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Abstract

We present an efficient approach of Finite Element Method (FEM)-based nonrigid image
registration, in which the spatial transformation is constructed using truncated hierarchical
B-splines (THB-splines). The image registration framework minimizes an energy functional
using an FEM-based method and thus involves solving a large system of linear equations.
This framework is carried out on a set of successively refined grids. However, due to the
increased number of control points during subdivision, large linear systems are generated
which are generally demanding to solve. Instead of using uniform subdivision, an adaptive
local refinement scheme is carried out, only refining the areas of large change in deformation
of the image. By incorporating the key advantages of THB-spline basis functions such as lin-
ear independence, partition of unity and reduced overlap into the FEM-based framework, we
improve the matrix sparsity and computational efficiency. The performance of the proposed
method is demonstrated on 2D synthetic and medical images.

Keywords: Nonrigid Image Registration, Truncated Hierarchical B-splines, Adaptive
Local Refinement, Finite Element Method

1. Introduction

Image registration has significant applications in the field of remote sensing, computer vi-
sion, medical image analysis and other industrial applications [1, 2]. The technique basically
involves aligning two or more images and finding the accurate correspondence between them.
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This plays a critical role in integrating useful data, detecting changes in certain important
features and thus enabling a better understanding of the image data. A comprehensive
and exhaustive survey on the various image registration methods, their classification and
application-specific advantages can be found in [3, 4].

We can fundamentally break down the entire image registration process into the following
salient steps. The first step involves computing the similarity between two input images.
The given source image undergoes a deformation in order to match with the target image.
We compute a metric that measures the similarity between them and drives the registration
to maximize the similarity. A spatial transformation function is defined in a parametric
form and the optimal parameters are computed by maximizing the similarity between the
source and target images.

Based on the type of image deformation, registration methods are classified as rigid
and nonrigid. Under rigid registration, simple transformations such as translation, rotation
and reflection are performed. In nonrigid registration it is possible to model more complex
deformations. However there is a need to impose certain regularization constraints to control
the smoothness of the deformation and the convergence of the solution. In spline-based
registration [5, 6, 7], a control grid overlays the image and an optimum spatial transformation
is constructed. As compared to the standard isoparametric basis functions, representing
the deformation and computing the spatial transformation with hierarchical B-splines (HB-
splines) or truncated hierarchical B-splines (THB-splines) is more accurate for the same
number of degrees of freedom. To capture large scale deformations, coarser grids are used
with large support. To capture highly localized deformations, finer grids are used. The
properties of B-splines such as local control, smoothness and compact support are used to
model the deformation in the image.

FEM-based image registration is one of the most promising image registration meth-
ods. In FEM-based methods, the numerical implementation is carried out by solving an
optimization problem using a system of linear equations. In [8, 9], an energy functional is
constructed based on the sum of squared differences in the intensity values, and then solved
using L2-gradient flow method. Regularization constraints are also added to ensure that
the deformation is smooth. FEM-based image registration methods involve the assembly of
large matrices and increased computational complexity. Furthermore, the implementation
is carried out on a hierarchy of uniform grids, in order to capture coarse deformations on
coarser grids and fine-scale deformations on finer grids. This makes the assembly of the
matrices more complex and cumbersome.

To resolve these matrix assembly issues, we can reduce the size of the matrices and
increase the sparsity of the matrices. In this paper, we introduce adaptive local refinement
of the control grid instead of carrying out uniform subdivision, enabling highly localized
fine-scaled deformations only in desired regions of the image domain. Local refinement can
be achieved using HB-splines, which have been previously used in [10, 11] to solve image
registration problems. Pertaining to FEM-based image registration problems, we employ
THB-splines for adaptive local refinement. In addition to being linearly independent and
non-negative, these basis functions have smaller support and form a partition of unity. These
properties effectively improve the computational efficiency in solving FEM-based problems
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and help in achieving the desired accuracy using fewer control points by local refinement
and sparser matrices.

