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Abstract

We present a-posteriori analysis of higher order finite element approximations (hp-FEM) for qua-
dratic Fredholm-valued operator functions. Residual estimates for approximations of the algebraic
eigenspaces are derived and we reduce the analysis of the estimator to the analysis of an associ-
ated boundary value problem. For the reasons of robustness we also consider approximations of
the associated invariant pairs. We show that our estimator inherits the efficiency and reliability
properties of the underlying boundary value estimator. As a model problem we consider spectral
problems arising in analysis of photonic crystals. In particular, we present an example where a
targeted family of eigenvalues cannot be guaranteed to be semisimple. Numerical experiments with
hp-FEM show the predicted convergence rates. The measured effectivities of the estimator compare
favorably with the performance of the same estimator on the associated boundary value problem.
We also present a benchmark estimator, based on the dual weighted residual (DWR) approach,
which is more expensive to compute but whose measured effectivities are close to one.
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1. Introduction

A large number of processes in science are described by operator functions with a nonlinear
dependence of a spectral parameter. In particular, dispersion and damping are commonly present
in nature. Dispersion implies that the operator function is nonlinear and damping implies that the
operator function is non-selfadjoint. For an overview of applications leading to nonlinear eigenvalue
problems from a computational linear algebra point of view we refer to [10, 50]. Approximations
of operator functions were also extensively studied; and the general operator theory provides basic
a-priori convergence results for Fredholm-valued functions [35, 36, 53].

However, only few papers consider a-posteriori error estimations for Galerkin approximations
of operator functions [2, 47]; see also [8] for a general approach to a-posteriori error estimation and
[20] for an overview of techniques for linear eigenvalue problems. We point out that neither of the
references considers higher order finite element approximations.
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This paper is concerned with a-posteriori analysis and quadratic eigenvalue problems which can
be analyzed on an abstract Hilbert space by the Fredholm analytic theorem [44, Theorem 1.3.1];
see also [28]. In particular, for given sesquilinear forms ai[·, ·], i = 0, 1, 2, we seek a vector u 6= 0
and a scalar λ such that

a(λ)[u, v] := a0[u, v] + λa1[u, v] + λ2a2[u, v] = 0, (1)

for all v. To this variational formulation we construct a quadratic operator valued function Q on
an appropriate Hilbert space H.

An operator T on H is here called a Fredholm operator if it is a bounded operator such that
the dimensions of its null space Ker(T ) and of the orthogonal complement of its range Ran(T )⊥

are finite. In the case when the dimensions agree dim Ker(T ) = dim Ran(T )⊥ we say that T is the
Fredholm operator of index zero. In our setting, a quadratic polynomial Q is Fredholm-valued if
there exist compact operators A1 and A2 and a Fredholm operator A0 such that

Q(z) = A0 + zA1 + z2A2

for z ∈ C. For the analytic Fredholm theorem to apply we have to additionally ascertain that there
exists a complex number z0 such that Q(z0) has a bounded inverse. In this case we may conclude
[44, Theorem 1.3.1] that Q−1 is a finitely meromorphic function. This in turn implies that the
spectrum consists of eigenvalues and the point spectrum σ(Q) = {λ ∈ C : dim(KerQ(λ)) > 0} is
countable. Moreover, for each λ ∈ σ(Q) the dimension dim(KerQ(λ)), which is called the geometric
multiplicity of λ, is finite and the associated Jordan chains of generalized eigenvectors have finite
length. The length of a chain of generalized eigenvectors is bounded by the algebraic multiplicity
[44].

With the help of the phase space representation of the spectral problem for Q, we will define
the notion of the algebraic space associated to λ and will argue that it makes sense to compute
approximations of this space when numerically analyzing the spectral problem associated to T (·).
Furthermore, we show an example where the space Ker(T (λ)) may be a true subspace of the
associated algebraic subspace. In this case we prove that by reducing our subspace error indicators
we approximate a subspace of this algebraic space, which is asymptotically tending to the desired
geometric eigenspace.

