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AN EFFICIENT NUMERICAL SCHEME FOR THE BIHARMONIC

EQUATION BY WEAK GALERKIN FINITE ELEMENT METHODS

ON POLYGONAL OR POLYHEDRAL MESHES

CHUNMEI WANG∗ AND JUNPING WANG†

Abstract. This paper presents a new and efficient numerical algorithm for the biharmonic
equation by using weak Galerkin (WG) finite element methods. The WG finite element scheme
is based on a variational form of the biharmonic equation that is equivalent to the usual H2-semi
norm. Weak partial derivatives and their approximations, called discrete weak partial derivatives,
are introduced for a class of discontinuous functions defined on a finite element partition of the
domain consisting of general polygons or polyhedra. The discrete weak partial derivatives serve
as building blocks for the WG finite element method. The resulting matrix from the WG method
is symmetric, positive definite, and parameter free. An error estimate of optimal order is derived
in an H2-equivalent norm for the WG finite element solutions. Error estimates in the usual L2

norm are established, yielding optimal order of convergence for all the WG finite element algorithms
except the one corresponding to the lowest order (i.e., piecewise quadratic elements). Some numerical
experiments are presented to illustrate the efficiency and accuracy of the numerical scheme.

Key words. weak Galerkin, finite element methods, weak partial derivatives, biharmonic equa-
tion, polyhedral meshes.
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1. Introduction. This paper is concerned with new developments of numerical
methods for the biharmonic equation with Dirichlet and Neumann boundary condi-
tions. The model problem seeks an unknown function u = u(x) satisfying

∆2u = f, in Ω,

u = ξ, on ∂Ω,

∂u

∂n
= ν, on ∂Ω,

(1.1)

where Ω is an open bounded domain in R
d(d = 2, 3) with a Lipschitz continuous

boundary ∂Ω. The functions f , ξ, and ν are given on the domain or its boundary, as
appropriate.

A variational formulation for the biharmonic problem (1.1) is given by seeking
u ∈ H2(Ω) satisfying u|∂Ω = ξ, ∂u

∂n
|∂Ω = ν and the following equation

(1.2)

d∑

i,j=1

(∂2iju, ∂
2
ijv) = (f, v), ∀v ∈ H2

0 (Ω),
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where (·, ·) stands for the usual inner product in L2(Ω), ∂2ij is the second order partial

derivative in the direction xi and xj , and H2
0 (Ω) is the subspace of the Sobolev

space H2(Ω) consisting of functions with vanishing trace for the function itself and
its gradient.

Based on the variational form (1.2), one may design various conforming finite el-
ement schemes for (1.1) by constructing finite element spaces as subspaces of H2(Ω).
Such H2-conforming methods essentially require C1-continuity for the underlying
piecewise polynomials (known as finite element functions) on a prescribed finite ele-
ment partition. The C1-continuity imposes an enormous difficulty in the construction
of the corresponding finite element functions in practical computation. Due to the
complexity in the construction of C1-continuous elements, H2-conforming finite ele-
ment methods are rarely used in practice for solving the biharmonic equation.

As an alternative approach, nonconforming and discontinuous Galerkin finite el-
ement methods have been developed for solving the biharmonic equation over the
last several decades. The Morley element [6] is a well-known example of nonconform-
ing element for the biharmonic equation by using piecewise quadratic polynomials.
Recently, a C0 interior penalty method was studied in [2, 3]. In [8], a hp-version
interior-penalty discontinuous Galerkin method was developed for the biharmonic
equation. To avoid the use of C1-elements, mixed methods have been developed for
the biharmonic equation by reducing the fourth order problem to a system of two
second order equations [1, 4, 5, 7, 9].

Recently, weak Galerkin (WG) has emerged as a new finite element technique
for solving partial differential equations. WG method refers to numerical techniques
for partial differential equations where differential operators are interpreted and ap-
proximated as distributions over a set of generalized functions. The method/idea was
first introduced in [10] for second order elliptic equations, and the concept was fur-
ther developed in [11, 12, 14]. By design, WG uses generalized and/or discontinuous
approximating functions on general meshes to overcome the barrier in the construc-
tion of “smooth” finite element functions. In [13], a WG finite element method was
introduced and analyzed for the biharmonic equation by using polynomials of degree
k ≥ 2 on each element plus polynomials of degree k and k − 1 for u and ∂u

∂n
on the

boundary of each element (i.e., elements of type Pk/Pk/Pk−1). The WG scheme of
[13] is based on the variational form of (∆u,∆v) = (f, v).

In this paper, we will develop a highly flexible and robust WG finite element
method for the biharmonic equation by using an element of type Pk/Pk−2/Pk−2; i.e.,
polynomials of degree k on each element and polynomials of degree k − 2 on the
boundary of the element for u and ∇u. Our WG finite element scheme is based
on the variational form (1.2), and has a smaller number of unknowns than that of
[13] for the same order of element. Intuitively, our WG finite element scheme for
(1.1) shall be derived by replacing the differential operator ∂2ij in (1.2) by a discrete

and weak version, denoted by ∂2ij,w. In general, such a straightforward replacement
may not produce a working algorithm without including a mechanism that enforces a
certain weak continuity of the underlying approximating functions. A weak continuity
shall be realized by introducing an appropriately defined stabilizer, denoted as s(·, ·).
Formally, our WG finite element method for (1.1) can be described by seeking a finite
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element function uh satisfying

(1.3)
d∑

i,j=1

(∂2ij,wuh, ∂
2
ij,wv)h + s(uh, v) = (f, v)

for all testing functions v. The main advantage of the present approach as compared
to [13] lies in the fact that elements of type Pk/Pk−2/Pk−2 are employed, which greatly
reduces the degrees of freedom and results in a smaller system to solve. The rest of
the paper is to specify all the details for (1.3), and justifies the rigorousness of the
method by establishing a mathematical convergence theory.

The paper is organized as follows. In Section 2, we introduce some standard
notations for Sobolev spaces. Section 3 is devoted to a discussion of weak partial
derivatives and their discretizations. In Section 4, we present a weak Galerkin algo-
rithm for the biharmonic equation (1.1). In Section 5, we introduce some local L2

projection operators and then derive some approximation properties which are useful
in the convergence analysis. Section 6 will be devoted to the derivation of an error
equation for the WG finite element solution. In Section 7, we establish an optimal
order of error estimate for the WG finite element approximation in a H2-equivalent
discrete norm. In Section 8, we shall derive an error estimate for the WG finite ele-
ment method approximation in the usual L2-norm. Finally in Section 9, we present
some numerical results to demonstrate the efficiency and accuracy of our WG method.

2. Preliminaries and Notations. Let D be any open bounded domain with
Lipschitz continuous boundary in R

d, d = 2, 3. We use the standard definition for the
Sobolev space Hs(D) and the associated inner product (·, ·)s,D, norm ‖ · ‖s,D, and
seminorm | · |s,D for any s ≥ 0. For example, for any integer s ≥ 0, the seminorm
| · |s,D is given by

|v|s,D =



∑

|α|=s

∫

D

|∂αv|2dD




1

2

with the usual notation

α = (α1, · · · , αd), |α| = α1 + · · ·+ αd, ∂
α =

d∏

j=1

∂αj

xj
.

The Sobolev norm ‖ · ‖m,D is given by

‖v‖m,D =
( m∑

j=0

|v|2j,D

) 1

2

.

The spaceH0(D) coincides with L2(D), for which the norm and the inner product
are denoted by ‖·‖D and (·, ·)D, respectively. WhenD = Ω, we shall drop the subscript
D in the norm and inner product notation.

Throughout the paper, the letter C is used to denote a generic constant indepen-
dent of the mesh size and functions involved.
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3. Weak Partial Derivatives of Second Order. For the biharmonic problem
(1.1) with variational form (1.2), the principle differential operator is ∂2ij . Thus, we

shall define weak partial derivatives, denoted by ∂2ij,w , for a class of discontinuous
functions. For numerical purpose, we shall also introduce a discrete version for the
weak partial derivative ∂2ij,w in polynomial subspaces.