The rest of the paper is organized as follows. In section 2, we first present the framework
of image registration and introduce our adaptive grid refinement strategy using THB-splines
in section 3. In section 4, we apply our approach to solve numerical examples in the form
of 2D synthetic and medical images, by comparing the results in terms of computational
time and accuracy with the uniform grid refinement strategy. The paper ends with a brief
summary in section 5.

2. Image Registration Model

In this section we briefly review the registration framework, in which the formulation of
the energy functional and FEM-based method is explained. We then review THB-splines
and introduce our adaptive local refinement scheme, describing our motivation of using
THB-splines by explaining their key advantages over using HB-spline basis functions.

2.1. Registration Framework

The process of image registration involves computation of a spatial transformation func-
tion f(x), that aligns the source image I1(x) to the target image I2(x). Bi-cubic B-splines
are used to define the spatial transformation and create a C2-continuous mapping from
R2 → R2. The spatial transformation function f(x) is defined as:

f(x) =

Nb∑

k=1

Pkφk(x), (1)

where Pk is a set of control points associated with the bivariate basis functions φk(x). Nb

represents the total number of basis functions. φk(x) is the tensor product of univariate B-
spline basis functions Ni,p(ξ) and Nj,q(η) defined on the knot vectors Ξ = {ξ1, · · · , ξn1+p+1}
and Υ = {η1, · · · , ηn2+q+1} in ξ and η directions, respectively. n1 and n2 are the number
of univariate basis functions. p and q are the degree of polynomials in ξ and η directions,
respectively. This is written as

φk(x) = Ni,p(ξ)Nj,q(η), (2)

where i = 1, 2, ..., n1 and j = 1, 2, ..., n2. The detailed description on B-splines along with
their applications in the field of computational modeling and isogeometric analysis can be
found in [12, 13]. At the start of the registration process we define the initial location of
the control points so as to create an identity map, f(x) = x. This also represents the
source image I1(x). Then, we proceed to find the optimal transformation f(x) such that
I1(f(x)) ≈ I2(x). The transformation of the source image is driven by minimizing an energy
functional, which uses the sum of squared differences (SSD) of the two images as the driving
force to align them. The detailed description of the formulation of the energy functional can
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be found in [8, 9]. The energy functional is given as:

E(f(x)) =

∫

Ω

g(x)(I2(x)− I1(f(x)))2 dΩ + λ1

∫

Ω

(‖f,ξ(x)‖2
2 + ‖f,η(x)‖2

2) dΩ

+ λ2

∫

Ω

(‖f,ξ(x)‖2
2‖f,η(x)‖2

2 − (< f,ξ(x), f,η(x) >)2)dΩ,

(3)

where λ1 and λ2 are the regularization parameters set to a constant value during the entire
registration process. f,ξ(x) and f,η(x) are the first derivatives of f(x) in ξ and η directions re-
spectively and < f,ξ(x), f,η(x) > is the inner product operator which equals to f,ξ(x)Tf,η(x).
g(x) is defined as

g(x) =
1√

γ + (∇ξI1(f(x)))2 + (∇ηI1(f(x)))2
, (4)

as given in [8]. g(x) is used to accelerate the registration process in the homogeneous
regions and slow down the registration in the inhomogeneous regions of the image. γ is a
small number introduced to prevent the division by zero. Here we set γ as 10−12.

The first term in Equation (3) drives the registration process by minimizing the differ-
ences between the images. Unlike rigid deformations, non-rigid deformations can achieve
free-form deformations of larger magnitude. But this sometimes results in unrealistic changes
within the image. Regularization is therefore very essential in ensuring the smooth defor-
mation of the image. The second and third terms in Equation (3), called the regularization
constraints, are used to prevent these unrealistic changes and also make the transformation
as smooth as possible. The first regularization term ensures smooth variation of f(x) in ξ
and η directions, and thus prevents large deformation of the evolving image. The second
regularization term ensures the consistency of the area element during deformation. This en-
sures that the deformation does not result in unrealistic results and converges to the desired
accuracy.