In the case when we can not prove semisimplicity of the targeted eigenspace a priori, the choice
of approximating the nearest subspace of an algebraic space by reducing the residual subspace
indicator is a reasonable choice. We propose it as an alternative to proving convergence to some
averaged measure of the target eigenspace (eg. the arithmetic mean of targeted eigenvalues). We
tackle the general case of approximating the whole algebraic eigensubspace by considering simple
invariant pairs for Q, see [11, 12].

An invariant pair is a generalization of the notion of the eigenvector and eigenvalue. This analogy
is based on the fact that invariant pairs provide for a coordinate representation (basis) of the action
of the quadratic polynomial on its invariant subspace. In particular, this allows us to incorporate
the effect of numerical linear algebra in the construction of approximate solutions through the use of
local condition numbers in the overall approximation estimate. We argue that the size of standard
local condition numbers (condition number for the returned basis of an eigensubspace) indicates
whether there are generalized eigenvectors in an algebraic eigenspace, or the assumption that the
targeted eigenvalues are semisimple is robust under perturbations.
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Based on the this we propose two possible strategies. First, we can base our refinement on the
reduction of the residuals (approximation defects) just for the constructed approximate eigenvec-
tors. The constructed approximate eigenspace will be close to a subspace of the larger algebraic
eigensubspace. Asymptotically this “nearest” subspace of the algebraic eigenspace converges to the
subspace generated by eigenvectors, see [46]. Second, we optimize the local condition numbers by
constructing a different basis of the algebraic eigenspace, eg. the Schur basis. Such subspace repre-
sentation is much better conditioned and standard small scale algorithms can be used to reconstruct
the desired spectral information in a postprocessing step.

We point out that in our photonic crystal applications we did not observe extremely ill-
conditioned eigenvector basis (under the assumption of semisimplicity) and so we pursued the
first strategy. We note that we were not able to exclude the possibility of the occurrence of asso-
ciated generalized eigenvectors by an analytic argument. In this context we feel that issues of the
computation of Schur vectors and related practical algorithm is better left for a subsequent paper
where we will consider an appropriate application where generalized eigenvectors occur naturally.
We point out that to our knowledge the only nontrivial application where generalized eigenvectors
occur in numerical analysis literature is in reference [30, Section 7.2]. There the authors consider
an application in hydrodynamics and aim to compute the Jordan basis of an algebraic subspace.

We now give a brief overview of the paper. In Section 2 we present residual estimates, based
on resolvent calculus, for Galerkin approximations of general quadratic Fredholm-valued operator
functions. In Section 3 we discuss one possible usage of quadratic operator functions in photonic
crystal applications. Subsequently, in Section 4 we introduce two computable residual estimators
for higher order finite element approximations of quadratic eigenvalue problems and in Section 5
we present numerical experiments which corroborate our theory.

2. The quadratic eigenvalue problem

In this section we provide details of the construction of both the operator representation of a
variationally posed quadratic eigenvalue problem, as well as of the construction of its phase space
linearization.

Let V be a complex Hilbert space with inner product (·, ·)V and let || · ||V denote the norm on
V. Let an : V × V → C, n = 1, 2, 3 denote sesquilinear forms bounded on V × V.

The variationally posed eigenvalue problem is to find u in V\{0} and complex numbers λ such
that

a(λ)[u, v] := a0[u, v] + λa1[u, v] + λ2a2[u, v] = 0, (2)

for all v ∈ V. Riesz representation theorem implies that there exist bounded linear operators
An : V → V such that

(Anu, v)V := an[u, v], n = 0, 1, 2. (3)

Hence, the quadratic eigenvalue problem (2) can be stated as follows: Find u ∈ V\{0} and λ ∈ C
such that

Q(λ)u = 0, Q(λ) := A0 + λA1 + λ2A2. (4)

Assume that A1 and A2 are compact and that A0 is a Fredholm operator of index zero. The
operator Q(λ) is then for all λ ∈ C a Fredholm operator of index zero, see [44].

