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Abstract

The present work is devoted to approximation of the statistical moments of the unknown solu-
tion of a class of elliptic transmission problems in R3 with randomly perturbed interfaces. Within
this model, the diffusion coefficient has a jump discontinuity across the random transmission in-
terface which models linear diffusion in two different media separated by an uncertain surface. We
apply the shape calculus approach to approximate solution’s perturbation by the so-called shape
derivative, correspondingly statistical moments of the solution’s perturbation are approximated by
the moments of the shape derivative. We characterize the shape derivative as a solution of a related
homogeneous transmission problem with nonzero jump conditions which can be solved with the
aid of boundary integral equations. We develop a rigorous theoretical framework for this method,
particularly i) extending the method to the case of unbounded domains and ii) closing the gaps and
clarifying and adapting results in the existing literature. The theoretical findings are supported by
and illustrated in two particular examples.

1 Introduction

Elliptic transmission or interface problems arise in many fields in science and engineering, such as
tomography, deformation of an elastic body with inclusions, stationary groundwater flow in heteroge-
neous medium, fluid-structure interaction, scattering of an elastic body and many others. Combined
with the state-of-the-art hardware, advanced numerical schemes are capable of producing a highly
accurate and efficient deterministic numerical simulation, provided that the problem data are known
exactly. However, in real applications, a complete knowledge of the problem parameters is not realistic
for many reasons. First, the simulation parameters are often estimated from measurements which can
be inexact e.g. due to imperfect measurement devices. Second, the parameters are estimated based
on a large but finite number of system samples (snapshots); this information can be incomplete or
stochastic. Finally, parameters of the system originate from a mathematical model which is itself only
an approximation of the actual process. Under such circumstances, highly accurate results of a single
deterministic simulation for one particular set of problem parameters are of limited use. An important
paradigm, becoming rapidly popular over the last years, see e.g. [2, 3, 6, 7, 8, 9, 10, 11, 14, 18, 19]
and references therein, is to treat the lack of knowledge via modeling uncertain parameters as random
fields. If the forward solution operator is continuous, the solution of the forward problem with random
parameters becomes a well-defined random field. Efficient numerical approximation of the random (or

∗This work has been funded by BMBF and the Group of Eight Australia within the DAAD-Go8 Project “Numerical
methods for elliptic transmission problems on uncertain interfaces”, Project ID 56266715 and RG123838.
†Hausdorff Center for Mathematics and Institute for Numerical Simulation, University of Bonn, Endenicher Allee 64,

Bonn 53115, Germany;
‡Current address: Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220,

Reading RG6 6AX, United Kingdom, a.chernov@reading.ac.uk
§School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia,

thanh.tran@unsw.edu.au

1

ar
X

iv
:1

40
2.

67
48

v1
  [

m
at

h.
N

A
] 

 2
7 

Fe
b 

20
14



stochastic) solution and its probabilistic characteristics, e.g. statistical moments, is a highly non-trivial
task representing numerous new interdisciplinary challenges: from regularity analysis and numerical
analysis to modeling and efficient parallel large scale computing.

In this article we develop a deterministic method for numerical solution for a class of transmission
problems with randomly perturbed interfaces. The equation to be solved is of the form

−∇ · (α∇u) = f in D±,

where D− is a random bounded domain in R3 and D+ = R3 \ D− is its complement. The domains
share a common random surface Γ, and the coefficient function α takes (in general) distinct constant
values in D− and D+, respectively. The solution u is subject to jump conditions across Γ. A precise
description of the model problem is deferred until Section 2.3, where a probabilistic perturbation model
for the surface Γ (and thus D±) will be rigorously introduced. Within this model, the transmission
interface depends on the “random event” ω and the parameter ε ≥ 0 controlling the amplitude of
the perturbation. Therefore, the solution u depends on ω and ε, and will be denoted by uε(ω). The
case ε = 0 corresponds to the zero perturbation. In the present paper we are aiming at estimating
probabilistic properties of the solution perturbation uε(ω) − u0 when the perturbation parameter is
small, ε� 1.

More precisely, we exploit the ideas from the recent publications [4, 6, 12, 13, 14] and propose to
approximate the statistical moments of the solution perturbation by the moments of the linearized
solution, i.e. for a fixed (small) value of the perturbation parameter ε the k-th order statistical
moments of the solution perturbation are approximated by

Mk[uε − u0] ≈ εkMk[u′] (1.1)

and similarly
Mk[uε − E[uε]] ≈ εkMk[u′]. (1.2)

Here u′ is the shape derivative of uε formally understood as the linear order term in the asymptotic
expansion

uε(x, ω) = u0(x) + εu′(x, ω) + · · · , ε→ 0, (1.3)

for almost all random events ω ∈ Ω at a certain fixed point x in the Euclidean space R3. The notion
of the shape derivative has been introduced in the context of the shape optimization (see e.g. the
monograph [20] and the references therein) and allows to quantify sensitivity of the solution of a PDE
to small perturbation of the boundary.

Although very intuitive, (1.3) cannot be used as a rigorous definition of u′(x, ω). In particular,
convergence of the asymptotic expansion and herewith the existence of the shape derivative is unclear.
In the first part of this article (Section 3) we develop a rigorous mathematical theory of existence
of the shape derivative for the class of elliptic transmission problems under consideration. Similarly
to [13, Lemma 1], we obtain a characterization of the shape derivative u′(x, ω) as a solution of a
deterministic transmission problem on a fixed interface. Our contribution in this section is two-fold:
i) we extend the notion of shape derivatives to the case of unbounded domains, and ii) we fill the gaps
and unclarities in existing literature where no rigorous discussion on existence of shape derivatives is
presented.

As mentioned above, for almost all ω ∈ Ω the shape derivative u′(·, ω) is a solution of a deterministic
problem in R3 with (in general) nonhomogeneous jump conditions but with vanishing volume source
term. The second contribution of this article is the analysis of boundary element methods [15, 17,
21] which are used to solve this transmission problem on deterministic domains with deterministic
interface. A tensorization argument is then used to obtain the approximation (1.1) for the statistical
moments.
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Finally, we illustrate the accuracy of the linearization approach by considering two examples setting
on the unit sphere Γ := {|x| = 1} with uniform radial perturbation. The first example involves a
pre-determined solution with radial symmetry, so that the exact and the linearized solutions as well as
their second moments are available explicitly. We observe that in this particular case the linearization
error for the second order statistical moments is of the order O(ε4) rather than o(ε2) as confirmed by
the theory. The second example involves non-symmetric data so that the linearized solution is not
available explicitly. To solve this problem numerically we use the sparse spectral tensor product BEM
developed in [5]. This method exploits the underlying geometry of the formulation and uses the basis
of spherical harmonics being the eigenfunctions of the integral operator governing the problem.

The paper is organized as follows. Section 2 contains the description of the random surface pertur-
bation model and the rigorous formulation of the model transmission problem, preceded by the details
on the function spaces involved in the analysis. Section 3 contains the generalization of the shape
calculus to the case of unbounded domains, definition and characterization of the material and shape
derivatives for the underlying model transmission problem and a rigorous proof and error bounds for
the approximation (1.1). Section 4 contains the details of the boundary reduction for the linearized
problem. Section 5 contains two examples, an analytic and a numerical, illustrating the accuracy of
the method.

2 Model elliptic transmission problem on a random interface

We start with some preliminary definitions and notations in Section 2.1. Section 2.2 contains the
description of a model for the random surface perturbation. We introduce the randomized model
problem in the strong form in Section 2.3. The details on Sobolev spaces involved are summarized in
Section 2.4.

2.1 Bochner spaces and statistical moments

Throughout this paper we denote by (Ω,Σ,P) a generic complete probability space and let X be a
separable Hilbert space. For any 1 ≤ k ≤ ∞, the Bochner space Lk(Ω, X) is defined as usual by

Lk(Ω, X) :=
{
v : Ω→ X, measurable : ‖v‖Lk(Ω,X) <∞

}
(2.1)

with the norm

‖v‖Lk(Ω,X) :=


(∫

Ω
‖v(ω)‖kX dP(ω)

)1/k

, 1 ≤ k <∞,

esssup
ω∈Ω

‖v(ω)‖X , k =∞.
(2.2)

The elements of Lk(Ω, X) are called random fields. We remark that a part of the subsequent analysis
can be carried out in the more general case when X is a general Banach space, cf. [6]; in this paper we
restrict to the Hilbertian setting which is sufficient for the purpose of this work. In particular, when
X1 and X2 are two separable Hilbert spaces, their tensor product X1⊗X2 is a separable Hilbert space
with the natural inner product extended by linearity from 〈v ⊗ a,w ⊗ b〉X1⊗X2 = 〈v, w〉X1〈a, b〉X2 , cf.
e.g. [16, p. 20], [1, Definition 12.3.2, p.298]. In this paper we work with k-fold tensor products

X(k) := X ⊗ · · · ⊗X. (2.3)

with the natural inner product satisfying 〈v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wk〉X(k) = 〈v1, w1〉X . . . 〈vk, wk〉X .

Definition 2.1. For a random field v ∈ Lk(Ω, X), its k-order moment Mk[v] is an element of X(k)

defined by

Mk[v] :=

∫
Ω

(
v(ω)⊗ · · · ⊗ v(ω)︸ ︷︷ ︸

k-times

)
dP(ω). (2.4)
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In the case k = 1, the statistical momentM1[v] coincides with the mean value of v and is denoted
by E[v]. If k ≥ 2, the statistical moment Mk[v] is the k-point autocorrelation function of v. The
quantity Mk[v − E[v]] is termed the k-th central moment of v. We distinguish in particular second
order moments: the correlation and covariance defined by

Cor[v] :=M2[v], Cov[v] :=M2[v − E[v]]. (2.5)

In this paper we work with X being Sobolev spaces of real-valued functions defined on a domain
U ⊂ R3 yielding, in particular, the representation

Cor[v](x,y) :=

∫
Ω
v(x, ω)v(y, ω) dP(ω), x,y ∈ U. (2.6)

We observe that Cor[v] is defined on the Cartesian product U ×U . Similarly,Mk[v] is defined on the
k-fold Cartesian product U × · · · × U . Here, the dimension of the underlying domain grows rapidly
with increasing moment order k.