As given in [9], the L2-gradient flow method is chosen to convert the optimization problem
to an initial value problem of an ordinary differential equation. By minimizing the energy
functional with respect to the spatial transformation function, we compute the most optimal
f(x) that maximizes the match between the images. Since the energy functional is a function
of f(x), we differentiate E(x) with respect to f(x) evaluated at the previous time step and
update it according to the following equation,

df(x)

dt
= −δE(f(x)). (5)

To get the weak formulation, we use a test function Ψ(x) and integrate over the image
domain. Ψ(x) is defined to be the equal to φ(x) according to Bubnov-Galerkin method.
The weak formulation is given as

∫

Ω

df(x)

dt
Ψ(x)dΩ = −δE(f(x),Ψ(x)), (6)
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where δE(f(x),Ψ(x)) is the first-order variation of the energy functional defined in Equation
(3). Thus we can write

δE(f(x),Ψ(x)) = −2

∫

Ω

g(x)(I2(x)− I1(f(x)))∇I1(f(x))Ψ(x)dΩ

+λ1

∫

Ω

2(f,ξ(x)Ψ,ξ(x) + f,η(x)Ψ,η(x))dΩ

+λ2

∫

Ω

2(f,ξ(x)‖ f,η(x) ‖2Ψ,ξ(x) + ‖ f,ξ(x) ‖2f,η(x)Ψ,η(x)

−〈f,ξ(x), f,η(x)〉f,η(x)Ψ,ξ(x)

−f,ξ(x)〈f,η(x), f,ξ(x)〉Ψ,η(x))dΩ, (7)

where the derivation of the first-order variation of the energy functional can be found in [9].
Since f(x) can be written as shown in Equation (1), we can write

Nb∑

i=1

∫

Ω

P t+1
i − P t

i

ε
φi(x)Ψj(x)dΩ = −δEj(f(x),Ψ(x)), (8)

where j = 1, 2, ..., Nb, Nb representing the total number of bivariate B-splines. ε denotes the
time step. In matrix form we rewrite the above equation as

M(Pt+1 −Pt) = −εE, (9)

where in matrix M, Mji =
∫

Ω
φiΨjdΩ (i, j = 1, · · · , Nb). Pt and Pt+1 represent the matrices

of the control point coordinates at the previous and the current time step respectively. E is
the vector storing δEj(f(x),Ψ(x)) where

δEj(f(x),Ψ(x)) = −2

∫

Ω

g(x)(I2(x)− I1(f(x)))∇I1(f(x))Ψj(x)dΩ

+λ1

∫

Ω

2(f,ξ(x)Ψj,ξ(x) + f,η(x)Ψj,η(x))dΩ

+λ2

∫

Ω

2(f,ξ(x)‖ f,η(x) ‖2Ψj,ξ(x) + ‖ f,ξ(x) ‖2f,η(x)Ψj,η(x)

−〈f,ξ(x), f,η(x)〉f,η(x)Ψj,ξ(x)

−f,ξ(x)〈f,η(x), f,ξ(x)〉Ψj,η(x))dΩ. (10)

Equation (9) is solved using an FEM-based method. Numerical integration is carried
out by Gaussian quadrature rule of order 6. We can see that the fast computation of M is
crucial for achieving accurate results efficiently.

Similarity metrics, such as the mean squared difference (MSD) and the similarity ratio
(RS) [8], provide a way to quantitatively evaluate the results of the registration process.
RS is defined as

RS(I2(x), I t1(f(x))) =

(
1− ||I2(x)− I t1(f(x))||L2

||I2(x)− I1(x)||L2

)
× 100, (11)

5
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where I t1(f(x) is the image obtained at the tth time step. When RS = 100%, this corresponds
to a perfect registration.

2.2. Truncated Hierarchical B-splines (THB-splines)

THB-splines are developed based on HB-spline basis functions. Let us first briefly review
HB-spline basis functions. We consider univariate basis functions defined on the open knot
vector Ξ = {ξ1, · · · , ξn1+p+1}, where n1 and p are the number of univariate basis functions
and the degree of the polynomials in the ξ direction, respectively. The local support of the
basis function Ni,p(ξ) is [ξi, ξi+p+1], denoted by supp(Ni,p(ξ)). The maximum refinement level
is denoted as lmax. The knot vectors defined at a particular refinement level are obtained
by bisecting the knot vectors of the previous refinement level. A basis function N l

i,p(ξ) at a
given refinement level l can be represented as a linear combination of a subset of the basis
functions from the next refinement level (l + 1), which are the children basis functions of
N l
i,p(ξ). We have