Let T be any polygonal or polyhedral domain with boundary ∂T . By a weak
function on the region T , we mean a function v = {v0, vb,vg} such that v0 ∈ L2(T ),
vb ∈ L2(∂T ) and vg ∈ [L2(∂T )]d. The first and second components v0 and vb can
be understood as the value of v in the interior and on the boundary of T . The third
term, vg ∈ R

d with components vgi, i = 1, · · · , d, intends to represent the gradient
∇v on the boundary of T . Note that vb and vg may not necessarily be related to the
trace of v0 and ∇v0 on ∂T , respectively.

Denote by W (T ) the space of all weak functions on T ; i.e.,

W (T ) = {v = {v0, vb,vg} : v0 ∈ L2(T ), vb ∈ L2(∂T ),vg ∈ [L2(∂T )]d}.

Let 〈·, ·〉∂T be the inner product in L2(∂T ). Define G(T ) by

G(T ) = {ϕ : ϕ ∈ H2(T )}.

Definition 3.1. The dual of L2(T ) can be identified with itself by using the
standard L2 inner product as the action of linear functionals. With a similar inter-
pretation, for any v ∈ W (T ), the weak partial derivative ∂2ij of v = {v0, vb, vg} is

defined as a linear functional ∂2ij,wv in the dual space of G(T ) whose action on each
ϕ ∈ G(T ) is given by

(3.1) (∂2ij,wv, ϕ)T = (v0, ∂
2
jiϕ)T − 〈vbni, ∂jϕ〉∂T + 〈vgi, ϕnj〉∂T .

Here n, with components ni (i = 1, · · · , d), is the outward normal direction of T on
its boundary.

Unlike the classical second order derivatives, ∂2ij,wv is usually different from ∂2ji,wv
when i 6= j.

The Sobolev space H2(T ) can be embedded into the space W (T ) by an inclusion
map iW : H2(T ) → W (T ) defined as follows

iW (φ) = {φ|T , φ|∂T ,∇φ|∂T }, φ ∈ H2(T ).

With the help of the inclusion map iW , the Sobolev space H2(T ) can be viewed as a
subspace of W (T ) by identifying each φ ∈ H2(T ) with iW (φ). Analogously, a weak
function v = {v0, vb,vg} ∈ W (T ) is said to be in H2(T ) if it can be identified with a
function φ ∈ H2(T ) through the above inclusion map. It is not hard to see that ∂2ij,w
is identical with ∂2ij in H2(T ); i.e., ∂2ij,wv = ∂2ijv for all functions v ∈ H2(T ).

Next, for i, j = 1, · · · , d, we introduce a discrete version of ∂2ij,w by approximating

∂2ij,w in a polynomial subspace of the dual of G(T ). To this end, for any non-negative
integer r ≥ 0, denote by Pr(T ) the set of polynomials on T with degree no more than
r. A discrete ∂2ij,w (i, j = 1, · · · , d) operator, denoted by ∂2ij,w,r,T , is defined as the

unique polynomial ∂2ij,w,r,T v ∈ Pr(T ) satisfying the following equation

(3.2) (∂2ij,w,r,T v, ϕ)T = (v0, ∂
2
jiϕ)T − 〈vbni, ∂jϕ〉∂T + 〈vgi, ϕnj〉∂T , ∀ϕ ∈ Pr(T ).
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4. Numerical Algorithm by Weak Galerkin. Let Th be a partition of the
domain Ω into polygons in 2D or polyhedra in 3D. Assume that Th is shape regular
in the sense as defined in [11]. Denote by Eh the set of all edges or flat faces in Th,
and let E0

h = Eh \ ∂Ω be the set of all interior edges or flat faces.

For any given integer k ≥ 2, denote by Wk(T ) the discrete weak function space
given by

Wk(T ) =
{
{v0, vb,vg} : v0 ∈ Pk(T ), vb ∈ Pk−2(e),vg ∈ [Pk−2(e)]

d, e ⊂ ∂T
}
.

By patching Wk(T ) over all the elements T ∈ Th through a common value on the
interface E0

h, we arrive at a weak finite element space Vh defined as follows

Vh =
{
{v0, vb,vg} : {v0, vb,vg}|T ∈ Wk(T ), ∀T ∈ Th

}
.

Denote by V 0
h the subspace of Vh with vanishing trace; i.e.,

V 0
h = {{v0, vb,vg} ∈ Vh, vb|e = 0,vg|e = 0, e ⊂ ∂T ∩ ∂Ω}.

Intuitively, the finite element functions in Vh are piecewise polynomials of degree
k ≥ 2. The extra value on the boundary of each element is approximated by polyno-
mials of degree k − 2 for the function itself and its gradient. For such functions, we
may compute the weak second order derivative ∂2ij,wv by using the formula (3.1). For

computational purpose, this weak partial derivative ∂2ij,wv has to be approximated by

using polynomials, preferably one with degree k− 2. Denote by ∂2ij,w,k−2 the discrete
weak partial derivative computed by using (3.2) on each element T for k ≥ 2; i.e.,

(∂2ij,w,k−2v)|T = ∂2ij,w,k−2,T (v|T ), v ∈ Vh.

For simplicity of notation and without confusion, we shall drop the subscript k− 2 in
the notation ∂2ij,w,k−2. We also introduce the following notation

(∂2wu, ∂
2
wv)h =

∑

T∈Th

d∑

i,j=1

(∂2ij,wu, ∂
2
ij,wv)T , ∀u, v ∈ Vh.

For each element T , denote by Q0 the L2 projection onto Pk(T ), k ≥ 2. For each
edge or face e ⊂ ∂T , denote by Qb the L2 projection onto Pk−2(e) or [Pk−2(e)]

d, as
appropriate. For any w ∈ H2(Ω), we define a projection Qhw into the weak finite
element space Vh such that on each element T ,

Qhu = {Q0u,Qbu,Qb(∇u)}.

For any w = {w0, wb,wg} and v = {v0, vb,vg} in Vh, we introduce a bilinear form
as follows

s(w, v) =
∑

T∈Th

h−1
T 〈Qb(∇w0)−wg, Qb(∇v0)− vg〉∂T

+
∑

T∈Th

h−3
T 〈Qbw0 − wb, Qbv0 − vb〉∂T .
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The following is a precise statement of the WG finite element scheme for the
biharmonic equation (1.1) based on the variational formulation (1.2).

Weak Galerkin Algorithm 1. Find uh = {u0, ub,ug} ∈ Vh satisfying ub =
Qbξ, ug · n = Qbν, ug · τ = Qb(∇ξ · τ ) on ∂Ω and the following equation:

(4.1) (∂2wuh, ∂
2
wv)h + s(uh, v) = (f, v0), ∀v = {v0, vb, vg} ∈ V 0

h ,

where τ ∈ R
d is the tangential direction to the edges/faces on the boundary ∂Ω.

The following is a useful observation concerning the finite element space V 0
h .

Lemma 4.1. For any v ∈ V 0
h , define |||v||| by

(4.2) |||v|||
2
= (∂2wv, ∂

2
wv)h + s(v, v).

Then, ||| · ||| is a norm in the linear space V 0
h .

Proof. We shall only verify the positivity property for ||| · |||. To this end, assume
that |||v||| = 0 for some v ∈ V 0

h . It follows from (4.2) that ∂2ij,wv = 0 on T , Qb(∇v0) =

vg and Qbv0 = vb on ∂T . We claim that ∂2ijv0 = 0 on each element T . To this end,

for any ϕ ∈ Pk−2(T ), we use ∂2ij,wv = 0 and the identity (10.4) to obtain

0 =(∂2ij,wv, ϕ)T

=(∂2ijv0, ϕ)T + 〈vgi −Qb(∂iv0), ϕ · nj〉∂T + 〈Qbv0 − vb, ∂jϕ · ni〉∂T

=(ϕ, ∂2ijv0)T ,

which implies that ∂2ijv0 = 0 for i, j = 1, . . . , d on each element T . Thus, v0 is a linear
function on T and ∇v0 is a constant on each element. The condition Qb(∇v0) = vg
on ∂T implies that ∇v0 = vg on ∂T . Thus, ∇v0 is continuous over the whole domain
Ω. The fact that vg = 0 on ∂Ω leads to ∇v0 = 0 in Ω and vg = 0 on each edge/face.
Thus, v0 is a constant on each element T . This, together with the fact that Qbv0 = vb
on ∂T , indicates that v0 is continuous over the whole domain Ω. It follows from vb = 0
on ∂Ω that v0 = 0 everywhere in the domain Ω. Furthermore, vb = Qb(v0) = 0 on
each edge/face. This completes the proof of the lemma.