Let M denote the the linear pencil M(λ) := M0 − λM1, where

M0 =

[
A0 A1

0 I

]
, M1 =

[
0 −A2

I 0

]
. (5)
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The eigenpairs of M are then eigenvectors u ∈ V ⊕ V and complex numbers λ such that

M(λ)u = 0. (6)

Since the two outer factors in the factorization

M(λ) =

[
I A1 + λA2

0 I

] [
Q(λ) 0

0 I

] [
I −A2

λI I

]
(7)

are bounded and boundedly invertible, it follows that the Q and M have the same eigenvalues and
it can be shown that these eigenvalues have the same multiplicities [42, Lemma 12.5].

When A0 is invertible the eigenvalues of L = M−1
0 M1 are solutions of

Lu = µu, L =

[
−A−1

0 A1 −A−1
0 A2

I 0

]
. (8)

Consequently, the spectrum of the quadratic operator function Q coincide with the set of numbers

σ(Q) = {λ ∈ C : λ = 1/µ, µ ∈ σ(L)}. (9)

In this article, Fredholm-valued operator polynomials (4) with invertible leading coefficient A0 are
studied. Hence, from the analytic Fredholm theorem follows that σ(L) consist only of isolated
eigenvalues of finite multiplicity [44, Theorem 1.3.1]. For µ ∈ σ(L)\{0} there exists a smallest
positive integer α called the ascent of µ − L such that Ker (µ − L)α = Ker (µ − L)α+1. The
elements of the finite dimensional subspace Ker (µ − L)α are called generalized eigenvectors. The
order of a generalized eigenvector is the smallest positive integer n such that u ∈ Ker (µ − L)n.
The dimension of Ker (µ − L)α is called the algebraic multiplicity of µ and the dimension of Ker
(µ − L) is called the geometric multiplicity. The eigenvalues of M and Q coincide and have the
same multiplicity [42, Lemma 12.2].

2.1. Galerkin discretization

The approximation of Fredholm operator functions has been studied intensively [35, 36] and
the general theory provide basic convergence results. However, we will study the block operator
matrix formulation (6). This reformulation of the problem provides us with additional tools from
the general spectral approximation theory of linear non-selfadjoint operators. Our approach to
analyze the block operator matrix is partly similar to Kolata [38] and more recently [21].

Let Vν ⊂ V denote a sequence of conforming finite element spaces with the approximation
property

lim
ν→0

inf
uν∈Vν

||u− uν ||V = 0, for allu ∈ V. (10)

The parameter ν can be thought of as the mesh size h for h-FEM and one divided by the number
of degrees of freedom N for p-FEM.

Let P ν : V → Vν denote the projection of V into Vν defined by the inner product (P νu, vν)V =
(u, vν)V for all vν ∈ Vν . For the operator polynomial

Q(λ) = A0 + λA1 + λ2A2, (11)

define the projected operator function Qν : Vν → Vν by Qν = P νQ. The Galerkin eigenvalue
problem is to find vectors uν ∈ Vν \ {0} and values λν ∈ C such that

Qν(λν)uν = 0. (12)
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The corresponding Galerkin eigenvalue problem for the pencil is to find vectors uν ∈ Vν ⊕Vν \ {0}
and values λν ∈ C such that

Mνuν := (Mν
0 − λMν

1)uν = 0, (13)

where

Mν
0 =

[
P νA0 P νA1

0 P ν

]
, Mν

1 =

[
0 −P νA2

P ν 0

]
. (14)

The pencil Mν does not converge to M in norm and we will therefore use Kolata’s idea [38] to
construct a pencil on V⊕V, which has the same eigenvalues and generalized eigenvectors as (14) on
Vν⊕Vν but it possible to use standard perturbation theory to compare this pencil with M0−λM1.
Note that the operator A0 can be written on the form A0 = I +K, where K is compact and define
the operators

M̃ν
0 =

[
I + P νK P νA1

0 I

]
, M̃ν

1 =

[
0 −P νA2

I 0

]
. (15)

In [21] it has been shown that M̃0 − λM̃1 has the same spectrum as (14) and (12). Furthermore,
Theorem 2.1 holds, which states that we have the norm convergence property of this auxiliary
pencil. For further discussion and references see [38, 21].