2.2 Random interfaces

Consider a fixed bounded domain D0
− ⊂ R3 and let D0

+ := R3 \ D0
− be its complement. Then the

interface Γ0 = D0
− ∩D0

+ is a closed manifold in R3. For the subsequent analysis we assume that Γ0 is
at least of the class C1,1. This implies that the outward normal vector n0 to Γ0 is Lipshitz continuous:
n0 ∈ C0,1(Γ0). The partition R3 = D0

+ ∪D0
− and the interface Γ0 will be fixed throughout the paper

and will be called the nominal partition and nominal interface, respectively.
In the present paper we utilize the domain perturbation model based on the speed method (see

e.g. the monograph [20] and references therein) and random domain perturbation model from [4, 6,
12, 13, 14]. Suppose κ ∈ Lk(Ω, C0,1(Γ0)) is a random field, i.e. for almost any realization ω ∈ Ω, we
have κ(·, ω) ∈ C0,1(Γ0). For some sufficiently small, nonnegative ε we consider a family of random
interfaces of the form

Γε(ω) = {x + εκ(x, ω)n0(x) : x ∈ Γ0}, ω ∈ Ω. (2.7)

Here, the uncertainty of the surfaces Γε(ω) is represented by the uncertainty in κ(·, ω). Notice that
the interface Γε(ω)|ε=0 is identical with Γ0 and therefore is a deterministic closed manifold. Moreover,
the limit Γε(ω) → Γ0 as ε → 0 is well defined in Lk(Ω, C0,1). If we identify Γε and Γ0 with their
graphs, then

‖Γε − Γ0‖Lk(Ω,C0,1) = ε

(∫
Ω
‖κ(·, ω)n0‖kC0,1(Γ0) dP(ω)

) 1
k

≤ 2ε‖κ‖Lk(Ω,C0,1(Γ0))‖n0‖C0,1(Γ0). (2.8)

This implies that for almost all ω ∈ Ω and a sufficiently small ε ≥ 0 the surface Γε(ω) is a Lipshitz
continuous closed manifold separating the interior domain Dε

−(ω) and its complement Dε
+(ω) :=

R3 \ Dε
−. The shape calculus in Section 3 requires a somewhat stronger smoothness assumption on

κ, namely that the realizations of κ belong to C1(Γ0). From (2.7) we observe that the mean random
interface is represented by

E[Γε] =
{
x + εE[κ(x, ·)]n0(x), x ∈ Γ0

}
.

Without loss of generality, we may assume that the random perturbation amplitude κ(x, ω) is centered,
i.e.,

E[κ(x, ·)] = 0 ∀x ∈ Γ0. (2.9)

In this case
E[Γε] = Γ0 and Cov[κ](x,y) = Cor[κ](x,y).
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2.3 The model problem

As shown above, for a sufficiently small value ε ≥ 0 the surface perturbation model (2.7) generates
a well defined partition of R3 into a bounded Lipshitz domain Dε

−(ω) and its complement Dε
+(ω) =

R3 \Dε
− separated by the closed Lipshitz manifold Γε(ω) = Dε

−(ω) ∩Dε
+(ω). We consider a piecewise

constant diffusion function subjected to this partition:

αε(x, ω) =

{
α−, x ∈ Dε

−(ω),

α+, x ∈ Dε
+(ω),

(2.10)

where α− and α+ are two positive constants independent of x, ε, and ω. Having this we introduce
the model elliptic transmission problem as a problem of finding uε satisfying

−∇ ·
(
αε(x, ω)∇uε(x, ω)

)
= f(x) in Dε

±(ω), (2.11a)

[uε(x, ω)] = 0 on Γε(ω), (2.11b)[
αε(x, ω)

∂uε

∂n
(x, ω)

]
= 0 on Γε(ω), (2.11c)

uε(x, ω) = O(|x|−1) as |x| → +∞. (2.11d)

Here, ∂/∂n denotes the normal derivative on Γε(ω), i.e. ∂/∂n = nε(x, ω) ·∇, where nε(x, ω) is the
unit normal vector to the interface Γε(ω) pointing into the interior of Dε

+(ω). Let uε−(ω) and uε+(ω)
be the restrictions of uε(ω) on Dε

−(ω) and Dε
+(ω), respectively. Then the jump [uε(ω)] is understood

to be uε−(ω)− uε+(ω) on Γε(ω) in the sense of trace for each sample ω. Similarly[
αε(x, ω)

∂uε

∂n
(x, ω)

]
= αε−

∂uε−
∂n

(x, ω)− αε+
∂uε+
∂n

(x, ω), x ∈ Γε(ω).

The function f ∈ H1(R3) is assumed to be independent of ω and thereby represents a deterministic
source function in R3.

The model problem (2.11a)–(2.11d) represents a stationary diffusion in R3 with piecewise constant
diffusivity in the interior and exterior domain. The uncertainty in the random solution uε(x, ω) is
implied by the uncertain location of the transmission interface Γε(ω). The solution depends nonlinearly
on the interface and a linearization process will first be used to linearize the initial problem. The tool
in this process is shape calculus which will be presented in Section 3. In what follows we address the
problem of approximation of the statistical moments

E[uε], Mk[uε − u0], and Mk[uε − E[uε]], k ≥ 2, (2.12)

with this strategy and the rigorous control of the approximation error.

2.4 Sobolev spaces

In this section we introduce function spaces needed for the forthcoming analysis. These spaces will
allow to identify the unique weak solution of the model problem (2.11a)–(2.11d) and characterize the
moments (2.12).

Let G be a sphere-like surface, i.e., there exists a diffeomorphism ρ : S→ G such that

G = {ρ(x) : x ∈ S}.

Here, S is the unit sphere in R3. The surface G divides R3 into two subdomains, a bounded domain
D− and an unbounded domain D+. For any distribution v defined on G, and for any point ρ(x) on
G, we can write

(v ◦ ρ)(x) =v(ρ(x)) =

∞∑
`=0

∑̀
m=−`

v̂`,mY`,m(x),
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where

v̂`,m =

∫
S
(v ◦ ρ)(x)Y`,m(x) dσx (2.13)

are the Fourier coefficients of v. Here Y`,m are spherical harmonics, which are the restrictions on the
unit sphere S of homogeneous harmonics polynomials in R3. The Sobolev space Hs(G), for s ∈ R, is
defined by

Hs(G) =

{
v ∈ D′(G) :

∞∑
`=0

∑̀
m=−`

(1 + `)2s |v̂`,m|2 < +∞
}
, (2.14)

where D′(G) is the set of distributions on G. The corresponding inner product and the norm are given
by

〈v, w〉Hs(G) =

∞∑
`=0

∑̀
m=−`

(1 + `)2sv̂`,mŵ`,m, v, w ∈ Hs(G), (2.15)

and

‖v‖Hs(G) =

( ∞∑
`=0

∑̀
m=−`

(1 + `)2s |v̂`,m|2
)1/2

, v ∈ Hs(G). (2.16)

We note here that the inner product (2.15) and the norm (2.16) satisfy

〈v, w〉Hs(G) = 〈v ◦ ρ, w ◦ ρ〉Hs(S) and ‖v‖Hs(G) = ‖v ◦ ρ‖Hs(S) (2.17)

for any v, w ∈ Hs(G). The set {Y`,m ◦ ρ−1 : ` ∈ N, m = −`, . . . , `} is an orthogonal basis for Hs(G).
We also note that the space H0(G) can be understood as a weighted L2-space on the interface G.

We now introduce the tensor product of Sobolev spaces on the k-fold Cartesian product domains
Gk = G × · · · × G. These spaces will be used later on for characterization of statistical moments.
By boldface symbols we denote multiindices with k integer components, e.g. ` = (`1, . . . , `k). Given
s ∈ R, the Sobolev space Hs

mix(Gk) is defined to be the space of all distributions v(y1, . . . ,yk) with
y1, . . . ,yk ∈ G satisfying

‖v‖Hs
mix(Gk) := 〈v, v〉1/2

Hs
mix(Gk)

<∞,

〈v, w〉Hs
mix(Gk) :=

∞∑
`=0

∑̀
m=−`

(
k∏
i=1

(1 + `i)
2s

)
v̂`,mŵ`,m

(2.18)

with the Fourier coefficients

v̂`,m :=

∫
x1∈S

. . .

∫
xk∈S

v(ρ(x1), . . . , ρ(xk))

(
k∏
i=1

Y`i,mi(xi)

)
dσx1 . . . dσxk (2.19)

Recalling definition (2.3) we observe that Hs
mix(Gk) is isometrically isomorphic to the tensor product

space Hs(G)(k). These spaces will be identified in what follows. We also use the notation Hs
mix(Kk)

for the tensor product Hs(K)(k) where K is a compact subset of R3.
Sobolev spaces on bounded domains in R3 are defined, as usual, as spaces of all distributions whose

partial derivatives are square integrable. Proper treatment of the transmission problem (2.11a)–(2.11d)
in unbounded domains in R3 requires a special care. Following [17], for an unbounded domain U ⊂ R3

we introduce the space

H1
w(U) :=

{
v ∈ D′(U) : ‖v‖H1

w(U) =

(∫
U

(
|∇v|2 +

|v(x)|2

1 + |x|2
)
dx

)1/2

< +∞
}
. (2.20)
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Specifically, for a given partition R3 = Dε
− ∪Dε

+ we define the space

Wε :=
{
v = (v−, v+) ∈ H1(Dε

−)×H1
w(Dε

+) : [v]Γε = 0
}

(2.21)

which is a weighted Sobolev space on Dε
− ∪Dε

+ with corresponding norm and seminorm

‖v‖Wε
:=
(
‖v−‖2H1(Dε−) + ‖v+‖2H1

w(Dε+)

)1/2
, |v|Wε

:=

(∫
Dε−

|∇v−|2 dx +

∫
Dε+

|∇v+|2 dx

)1/2

.

