,
using statistical tools to obtain the expected requiredehprecision.
We demonstrate this method using the following two datasets

Example 5.2 (Circle) Let f; : St — R?, 4 = 1,...,10° be a set of random
functions on the circle obtained in the following way:Sif is parametrized by the
functionsz = cost,y = sint, t € [0,27), then

filz,y) = (Z (g cos(it) + Biasin(it)), Y (a1 cos(it) + Bipsini t))) :

i=1

where thex’s andj’s are pseudo-random numbers uniformly distributelgHi, 1).
The function; is then obtained frony; by normalizing it so that both its com-
ponents také) and 1 as minimum and maximum. It can be plotted as a (not
necessarily simple) closed curve|in 1)? touching the four sides of this square.
For N = 2,3,...,9, we obtainy; y by samplingf; at the2"-th roots of unity

on S'. On the triangulationk y where 1-simplices join successiv’-th roots

of unity, ¢, y can be computed, and property (S) and Thedrein 4.3 guarduatee t
lo; v — fillso is an upper bound for the matching distargg (p,, . ps,). The
following table shows the average and standard deviatitm®tipper bound over
the dataset of0° functions. Another line shows the sum of mean and standard
deviation, which in our tests appears to be an effective uppend in82 to 86%

of cases. For normally distributed data, it would be suchffative upper bound

in nearly85% of cases. Figurlel5 plots this effective error bound in fuorcbf the
percentage of original simplices kept.

N 2 3 4 5

I 0.748324| 0.592222| 0.346717 | 0.193834

o 0.117896| 0.104408| 0.067729| 0.032303
nw+o | 0.866220] 0.696630, 0.414446 | 0.226138

N 6 7 8 9

I 0.101172| 0.051487| 0.025936| 0.013012

o 0.015632| 0.007552| 0.003679| 0.001812
1+ o | 0.116804| 0.059039| 0.0296155 0.014824

Example 5.3 (Torus) Let f; : T — R?, i = 1,...,5000 be a set of random
functions on the torus obtained thusly: if a torus is paraimed by the equations
r=(241/2 cost) cosu,y = (2+1/2 cost) sinu, z = 1/2 sint, t,u € [0, 27),
then

filw,y,2) =

<Z?:1 (a1 cos(it) + B sin(it)) (2+1/2 Z?:l (71 cos(ju) + 6,1 sin(ju))),

Ele(ozm cos(it) + Biosin(it))(2 + 1/2 E?Zl(%,g cos(ju) + dj0 sin(ju)))),
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where then's, 5’s, 7's andd’s are pseudo-random numbers uniformly distributed
n [—1,1). Here again; is then obtained fronf; by normalizing it so that both
its components takeé and1 as minimum and maximum. GiveN = 4,5,...,9,

we build a uniform triangulation of the spage 27]* with the identifications

0 ~ 2 in both variablest and «, where vertices are the points;, u;) with

t; = 2mi/2Y andu; = 27j/2"~% and where triangles have as vertices the
pomts@““]) (t(2+1) mod 2V uj) and (t(2+1) mod 2N u(g+1) mod 2N - 2) or (tlvuj)
(tu“(g+1) mod 2v-2) and (t(2+1) mod 2V 5 U(j+1) mod 2N~ 2),i=0,. 2N 1,5 =
0,...,2N¥=2 — 1. This space being homeomorphicZo this trlangulatlon corre-
sponds to a triangulation of the torus. Sampljfagt the vertices of the triangu-
lation, we obtain the functiop; , on whichy, ,, can be computed. As in the
previous example, the following table shows the averagestanmtiard deviation,
as well as their sum, dfe, \ — f;|| over the dataset G000 functions. Figuré6
further plotsi, + o in function of the percentage of original simplices kept.

N 4 5 6 7 8 9
7 0.384139| 0.299501| 0.178587| 0.097746| 0.050357| 0.025411
o 0.060352| 0.054141| 0.033503| 0.017958| 0.009268| 0.004672
w+ o || 0.444491| 0.353643| 0.212090| 0.115704| 0.059625| 0.030083
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The models catO, catO-tranl-1, catO-tranl-2)-tan2-1 and catO-
23

tran2-2 are shown along with the valueswf and p,. Models are courtesy of

the authors of [2].

Figure 4



catO vs. catO-tranl-1

Nonsub | Linear | Axis-wise |
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catO-tranl1-2 vs. catO-tran2-1

Nonsub | Linear | Axis-wise |

Diff

% Diff
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catO-tran2-1 vs. catO-tran2-2

Nonsub | Linear | Axis-wise |

Diff

% Diff
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0.000000
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0.000000

0.000000
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Table 1: The approximated matching distance computed byalgarithm for
three decreasing tolerance values=(9/8,9/16 and9/32) is shown for a few test
cases (unsubdivided, subdivided withand subdivided withy "), with Oth- and
1st-order rank invariants.
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Figure 5: Plot ofu + ¢ in function of the percentage of simplices kept from the
original model, Example 5 2. Horizontal axis is logaritlemi
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Figure 6: Plot ofu + ¢ in function of the percentage of simplices kept from the
original model, Example 53. Horizontal axis is logaritiemi
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