Theorem 2.1. [21] Assume that A0(ω) for a given ω ∈ C is boundedly invertible. Then the block

operator matrix L̃ν = (M̃ν
0)−1M̃ν

1 converge to L = M−1
0 M1 in norm.

Assume that µ has algebraic multiplicity n. Given a circle Cµ ∈ ρ(L) which encloses µ ∈ σ(L)
and no other elements of σ(L) the spectral projections E(µ) and Eν(µ) are defined by

E(µ) =
1

2πi

∫
Cµ

(z − L)−1dz,

Eν(µ) =
1

2πi

∫
Cµ

(z − Lν)−1dz.

(16)

The range of the operator E(µ) : V ⊕ V → V ⊕ V, denoted by

Mµ := Ran(E(µ)) = Ker(µ− L)α, (17)

is the corresponding generalized eigenspace. Moreover, let Mν
µ denote the range of the projection

Eν(µ). Note that this notation signifies the dependence of Eν(µ) on Cµ and Theorem 2.1 implies
‖E(µ)−Eν(µ)‖ → 0.

2.2. Subspace containment gap

To study the properties of the convergence Mν
µ → Mµ, where we allow the dimensions of Mµ

and M to differ, we use the notion of the subspace containment gap in addition to studying the
norm difference of projections like ‖E(µ)−Eν(µ)‖ → 0. Given two closed subspaces B1 and B2 of
a Hilbert space V the proximity of the spaces are measured in terms of the containment gap

δ(B1,B2) = sup
v1∈B1

inf
v2∈B2

||v2 − v1||V
||v1||V

. (18)
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Note that δ(B1,B2) = 0 does not imply that B1 = B2, but rather that B1 is equal to a subspace
of B2. We can conclude that B1 = B2 if and only if both δ(B1,B2) = 0 and δ(B2,B1) = 0. Let
now u1, ..., ur, r = dimB1 be an orthonormal basis for B1, then

δ(B1,B2) ≤

√√√√dimB1∑
k=1

inf
v2∈B2

||v2 − uk||2V .

In the case when we do not have an orthonormal basis, we define the Gram matrix for vectors
u1, ..., ur by the formula G = [(ui, uj)V ]i,j=1,...,r. The condition κ number of a set of vectors
u1, ..., ur is defined as

κ =

√
σ1(G)σ−1

r (G), (19)

where σ1(G) is the largest and σr(G) the smallest singular value of the matrix G. Then, the
estimate of the containment gap reads

δ(B1,B2) ≤ κ

√√√√ r∑
k=1

inf
v2∈B2

||v2 − uk||2V
||uk||2V

. (20)

Note that this definition as well as statements hold for any pair of finite dimensional subspaces A
and B of a Hilbert space X . Since both the Gram matrix G, as well as the containment gap δ,
depend on the scalar product of the Hilbert space X we will write δX (A,B) and κX (G) in situations
where we have to notationally distinguish different Hilbert space constructions (e.g. the phase space
condition number from the original space condition number).

2.3. Residual estimates based on resolvent calculus

Note that as the projections defined by (16) are not orthogonal projections in V ⊕ V we have
for f ∈Mµ, ‖f‖V⊕V = 1

inf
v∈Mν

µ

‖f − v‖V⊕V ≤ ‖f −Eν(µ)f‖V⊕V .

We will now use the resolvent calculus to compute an estimate of ‖f −Eν(µ)f‖V⊕V . The following
theorem is a specialization of [46, Theorem 1] to the block operator matrices which appear in the
linearization (13) of the quadratic eigenvalue problem. Let us further point out that we recast
the claim of the theorem slightly differently by concentrating on bounding the resolvent difference
locally, that is on the vector f only, rather then emphasizing the “global” norm bound. This
difference leads directly to residual estimates and we provide a proof to highlight the important
difference to [46, Theorem 1].

Theorem 2.2. Let fν ∈Mν
µ be such that L̃νfν = µνfν then

‖fν −E(µ)fν‖V⊕V ≤
len(Cµ)

2π
sup
z∈Cµ

‖(z − L)−1‖
|z − µν |

‖(L− L̃ν)fν‖V⊕V .