(2.22)

The following lemma which will be frequently used in the rest of the paper states the equiva-
lence between the norm ‖·‖Wε

and seminorm |·|Wε
. The proof of this result follows by the Friedrichs

inequality and the technique in the proof of [17, Theorem 2.10.10].

Lemma 2.2. The seminorm |·|Wε
is also a norm in Wε which is equivalent to ‖·‖Wε

.

3 Shape calculus

The aim of the present section is the systematic development of the linearization theory for the
solution uε of the model problem (2.11a)–(2.11d) with respect to the shape of the perturbed interface
Γε. This techniques is also known as shape calculus and originates from shape optimization; see [20]
and references therein. For this purpose, in the first three subsections that follow, we temporarily stay
away from randomness and consider only deterministic perturbed interfaces.

3.1 Perturbation of deterministic interfaces

In this subsection we collect several properties of perturbed interfaces which are important for the
subsequent analysis. Assume that the perturbation function κ is a fixed deterministic function in
W 1,∞(Γ0), in particular κ is independent of ω. Then Γε is defined by

Γε := {x + εκ(x)n0(x) : x ∈ Γ0}, ε > 0. (3.1)

As already noticed in Section 2.2, Γε is a closed Lipshitz manifold in R3 provided 0 ≤ ε ≤ ε0 and ε0
is sufficiently small. In this case Γε introduces a decomposition of R3 into the interior and exterior
subdomains Dε

− and Dε
+, respectively.

Following [20], we define a mapping T ε : R3 → R3 which transforms Γ0 into Γε and D0
± into Dε

±,
respectively, by

T ε(x) := x + εκ̃(x)ñ0(x), x ∈ R3, (3.2)

where κ̃ and ñ0 are any smoothness-preserving extensions of κ and n0 into R3. We require in particular
that κ̃ ∈ W 1,∞(R3). Without loss of generality we assume that the extension κ̃ vanishes outside a
sufficiently large ball BR := {x ∈ R3 : |x| < R} containing Γε for any 0 ≤ ε ≤ ε0. This implies that
the perturbation mapping T ε(x) is an identity in the complement Bc

R := R3 \BR, i.e.

T ε(x) = x ∀x ∈ Bc
R. (3.3)

For the ease of notation we abbreviate

V (x) := κ̃(x)ñ0(x), x ∈ R3. (3.4)

In [20], V is called the velocity field of the mapping T ε. The following result is straightforward.

Lemma 3.1. Assuming κ̃ ∈W 1,∞(R3) and κ̃(x) = 0 for x ∈ Bc
R, there hold V ∈

(
H1(R3)

)3
and

∂mV (x)

∂xml
= 0 ∀x ∈ Bc

R, l = 1, 2, 3, m = 0, 1.

7



Recall the definition (2.21) of the weighted space Wε associated to the splitting R3 = Dε
− ∪ Dε

+.
It can be proved that a function v belongs to Wε if and only if the composition v ◦ T ε belongs to W0,
and there hold

‖(vε)−‖H1(Dε−) ' ‖(v
ε ◦ T ε)−‖H1(D0

−)

‖(vε)+‖H1
w(Dε+) ' ‖(v

ε ◦ T ε)+‖H1
w(D0

+)

‖vε‖Wε
' ‖vε ◦ T ε‖W0

.

(3.5)

In the subsequent analysis, for any 3 by 3 matrix A(x) whose entries are functionals of x ∈ U ⊂ R3,
we denote

‖A(·)‖Lp(U) := max
i,j=1,2,3

{‖Ai,j(·)‖Lp(U)}, 1 ≤ p ≤ ∞,

where Aij are components of A.
The following three lemmas state some important properties of the mapping T ε which will be used

later in this section. Until the end of this section we assume that T ε is defined by (3.2) and (3.3) with
κ̃ ∈ C1(R3), and denote its Jacobian matrix and Jacobian determinant by JT ε and γ(ε, ·), respectively.

Lemma 3.2. Consider A(ε, ·) := γ(ε, ·)J−1
T ε J

−>
T ε , where J>T ε is the transpose of JT ε. Then there hold

lim
ε→0
‖A(ε, ·)− I‖L∞(R3) = 0 (3.6)

and

lim
ε→0

∥∥∥∥A(ε, ·)− I
ε

−A′(0, ·)
∥∥∥∥
L2(R3)

= 0. (3.7)

Here, A′(0, ·) is the Gâteaux derivative of A (determined by T ε) at ε = 0, namely

A′(0,x) = lim
ε→0

A(ε,x)− I(x)

ε
, x ∈ R3.

Proof. Denoting V (x) := (V1(x), V2(x), V3(x))>, the Jacobian matrix and the Jacobian of T ε are
given by

JT ε(x) =


1 + ε

∂V1(x)

∂x1
ε
∂V1(x)

∂x2
ε
∂V1(x)

∂x3

ε
∂V2(x)

∂x1
1 + ε

∂V2(x)

∂x2
ε
∂V2(x)

∂x3

ε
∂V3(x)

∂x1
ε
∂V3(x)

∂x2
1 + ε

∂V3(x)

∂x3

 (3.8)

and

γ(ε,x) =
∣∣∣1 + ε

( 3∑
k=1

∂Vk(x)

∂xk

)
+ ε2

( 3∑
k,l=1
k 6=l

∂Vk(x)

∂xk

∂Vl(x)

∂xl
− ∂Vl(x)

∂xk

∂Vk(x)

∂xl

)

+ ε3
( 3∑
i,j,k=1

sign(i, j, k)
∂Vi(x)

∂x1

∂Vj(x)

∂x2

∂Vk(x)

∂x3

)∣∣∣
=:
∣∣1 + εγ1(x) + ε2γ2(x) + ε3γ3(x)

∣∣. (3.9)

Here sign(i, j, k) denotes the sign of the permutation (i, j, k). The entries Aij(ε,x), i, j = 1, 2, 3, of
the matrix A(ε,x) are given by

Aij(ε,x) = γ(ε,x)−1

(
δij +

4∑
n=1

εnhijn(x)

)
, (3.10)

8



where hijn is a polynomial of partial derivatives of V and δij is the Kronecker delta. Using Lemma 3.1,
we deduce

γn, hijn ∈ L∞(R3) ∩ L2(R3), i, j = 1, 2, 3 and n = 1, . . . , 4,

lim
ε→0
‖γ(ε, ·)‖L∞(R3) > 0,

(3.11)

where γ1, γ2, γ3 are defined by (3.9) and γ4 := 0 for notational convenience later. In particular, for
sufficiently small ε > 0, there holds

γ(ε,x) = 1 + εγ1(x) + ε2γ2(x) + ε3γ3(x) ≥ c > 0 ∀x ∈ R3. (3.12)

Consider from now on sufficiently small ε > 0. It follows from (3.10) and (3.12) that the ij-entry of
the matrix A(ε,x)− I is

Aij(ε, ·)− δij = ε γ(ε, ·)−1
4∑

n=1

εn−1
(
hijn − δijγn

)
. (3.13)

Hence, (3.11) yields
‖Aij(ε, ·)− δij‖L∞(R3) → 0 as ε→ 0,

proving (3.6).
From (3.13), we have

Aij(ε, ·)− δij
ε

= γ(ε, ·)−1
4∑

n=1

εn−1
(
hijn − δijγn

)
. (3.14)

Taking the limit when ε goes to 0, noting that γ(ε, ·)→ 1, we obtain

A′ij(0, ·) = hij1 − δijγ1, i, j = 1, 2, 3. (3.15)

Subtracting (3.15) from (3.14) side by side, we obtain

Aij(ε, ·)− δij
ε

−A′ij(0, ·) = γ(ε, ·)−1
( 4∑
n=2

εn−1(hijn − δijγn)− (hij1 − δijγ1)(γ(ε, ·)− 1)
)
. (3.16)

Noting (3.11), we infer

lim
ε→0

∥∥∥∥Aij(ε, ·)− δijε
−A′ij(0, ·)

∥∥∥∥
L2(R3)

= 0,

proving (3.7). 2

Lemma 3.3. For any function v ∈ L2(R3), there holds

lim
ε→0

∥∥∥∥√1 + | · |2
(
γ(ε, ·) v ◦ T ε − v

)∥∥∥∥
L2(R3)

= 0.

Proof. Since T ε(x) = x for any x ∈ Bc
R, see (3.3), the Jacobian satisfies

γ(ε,x) = 1 for any x ∈ Bc
R. (3.17)

Therefore,∥∥∥√1 + | · |2
(
γ(ε, ·)− 1

)
(v ◦ T ε)

∥∥∥
L2(R3)

=

∥∥∥∥√1 + | · |2
(
γ(ε, ·)− 1

)
(v ◦ T ε)

∥∥∥∥
L2(BR)

≤
√

1 +R2 ‖γ(ε, ·)− 1‖L∞(R3) ‖v ◦ T
ε‖L2(R3)

≤ Cε ‖v ◦ T ε‖L2(R3) .
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Using the change of variables y = T ε(x) and noting (3.11), we have

‖v ◦ T ε‖2L2(R3) =

∫
R3

|v(y)|2
(
γ(ε, (T ε)−1(y))

)−1
dy ≤ C ‖v‖L2(R3) .