N l
i,p(ξ) =

Nc−1∑

k=0

Sk,pN
l+1
k,p (ξ), (12)

where N l+1
k,p (ξ) are the children basis functions and Nc is the number of N l+1

k,p (ξ). We ob-
tain the refinement coefficients Sk,p using the Oslo Algorithm [14]. In the similar manner,
bivariate basis functions φlk(x) (Equation (2)) can be represented as a linear combination of
their children basis functions, which are completely contained in the local support of φlk(x),
[ξi, ξi+p+1] × [ηj, ηj+q+1]. Details of local refinement using HB-splines can be found in [15],
in which efficient ways to construct analysis-suitable HB-splines is described.

HB-splines possess desirable properties such as linear independence, non-negativity and
support for local refinement. However, the basis functions need to be rationalized to form
a partition of unity, which is complicated and time-consuming. Moreover, HB-splines have
extensive overlapping among coarser and finer splines. This overlap increases with increasing
levels of refinement. To develop polynomial basis functions satisfying partition of unity and
reduce the overlapping of the B-splines from different levels, THB-splines were proposed
[16]. We define the total support of refined B-splines basis functions φlr(x) at a particular
refinement level l as Ωl+1 = ∪supp(φlr(x)). Equation (12) is modified for THB-splines as
follows

trunc(φlk(x)) =
∑

supp(φl+1
p (x))6⊂Ωl+1

Sk,pφ
l+1
p (x), (13)

where the truncated B-splines at a particular refinement level are represented using their
children basis functions that are not present in the hierarchical B-spline basis. This enables
local refinement of the selected basis functions at different refinement levels (l = 1, · · · , lmax),
further reducing the overlapping between the basis functions and satisfying partition of unity.
We explain local refinement based on THB-spline basis functions on two consecutive levels,
l and l + 1, in the following steps:

6
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1. At a particular refinement level l, a subset of B-spline basis functions satisfying the
refinement criterion are identified, which form the set φlr. The remaining B-spline basis
functions are set as active (φla). Among the active basis functions, the truncated basis
functions are represented using Equation (13).

2. The children B-spline basis functions of all the basis functions φlr are set as active
(φl+1

a ).

3. The process ends by collecting all the active B-spline basis functions at levels l and
l + 1, in order to get the THB-splines basis functions, φl+1

thb .

Thus we can obtain
φl+1
thb = φla ∪ φl+1

a . (14)

The refinement procedure is implemented in a recursive manner until we reach the refinement
level lmax.

3. Adaptive Local Refinement

In this section, we describe the procedure to implement adaptive local refinement using
THB-splines. A multilevel technique was proposed in [8], where the entire registration
process is carried out on a set of grids that are uniformly subdivided for each refinement
level. It was observed that the similarity metric does not continue to increase further or
even drops after certain number of iterations. This happens when we compute the spatial
transformation on a single grid, resulting in distortion of certain elements in the grid due to
large deformations. Instead of uniformly refining the grid for each refinement level, we can
use the information from the evolving and target images, and refine only those regions that
undergo large change in image deformation. Starting from a particular refinement level, we
carry out adaptive local refinement and reinitialize the control mesh. The image obtained
at the previous refinement level is used as a source image for the registration at the next
refinement level. This process continues until the maximum refinement level is reached.
We use the magnitude of the gradient of the difference in the two images I1(x) and I2(x),
Ig = |∇(I1(f(x)) − I2(x))|, to compute the refinement. We can detect the areas of large
change in deformation in this manner and locally refine them. The size of the elements at the
first level is decided based on the complexity of the image. For medical images, the initial
mesh size should not be too coarse as this may affect the convergence of the registration
process. Even if the initial registration is faster, by using coarser meshes it can sometimes
cause unrealistic deformations within the image. Thus to maintain the stability of the entire
registration process, the initial size of the elements should be kept sufficiently fine in order
to achieve accurate registration results.