Lemma 4.2. The Weak Galerkin Algorithm (4.1) has a unique solution.

Proof. Let u
(1)
h and u

(2)
h be two different solutions of the Weak Galerkin Algorithm

(4.1). It is clear that the difference eh = u
(1)
h − u

(2)
h is a finite element function in V 0

h

satisfying

(4.3) (∂2weh, ∂
2
wv)h + s(eh, v) = 0, ∀v ∈ V 0

h .

By setting v = eh in (4.3), we obtain

(∂2weh, ∂
2
weh)h + s(eh, eh) = 0.

From Lemma 4.1, we get eh ≡ 0, i.e., u
(1)
h = u

(2)
h .

The rest of the paper will provide a mathematical and computational justification
for the WG finite element method (4.1).
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5. L2 Projections and Their Properties. The goal of this section is to es-
tablish some technical results for the L2 projections. These results are valuable in the
error analysis for the WG finite element method.

Lemma 5.1. On each element T ∈ Th, let Qh be the local L2 projection onto
Pk−2(T ). Then, the L2 projections Qh and Qh satisfy the following commutative
property:

(5.1) ∂2ij,w(Qhw) = Qh(∂
2
ijw), ∀i, j = 1, . . . , d,

for all w ∈ H2(T ).

Proof. For ϕ ∈ Pk−2(T ) and w ∈ H2(T ), from the definition of ∂2ij,w and the
usual integration by parts, we have

(∂2ij,w(Qhw), ϕ)T = (Q0w, ∂
2
jiϕ)T − 〈Qbw, ∂jϕ · ni〉∂T + 〈Qb(∂iw) · nj , ϕ〉∂T

= (w, ∂2jiϕ)T − 〈w, ∂jϕ · ni〉∂T + 〈∂iw · nj , ϕ〉∂T

= (∂2ijw,ϕ)T

= (Qh∂
2
ijw,ϕ)T , ∀i, j = 1, · · · , d,

which completes the proof.

The commutative property (5.1) indicates that the discrete weak partial derivative
of the L2 projection of a smooth function is a good approximation of the classical
partial derivative of the same function. This is a nice and useful property of the
discrete weak partial differential operator ∂2ij,w in application to algorithm design and
analysis.

The following lemma provides some approximation properties for the projection
operators Qh and Qh.

Lemma 5.2. [11, 13] Let Th be a finite element partition of Ω satisfying the shape
regularity assumption as defined in [11]. Then, for any 0 ≤ s ≤ 2 and 1 ≤ m ≤ k, we
have

(5.2)
∑

T∈Th

h2sT ‖u−Q0u‖
2
s,T ≤ Ch2(m+1)‖u‖2m+1,

(5.3)
∑

T∈Th

d∑

i,j=1

h2sT ‖∂2iju−Qh∂
2
iju‖

2
s,T ≤ Ch2(m−1)‖u‖2m+1.

Using Lemma 5.2 we can prove the following result.

Lemma 5.3. Let 1 ≤ m ≤ k and u ∈ Hmax{m+1,4}(Ω). There exists a constant
C such that the following estimates hold true:

(5.4)
( ∑

T∈Th

d∑

i,j=1

hT ‖∂
2
iju−Qh∂

2
iju‖

2
∂T

) 1

2

≤ Chm−1‖u‖m+1,

(5.5)
( ∑

T∈Th

d∑

i,j=1

h3T ‖∂j(∂
2
iju−Qh∂

2
iju)‖

2
∂T

) 1

2

≤ Chm−1(‖u‖m+1 + hδm,2‖u‖4),
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(5.6)
( ∑

T∈Th

h−1
T ‖Qb(∇Q0u)−Qb(∇u)‖

2
∂T

) 1

2

≤ Chm−1‖u‖m+1,

(5.7)
( ∑

T∈Th

h−3
T ‖Qb(Q0u)−Qbu‖

2
∂T

) 1

2

≤ Chm−1‖u‖m+1.

Here δi,j is the usual Kronecker’s delta with value 1 when i = j and value 0 otherwise.

Proof. To prove (5.4), by the trace inequality (10.1) and the estimate (5.3), we
get

∑

T∈Th

d∑

i,j=1

hT ‖∂
2
iju−Qh∂

2
iju‖

2
∂T

≤C
∑

T∈Th

d∑

i,j=1

(
‖∂2iju−Qh∂

2
iju‖

2
T + h2T |∂

2
iju−Qh∂

2
iju|

2
1,T

)

≤Ch2m−2‖u‖2m+1.

As to (5.5), by the trace inequality (10.1) and the estimate (5.3), we obtain

∑

T∈Th

d∑

i,j=1

h3T ‖∂j(∂iju−Qh∂iju)‖
2
∂T

≤C
∑

T∈Th

d∑

i,j=1

(
h2T ‖∂j(∂

2
iju−Qh∂

2
iju)‖

2
T + h4T |∂j(∂

2
iju−Qh∂

2
iju)|

2
1,T

)

≤Ch2m−2
(
‖u‖2m+1 + h2δm,2‖u‖

2
4

)
.

As to (5.6), by the trace inequality (10.1) and the estimate (5.2), we have

∑

T∈Th

h−1
T ‖Qb(∇Q0u)−Qb(∇u)‖

2
∂T

≤
∑

T∈Th

h−1
T ‖∇Q0u−∇u‖2∂T

≤C
∑

T∈Th

(
h−2
T ‖∇Q0u−∇u‖2T + |∇Q0u−∇u|21,T

)

≤Ch2m−2‖u‖2m+1.

Finally for (5.7), by the trace inequality (10.1) and the estimate (5.2), we have
∑

T∈Th

h−3
T ‖Qb(Q0u)−Qbu‖

2
∂T

≤
∑

T∈Th

h−3
T ‖Q0u− u‖2∂T

≤C
∑

T∈Th

(
h−4
T ‖Q0u− u‖2T + h−2

T ‖∇(Q0u− u)‖2T

)

≤Ch2m−2‖u‖2m+1.
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This completes the proof of the lemma.

6. An Error Equation. Let u and uh = {u0, ub,ug} ∈ Vh be the solution (1.1)
and (4.1) respectively. Denote by

(6.1) eh = Qhu− uh

the error function between the L2 projection of the exact solution u and its weak
Galerkin finite element approximation uh. An error equation refers to some identity
that the error function eh must satisfy. The goal of this section is to derive an error
equation for eh. The following is our main result.

Lemma 6.1. The error function eh as defined by (6.1) is a finite element function
in V 0

h and satisfies the following equation

(6.2) (∂2weh, ∂
2
wv)h + s(eh, v) = φu(v), ∀v ∈ V 0

h ,

where

φu(v) =
∑

T∈Th

d∑

i,j=1

〈∂2iju−Qh(∂
2
iju), (∂iv0 − vgi) · nj〉∂T

−
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, v0 − vb〉∂T

+ s(Qhu, v).

(6.3)

Proof. From Lemma 5.1 we have ∂2ij,wQhu = Qh(∂
2
iju). Now using (10.3) with

ϕ = ∂2ij,wQhu we obtain

(∂2ijv, ∂
2
ij,wQhu)T =(∂2ijv0,Qh(∂

2
iju))T + 〈v0 − vb, ∂j(Qh(∂

2
iju)) · ni〉∂T

− 〈(∂iv0 − vgi) · nj ,Qh∂
2
iju〉∂T

=(∂2ijv0, ∂
2
iju)T + 〈v0 − vb, ∂j(Qh(∂

2
iju)) · ni〉∂T

− 〈(∂iv0 − vgi) · nj ,Qh∂
2
iju〉∂T ,

which implies that

(∂2ijv0, ∂
2
iju)T =(∂2ij,wQhu, ∂

2
ij,wv)T − 〈v0 − vb, ∂j(Qh(∂

2
iju)) · ni〉∂T

+ 〈(∂iv0 − vgi) · nj ,Qh∂
2
iju〉∂T .