Therefore,

lim
ε→0

∥∥∥√1 + | · |2
(
γ(ε,x)− 1

)
(v ◦ T ε)

∥∥∥
L2(R3)

= 0. (3.18)

Furthermore, (3.3) also gives∥∥∥∥√1 + | · |2
(
v ◦ T ε − v

)∥∥∥∥
L2(R3)

=

∥∥∥∥√1 + | · |2
(
v ◦ T ε − v

)∥∥∥∥
L2(BR)

≤
√

1 +R2 ‖v ◦ T ε − v‖L2(BR) .

Note that limε→0 ‖v ◦ T ε − v‖L2(BR) = 0 if v is continuous. By using a density argument we deduce

that limε→0 ‖v ◦ T ε − v‖L2(BR) = 0 for v ∈ L2(BR). Hence,

lim
ε→0

∥∥∥∥√1 + | · |2
(
v ◦ T ε − v

)∥∥∥∥
L2(R3)

= 0.

The above identity and (3.18) together with the triangle inequality give the required result. 2

Lemma 3.4. For any function v ∈ H1(R3), there holds

lim
ε→0

∥∥∥∥√1 + | · |2
(
γ(ε, ·)(v ◦ T ε)− v

ε
− div

(
vV
))∥∥∥∥

L2(R3)

= 0.

Proof. Noting (3.3), Lemma 3.1, (3.17) and the triangle inequality, we obtain∥∥∥√1 + | · |2
(γ(ε, ·)(v ◦ T ε)− v

ε
− div(vV )

)∥∥∥
L2(R3)

=

∥∥∥∥√1 + | · |2
(γ(ε, ·)(v ◦ T ε)− v

ε
− div

(
vV
))∥∥∥∥

L2(BR)

.

∥∥∥∥γ(ε, ·)(v ◦ T ε)− v
ε

− div
(
vV
)∥∥∥∥
L2(BR)

≤
∥∥∥∥γ(ε, ·)− 1

ε
(v ◦ T ε)− v div V

∥∥∥∥
L2(BR)

+

∥∥∥∥v ◦ T ε − vε
− V · ∇v

∥∥∥∥
L2(BR)

. (3.19)

Recall from (3.9) that γ1 = div V . It follows from (3.12) that

γ(ε, ·)− 1

ε
(v ◦ T ε)− v div V = γ1(v ◦ T ε − v) + ε(γ2 + εγ3)(v ◦ T ε).

Employing the density argument as in proof of Lemma 3.3, we obtain

lim
ε→0
‖γ1(v ◦ T ε − v)‖L2(BR) = 0 and lim

ε→0
‖ε(γ2 + εγ3)(v ◦ T ε)‖L2(BR) = 0,

so that

lim
ε→0

∥∥∥∥γ(ε, ·)− 1

ε
(v ◦ T ε)− v div V

∥∥∥∥
L2(BR)

= 0.

The second term on the right hand side of (3.19) also tends to zero by a density argument, noting
that V = ∂T ε/∂ε at ε = 0. This completes the proof of the lemma. 2
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3.2 Material and shape derivatives

In this subsection, for notational convenience we use the notation Dε for Dε
− or Dε

+, and H1(Dε) for
H1(Dε

−) or H1
w(Dε

+).

Definition 3.5. For any sufficiently small ε, let vε be an element in H1(Dε) or H1/2(Γε). The material
derivative of vε, denoted by v̇, is defined by

v̇ := lim
ε→0

vε ◦ T ε − v0

ε
, (3.20)

if the limit exists in the corresponding space H1(D0) or H1/2(Γ0). The shape derivative of vε is
defined by

v′ =

{
v̇ −∇v0 · V if vε ∈ H1(Dε),

v̇ −∇Γ0v0 · V if vε ∈ H1/2(Γε),
(3.21)

where ∇Γ0 denotes the surface gradient.

Lemma 3.6. If v′ is a shape derivative of vε ∈ H1(Dε), then for any compact set K ⊂⊂ D0 we have

v′ = lim
ε→0

vε − v0

ε
in H1(K). (3.22)

Proof. Given K ⊂⊂ D0, there exists an ε0 > 0 such that K ⊂⊂ Dε for all 0 ≤ ε ≤ ε0. We denote by
T : [0, ε0]× R3 → R3 the mapping given by

T (ε,x) := T ε(x), ∀(ε,x) ∈ [0, ε0]× R3.

We also denote by ṽ(ε,x) := vε(x) for any 0 ≤ ε ≤ ε0 and x ∈ Dε. By the definition of material
derivative, we have

v̇ =
∂

∂ε
ṽ(ε, T (ε, ·))

∣∣∣
ε=0

, in H1(K).

Applying the chain rule, we obtain

v̇ =
∂ṽ

∂ε
(0, T (0, ·)) +∇ṽ(0, T (0, ·)) · ∂T (0, ·)

∂ε

=
∂ṽ(0, ·)
∂ε

+∇v0 · V, in H1(K).

This implies

v′ =
∂ṽ(0, ·)
∂ε

= lim
ε→0

vε − v0

ε
in H1(K).

2

Remark 3.7. The limit in the above lemma does not hold in H1(D0) since in general, vε does not
belong to H1(D0).

Similar definitions can be introduced for vector functions v. The following lemmas state some
useful properties of material and shape derivatives which will be used frequently in the remainder of
the paper.

Lemma 3.8. Let v̇, ẇ be material derivatives, and v′, w′ be shape derivatives of vε, wε in H1(Dε),
ε ≥ 0, respectively. Then the following statements are true.

(i) The material and shape derivatives of the product vεwε are v̇w0+v0ẇ and v′w0+v0w′, respectively.

(ii) The material and shape derivatives of the quotient vε/wε are (v̇w0 − v0ẇ)/(w0)2 and (v′w0 −
v0w′)/(w0)2, respectively, provided that all the fractions are well-defined.
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(iii) If vε = v for all ε ≥ 0, then v̇ = ∇v0 · V = ∇v · V and v′ = 0.

(iv) If

J1(Dε) :=

∫
Dε
vε dx, J2(Dε) :=

∫
Γε
vε dσ, and dJi(D

ε)|ε=0 := lim
ε→0

Ji(D
ε)− Ji(D0)

ε
, i = 1, 2,

then

dJ1(Dε)|ε=0 =

∫
D0

v′ dx +

∫
Γ0

v0
〈
V,n0

〉
dσ

and

dJ2(Dε)|ε=0 =

∫
Γ0

v′ dσ +

∫
Γ0

(
∂v0

∂n
+ divΓ0(n0) v0

)〈
V,n0

〉
dσ.

Proof. Statements (i)–(iii) can be obtained by using elementary calculations. Statement (iv) is proved
in [20, pages 113, 116]. 2

Lemma 3.9. The material and shape derivatives of the normal field nε are given by

ṅ = n′ = −∇Γ0κ.

Proof. We start by recalling that the material and the shape derivative of surface fields are identical
in the case of normal surface perturbation (3.4). Particularly, from (3.4) and (3.21) we find

ṅ− n′ = ∇Γ0n0 · κn0 = 0.

Recall that the unit normal vector field nε of the perturbed interface Γε is related to that of the
reference interface Γ0 by

nε◦T ε(x) =
J−>T ε (T ε(x))n0(x)∣∣∣J−>T ε (T ε(x))n0(x)

∣∣∣ .
Therefore,

ṅ = lim
ε→0

nε◦T ε(x)− n0(x)

ε

=

lim
ε→0

J−>T ε (T ε(x))− I
ε

− lim
ε→0

∣∣∣J−>T ε (T ε(x))n0(x)
∣∣∣ − 1

ε

 lim
ε→0

n0(x)∣∣∣J−>T ε (T ε(x))n0(x)
∣∣∣

=

dJ−>T ε (T ε(x))

dε

∣∣∣
ε=0
−
d
∣∣∣J−>T ε (T ε(x))n0(x)

∣∣∣
dε

∣∣∣
ε=0

n0(x), (3.23)

noting from (3.8) that
lim
ε→0

J−>T ε = lim
ε→0

JT ε = I.

Since I = J−1
T ε (T ε(x)) JT ε(x) for all x ∈ R3, we have 0 = d

dε

(
J−1
T ε JT ε

)
|ε=0, which together with the

product rule and (3.8) yields

d

dε

(
J−>T ε (T ε(x))

)∣∣∣
ε=0

= −(JT 0)−>
( d
dε

(J>T ε)
∣∣∣
ε=0

)
(JT 0)−1 = − d

dε
(JT ε)

∣∣∣
ε=0

= −J>V , (3.24)

We also have, using the fact that
∣∣∣J−>T 0 n0

∣∣∣ = 1,

d

dε

∣∣∣J−>T ε n0
∣∣∣ ∣∣∣
ε=0

=
∣∣∣J−>T 0 n0

∣∣∣ d
dε

∣∣∣J−>T ε n0
∣∣∣ ∣∣∣
ε=0

=
1

2

d

dε

( ∣∣∣J−>T ε n0
∣∣∣2 )∣∣∣

ε=0

=
1

2

〈
d

dε

(
J−1
T ε J

−>
T ε

)
n0,n0

〉
= −1

2

〈
(J>V + JV )n0,n0

〉
. (3.25)
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Simple calculation reveals that

J>V = ∇κ (n0)> and (J>V + JV )n0 = ∇κ+
〈
∇κ,n0

〉
n0. (3.26)

Inserting (3.24)–(3.26) into (3.23), we obtain

ṅ = −J>V n0 +
1

2

〈
(J>V + JV )n0,n0

〉
n0 = −∇κ+

〈
∇κ,n0

〉
n0 = −∇Γ0κ,

finishing the proof of the lemma. 2

3.3 Shape derivative of solutions of transmission problem

In this subsection, we shall discuss the existence of material and shape derivatives of the solutions of
transmission problems on perturbed interfaces. Consider a deterministic problem with respect to the
reference interface Γ0:

−α4u0 = f in D0
− ∪D0

+, (3.27a)[
u0
]

= 0 on Γ0, (3.27b)[
α
∂u0

∂n

]
= 0 on Γ0, (3.27c)

u0(x) = O(|x|−1) when |x| → ∞. (3.27d)

The perturbed problem corresponding to the perturbed interface Γε is given by

−αε4uε = f in Dε
− ∪Dε

+, (3.28a)

[uε] = 0 on Γε, (3.28b)[
αε
∂uε

∂n

]
= 0 on Γε, (3.28c)

uε(x) = O(|x|−1) when |x| → ∞, (3.28d)

where (cf. (2.10))

αε(x) =

{
α−, x ∈ Dε

−
α+, x ∈ Dε

+.