The detailed algorithm is described in the following: Given a pair of images, I1(x) and
I2(x). The process starts at level-1, which is a uniform grid. The initial set of control points
P 1
thb are defined such that f(x) =

∑N
i=1 P

1
thb,iφ

1
thb,i = x. N is the total number of basis

functions at level-1. For l = 1, ..., lmax,

7
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1. Compute Ig = |∇(I l−1
1 (f(x))− I2(x))| at each control grid of level-l if l > 1. If l = 1,

then we directly proceed to step 3. Here I l−1
1 (f(x)) is the evolving image obtained

from the previous level-(l − 1). Let Gmean be the average value of Ig.

2. Loop over the active B-spline basis functions φl−1
j , j = 1, 2, ..., Na, where Na is the total

number of active B-spline basis functions at level-(l − 1). Loop over supp(φl−1
j ), and

find the average of the Ig values in supp(φl−1
j ), denoted as Gj. If Gj > ρGmean, then

we refine the particular B-spline basis according to the refinement procedure explained
in section 2.2. The threshold value, ρ, is set according to the amount of refinement
required to get the desired accuracy. A higher value of ρ results in less control grid
refinement.

3. After refinement, we collect all the active B-spline basis functions, control points and
cells to get the hierarchical basis functions φlthb, control points P l

thb and cells Ωl respec-
tively. Ml matrix is computed for the refined control grid.

4. Begin the loop for iterations, t = 1, 2, ..., imax, where imax is the maximum number of
iterations for a particular level.
(a) Compute the matrix consisting of the energy functional values, δEl,t(f(x)).
(b) We update the control points by solving Ml(Pl,t+1

thb −Pl,t
thb) = −ε(δEl,t(f(x))).

(c) Using the updated control points, the spatial transformation is computed and
we have f(x) =

∑Nthb

j=1 P
l,t+1
thb,j φ

l
thb,j, where Nthb is the total number of THB-spline

basis functions.
(d) Using the spatial transformation f(x), we obtain image I l1(f(x)).

5. The resulting image is used as the source image for the next refinement level.

6. The process terminates upon reaching the desired accuracy, that is, the best possible
match between the source and target images.

In Figure 1, we demonstrate the application of image registration using adaptive local
refinement on a synthetic image. We conduct the registration on five refinement levels
with the number of control points of 529, 1, 159, 2, 611, 5, 935 and 15, 019 respectively.
The corresponding RS values are 55.18%, 92.17%, 94.83%, 97.41% and 98.60%. From the
results, we can observe that large deformations are captured on a coarser grid and finer
deformations are captured on finer grids. Only regions with large change in deformation are
refined. We thus make the entire registration process more efficient and fast, maintaining
the same level of accuracy. To demonstrate the advantages of using THB-splines, we check
the structure of the matrix M after five levels of refinement. As shown in Figure 2, the
sparsity of the resulting matrices is improved by nearly 26% compared to HB-spline basis
functions. This improvement is significant in conducting the FEM-based implementation.
By using THB-spline basis functions we introduce local refinement and fewer control points,
hence reducing the size of matrices. In addition, the improvement of matrix sparsity reduces
the computational cost and makes the entire registration process more efficient.

In summary, adaptive local refinement using THB-splines basis functions has the follow-
ing advantages:

• We reduce the computational cost by introducing local refinement as compared with
using uniformly refined grids. The desired level of accuracy is reached using fewer

8
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(a) Source image (b) Target image (c) Initial image difference

(d) First level (e) Second level (f) Third level (g) Fourth level (h) Fifth level

(i) First level (j) Second level (k) Third level (l) Fourth level (m) Fifth level

(n) First level (o) Second level (p) Third level (q) Fourth level (r) Fifth level

Figure 1: Registration of ring to star: The initial source image, the target image and initial differences are
shown in (a-c). The evolving images after each stage of registration are shown in (d-h). The differences
between the target and evolving images at each level are shown in (i-m). Meshes generated at different levels
based on THB-spline basis refinement are shown in (n-r).

number of control points and at the same time we capture fine deformations on locally
refined grids which cannot be captured properly on coarser grids.