(6.4)

We emphasize that (6.4) is valid for any v ∈ V 0
h and any smooth function u ∈

Hr(Ω), r > 3. Next, it follows from the integration by parts that

(∂2iju, ∂
2
ijv0)T = ((∂2ij)

2u, v0)T + 〈∂2iju, ∂iv0 · nj〉∂T − 〈∂j(∂
2
iju) · ni, v0〉∂T .

By summing over all T and using the identity that (△2u, v0) = (f, v0), we obtain

∑

T∈Th

d∑

i,j=1

(∂2iju, ∂
2
ijv0)T =(f, v0) +

∑

T∈Th

d∑

i,j=1

〈∂2iju, (∂iv0 − vgi) · nj〉∂T

−
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju) · ni, v0 − vb〉∂T ,
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where we have used the fact that the sum for the terms associated with vgi ·nj and vbni
vanishes (note that both vgi and vb vanishes on ∂Ω). Combining the above equation
with (6.4) yields

(∂2wQhu, ∂
2
wv)h =(f, v0) +

∑

T∈Th

d∑

i,j=1

〈∂2iju−Qh(∂
2
iju), (∂iv0 − vgi) · nj〉∂T

−
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, v0 − vb〉∂T .

Adding s(Qhu, v) to both side of the above equation gives

(∂2wQhu, ∂
2
wv)h + s(Qhu, v)

=(f, v0) +
∑

T∈Th

d∑

i,j=1

〈∂2iju−Qh(∂
2
iju), (∂iv0 − vgi) · nj〉∂T

−
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, v0 − vb〉∂T + s(Qhu, v).

(6.5)

Subtracting (4.1) from (6.5) yields the following error equation

(∂2weh, ∂
2
wv)h + s(eh, v) =

∑

T∈Th

d∑

i,j=1

〈∂2iju−Qh(∂
2
iju), (∂iv0 − vgi) · nj〉∂T

−
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, v0 − vb〉∂T + s(Qhu, v),

which completes the proof.

7. Error Estimates in H2. The goal of this section is to derive some error
estimate for the solution of Weak Galerkin Algorithm (4.1). From the error equation
(6.2), it suffices to handle the term φu(v) defined by (6.3).

Let w be any smooth function in Ω. We rewrite φw(v) as follows:

φw(v) =
∑

T∈Th

d∑

i,j=1

〈∂2ijw −Qh(∂
2
ijw), (∂iv0 − vgi) · nj〉∂T

−
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
ijw −Qh∂

2
ijw) · ni, v0 − vb〉∂T

+
∑

T∈Th

h−1
T 〈Qb(∇Q0w)−Qb(∇w), Qb(∇v0)− vg〉∂T

+
∑

T∈Th

h−3
T 〈QbQ0w −Qbw,Qbv0 − vb〉∂T

=I1(w, v) + I2(w, v) + I3(w, v) + I4(w, v),

(7.1)

where Ij(w, v) are defined accordingly. Each Ij(w, v) is to be handled as follows.

Lemma 7.1. Assume that w ∈ Hr+1(Ω), v ∈ V 0
h with r ∈ [2, k]. Let I1(w, v) and
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I2(w, v) be given in (7.1). Then, we have

|I1(w, v)| ≤ Chr−1‖w‖r+1|||v|||,(7.2)

|I2(w, v)| ≤ Chr−1(‖w‖r+1 + δk,2‖w‖4)|||v|||.(7.3)

Proof. For the term I1(w, v), we use Cauchy-Schwarz inequality, the estimate
(5.4) with m = r and Lemma 10.7 to obtain

|I1(w, v)| =
∣∣∣
∑

T∈Th

d∑

i,j=1

〈∂2ijw −Qh(∂
2
ijw), (∂iv0 − vgi) · nj〉∂T

∣∣∣

≤
( ∑

T∈Th

d∑

i,j=1

hT ‖∂
2
ijw −Qh(∂

2
ijw)‖

2
∂T

) 1

2

·

( ∑

T∈Th

d∑

i,j=1

h−1
T ‖(∂iv0 − vgi) · nj‖

2
∂T

) 1

2

≤Chr−1‖w‖r+1|||v|||,

(7.4)

which verifies (7.2).

As to the term I2(w, v), for the case of quadratic element k = 2, we use Lemma
10.6 to obtain

∣∣∣∣∣∣

∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
ijw −Qh∂

2
ijw) · ni, v0 − vb〉∂T

∣∣∣∣∣∣
≤ Ch‖w‖4|||v|||.(7.5)

For k ≥ 3, we use Cauchy-Schwarz inequality, the estimate (5.5) with m = r, and
Lemma 10.3 to obtain

∣∣∣
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
ijw −Qh∂

2
ijw) · ni, v0 − vb〉∂T

∣∣∣

≤
( ∑

T∈Th

d∑

i,j=1

h3T ‖∂j(∂
2
ijw −Qh∂

2
ijw)‖

2
∂T

) 1

2

·
( ∑

T∈Th

h−3
T ‖v0 − vb‖

2
∂T

) 1

2

≤Chr−1 ‖w‖r+1 |||v|||.

(7.6)

Combining (7.5) with (7.6) yields

(7.7) |I2(w, v)| ≤ Chr−1(‖w‖r+1 + δk,2‖w‖4) |||v|||.

This completes the proof of the lemma.

Lemma 7.2. Assume that w ∈ Hr+1(Ω), v ∈ V 0
h with r ∈ [2, k]. Let I3(w, v) and

I4(w, v) be given in (7.1). Then, we have

|I3(w, v)| + |I4(w, v)| ≤ Chr−1‖w‖r+1|v|h,(7.8)

where

(7.9) |v|h = s(v, v)
1

2 .
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Proof. To estimate the term I3(w, v), we use Cauchy-Schwarz inequality and the
estimate (5.6) with m = r to obtain

|I3(w, v)| =

∣∣∣∣∣
∑

T∈Th

h−1
T 〈∇Q0w −∇w,Qb(∇v0)− vg〉∂T

∣∣∣∣∣

≤
( ∑

T∈Th

h−1
T ‖∇Q0w −∇w‖2∂T

) 1

2

·
( ∑

T∈Th

h−1
T ‖Qb(∇v0)− vg‖

2
∂T

) 1

2

≤Chr−1‖w‖r+1 |v|h.

(7.10)

As to the term I4(w, v), we use Cauchy-Schwarz inequality and the estimate (5.7)
with m = r to obtain

|I4(w, v)| =

∣∣∣∣∣
∑

T∈Th

h−3
T 〈Q0w − w,Qbv0 − vb〉∂T

∣∣∣∣∣

≤
( ∑

T∈Th

h−3
T ‖Q0w − w‖2∂T

) 1

2

( ∑

T∈Th

h−3
T ‖Qbv0 − vb‖

2
∂T

) 1

2

≤Chr−1‖w‖r+1 |v|h.

(7.11)

This completes the proof.

The following result is an estimate for the error function eh in the trip-bar norm
which is essentially an H2-equivalent norm in V 0

h .

Theorem 7.3. Let uh ∈ Vh be the weak Galerkin finite element solution arising
from (4.1) with finite elements of order k ≥ 2. Assume that the exact solution u
of (1.1) is sufficiently regular such that u ∈ Hmax{k+1,4}(Ω). Then, there exists a
constant C such that

(7.12) |||uh −Qhu||| ≤ Chk−1
(
‖u‖k+1 + δk,2‖u‖4

)
.

In other words, we have an optimal order of convergence in the H2 norm.

Proof. By letting v = eh in the error equation (6.2), we obtain the following
identity

|||eh|||
2 =φu(eh)

=I1(u, eh) + I2(u, eh) + I3(u, eh) + I4(u, eh),
(7.13)

Using the estimates (7.2), (7.3), and (7.8) with w = u and v = eh we arrive at

|||eh|||
2
≤ Chk−1

(
‖u‖k+1 + δk,2‖u‖4

)
|||eh|||,

which implies the desired error estimate (7.12).