Proof. From (16) we compute

‖fν −E(µ)fν‖V⊕V =
1

2π
‖
∫
Cµ

(z − L)−1(L− L̃ν)(z − L̃ν)−1fν dz‖V⊕V .
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Since

(z − L̃ν)−1fν =
1

z − µν
fν ,

the conclusion follows.

Theorem 2.3. Let A0 be invertible and let λν 6= 0 and uν be such that Qν(λν)uν = 0. Then

Lfν − 1

λν
fν =

1

λν

[
−A−1

0 (A0u
ν + λνA1u

ν + (λν)2A2u
ν)

0

]
, for fν =

[
uν

λνuν

]
,

and
inf

v∈Mλ−1

‖fν − v‖V⊕V ≤ CCµ‖Q(λν)uν‖V

where

CCµ =
len(Cµ)

2π
sup
z∈Cµ

‖(z − L)−1‖
|z − 1

λν |
‖A−1

0 ‖
λν

.

Proof. The proof is a direct consequence of Theorem 2.2 and a straightforward computation with
the block matrix representation for L as given in (8) and the fact that L̃νfν = µνfν and so
(L− L̃ν)fν = Lfν − µνfν .

Theorem 2.4. Assume that a circle Cµ ∈ ρ(L) encloses µ = λ−1
0 ∈ σ(L) of geometric multiplicity

r and no other elements of σ(L) and that we are given a basis of Galerkin vectors uνi such that all
µνi = (λνi )−1, i = 1, ..., r are inside Cµ ⊂ ρ(L). Then

δV⊕V(Mµ,M
ν
µ) ≤ κV⊕VGCµ

√√√√ r∑
i=1

‖Qν(λνi )uνi ‖2V ,

in the case in which µ is semisimple it also holds

δV⊕V(Mν
µ,Mµ) ≤ κV⊕VGCµ

√√√√ r∑
i=1

‖Qν(λνi )uνi ‖2V ,

Here κV⊕V is the condition number (19) and Mν
µ is the span of vectors fνi, i = 1, · · · , r.

Proof. Since δV⊕V(Mν
µ,Mµ)→ 0 for ν → 0 it follows from [46] that

δV⊕V(Mµ,M
ν
µ) ≤

δV⊕V(Mν
µ,Mµ)

1− δV⊕V(Mν
µ,Mµ)

≤ CδV⊕V(Mν
µ,Mµ). (21)

We define the constant

GCµ = C
len(Cµ)

2π
sup
z∈Cµ

‖(z − L)−1‖
|z − 1

λν |
‖A−1

0 ‖
λν

,

and use (20) and Theorem 2.3 to obtain the first estimate.
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Corollary 2.5. Let Bν
µ be the linear span of the set of vectors uνi , i = 1, ..., r and let Bµ denote

the linear span of eigenvectors and associated generalized eigenvectors of µ = λ−1. Moreover, let
κV be the condition number of the basis uνi , i = 1, ..., r. Then

δV(Bµ,B
ν
µ) ≤ κVGCµ

√√√√ r∑
i=1

‖Qν(λνi )uνi ‖2V ,

and in the case in which µ is semisimple we have in addition

δV(Bν
µ,Bµ) ≤ κVGCµ

√√√√ r∑
i=1

‖Qν(λνi )uνi ‖2V .

Proof. Note that for any u ∈ Bµ and v ∈ Bν
µ we have ‖u − v‖V ≤

√
‖u− v‖2V + ‖µ u+ µν v‖V ,

and so the proof follows analogously as was done in the proof of Theorem 2.4.

2.4. More detailed subspace estimates

This section is presented primarily for theoretical reasons. It purpose is to present more detailed
estimates for invariant subspace approximations as well as to show the scope of the resolvent calculus
approach to residual estimation. We will also give a geometrical interpretation of the approximation
error measure δ(Mµ,M

ν
µ) and propose it as an alternative to standard approximation error measures

in the case when we are dealing with subspace approximations.
A simple invariant pair is an extension of the notion of the eigenvalue and an eigenvector. It is

constructed to give a coordinate representation of the action of an operator on a particular invariant
space.