• THB-spline basis functions increase the sparsity of the matrices generated in FEM

9
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(a) M matrix using HB-splines (b) M matrix using THB-splines

Figure 2: Comparison of the M matrix structure after five levels of refinement using HB-splines (a) and
THB-splines (b) for the example shown in Figure 1. The sparsity ratio (THB-splines/HB-splines) is 73.30%.

based methods. As the computational cost depends on the number of non-zero entries
of these matrices, this helps in making the solver more efficient.

4. NUMERICAL RESULTS AND DISCUSSIONS

The efficiency of the proposed registration framework is evaluated on two pairs of syn-
thetic images and three pairs of medical images. The evolving images at the end of each
refinement level are recorded. The difference between the evolving image and the target im-
age at each refinement level is illustrated, along with the refined grids. All the results were
generated on a computer with 2.5 GHz quad-core Intel Core i7 processor and 16GB RAM.
Finally, a comparison of the similarity metrics and the computational time are shown in
Tables 1 and 2 along with the results obtained from the uniform grid refinement technique.

We test the performance of our method on two pairs of synthetic images Figures 3-4
and three pairs of medical images Figures 5-7. All the numerical examples are implemented
using the adaptive grid refinement strategy described in section 3. The regularization pa-
rameters λ1 and λ2 are set as 0.0001 for all our numerical examples. The time step ε is set
by observing the convergence of the similarity ratio for the evolving images at each time
step. At a particular level, when the values of RS do not improve much or even start to
decrease, the grid is refined locally. The control points are added in the areas of large change
in deformation. The control mesh is reinitialized and the resulting image obtained at the
previous refinement level is used as the source image for the newly refined grid. The reg-
istration process is not sensitive to the value of ε at a particular refinement level, but for
different refinement levels the finer grids require ε to be comparatively smaller to accurately
capture the finer deformations. The value of ρ depends on the complexity of the image being
studied. For medical images with more complex information, it is necessary to use more
refinement levels and a larger value of ρ for the finer refinement levels to prevent addition

10
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(a) Source image (b) Target image (c) Initial image differ-
ence

(d) Evolving image (e) Image difference (f) Grid at first level

(g) Evolving image (h) Image difference (i) Grid at second level

Figure 3: Square to Star: The initial source image, the target image and initial differences are shown in
(a-c). The evolving images, differences between the target and evolving images and meshes generated at
different levels based on THB-spline basis refinement for the first and second refinement levels are shown in
(d-f) and (g-i) respectively.

of too many control points. At the start of the registration process, these values are set for
each refinement level, and then maintained fixed during the registration process.

For Figure 3, the values of ε are set as 0.025 and 0.005 for the first and second refinement
levels respectively. The value of ρ is set to 1.5. To achieve smooth convergence, we set ε to
a lower value when conducting the registration on the finer levels. This is done to gradually
deform the image and capture the highly localized deformations accurately. In Figure 4,
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Table 1: Comparison of MSD and RS using our method (THBS) with uniform B-spline refinement (UBS).

Image Level Iterations Control Points MSD RS
UBS THBS UBS THBS UBS THBS UBS THBS

Square-Star (Fig. 3) 1 25 25 1, 089 1, 089 128.11 128.11 97.20 97.20
Image Size: 220× 220 2 6 6 3, 969 2, 382 20.68 23.03 99.15 99.12

Sun-Four Stars (Fig. 4) 1 15 15 1, 089 1, 089 1.70× 103 1.70× 103 69.64 69.64
Image Size: 220× 220 2 20 20 3, 969 2, 577 181.57 174.76 95.92 95.93

3 7 10 15, 129 6, 498 18.70 21.77 98.99 98.91
Brain 1 (Fig. 5) 1 10 10 1, 089 1, 089 216.60 216.60 30.05 30.05

Image Size: 256× 256 2 20 20 3, 969 2, 142 84.00 90.97 73.79 73.32
3 10 20 15, 129 5, 697 41.38 45.42 82.89 82.60
4 - 10 - 6, 807 - 30.58 - 84.35