8. Error Estimates in L2. This section shall establish an estimate for the first
component of the error function eh in the standard L2 norm. To this end, we consider
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the following dual problem:

∆2ψ = e0 in Ω,

ψ = 0 on ∂Ω,

∂ψ

∂n
= 0 on ∂Ω.

(8.1)

Assume the above dual problem has the following regularity estimate

(8.2) ‖ψ‖4 ≤ C‖e0‖.

Theorem 8.1. Let uh ∈ Vh be the solution of the Weak Galerkin Algorithm
(4.1) with finite elements of order k ≥ 2. Let t0 = min{k, 3}. Assume that the exact
solution of (1.1) is sufficiently regular so that u ∈ H4(Ω) for k = 2 and u ∈ Hk+1(Ω)
otherwise, and the dual problem (8.1) has the H4 regularity. Then, there exists a
constant C such that

(8.3) ‖Q0u− u0‖ ≤ Chk+t0−2
(
‖u‖k+1 + δk,2‖u‖4

)
.

In other words, we have a sub-optimal order of convergence for k = 2 and optimal
order of convergence for k ≥ 3.

Proof. By testing (8.1) against the error function e0 on each element and using
the integration by parts, we obtain

‖e0‖
2 =(∆2ψ, e0)

=
∑

T∈Th

d∑

i,j=1

{
(∂2ijψ, ∂

2
ije0)T − 〈∂2ijψ, ∂ie0 · nj〉∂T + 〈∂j(∂

2
ijψ) · ni, e0〉∂T

}

=
∑

T∈Th

d∑

i,j=1

{
(∂2ijψ, ∂

2
ije0)T − 〈∂2ijψ, (∂ie0 − egi) · nj〉∂T

+ 〈∂j(∂
2
ijψ) · ni, e0 − eb〉∂T

}
,

where the added terms associated with eb and egi vanish due to the cancelation for
interior edges and the fact that eb and egi have zero value on ∂Ω. Using (6.4) with ψ
and eh in the place of u and v0 respectively, we arrive at

‖e0‖
2 =(∂2wQhψ, ∂

2
weh)h +

∑

T∈Th

d∑

i,j=1

{
〈∂j(∂

2
ijψ −Qh(∂

2
ijψ)) · ni, e0 − eb〉∂T

− 〈∂2ijψ −Qh∂
2
ijψ, (∂ie0 − egi) · nj〉∂T

}

=(∂2wQhψ, ∂
2
weh)h − φψ(eh) + s(Qhψ, eh).

(8.4)

Next, it follows from the error equation (6.2) that

(8.5) (∂2wQhψ, ∂
2
weh)h = φu(Qhψ)− s(eh, Qhψ).

Substituting (8.5) into (8.4) yields

(8.6) ‖e0‖
2 = φu(Qhψ)− φψ(eh).
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The term φψ(eh) can be handled by using Lemma 7.1 and Lemma 7.2 with r = t0 =
min{k, 3} as follows:

|φψ(eh)| ≤ Cht0−1(‖ψ‖t0+1 + h‖ψ‖4)|||eh|||

≤ Cht0−1‖ψ‖4|||eh|||

≤ Cht0−1‖e0‖|||eh|||,

(8.7)

where we have used the regularity assumption (8.2) in the last inequality.

It remains to deal with the term φu(Qhψ) in (8.6). Note that from (7.1) we have

(8.8) φu(Qhψ) =

4∑

j=1

Ij(u,Qhψ).

I3(u,Qhψ) and I4(u,Qhψ) can be handled by using Lemma 7.2 with r = k as
follows:

(8.9) |I3(u,Qhψ)|+ |I3(u,Qhψ)| ≤ Chk−1‖u‖k+1|Qhψ|h.

From the definition (7.9) we have

|Qhψ|
2
h =

∑

T∈Th

(
h−3
T ‖Qb(Q0ψ)−Qbψ‖

2
∂T + h−1

T ‖Qb(∇Q0ψ)−Qb∇ψ‖
2
∂T

)

≤
∑

T∈Th

(
h−3
T ‖Q0ψ − ψ‖2∂T + h−1

T ‖∇(Q0ψ)−∇ψ‖2∂T
)

Thus, it follows from the trace inequality (10.1) and the error estimate for the pro-
jection operator Q0 that

(8.10) |Qhψ|h ≤ Cht0−1‖ψ‖t0+1 ≤ Cht0−1‖ψ‖4 ≤ Cht0−1‖e0‖.

Substituting the above estimate into (8.9) yields

(8.11) |I3(u,Qhψ)|+ |I3(u,Qhψ)| ≤ Chk+t0−2‖u‖k+1‖e0‖.

The estimate for I1(u,Qhψ) and I2(u,Qhψ) shall explore the special property of
the “test” function Qhψ. To this end, using the orthogonality property of Qb and the
fact that ψ = Qbψ = 0 on ∂Ω we obtain

∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, ψ −Qbψ〉∂T

=
∑

T∈Th

d∑

i,j=1

〈∂j∂
2
iju · ni, ψ −Qbψ〉∂T = 0.

Thus,

I2(u,Qhψ) =−
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, Q0ψ −Qbψ〉∂T

=−
∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, Q0ψ − ψ〉∂T .
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Using the Cauchy-Schwarz inequality and the standard error estimate for L2 projec-
tions we arrive at

|I2(u,Qhψ)| ≤
∑

T∈Th

d∑

i,j=1

‖∂j(∂
2
iju−Qh∂

2
iju)‖∂T ‖Q0ψ − ψ‖∂T

≤Chk+t0−2(‖u‖k+1 + δk,2‖u‖4) ‖ψ‖t0+1

≤Chk+t0−2(‖u‖k+1 + δk,2‖u‖4) ‖ψ‖4

≤Chk+t0−2(‖u‖k+1 + δk,2‖u‖4)‖e0‖.

(8.12)

A similar argument can be employed to deal with the term I1(u,Qhψ), yielding

|I1(u,Qhψ)| ≤ Chk+t0−2‖u‖k+1‖e0‖.(8.13)

Substituting (8.11), (8.12), and (8.13) into (8.8) we arrive at

(8.14) |φu(Qhψ)| ≤ Chk+t0−2(‖u‖k+1 + δk,2‖u‖4)‖e0‖.

Finally, by inserting (8.7) and (8.14) into (8.6) we obtain

‖e0‖
2 ≤ C(ht0−1|||eh|||+ hk+t0−2(‖u‖k+1 + δk,2‖u‖4))‖e0‖,

which, together with the estimate (7.12) in Theorem 7.3, gives rise to the desired L2

error estimate (8.3). This completes the proof of the theorem.

The H2 error estimate (7.12) and the L2 error estimate (8.3) can be used to derive
some error estimates for the WG solution ub and ug. More precisely, observe that eb
and eg can be represented by e0 and ∂

2
ij,weh by choosing special test functions v in the

error equation (6.2). For example, eb can be represented by e0 and ∂
2
ij,weh by selecting

v = {0, vb, 0}. The representation is expressed through an equation defined locally
on each edge e ∈ E0

h. The rest of the analysis should be straightforward. Details are
omitted due to page limitation.

9. Numerical Experiments. In this section, we present some numerical results
for the WG finite element method analyzed in previous sections. The goal is to
demonstrate the efficiency and the convergence theory established for the method. For
simplicity, we implement the lowest order scheme for the Weak Galerkin Algorithm
(4.1). In other words, the implementation makes use of the following finite element
space

Ṽh = {v = {v0, vb,vg}, v0 ∈ P2(T ), vb ∈ P0(e),vg ∈ [P0(e)]
2, T ∈ Th, e ∈ Eh}.