Definition 2.6. Let V be a Hilbert space and A a bounded operator. A pair (X,M), where
X : Cn → V is a bounded operator such that X∗X is invertible and M ∈ Cn×n, is a simple
invariant pair of rank n for A if A X = X M and the algebraic multiplicities of the eigenvalues of
M coincide with the algebraic multiplicities of the corresponding eigenvalues of A. In the case in
which M is in the Jordan form, we call (X,M) a Jordan pair.

Let ei, i = 1, · · · , n denote the canonical basis vectors of Cn. The operator X : Cn → V in
Definition 2.6 is frequently called a quasi-matrix and

‖X‖F :=
√

trace(X∗X) =

√√√√ n∑
i=1

‖Xei‖2V , (22)

denotes its Frobenius or Hilbert-Schmidt norm. For details and proofs see e.g. [52] and the
references therein. We introduce the notion of a quasimatrix since it allows us to obtain a convenient
coordinate parametrization of its image space

Ran(X) = {Xx : x ∈ Cn}.

Note that (X∗X)ij = (Xei, Xej)V is just a notation for a Gram matrix from (19). Recall that L
and the quadratic polynomial Q, where Q(z) = A0 +A1z+A2z

2, have the same spectra, providing
A0 is invertible.
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Lemma 2.7. Let Y =

[
Y1

Y2

]
: Cn → V ⊕ V and let (Y,M) be a simple invariant pair of L with M

invertible. Then Y1 = Y2M and

A0Y1 +A1Y1M
−1 +A2Y1M

−2 = 0.

Proof. First,

L X −XM =

[
−A−1

0 A1 −A−1
0 A2

I 0

] [
Y1

Y2

]
−
[
Y1

Y2

]
M

=

[
−A−1

0

[
A1Y1M

−1 +A2Y2M
−1 +A0Y1

]
M

Y1 − Y2M

]
= 0 .

Hence Y1 = Y2M and so
A0Y1 +A1Y1M

−1 +A2Y1M
−2 = 0 .

The pair (Y1,M
−1), which we constructed in the lemma, is called a simple invariant pair for Q.

To simplify the notation let W := M−1. Then, note that (Y1,W ) is a simple invariant pair of Q
if and only if (Y1S

−1, SWS−1) is a simple invariant pair for any invertible matrix S. More to the
point we have the following definition from [12].

Definition 2.8. A pair (Y,W ), where Y : Cn → V and W ∈ Cn×n, is called an invariant pair of
rank n, n ∈ N for the quadratic polynomial Q if the following holds

1. Y ∗Y +W ∗Y ∗YW is invertible

2. A0Y +A1YW +A2YW
2 = 0.

Let l ∈ N be the largest integer such that there exists an invariant pair (Ỹ , W̃ ) of Q of rank l for

which σ(W ) = σ(W̃ ). We define the multiplicity of (Y,W ) as the number l − n+ 1. An invariant
pair of multiplicity one is called a simple invariant pair.

For a detailed discussion of simple and minimal invariant pairs in the matrix setting we refer to
[11, 12]. Note that instead of using a measure which will be invariant for a coordinate transformation

(Y1,W ) 7→ (Y1S
−1, SWS−1) , (23)

we have opted to compare the invariant subspaces of the linearization L. There are several reasons
for this. First, in the case in which σ(W ), consists solely of semisimple eigenvalues we can construct
matrices W and W ν as diagonal matrices. Then the containment gap δ(Mµ,M

ν
µ) measures the

distance between the graphs of the matrices W and W ν in the geometry of the space V⊕V. Recall,
a graph of a matrix W ∈ Cn×n is the space Graph(W ) = {x⊕ (Wx) : x ∈ Cn} and

GraphV⊕V(W ) = {(Y1x)⊕ (Y1Wx) : x ∈ Cn} ⊂ V ⊕ V

is isomorphic to Graph(W ).
Second, the examples that we present later in the article appear to have semisimple eigenvalues.