Brain 2 (Fig. 6) 1 5 5 1, 089 1, 089 215.80 215.80 38.15 38.15
Image Size: 512× 512 2 15 15 3, 969 2, 322 70.79 72.90 73.28 72.98

3 15 20 15, 129 6, 261 33.80 37.44 81.71 80.33
4 - 10 - 10, 077 - 24.89 - 83.03

Brain 3 (Fig. 7) 1 10 10 1, 089 1, 089 259.59 259.59 30.36 30.36
Image Size: 256× 256 2 20 20 3, 969 2, 945 96.15 100.32 67.55 66.66

3 20 20 15, 129 9, 642 46.14 48.79 82.63 81.73
4 - 10 - 10, 344 - 31.16 - 86.60

we demonstrate the registration of two images with very different topology. To obtain the
desired accuracy, we conduct the registration on three refinement levels. The values of ε and
ρ are set as 0.015 and 1.5 for the first two levels, 0.005 and 2 for the third level, respectively.
For the finest level we set the value of ρ to a higher value in order to avoid introducing too
many control points in the image domain. Thus we achieve a lot of flexibility in terms of
the amount of refinement required. Depending upon the nature of the registration problem,
we can easily control the local refinement of the grid.

In Figures 5-7, we implement the registration process on medical images, specifically to
brain MRI images. Unlike synthetic images, medical images have more complex features.
It is therefore crucial that we ensure the smooth convergence of the solution, so that the
final images obtained are able to represent all the features correctly. The registration is
conducted on four refinement levels. We set the values of ε as 0.008 for the first two levels
and 0.005 for the last two levels. For Figures 5-6, the value of ρ is set as 1.5 for the first
two stages of refinement and 3 for the last refinement stage. For Figure 7 we set ρ as 1 for
the first two stages of refinement and 3 for the final stage of refinement. From the results
we observe that an accuracy of around 98% and 83% is achieved for synthetic and medical
images respectively. The final images are matched well with the corresponding target images.
We can also observe that the solver can detect the areas of image differences at each level
and locally refine these regions. This step ensures that we only add control points where
image deformation is expected and thus capture these localized changes efficiently.

We also perform the registration of the examples using uniform grid refinement strategy.
The comparison of the values of MSD, RS, number of control points and the running time
after each refinement level is shown in Tables 1 and 2. The following observations can be
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Table 2: Comparison of the total CPU time in seconds using our method (THBS) with uniform B-spline
refinement (UBS).

Image Level Iterations Control Points CPU Time (seconds)
UBS THBS UBS THBS UBS THBS

Square-Star (Fig. 3) 1 25 25 1, 089 1, 089 42.32 40.02
Image Size: 220× 220 2 6 6 3, 969 2, 382 54.75 38.01

total: 97.07 total: 78.03
Sun-Four Stars (Fig. 4) 1 15 15 1, 089 1, 089 26.77 29.85
Image Size: 220× 220 2 20 20 3, 969 2, 577 159.86 93.65

3 7 10 15, 129 6, 498 575.81 226.73
total: 762.44 total: 350.23

Brain 1 (Fig. 5) 1 10 10 1, 089 1, 089 18.60 24.73
Image Size: 256× 256 2 20 20 3, 969 2, 142 160.54 86.82

3 10 20 15, 129 5, 697 713.20 305.30
4 - 10 - 6, 807 - 252.93

total: 892.34 total: 669.78
Brain 2 (Fig. 6) 1 5 5 1, 089 1, 089 11.97 34.12

Image Size: 512× 512 2 15 15 3, 969 2, 322 125.36 126.18
3 15 20 15, 129 6, 261 1, 310.50 416.96
4 - 10 - 10, 077 - 616.88

total: 1, 447.83 total: 1, 194.14
Brain 3 (Fig. 7) 1 10 10 1, 089 1, 089 18.09 22.40

Image Size: 256× 256 2 20 20 3, 969 2, 945 155.05 108.04
3 20 20 15, 129 9, 642 1, 259.65 506.79
4 - 10 - 10, 344 - 297.80

total: 1, 432.79 total: 935.03

drawn from the results:

• The maximum deformation in the image is captured by the coarser grids. By observing
the RS value after the initial few refinement levels, we can see that the maximum
increase in similarity takes place on coarser levels. A larger time step is chosen to
accelerate the deformation. On finer levels, the increase in RS is slower as compared
to the coarser levels. Here highly localized deformations are captured and the evolving
image gradually deforms to match the target image.