For any given v = {v0, vb,vg} ∈ Ṽh, the discrete weak partial derivative ∂2ij,w,r,T v
is computed as a constant locally on each element T by solving the following equation

(∂2ij,w,r,T v, ϕ)T = (v0, ∂
2
jiϕ)T − 〈vb, ∂jϕ · ni〉∂T + 〈vgi · nj , ϕ〉∂T ,

for all ϕ ∈ P0(T ). Since ϕ ∈ P0(T ), the above equation can be simplified as

(∂2ij,w,r,T v, ϕ)T = 〈vgi · nj , ϕ〉∂T , ∀ϕ ∈ P0(T ), i, j = 1, 2.(9.1)
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The error for the solution of the Weak Galerkin Algorithm (4.1) is measured in
four norms or semi-norms defined as follows:

|||v|||
2
=
∑

T∈Th

(
d∑

i,j=1

∫

T

(∂2ij,wvh)
2dx+ h−1

T

∫

∂T

|Qb(∇v0)− vg|
2ds

+ h−3
T

∫

∂T

(Qbv0 − vb)
2ds

)
, ( A discrete H2-norm),

(9.2)

(9.3) ‖v‖2 =
∑

T∈Th

∫

T

v20dx, ( Element-based L2-norm),

(9.4) ‖vb‖∞ = max
e∈Eh

‖vb‖∞, ( Edge-based L∞-norm),

(9.5) ‖vg‖∞ = max
e∈Eh

‖vg‖∞, ( Edge-based L∞-norm).

The numerical experiment is conducted for the biharmonic equation (1.1) on the
unit square domain Ω = (0, 1)2. The function f = f(x, y) and the two boundary
conditions are computed to match the exact solution in each test case. The WG
finite element scheme (4.1) was implemented on two type of partitions: (1) uniform
triangular partition, and (2) uniform rectangular partition. The uniform rectangular
partition was obtained by partitioning the domain into n × n sub-rectangles as ten-
sor products of 1-d uniform partitions. The triangular meshes are constructed from
the rectangular partition by dividing each square element into two triangles by the
diagonal line with a negative slope. The mesh size is denoted by h = 1/n.

Table 9.1 demonstrates the performance of the code when the exact solution is
given by u = x2 + y2 + xy + x + y + 1. In theory, the WG finite element method is
exact for any quadratic polynomials. The computational results are in consistency
with theory. This table indicates that the code should be working.

Table 9.1

Numerical error for the biharmonic equation with exact solution u = x2 + y2 + xy + x+ y + 1
on triangular partitions.

h ‖u0 −Q0u‖ |||uh −Qhu||| ‖ub −Qbu‖∞ ‖ug −Qb(∇u)‖∞
1 1.73e-014 2.03e-014 1.60e-014 4.44e-016

5.0000e-01 4.35e-014 1.88e-013 5.82e-014 6.66e-015
2.5000e-01 1.64e-013 1.60e-012 2.86e-013 8.44e-014
1.2500e-01 7.68e-013 7.68e-013 1.48e-012 1.19e-012
6.2500e-02 3.65e-012 9.92e-011 7.71e-012 1.34e-011
3.1250e-02 1.43e-011 5.20e-010 5.19e-010 3.13e-011
1.5625e-02 4.85e-011 3.40e-009 1.15e-010 5.98e-010

Tables 9.2 and 9.3 show the numerical results when the exact solution is given
by u = x2(1 − x)2y2(1 − y)2. This case has a homogeneous boundary condition for
both Dirichlet and Neumann. It shows that the convergence rates for the solution of
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the Weak Galerkin Algorithm in the H2 and L2 norms are of order O(h) and O(h2),
respectively. The numerical results are in consistency with theory for the L2 and H2

norm of the error. For the approximation of u on the edge set Eh, it appears that the
L∞ error is of order O(h2). But the order of convergence for the approximation of
∇u on the edge set Eh is hard to extract from the data. It is interesting to see that
the absolute error for both ub and ug is quite small.

Table 9.2

Numerical error and convergence order for exact solution u = x2(1−x)2y2(1−y)2 on triangular
partitions.

h ‖u0 −Q0u‖ order |||uh −Qhu||| order
1 0.41325 0.52598

5.0000e-01 0.07371 2.49 0.31309 0.75
2.5000e-01 0.019859 1.89 0.18972 0.72
1.2500e-01 0.005176 1.94 0.100557 0.92
6.2500e-02 0.0013833 1.90 0.05240 0.94
3.1250e-02 3.7499e-004 1.88 0.02729 0.94
1.5625e-02 9.977e-005 1.91 0.014058 0.96
7.8125e-03 2.583e-05 1.95 0.007145 0.98

Table 9.3

Numerical error and convergence order for exact solution u = x2(1−x)2y2(1−y)2 on triangular
partitions.

h ‖ub −Qbu‖∞ order ‖ug −Qb(∇u)‖∞ order
1 0.41494 8.6485e-018

5.0000e-01 0.08806 2.24 0.00942
2.5000e-01 0.037013 1.25 0.00491 0.94
1.2500e-01 0.01069 1.79 0.00354 0.47
6.2500e-02 0.00293 1.87 0.00222 0.67
3.1250e-02 7.935e-004 1.88 0.00102 1.12
1.5625e-02 2.096e-004 1.92 3.577e-004 1.51
7.8125e-03 5.401e-05 1.96 1.053e-04 1.76

Tables 9.4 and 9.5 present some numerical results when the exact solution is given
by u = sin(x) sin(y). We would like to invite the readers to draw conclusions from
these data.
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Table 9.4

Numerical error and convergence order for exact solution u = sin(x) sin(y) on triangular par-
titions.

h ‖u0 −Q0u‖ order |||uh −Qhu||| order
1 0.23000 0.37336

5.0000e-01 0.03575 2.68 0.27641 0.43
2.5000e-01 0.00684 2.38 0.21911 0.34
1.2500e-01 0.00147 2.21 0.17661 0.31
6.2500e-02 4.427e-004 1.74 0.12349 0.52
3.1250e-02 1.549e-004 1.52 0.07290 0.76
1.5625e-02 4.658e-005 1.73 0.03916 0.90

Table 9.5

Numerical error and convergence order for exact solution u = sin(x) sin(y) on triangular par-
titions.

h ‖ub −Qbu‖∞ order ‖ug −Qb(∇u)‖∞ order
1 0.21688 0.06306

5.0000e-01 0.05108 2.09 0.05601 0.17
2.5000e-01 0.01132 2.17 0.05062 0.15
1.2500e-01 0.002524 2.17 0.03606 0.49
6.2500e-02 8.032e-004 1.65 0.01772 1.03
3.1250e-02 3.226e-004 1.32 0.00590 1.59
1.5625e-02 1.038e-004 1.64 0.00163 1.85

Table 9.6 demonstrates the performance of the WG finite element method when
the exact solution is a biquadratic polynomial. It shows that the L2 convergence is
of order O(h2), and the H2 convergence has a rate approximately O(h).

Table 9.6

Numerical error and convergence rates for the biharmonic equation with exact solution u =
x(1− x)y(1 − y) on triangular meshes.

h ‖u0 −Q0u‖ order |||uh −Qhu||| order
1 2.05586 4.05772

5.0000e-01 0.32234 2.67 1.59961 1.34
2.5000e-01 0.06654 2.28 0.70890 1.17
1.2500e-01 0.01588 2.07 0.34325 1.05
6.2500e-02 0.00394 2.01 0.17416 0.98
3.1250e-02 9.691e-4 2.02 0.09025 0.95
1.5625e-02 2.361e-4 2.04 0.046632 0.95

The rest of the section will present some numerical results on rectangular meshes.
The lowest order WG element on rectangles consists of quadratic polynomials on
each element enriched with constants on the edge of each element for both u and ∇u.
Therefore, the total number of unknowns on each element is 18. Note that all the
unknowns corresponding to u on each element can be eliminated locally, so that the
actual number of unknowns on each element is 12. Table 9.7 shows the numerical
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solution when the exact solution is a quadratic polynomial. It can be seen that the
numerical solution is numerically the same as the exact solution, as predicted by the
theory.