Lemma 3.10. Suppose f ∈ L2(R3) ∩W ∗0 and κ ∈ C1(Γ0), then

lim
ε→0

∥∥uε ◦ T ε − u0
∥∥
W0

= 0. (3.29)

Here, W ∗0 denotes the dual space of W0 with respect to the L2-inner product.

Proof. By multiplying both sides of (3.28a) with an arbitrary function v ∈ C∞0 (R3) and integrating
over Dε

− ∪Dε
+, we obtain∫

R3

fv dx = −α−
∫
Dε−

4uε(x) v(x) dx− α+

∫
Dε+

4uε(x) v(x) dx. (3.30)

Applying Green’s identity and noting (3.28c), we obtain∫
Dε+∪Dε−

αε(x)∇uε(x) · ∇v(x) = 〈f, v〉L2(R3) ∀v ∈ C∞0 (R3). (3.31)
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Since the space C∞0 (R3) is dense in Wε (see [17, Remark 2.9.3]), there holds∫
Dε+∪Dε−

αε(x)∇uε(x) · ∇vε(x) = 〈f, vε〉L2(R3) ∀vε ∈Wε. (3.32)

Choosing vε = uε gives
|uε|2Wε

' 〈f, uε〉L2(R3) ≤ ‖f‖W ∗ε ‖u
ε‖Wε

.

It follows from Lemma 2.2 that
‖uε‖Wε

. ‖f‖W ∗ε ' ‖f‖W ∗0 . (3.33)

On the other hand, using the change of variables x = T ε(y) in (3.32), we have (noting that
αε(T ε(y)) = α(y))∫

D0
+∪D0

−

α(y) (∇w(y))>A(ε,y)∇(uε ◦ T ε)(y) dy =

∫
D0

+∪D0
−

f(T ε(y))w(y)γ(ε,y) dy, (3.34)

for any w ∈W0. We also obtain from problem (3.27a)–(3.27d)∫
D0

+∪D0
−

α(y) (∇w(y))>∇u0(y) dy =

∫
D0

+∪D0
−

f(y)w(y) dy, (3.35)

for any w ∈W0. Subtracting (3.35) from (3.34) we deduce∫
D0

+∪D0
−

α(y)∇w(y)>∇
(

(uε ◦ T ε)(y)− u0(y)
)
dy

= −
∫
D0

+∪D0
−

α(y)
(
∇w(y)

)> (
A(ε,y)− I

)
∇(uε ◦ T ε)(y) dy

+

∫
D0

+∪D0
−

(
γ(ε,y)f(T ε(y))− f(y)

)
w(y) dy ∀w ∈W0. (3.36)

Choosing in (3.36) w = uε ◦ T ε − u0 gives∫
D0

+∪D0
−

α(y)
∣∣∣∇((uε ◦ T ε)(y)− u0(y)

)∣∣∣2 dy
= −

∫
D0

+∪D0
−

α(y)
(
∇
(

(uε ◦ T ε)(y)− u0(y)
))> (

A(ε,y)− I
)
∇(uε ◦ T ε)(y) dy

+

∫
D0

+∪D0
−

√
1 + |y|2

(
γ(ε,y)f(T ε(y))− f(y)

)(uε ◦ T ε)(y)− u0(y)√
1 + |y|2

dy

.
∥∥(A(ε, ·)− I

)∥∥
L∞(R3)

‖∇(uε ◦ T ε)‖L2(R3)

∥∥∇(uε ◦ T ε − u0
)∥∥
L2(R3)

+

∥∥∥∥√1 + |·|2
(
γ(ε, ·)f ◦ T ε − f

)∥∥∥∥
L2(R3)

∥∥∥uε ◦ T ε − u0√
1 + |·|2

∥∥∥
L2(R3)

implying ∥∥uε ◦ T ε − u0
∥∥
W0

. ‖A(ε, ·)− I‖L∞(R3) ‖∇(uε ◦ T ε)‖L2(R3)

+

∥∥∥∥√1 + |·|2
(
γ(ε, ·)f ◦ T ε − f

)∥∥∥∥
L2(R3)

.

Hence, applying Lemma 3.2, noting (3.33) and Lemma 3.3, we obtain

lim
ε→0

∥∥uε ◦ T ε − u0
∥∥
W0

= 0,

finishing the proof of this lemma. 2
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Lemma 3.11. Assume that f ∈ H1(R3) ∩W ∗0 and κ ∈ C1(Γ0). Then, uε has a material derivative
belonging to W0 which is the solution to the following equation with unknown z:∫

D0
+∪D0

−

α(y)∇z(y) · ∇w(y) dy = −
∫
D0

+∪D0
−

α(y)∇u0(y)A′(0,y)
(
∇w(y)

)>
dy

+

∫
D0

+∪D0
−

div (V (y)f)w(y) dy ∀w ∈W0. (3.37)

Proof. The uniqueness and existence of the solution z ∈ W0 to the above equation is confirmed by
[17, Theorem 2.10.14]. Let zε := (uε ◦ T ε − u0)/ε. Our task is to prove that lim

ε→0
‖zε − z‖W0

= 0.

Dividing (3.36) by ε we obtain∫
D0

+∪D0
−

α(y)∇zε(y) · ∇w(y) dy = −
∫
D0

+∪D0
−

α(y)∇(uε ◦ T ε)(y)
A(ε,y)− I

ε

(
∇w(y)

)>
dy

+

∫
D0

+∪D0
−

γ(ε,y)f(T ε(y))− f(y)

ε
w(y) dy ∀w ∈W0. (3.38)

Subtracting (3.37) from (3.38) yields∫
D0

+∪D0
−

α(y)∇ (zε(y)− z(y)) · ∇w(y) dy

= −
∫
D0

+∪D0
−

α(y)

(
∇(uε ◦ T ε)(y)

A(ε,y)− I
ε

−∇u0(y)A′(0,y)

)
· ∇w(y) dy

+

∫
D0

+∪D0
−

(
γ(ε,y)f(T ε(y))− f(y)

ε
− div

(
V (y)f(y)

))
w(y) dy

=: I1(w) + I2(w). (3.39)

The first integral in the right hand side of (3.39) can be written as

I1(w) =

∫
D0

+∪D0
−

α(y)∇(uε ◦ T ε)(y)

(
A(ε,y)− I

ε
−A′(0,y)

)
· ∇w(y) dy

+

∫
D0

+∪D0
−

α(y)∇
(
(uε ◦ T ε)(y)− u0(y)

)
A′(0,y) · ∇w(y) dy,

which converges to 0 due to (3.29) and Lemma 3.2. The second integral in the right hand side of (3.39)
also converges to 0 due to Lemma 3.4. Therefore, we have

lim
ε→0

∫
D0

+∪D0
−

α(y)∇ (zε(y)− z(y)) · ∇w(y) dy = 0 ∀w ∈W0. (3.40)

We choose in (3.39) w = zε − z. Then the absolute value of the first integral on the right hand side
of (3.39) can be estimated as

|I1(zε − z)| =
∣∣∣ ∫

D0
+∪D0

−

α(y)∇uε(y)

(
A(ε,y)− I

ε
−A′(0,y)

)
· ∇
(
zε(y)− z(y)

)
dy

+

∫
D0

+∪D0
−

α(y)∇
(
uε(y)− u0(y)

)
A′(0,y) · ∇

(
zε(y)− z(y)

)
dy
∣∣∣,

. ‖∇uε‖L2(R3)

∥∥∥∥A(ε, ·)− I
ε

−A′(0, ·)
∥∥∥∥
L∞(R3)

‖∇(zε − z)‖L2(R3)

+
∥∥∇(uε − u0

)∥∥
L2(R3)

∥∥A′(0, ·)∥∥
L∞(R3)

‖∇(zε − z)‖L2(R3) . (3.41)
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The absolute value of the second integral in (3.39) when w = zε − z is bounded by

|I2(zε − z)| ≤
∥∥∥∥√1 + | · |2

(
γ(ε,y)f(T ε(y))− f(y)

ε
− div

(
V (y)f(y)

))∥∥∥∥
L2(R3)

‖zε − z‖W0
. (3.42)

Inequalities (3.41) and (3.42) give

‖zε − z‖W0
≤ ‖∇uε‖L2(R3)

∥∥∥∥A(ε, ·)− I
ε

−A′(0, ·)
∥∥∥∥
L∞(R3)

+
∥∥∇(uε − u0

)∥∥
L2(R3)

∥∥A′(0, ·)∥∥
L∞(R3)

+

∥∥∥∥√1 + | · |2
(
γ(ε,y)f(T ε(y))− f(y)

ε
− div

(
V (y)f(y)

))∥∥∥∥
L2(R3)

. (3.43)

Using this together with (3.29) and Lemma 3.2, we can deduce from (3.43)

lim
ε→0
‖zε − z‖W0

= 0. (3.44)

2

Hence, we have shown that the solution of the transmission problem (3.28) has a material deriva-
tive, and thus a shape derivative. The latter turns out to be the solution of a transmission problem
on the nominal interface Γ0.