• Compared to uniform refinement, our THB-spline based method is more efficient for
the same level of accuracy. Although we need slightly more time to initialize the
THB-spline data structure, we use fewer control points and reach the desired accuracy
faster. In this way, we are able to reduce the size of the matrix and make the solver
much more efficient.

• Compared to using HB-splines, THB-splines improve the sparsity of the M matrix,
further improving the computational efficiency.
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• The computational time taken for the registration process depends mainly on the com-
plexity of the images and to a lesser extent on the size of the images. This is because
to accurately capture the features to be registered, we need more refinement levels and
refine more regions at each stage than for images with less complex information.

5. CONCLUSION

In this paper, we propose an efficient way to solve FEM-based image registration prob-
lems using local refinement and THB-spline basis functions. The registration process is
conducted on a series of grids capturing both large and finer deformations inside the image
efficiently without introducing too many control points. This also helps in reducing the
matrix size, leading to faster computation. Compared to HB-spline based method, THB-
spline basis functions improve the sparsity of the matrices and satisfy partition of unity.
The proposed method is tested on 2D synthetic and medical images. The improvement in
the efficiency is shown by comparing the results of adaptive grid refinement with uniform
grid refinement. For our future work, we plan to extend our scheme to 3D medical images
and target real medical applications. In terms of computational cost for 3D image regis-
tration, we can predict that the proposed method will enhance the efficiency even more as
compared to uniform refinement because regions of the image with uniform intensity (such
as the background) can be represented with very few control points. The computational cost
mainly depends on the complexity of the images. Even if the resolution of the 3D images is
not the same in all the three directions, we can suitably choose the initial control grid to be
coarser in the direction of lower resolution.
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(a) Source image (b) Target image (c) Initial image differ-
ence

(d) First level (e) Second level (f) Third level

(g) First level (h) Second level (i) Third level

(j) First level (k) Second level (l) Third level

Figure 4: Sun to Four Stars: The initial source image, the target image and initial differences are shown in
(a-c). The evolving images after each stage of registration are shown in (d-f). The differences between the
target and evolving images at each level are shown in (g-i). Meshes generated at different levels based on
THB-spline basis refinement are shown in (j-l).
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(a) Source image (b) Target image (c) Initial image difference

(d) First level (e) Second level (f) Third level (g) Fourth level

(h) First level (i) Second level (j) Third level (k) Fourth level

(l) First level (m) Second level (n) Third level (o) Fourth level

Figure 5: Brain 1: The initial source image, the target image and initial differences are shown in (a-c). The
evolving images after each stage of registration are shown in (d-g). The differences between the target and
evolving images at each level are shown in (h-k). Meshes generated at different levels based on THB-spline
basis refinement are shown in (l-o).
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(a) Source image (b) Target image (c) Initial image difference

(d) First level (e) Second level (f) Third level (g) Fourth level

(h) First level (i) Second level (j) Third level (k) Fourth level

(l) First level (m) Second level (n) Third level (o) Fourth level

Figure 6: Brain 2: The initial source image, the target image and initial differences are shown in (a-c). The
evolving images after each stage of registration are shown in (d-g). The differences between the target and
evolving images at each level are shown in (h-k). Meshes generated at different levels based on THB-spline
basis refinement are shown in (l-o).
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(a) Source image (b) Target image (c) Initial image difference

(d) First level (e) Second level (f) Third level (g) Fourth level

(h) First level (i) Second level (j) Third level (k) Fourth level

(l) First level (m) Second level (n) Third level (o) Fourth level

Figure 7: Brain 3: The initial source image, the target image and initial differences are shown in (a-c). The
evolving images after each stage of registration are shown in (d-g). The differences between the target and
evolving images at each level are shown in (h-k). Meshes generated at different levels based on THB-spline
basis refinement are shown in (l-o).
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