Table 9.7

Numerical error for the biharmonic equation with exact solution u = x2 + y2 + xy + x+ y + 1
on rectangular partitions.

h ‖u0 −Q0u‖ |||uh −Qhu||| ‖ub −Qbu‖∞ ‖ug −Qb(∇u)‖∞
1 2.09e-015 0 0 0

2.5000e-01 4.66e-015 2.94e-014 6.66e-015 3.55e-015
6.2500e-02 9.91e-014 2.30e-012 1.98e-013 2.74e-013
1.5625e-02 5.83e-012 2.06e-010 1.34e-011 4.10e-011

Tables 9.8 and 9.9 show the numerical results when the exact solution is given by
u = x2(1− x)2y2(1− y)2. The result is in consistency with the theory.

Table 9.8

Numerical error and convergence order for exact solution u = x2(1− x)2y2(1− y)2 on rectan-
gular partitions.

h ‖u0 −Q0u‖ order |||uh −Qhu||| order
1 1.15052 0

5.0000e-01 0.14880 2.95 0.35
2.5000e-01 0.03786 1.97 0.24649 0.52
1.2500e-01 0.009724 1.96 0.13593 0.86
6.2500e-02 0.002494 1.96 0.070216 0.95
3.1250e-02 6.509e-004 1.94 0.035987 0.96
1.5625e-02 1.709e-004 1.93 0.018427 0.97
7.8125e-03 4.415e-005 1.95 0.009357 0.98

Table 9.9

Numerical error and convergence order for exact solution u = x2(1− x)2y2(1− y)2 on rectan-
gular partitions.

h ‖ub −Qbu‖∞ order ‖ug −Qb(∇u)‖∞ order
1 0 0

5.0000e-01 0.15414 0.01343
2.5000e-01 0.06724 1.20 0.008681 0.6297
1.2500e-01 0.01961 1.78 0.0034078 1.3490
6.2500e-02 0.00518 1.92 0.0014578 1.2251
3.1250e-02 0.001359 1.93 8.774e-004 0.7325
1.5625e-02 3.566e-004 1.93 3.788e-004 1.2116
7.8125e-03 9.195e-005 1.96 1.231e-004 1.6211

Tables 9.10 and 9.11 present some results for the exact solution u = sin(x) sin(y).
Readers are encouraged to compare the results here with those in Tables 9.4 and 9.5.
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Table 9.10

Numerical error and convergence order for exact solution u = sin(x) sin(y) on triangular par-
titions.

h ‖u0 −Q0u‖ order |||uh −Qhu||| order
1 0.60602 0

5.0000e-01 0.08424 2.85 0.26684
2.5000e-01 0.01549 2.44 0.22733 0.23
1.2500e-01 0.00360 2.10 0.18593 0.29
6.2500e-02 0.00101 1.83 0.13440 0.47
3.1250e-02 2.98e-004 1.77 0.081869 0.72
1.5625e-02 7.95e-005 1.91 0.044701 0.87

Table 9.11

Numerical error and convergence order for exact solution u = sin(x) sin(y) on rectangular
partitions.

h ‖ub −Qbu‖∞ order ‖ug −Qb(∇u)‖∞ order
1 0 0

5.0000e-01 0.10202 0.06063
2.5000e-01 0.02488 2.04 0.051219 0.24
1.2500e-01 0.006110 2.03 0.039518 0.37
6.2500e-02 0.001981 1.62 0.021362 0.89
3.1250e-02 5.810e-004 1.77 0.007942 1.43
1.5625e-02 1.501e-004 1.95 0.002355 1.75

More numerical experiments should be conducted for the Weak Galerkin Algo-
rithm (4.1), particularly for elements of order higher than k = 2. There is also a need
of developing fast solution techniques for the matrix problem arising from the WG
finite element scheme (4.1). Numerical experiments on finite element partitions with
arbitrary polygonal element should be conducted for a further assessment of the WG
method.

10. Appendix. The goal of this Appendix is to establish some fundamental es-
timates useful in the error estimate for general weak Galerkin finite element methods.

For any T ∈ Th, let ϕ be a regular function in H1(T ). The following trace
inequality holds true [11]:

(10.1) ‖ϕ‖2e ≤ C(h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖

2
T ),

If ϕ is a polynomial on the element T ∈ Th, then we have from the inverse inequality
(see also [11]) that

(10.2) ‖ϕ‖2e ≤ Ch−1
T ‖ϕ‖2T .

Here e is an edge/face on the boundary of T .

Lemma 10.1. For the discrete weak partial derivative ∂2ij,w, the following identity
holds true on each element T ∈ Th:

(10.3) (∂2ij,wv, ϕ)T = (∂2ijv0, ϕ)T + 〈v0 − vb, ∂jϕ · ni〉∂T − 〈∂iv0 − vgi, ϕnj〉∂T
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for all ϕ ∈ Pk−2(T ). Consequently, we have

(10.4) (∂2ij,wv, ϕ)T = (∂2ijv0, ϕ)T + 〈Qbv0 − vb, ∂jϕ · ni〉∂T − 〈Qb(∂iv0)− vgi, ϕnj〉∂T

Proof. From the definition (3.2) of the weak partial derivative, we have

(∂2ij,wv, ϕ)T =(v0, ∂
2
jiϕ)T + 〈vgi · nj , ϕ〉∂T − 〈vb, ∂jϕ · ni〉∂T

=(∂2ijv0, ϕ)T − 〈∂iv0, ϕ · nj〉∂T + 〈v0, ∂jϕ · ni〉∂T

+ 〈vgi · nj, ϕ〉∂T − 〈vb, ∂jϕ · ni〉∂T

=(∂2ijv0, ϕ)T + 〈v0 − vb, ∂jϕ · ni〉∂T − 〈∂iv0 − vgi, ϕnj〉∂T .

Here we have used the usual integration by parts in the second line. The result then
follows.

Lemma 10.2. Let eh ∈ V 0
h be any finite element function. Then, there holds

(10.5)
∑

T∈Th

|e0|2,T ≤ C|||eh|||,

where, by definition (4.2),

|||eh|||
2
=
∑

T∈Th

d∑

i,j=1

(∂2ij,weh, ∂
2
ij,weh)T +

∑

T∈Th

h−3
T 〈Qbe0 − eb, Qbe0 − eb〉∂T

+
∑

T∈Th

h−1
T 〈Qb(∇e0)− eg, Qb(∇e0)− eg〉∂T .

(10.6)

Proof. Using (10.4) with v = eh and ϕ = ∂2ije0 we obtain

(∂2ij,weh, ∂
2
ije0)T =(∂2ije0, ∂

2
ije0)T − 〈Qb(∂ie0)− egi, ∂

2
ije0 · nj〉∂T

+ 〈Qbe0 − eb, ∂j(∂
2
ije0) · ni〉∂T .

Thus,

(∂2ije0, ∂
2
ije0)T =(∂2ij,weh, ∂

2
ije0)T + 〈Qb(∂ie0)− egi, ∂

2
ije0 · nj〉∂T

− 〈Qbe0 − eb, ∂j(∂
2
ije0) · ni〉∂T .

(10.7)

It then follows from (10.7), Cauchy-Schwarz inequality, the inverse inequality and
(10.2) that

(∂2ije0, ∂
2
ije0)T ≤‖∂2ij,weh‖T ‖∂

2
ije0‖T + ‖Qb(∂ie0)− egi‖∂T ‖∂

2
ije0‖∂T

+ ‖Qbe0 − eb‖∂T ‖∂j(∂
2
ije0)‖∂T

≤‖∂2ij,weh‖T ‖∂
2
ije0‖T + Ch

− 1

2

T ‖Qb(∂ie0)− egi‖∂T ‖∂
2
ije0‖T

+ Ch
− 3

2

T ‖Qbe0 − eb‖∂T‖∂
2
ije0‖T ,

which implies

(10.8) ‖∂2ije0‖
2
T ≤ ‖∂2ij,weh‖

2
T + Ch−1

T ‖Qb(∂ie0)− egi‖
2
∂T + Ch−3

T ‖Qbe0 − eb‖
2
∂T .
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Summing over T ∈ Th completes the proof of the lemma.

Lemma 10.3. For any eh ∈ V 0
h and k ≥ 3, there exists a constant C such that

(10.9)
( ∑

T∈Th

h−3
T ‖e0 − eb‖

2
∂T

) 1

2

≤ C|||eh|||.