Lemma 3.12. Under the assumption of Lemma 3.11, the shape derivative u′ of uε exists and is the
solution of the transmission problem

∆u′ = 0 in D0
− ∪D0

+

[u′] = gD on Γ0[
α
∂u′

∂n

]
= gN on Γ0

|u′(x)| = O
(
|x|−1

)
as |x| → ∞,

(3.45)

where

gD := −
[
∂u0

∂n

]
κ and gN := ∇Γ0 ·

(
κ
[
α∇Γ0u0

] )
.

Proof. Existence of u′ is confirmed by Lemma 3.11. In this proof only, for notational convenience,
we use nε± to indicate the normal vector to Γε pointing outwards Dε

±, respectively. Note here that
nε = nε− = −nε+. From (3.32) we deduce

α−

∫
Dε−

∇uε− · ∇v dx + α+

∫
Dε+

∇uε+ · ∇v dx = 〈f, v〉L2(R3) ∀v ∈ C∞0 (R3). (3.46)

Denoting

J(Dε
±) := α±

∫
Dε±

∇uε±(x) · ∇v(x) dx

and using Green’s formula, we obtain

J(Dε
±) = −α±

∫
Dε±

uε±(x)4v(x) dx + α±

∫
Γε
uε±(x)

∂v

∂n±
dσ =: J1(Dε

±) + J2(Dε
±).
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By Lemma 3.8, u′4v is the shape derivative of uε4v. On the other hand, by Lemmas 3.8–3.9, the

shape derivative of
∂v

∂n

∣∣∣∣
Γε

= ∇v · nε is −∇Γ0v · ∇Γ0

〈
V,n0

〉
, so that the shape derivative of uε

∂v

∂n

∣∣∣∣
Γε

is u′
∂v

∂n

∣∣∣∣
Γ0

− u0
(
∇Γ0v · ∇Γ0

〈
V,n0

〉 )
. Using Lemma 3.8, we deduce

dJ1(Dε
±)|ε=0 = −α±

∫
D0
±

u′±(x)4v dx− α±
∫

Γ0

u04v
〈
V,n0

±
〉
dσ

and

dJ2(Dε
±)|ε=0 = α±

∫
Γ0

(
u′±

∂v

∂n±
− u0

(
∇Γ0v · ∇Γ0

〈
V,n0

〉 ))
dσ + α±

∫
Γ0

∂

∂n±

(
u0 ∂v

∂n±

) 〈
V,n0

±
〉
dσ

+ α±

∫
Γ0

divΓ0(n0
±)u0 ∂v

∂n±

〈
V,n0

±
〉
dσ,

since u0
− = u0

+ on the interface Γ0 by (3.27b). Therefore, differentiating by ε both sides of (3.46), using
Green’s formula, the jump condition (3.27c) and noting that4v = 4Γ0v+divΓ0(n0)∂v/∂n + ∂2v/∂n2,
we obtain

0 =α−

∫
D0
−

∇u′ · ∇v dx + α+

∫
D0

+

∇u′ · ∇v dx (3.47)

− α−
∫

Γ0

u
〈
V,n0

−
〉
4Γ0v dσ − α+

∫
Γ0

u
〈
V,n0

+

〉
4Γ0v dσ

− α−
∫

Γ0

u∇Γ0v · ∇Γ0

〈
V,n0

−
〉
− α+

∫
Γ0

u∇Γ0v · ∇Γ0

〈
V,n0

+

〉
.

Applying the tangential Green formula on the third and the fourth integrals on the right hand side of
the above identity and the product rule, the above identity can be written as

0 = α−

∫
D0
−

∇u′ · ∇v dx + α+

∫
D0

+

∇u′ · ∇v dx +

∫
Γ0

(α−∇Γ0u0
− − α+∇Γ0u0

+) · ∇Γ0v
〈
V,n0

−
〉
dσ.

(3.48)

We choose in (3.48) v ∈ C∞0 (D±) to obtain

α4u′(x) = 0, x ∈ D0
±. (3.49)

We now choose v ∈ C∞0 (R3) and applying the Green’s identity to the first two integrals on the right
hand side of (3.48), noting (3.49), to obtain

0 = α−

∫
Γ0

v
∂u′−
∂n−

dσ + α+

∫
Γ0

v
∂u′+
∂n+

+

∫
Γ0

(α−∇Γ0u0
− − α+∇Γ0u0

+) · ∇Γ0v
〈
V,n0

−
〉
dσ. (3.50)

Applying the tangential Green formula on the surface Γ0 to the last term on the right hand side of
the above identity, we deduce∫

Γ0

v

[
α
∂u′

∂n

]
dσ =

∫
Γ0

v∇Γ0 ·
( 〈
V,n0

−
〉 [
α∇Γ0u0

] )
dσ,

yielding [
α
∂u′

∂n

]
= ∇Γ0 ·

( 〈
V,n0

−
〉 [
α∇Γ0u0

] )
on Γ0. (3.51)

Recalling the transmission conditions (3.28b), we have for any smooth function v∫
Γε

[uε] v dσ = 0.
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Differentiating by ε both sides, applying Lemma 3.8 we have

0 = d

(∫
Γε

[uε] v dσ

)
= d

(∫
Γε−

uε−v dσ −
∫

Γε+

uε+v dσ

)

=

∫
Γ0

(u0
−v)′ +

∫
Γ0

(
∂(u0
−v)

∂n−
+ divΓ0(n0

−)(u0
−v)

)〈
V,n0

−
〉
dσ

−
∫

Γ0

(u0
+v)′ −

∫
Γ0

(
∂(u0

+v)

∂n+
+ divΓ0(n0

+)(u0
+v)

)〈
V,n0

+

〉
dσ

=

∫
Γ0

[
u′
]
v dσ +

∫
Γ0

[
∂u0

∂n

]
v
〈
V,n0

−
〉
dσ

+

∫
Γ0

[
u0
]( ∂v

∂n−
+ divΓ0(n0

−) v

)〈
V,n0

−
〉
dσ

=

∫
Γ0

[
u′
]
v dσ +

∫
Γ0

[
∂u0

∂n−

]
v
〈
V,n0

−
〉
dσ,

noting that
[
u0
]

= 0. Hence, there holds

[
u′
]

= −
[
∂u0

∂n

] 〈
V,n0

−
〉

=: gD. (3.52)

Hence, from (3.49), (3.51) and (3.52), the shape derivative u′ ∈ H1(D0
−)×H1

w(D0
+) is the weak solution

of the transmission problem (3.45). 2

3.4 Random interfaces

In Subsection 3.2, we have defined material and shape derivatives in which the quantity κ(x) does
not contain uncertainty. Since the transmission problem (2.11) is posed on a domain with a random
interface (see (2.7)), the shape derivative also depends on ω, and it is necessary to approximate the
mean and the covariance fields of the random solutions. The result is given in the following lemma,
where we recall the notation H1(D0

±) indicating H1(D0
−) or H1

w(D0
+).

Lemma 3.13. Let uε(ω) be the solution of the transmission problem (2.11a)–(2.11d) with the random
interface Γε(ω) given by (2.7), and let u0 denote the solution of the transmission problem with the
reference interface Γ0. Assume that the perturbation function κ belongs to Lk(Ω, C1(Γ0)) for an
integer k and f ∈ H1(R3) ∩W ∗0 . Then, for any compact subset K ⊂⊂ D0

±, the expectation and the
k-th order central moments of the solution uε(ω) can be approximated, respectively, by

E[uε] = u0 + o(ε) in H1(K) (3.53)

and

Mk[uε − E[uε]] = εkMk[u′] + o(εk) in H1
mix(Kk). (3.54)

Moreover

Mk[uε − u0] = εkMk[u′] + o(εk) in H1
mix(Kk). (3.55)

Proof. It follows from Lemmas 3.6 and 3.12 that

uε(x, ω) = u0(x) + εu′(x, ω) + εh(ε,x, ω) in H1(K), (3.56)

where h satisfies lim
ε→0
‖h(ε, ·, ·)‖Lk(Ω,H1(K)) = 0. This implies

E[uε(x, ·)] = u0(x) + εE[u′(x, ·)] + εE[h(ε,x, ·)] in H1(K).
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Here, u′ is the solution of (3.45) in which the function κ defining gD and gN depends on ω and satisfies
E[κ] = 0; see (2.9). Since u′ depends linearly on κ, there also holds E[u′] = 0, yielding (3.53).

By the definition of the statistical moments (2.4) we have

Mk[uε − u0]− εkMk[u′] = εk
(
Mk[u′ + h]−Mk[u′]

)
and by [23, Corollary V.5.1]

‖Mk[u′ + h]−Mk[u′]‖H1
mix(Kk) ≤ E

[
‖(u′ + h)⊗ · · · ⊗ (u′ + h)− u′ ⊗ · · · ⊗ u′‖H1

mix(Kk)

]
=: E .

Then by the triangle inequality, binomial formula and Hölder’s inequality with p =
k

j
and q =

k

k − j

‖E‖H1
mix(Kk) = E

[
‖

∑
vi = u′ or h,

(v1, . . . , vk) 6= (u′, . . . , u′)

v1 ⊗ · · · ⊗ vk‖H1
mix(Kk)

]

≤
∑
vi = u′ or h,

(v1, . . . , vk) 6= (u′, . . . , u′)

E
[
‖v1 ⊗ · · · ⊗ vk‖H1

mix(Kk)

]

=
∑
vi = u′ or h,

(v1, . . . , vk) 6= (u′, . . . , u′)

E
[
‖v1‖H1(K) . . . ‖vk‖H1(K)

]

=

k∑
j=1

(
k

j

)
E
[
‖h‖j

H1(K)
‖u′‖k−j

H1(K)

]

≤
k∑
j=1

(
k

j

)
E
[
‖h‖jp

H1(K)

] 1
p

E
[
‖u′‖(k−j)q

H1(K)

] 1
q

=

k∑
j=1

(
k

j

)
E
[
‖h‖kH1(K)

] j
k

E
[
‖u′‖kH1(K)

] k−j
k

=

k∑
j=1

(
k

j

)
‖h‖j

Lk(Ω,H1(K))
‖u′‖k−j

Lk(Ω,H1(K))

= o(1)

and (3.55) follows. An analogous estimate holds for

Mk[uε − E[uε]]− εkMk[u′] = εk
(
Mk[u′ + (h− E[h])]−Mk[u′]

)
.

2

The above lemma states in particular that Mk[uε − u0], Mk[uε − E[uε]] and εkMk[u′] coinside
in the limit ε → 0, indicating that εkMk[u′] may be a good approximation for Mk[uε − u0] and
Mk[uε−E[uε]] if ε is small. On the other hand, the task of approximation of εkMk[u′] is significantly
simpler than approximation ofMk[uε−u0] orMk[uε−E[uε]] and reduces to solving the homogeneous
transmission problem (3.45).

4 Boundary reduction

In this section we briefly recall boundary integral equation methods to solve (3.45). We rewrite here
this problem for convenience.
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Find u′ ∈ H1(D0
−)×H1

w(D0
+) satisfying

4u′ = 0 in D0
±

[u′] = gD(ω) on Γ0[
α
∂u′

∂n

]
= gN (ω) on Γ0

|u′(x)| = O
(
|x|−1

)
as |x| → ∞.

(4.1)

The single and double layer potentials are given by

Ṽw(x) =

∫
Γ0

1

|x− y|
w(y) dσy, Wv(x) =

∫
Γ0

∂

∂ny

1

|x− y|
v(y) dσy, x ∈ D0

± (4.2)

for w ∈ H−1/2(Γ0) and v ∈ H1/2(Γ0). The limits of these potentials for x approaching Γ0 are given
by (see [15, page 14])

Vu(x) := lim
y→x

y∈D0
±

Ṽu(y) for x ∈ Γ0, (4.3)

Ku(x) := lim
y→x

y∈D0
±

Wu(y)∓ 1

2
u(x) for x ∈ Γ0, (4.4)

K′u(x) := lim
y→x

y∈D0
±

nx · ∇yṼu(y)± 1

2
u(x) for x ∈ Γ0, (4.5)

Du(x) := − lim
y→x

y∈D0
±

nx · ∇yWu(y) for x ∈ Γ0. (4.6)

The solution of (4.1) is given by

u′(x) =

{
Ṽ(

∂u′−
∂n )(x)−Wu′−(x), x ∈ D0

−,

Wu′+(x)− Ṽ(
∂u′+
∂n )(x), x ∈ D0

+;
(4.7)

see e.g. [15]. The Dirichlet-to-Neumann operators are

S−u′− :=
∂u′−
∂n

= V−1(
1

2
I +K)u′−, (4.8)

S+u
′
+ =

∂u′+
∂n

= V−1(K − 1

2
I)u′+. (4.9)

These equalities together with (4.7) imply

u′(x) =

{
(ṼS− −W)(u′−)(x) =: E−(u′−)(x), x ∈ D0

−
(W − ṼS+)(u′+)(x) =: E+(u′+)(x), x ∈ D0

+.
(4.10)

The randomness of the interface Γ(ω) which is given via the randomness of the vector field V (ε,x, ω)
implies the randomness in the solution u. From (4.10), we have

u′(x, ω) =

{
E−(u′−(ω)|Γ0)(x), x ∈ D0

−,

E+(u′+(ω)|Γ0)(x), x ∈ D0
+.

Tensorizing and integrating both sides of the above equation, we deduce

Cov[u′](x1,x2) =

{
(E−,x1 ⊗ E−,x2)Cor[u′−|Γ0 ](x1,x2), x1,x2 ∈ D0

−,

(E+,x1 ⊗ E+,x2)Cor[u′+|Γ0 ](x1,x2), x1,x2 ∈ D0
+,

(4.11)
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and in general

Mk[u′](x1, . . . ,xk) =

{
(E−,x1 ⊗ · · · ⊗ E−,xk)Mk[u′−|Γ0 ](x1, . . . ,xk), x1, . . . ,xk ∈ D0

−,

(E+,x1 ⊗ · · · ⊗ E+,xk)Mk[u′+|Γ0 ](x1, . . . ,xk), x1, . . . ,xk ∈ D0
+.

(4.12)

Equation (4.11) suggests that the covariance of the solution u′ in D0
± can be computed from the

correlation function of the Dirichlet data u′±|Γ0 on the transmission interface.
The jump conditions in (4.1) gives

u′−(ω) = u′+(ω) + gD(ω) on Γ0, (4.13)

and
(α−S− − α+S+)︸ ︷︷ ︸

=:[αS]

u′+(ω) = gN (ω)− (α−S−)gD(ω) on Γ0. (4.14)

We note that for a fixed ω ∈ Ω, the right hand side gN (ω)− (α−S−)gD(ω) ∈ H−1/2(Γ0). The solution
u′+(ω) of (4.14) belongs to H1/2(Γ0). The variational form for (4.14) is: Find u′+(ω) ∈ H1/2(Γ0)
satisfying

B(u′+(ω), v) = 〈gN (ω)− (α−S−)gD(ω), v〉 ∀v ∈ H1/2(Γ0), (4.15)

with the bilinear form B(·, ·) and the duality pairing 〈·, ·〉 given by

B(v, w) :=

∫
Γ0

([αS] v)w dσ and 〈g, v〉 :=

∫
Γ0

gv dσ ∀v, w ∈ H1/2(Γ0), g ∈ H−1/2(Γ0). (4.16)

We next show the continuity and ellipticity of the operator [αS] which confirms existence of the
unique solution of equation (4.14) for a fixed arbitrary ω.

Lemma 4.1. The bilinear form B(·, ·) : H1/2(Γ0)×H1/2(Γ0)→ R is bounded, i.e.

|B(v, w)| ≤ C1 ‖v‖H1/2(Γ0) ‖w‖H1/2(Γ0) ∀v, w ∈ H1/2(Γ0), (4.17)

and H1/2(Γ)-elliptic, i.e.

B(v, v) ≥ C2 ‖v‖2H1/2(Γ0) ∀v ∈ H1/2(Γ0), (4.18)

where the positive constants C1 and C2 are independent of v.

Proof. The boundedness of the bilinear form B is derived directly from the boundedness of V−1 and
K. To prove ellipticity we first note that the hypersingular operator D is H1/2(Γ0)-semi-elliptic for all
closed interface Γ0, i.e.,

〈Dv, v〉L2(Γ0) ≥ C |v|H1/2(Γ0) ∀v ∈ H1/2(Γ0); (4.19)

see e.g. [21, Corollary 6.25]. The Cauchy data (u−,
∂u−
∂n

) on Γ0 satisfy u−

∂u−
∂n

 =

1

2
I −K V

D 1

2
I +K′


 u−

∂u−
∂n

 . (4.20)

Substituting (4.8) into the second equation of (4.20) gives

∂u−
∂n

= D u− + (
1

2
I +K′)V−1(

1

2
I +K)u− on Γ0.
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This equation and (4.8) yield

S− = D + (
1

2
I +K′)V−1(

1

2
I +K).

Noting that K′ is the adjoint operator of K, we have

〈S−v, v〉 = 〈Dv, v〉+

〈
V−1(

1

2
I +K)v, (

1

2
I +K)v

〉
∀v ∈ H1/2(Γ0). (4.21)

Similarly, the exterior Dirichlet-to-Neumann operator S+ satisfies

S+ = −D − (
1

2
I −K′)V−1(

1

2
I −K)

and

〈S+v, v〉 = −〈Dv, v〉 −
〈
V−1(

1

2
I −K)v, (

1

2
I −K)v

〉
∀v ∈ H1/2(Γ0). (4.22)

From (4.21), (4.22), (4.19) and noting the H1/2-ellipticity of the inverse operator of V, we derive

〈[αS] v, v〉 = (α− + α+) 〈Dv, v〉+ α−

〈
V−1(

1

2
I +K)v, (

1

2
I +K)v

〉
Γ0

+ α+

〈
V−1(

1

2
I −K)v, (

1

2
I −K)v

〉
Γ0

& (α− + α+) |v|2H1/2(Γ0) + α−

∥∥∥∥(
1

2
I +K)v

∥∥∥∥2

H1/2(Γ0)

+ α+

∥∥∥∥(
1

2
I −K)v

∥∥∥∥2

H1/2(Γ0)

& |v|2H1/2(Γ0) +

∥∥∥∥(
1

2
I +K)v

∥∥∥∥2

H1/2(Γ0)

+

∥∥∥∥(
1

2
I −K)v

∥∥∥∥2

H1/2(Γ0)

. (4.23)

Applying the triangle inequality to the last two terms on the right hand side of the inequality above,
we obtain

〈[αS] v, v〉 & |v|2H1/2(Γ0) + ‖v‖2H1/2(Γ0) & ‖v‖
2
H1/2(Γ0) ∀v ∈ H1/2(Γ0),

completing the proof of the lemma. 2

We consider the tensor product operator [αS](k) := [αS]⊗ · · · ⊗ [αS] which is a linear mapping