Proof. By the triangle inequality and the error estimate for the projection Qb, we
have

h−3
T ‖e0 − eb‖

2
∂T ≤2h−3

T

(
‖e0 −Qbe0‖

2
∂T + ‖Qbe0 − eb‖

2
∂T

)

≤2h−3
T

(
Ch2T |e0|2,∂T

)2
+ 2h−3

T ‖Qbe0 − eb‖
2
∂T

≤2ChT |e0|
2
2,∂T + 2h−3

T ‖Qbe0 − eb‖
2
∂T

≤2C|e0|
2
2,T + 2h−3

T ‖Qbe0 − eb‖
2
∂T .

Combining the above with (10.5) gives (10.9).

Lemma 10.4. (Poincaré Inequality) There exists a constant C such that

(10.10)
∑

T∈Th

‖e0‖
2
T ≤ C

( ∑

T∈Th

‖∇e0‖
2
T +

∑

T∈Th

h−1
T ‖e0 − eb‖

2
∂T

)
,

where eh ∈ Vh is any finite element function with eb = 0.

Proof. Consider the Laplace equation:

−∆φ = e0 in Ω,
φ = 0 on ∂Ω.

Assume that the solution φ is regular so that

(10.11) ‖φ‖22 ≤ C‖e0‖
2.

The above assumption is always satisfied since otherwise we may extend the domain
Ω to Ω̃ in which the required regularity is satisfied, with e0 being extended by zero
outside of Ω.

By letting w = −∇φ, we have

∑

T∈Th

(e0, e0)T =
∑

T∈Th

(e0,∇ ·w)T =
∑

T∈Th

〈e0,w · n〉∂T −
∑

T∈Th

(w,∇e0)T

=
∑

T∈Th

〈(e0 − eb),w · n〉∂T −
∑

T∈Th

(w,∇e0)T

≤
∑

T∈Th

‖w‖T‖∇e0‖T +
∑

T∈Th

‖w‖∂T ‖e0 − eb‖∂T .

The trace inequality (10.1) implies

‖w‖2∂T ≤ C(h−1
T ‖w‖T + hT ‖∇w‖T ) ≤ Ch−1

T ‖w‖21,T .
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Thus, from Cauchy-Schwarz and the regularity (10.11) we obtain

∑

T∈Th

(e0, e0)T ≤
∑

T∈Th

‖w‖1,T‖∇e0‖T +
∑

T∈Th

Ch
− 1

2

T ‖w‖1,T ‖e0 − eb‖∂T

≤C
( ∑

T∈Th

‖∇e0‖
2
T +

∑

T∈Th

h−1
T ‖e0 − eb‖

2
∂T

) 1

2

‖φ‖2

≤C
( ∑

T∈Th

‖∇e0‖
2
T +

∑

T∈Th

h−1
T ‖e0 − eb‖

2
∂T

) 1

2

‖e0‖,

which verifies the estimate (10.10).

The following is another version of the Poincaré inequality for functions in V 0
h .

Lemma 10.5. There exists a constant C such that

(10.12)
( ∑

T∈Th

‖∇e0‖
2
T

) 1

2

≤ C|||eh|||

for all eh ∈ V 0
h .

Proof. Since eh ∈ V 0
h , then we have eg = 0. Thus, an application of (10.10) with

e0 replaced by ∇e0 yields

∑

T∈Th

‖∇e0‖
2
T ≤ C

( ∑

T∈Th

|e0|
2
2,T +

∑

T∈Th

h−1
T ‖∇e0 − eg‖

2
∂T

)
.(10.13)

For the second term on the right-hand side of (10.13), we have

∑

T∈Th

h−1
T ‖∇e0 − eg‖

2
∂T

≤2
∑

T∈Th

h−1
T ‖∇e0 −Qb(∇e0)‖

2
∂T + 2

∑

T∈Th

h−1
T ‖Qb(∇e0)− eg‖

2
∂T .

(10.14)

Substituting (10.14) into (10.13) yields

∑

T∈Th

‖∇e0‖
2
T ≤ C

∑

T∈Th

|e0|
2
2,T + C|||eh|||

2
≤ C|||eh|||

2
,

where we have used (10.5) in the last inequality.

Lemma 10.6. For quadratic element k = 2, we assume that the exact solution u
of (1.1) is sufficiently regular such that u ∈ H4(Ω). There exists a constant C such
that the following inequality holds true:

∣∣∣∣∣∣

∑

T∈Th

d∑

i,j=1

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, e0 − eb〉∂T

∣∣∣∣∣∣
≤ Ch‖u‖4 |||eh|||.(10.15)
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Proof. Since Qh is the local L2 projection onto P0(T ), then we have

〈∂j(∂
2
iju−Qh∂

2
iju) · ni, e0 − eb〉∂T

=〈∂j∂
2
iju · ni, e0 − eb〉∂T

=〈∂j∂
2
iju · ni, e0 −Qbe0〉∂T + 〈∂j∂

2
iju · ni, Qbe0 − eb〉∂T

=〈(I −Qb)∂j∂
2
iju · ni, e0 −Qbe0〉∂T + 〈∂j∂

2
iju · ni, Qbe0 − eb〉∂T

=J1 + J2.

(10.16)

For the second term J2, by using Cauchy-Schwarz inequality, trace inequality (10.1)
and (10.6), we have

∣∣∣∣∣∣

∑

T∈Th

d∑

i,j=1

〈∂j∂
2
iju · ni, Qbe0 − eb〉∂T

∣∣∣∣∣∣

≤
( ∑

T∈Th

d∑

i,j=1

h3T ‖∂j∂
2
iju‖

2
∂T

) 1

2

( ∑

T∈Th

h−3
T ‖Q0e0 − eb‖

2
∂T

) 1

2

≤C
( ∑

T∈Th

h3T
(
hT |u|

2
4,T + h−1

T |u|23,T
)) 1

2

|||eh|||

≤Ch
(
‖u‖3 + h‖u‖4

)
|||eh|||.

(10.17)

As to the first term J1, by using Cauchy-Schwarz inequality, trace inequality
(10.1), (10.2), and Lemma 10.5, we arrive at

∣∣∣∣∣∣

∑

T∈Th

d∑

i,j=1

〈(I −Qb)∂j∂
2
iju · ni, e0 −Qbe0〉∂T

∣∣∣∣∣∣

≤
( ∑

T∈Th

d∑

i,j=1

‖(I −Qb)∂j∂
2
iju‖

2
∂T

) 1

2

( ∑

T∈Th

‖e0 −Qbe0‖
2
∂T

) 1

2

≤C
( ∑

T∈Th

hT |u|
2
4,T

) 1

2

( ∑

T∈Th

hT |e0|
2
1,T

) 1

2

≤Ch‖u‖4

( ∑

T∈Th

|e0|
2
1,T

) 1

2

≤ Ch‖u‖4|||eh|||.

(10.18)

Combining all the above inequalities gives rise to the desired estimate (10.15).

Lemma 10.7. There exists a constant C such that the following inequality holds
true:

( ∑

T∈Th

d∑

i,j=1

h−1
T ‖(∂ie0 − egi) · nj‖

2
∂T

) 1

2

≤ C|||eh|||

for any eh ∈ V 0
h .
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Proof. From the triangle inequality, we have

‖(∂ie0 − egi) · nj‖
2
∂T ≤ ‖∂ie0 − egi‖

2
∂T

≤2
(
‖∂ie0 −Qb(∂ie0)‖

2
∂T + ‖Qb(∂ie0)− egi‖

2
∂T

)

≤ChT |e0|
2
2,T + 2‖Qb(∂ie0)− egi‖

2
∂T .

(10.19)

Thus,

∑

T∈Th

d∑

i,j=1

h−1
T ‖(∂ie0 − egi) · nj‖

2
∂T ≤ C

∑

T∈Th

(
|e0|

2
2,T + h−1

T ‖Qb(∂ie0)− egi‖
2
∂T

)

≤ C|||eh|||
2.

This completes the proof of the lemma.
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