[αS](k) : H
1/2
mix(Γ0 × · · · × Γ0)→ H

−1/2
mix (Γ0 × · · · × Γ0),

see [22, Proposition 2.4] for more details. Tensorization of equation (4.14) yields for almost all ω ∈ Ω

[αS](k) (u′+(ω)⊗ · · · ⊗ u′+(ω)
)

= ⊗ki=1

(
gN (ω)− (α−S−)gD(ω)

)
in H

−1/2
mix (Γ0 × · · · × Γ0). (4.24)

Taking the mean of (4.24) yields a deterministic k-th moment problem. In particular, for k = 2 it

reads: Find Cov[u′+](x,y) ∈ H1/2
mix(Γ0 × Γ0) satisfying

([αS]⊗ [αS]) Cov[u′+](x,y) = (∇Γ,x ⊗∇Γ,y) ·
(

Cov[κ](x,y)
[
α∇Γ,xu

0(x)
] [
α∇Γ,yu

0(y)
] )

+
(
(α−S−)⊗ (α−S−)

)(
Cov[κ](x,y)

[
∂u0(x)

∂nx

] [
∂u0(y)

∂ny

])
−
(
∇Γ,x · ⊗(α−S−)

)(
Cov[κ](x,y)

[
α∇Γ,xu

0(x)
] [∂u0(y)

∂ny

])
−
(
(α−S−)⊗∇Γ,y ·

)(
Cov[κ](x,y)

[
α∇Γ,yu

0(y)
] [∂u0(x)

∂nx

])
. (4.25)
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Similarly, we have

([αS]⊗ [αS]) Cov[u′−](x,y) = (∇Γ,x ⊗∇Γ,y) ·
(

Cov[κ](x,y)
[
α∇Γ,xu

0(x)
] [
α∇Γ,yu

0(y)
] )

+
(
(α+S+)⊗ (α+S+)

)(
Cov[κ](x,y)

[
∂u0(x)

∂nx

] [
∂u0(y)

∂ny

])
−
(
∇Γ,x · ⊗(α+S+)

)(
Cov[κ](x,y)

[
α∇Γ,xu

0(x)
] [∂u0(y)

∂ny

])
−
(
(α+S+)⊗∇Γ,y ·

)(
Cov[κ](x,y)

[
α∇Γ,yu

0(y)
] [∂u0(x)

∂nx

])
. (4.26)

Denote gκ+ := E[⊗ki=1

(
gN (ω)−(α−S−)gD(ω)

)
]. Recalling (4.15), the variational formulation for finding

Mk[u′+] reads: Given gκ+ ∈ H
−1/2
mix (Γ0 × · · · × Γ0), find Mk[u′+] ∈ H1/2

mix(Γ0 × · · · × Γ0) satisfying

B(Mk[u′+], v) =
〈〈
gκ+, v

〉〉
∀v ∈ H1/2

mix(Γ0 × · · · × Γ0), (4.27)

where B(·, ·) =
〈〈

[αS](k)·, ·
〉〉

is a bilinear form and 〈〈·, ·〉〉 is theH
−1/2
mix (Γ0 × · · · × Γ0) –H

1/2
mix(Γ0 × · · · × Γ0)

duality pairing obtained by tensorisation of B(·, ·) and 〈·, ·〉 from (4.16). Proposition 2.4 in [22] implies

Lemma 4.2. The bilinear form B(·, ·) : H
1/2
mix(Γ0 × · · · × Γ0) × H1/2

mix(Γ0 × · · · × Γ0) → R is bounded

and H
1/2
mix(Γ0 × · · · × Γ0)-elliptic, i.e.,

B(v, w) ≤ C1 ‖v‖H1/2
mix(Γ0×···×Γ0)

‖w‖
H

1/2
mix(Γ0×···×Γ0)

, (4.28)

and
C2 ‖v‖2H1/2

mix(Γ0×···×Γ0)
≤ B(v, v) (4.29)

for all v, w ∈ H1/2
mix(Γ0 × · · · × Γ0).

By Lemma 4.2 there exists a unique solution of (4.27).

5 Examples

In this section, we consider the transmission problem (2.11a)–(2.11d) where the random interface Γ(ω)
is given by

Γ(ω) = {x + εκ(x, ω)n(x) : x ∈ S}.
Here, the reference interface Γ0 is the unit sphere S. The perturbation parameter κ(x, ω) = a(ω),
where a(ω) is uniformly distributed in [−1, 1]. The mean value E[κ] = 0 and the covariance
Cov[κ](x,y) = Cor[κ](x,y) = 1/3. The interface Γ(ω) is a sphere of radius R(ω) = 1 + εa(ω).

5.1 Analytic example

Firstly, we choose the right hand side f to be

f(x) =

{
(4r2

x − 1)2 if 0 ≤ rx ≤ 1/2,

0 if 1/2 ≤ rx,

where rx = |x|. Then solution of the transmission problem with respect to the random interface Γ(ω)
can be analytically computed as follows:

u(x, ω) =


1
α−

( 8
21r

6
x − 2

5r
4
x + r2x

6 )− 3
105α−

rx − 23
840α−

+ α+−α−
105α−α+R(ω) if 0 ≤ rx ≤ 1

2 ,

− 1
105α−rx

+ α+−α−
105α−α+R(ω) if 1

2 ≤ rx ≤ R(ω),

− 1
105α+rx

if R(ω) ≤ rx.
(5.1)
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In particular, the exact solution u0 of the transmission problem on the reference interface Γ0 is given
by (5.1) where R(ω) = 1, i.e.,

u0(x) =


1
α−

( 8
21r

6
x − 2

5r
4
x + r2x

6 )− 3
105α−

rx − 23
840α−

+ α+−α−
105α−α+

if 0 ≤ rx ≤ 1
2 ,

− 1
105α−rx

+ α+−α−
105α−α+

if 1
2 ≤ rx ≤ 1,

− 1
105α+rx

if 1 ≤ rx.
(5.2)

Noting (5.1) and using simple calculation, we obtain

E[u(x, ·)] =

{
u0(x) + α+−α−

105α−α+

ln(1+ε)−ln(1−ε)
2ε if 0 ≤ rx < 1,

u0(x) if 1 < rx.
(5.3)

Elementary calculus reveals that ln(1+ε)−ln(1−ε)
2ε =

∑∞
n=1

ε2n

2n+1 . Therefore, the mean value E[u] in (5.3)

agrees with our result (3.53) in Lemma 3.13. The linearized error appears in this example to be O(ε2).
We then compute the covariance of the solution u by elementary calculations, noting (5.1), to

obtain

Covu(x,y) =

{
1
3

[α]2

(105α−α+)2
ε2 +O(ε4) if rx < 1 and ry < 1,

0 if rx > 1 or ry > 1.
(5.4)

We test accuracy of our shape calculus method by computing the covariance of u via covariance
of the shape derivative. Noting (5.2), we first solve equations (4.25) and (4.26) to obtain Cov[u′+] and
Coru′− . In this example, these equations can be solved exactly and

Cov[u′−] =
1

3

[α]2

(105α−α+)2
and Cov[u′+] = 0.

Applying (4.11), we obtain

Cov[u′](x,y) =

{
1
3

[α]2

(105α−α+)2
if rx < 1 and ry < 1

0 if rx > 1 or ry > 1.

This and (5.4) agree with our theoretical result (3.54) and the linearized error in this example is O(ε4).

5.2 Numerical example

Secondly, we solve the problem (2.11a)–(2.11d) where the right hand side f is given by

f(x) = 2 [x2
1 + x2

2 + (x3 − 1)2]−1/2 (1− |x|2)

− 4 [x2
1 + x2

2 + (x3 − 1)2]−1/2 (|x|2 − x3)− 6[x2
1 + x2

2 + (x3 − 1)2]1/2. (5.5)

The deterministic solution of the transmission problem with the reference interface Γ0 = S is then

u−(x) =
1

α−
[x2

1 + x2
2 + (x3 − 1)2]1/2 (1− |x|2), x ∈ D0

−

u+(x) =
1

α+
[x2

1 + x2
2 + (x3 − 1)2]1/2 (1− |x|2), x ∈ D0

+.

(5.6)

Following the method discussed in Section 3, covariance of the solution is approximated by covariance
of the shape derivative (see Lemma 3.13), which can be obtained by solving the equations (4.25)
and (4.26). Note here that these equations are given on the reference interface Γ0 = S. The right hand
sides and the solutions of these equations belong to the tensor space H2−σ

mix (Γ0 × Γ0) for any σ > 0. To
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Figure 1: Convergence of the absolute error |Var[u′](x) − Var[u′p](x)| for three points x inside and
outside the unit sphere with respect to the order of the hyperbolic cross p.

solve these equations numerically we use the hyperbolic cross tensor approximation spaces of spherical
harmonics which are defined by

Sδp := span
{
Y`,m : ` ∈ δp, mi = −`i, . . . , `i for i = 1, 2

}
, (5.7)

where

δp :=

{
` = (`1, `1) ∈ N2 :

2∏
i=1

(1 + `i) ≤ 1 + p

}
. (5.8)

The Galerkin method was used to find the approximate solutions u′p ∈ Sδp of (4.25) and (4.26). It

has been shown in [5] that the use of the space Sδp yields the convergence rate of p−(2−σ−t) and
demands only O

(
p2 log p

)
unknowns, where t is the order of the Sobolev norm in which the errors

are computed. The same convergence rate p−(2−σ−t) is achieved when using the standard full tensor
product approximation of degree p which meanwhile requires O

(
p4
)

unknowns. We then compute
the variance of u′(x) at three points x = (0, 0, 0.2), (0, 0, 0.5) and (0, 0, 5) inside and outside the unit
sphere. The convergence curves for the absolute error

|Var[u′](x)−Var[u′p](x)|

with respect to the order of the hyperbolic cross p are presented in Fig 1.
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