The abstract spectral theory cannot guarantee this, but we were always able to construct a simple
Jordan pair for Lν with W ν being a diagonal matrix. The corresponding condition numbers κ were
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always moderate and hence did not indicate the presence of associated generalized eigenvectors.
However, should the condition numbers κ in Theorem 2.4 be too large, and a use of better condi-
tioned basis is necessary or only desirable, then we might construct W in e.g. Schur form. Note
that the inequality is still true, only the estimate might end up as being to coarse. The estimates
for this case are given by Corollary 2.5.

Corollary 2.9. Let F ν =

[
Y ν

Y ν(Mν)−1

]
: Cn → V ⊕ V and Mν ∈ Cn×n be a simple invariant pair

of Lν such that σ(Mν) is enclosed by Cµ ⊂ ρ(L). Assume that Cµ encloses only the eigenvalue µ of
algebraic multiplicity n and geometric multiplicity r. Then

‖F ν −E(µ)F ν‖F ≤
len(Cµ)

2π
sup
z∈Cµ

{
‖(z − L)−1‖‖(z −Mν)−1‖

}
‖L F ν − F νMν‖F .

Set κ = σ1(G)/σn(G), then for Gij = (F νei, F
νej)V⊕V , we have

δ(Ran(F ν),Mµ) ≤ κ len(Cµ)

2π
sup
z∈Cµ

{
‖(z − L)−1‖‖(z −Mν)−1‖

}
‖L F ν − F νMν‖F . (24)

Moreover, the following estimate holds

‖L F ν − F νMν‖F ≤ ‖A−1
0 ‖‖M

ν‖‖A0Y
ν +A1Y

νW ν +A2Y
ν(W ν)2‖F , (25)

with W ν = (Mν)−1.

Proof. For the proof we directly combine Theorem 2.4 and Corollary 2.5 together with the definition
of the Frobenius norm of a quasimatrix (22).

Note that the statement of Corollary 2.9 can equivalently be formulated for the quadratic
polynomial Q. The gap δ(Ran(F ν),Mµ) is a containment gap between two graph spaces which
represent local actions of operator L and Lν as defined by the contour Cµ. Any other approximation
measure which measures the quality of a restriction of an operator to the subspace must take into
account both eigenvalues as well as eigenvectors. A use of a graph distance is standard operator
theoretic tool, but less frequently used as an approximation measure in finite element computations.
We argue that it is appropriate for dealing with multiplicity since it is an appropriate measure for
comparing two invariant pairs (X,W ) and (Xµ,Wµ), where

M̃µ = Ran(

[
X
XW

]
), Mµ = Ran(

[
Xµ

XµWµ

]
).

Since given (X,W ) we can compute the desired spectral information using standard robust pro-
cedures of numerical linear algebra on the matrix W . We emphasize that the equations (24) and
(25) offer a natural opportunity to incorporate the effect of numerical linear algebra in the overall
approximation process.

Computing an approximation to the simple invariant pair belonging to a collection of eigenvalues
enclosed by a contour is an appropriate solution to the eigenvalue approximation problem associated
to a cluster of eigenvalues (i.e. a group of eigenvalues enclosed by a contour) The local condition
numbers κ, ‖Mν‖ = ‖(W ν)−1‖, together with the norm of the residual ‖A0Y

ν + A1Y
νW ν +

A2Y
ν(W ν)2‖F are indicators which represent the mixture of the stability measures for the quality
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of the computed Galerkin discretization. The quality of the discretization is primarily measured by
the size of the norm of the residual, whereas κ‖(W ν)−1‖ measure both the local condition number
for the linearization as well as the influence of the choice of the basis for the approximate eigenspace.
We argue that this measures the influence of numerical linear algebra in the overall process. Note
that the residual norm (25) does not depend on the linearization, but is a property of the quadratic
eigenvalue problem. This line of argument has been further elaborated in [12] and [11]. On the
other hand κ depends directly on the linearization used. Large κ indicates that the basis for the
eigenspace is close to being linearly dependent. This in turn indicates that we should construct
a different basis for the approximate eigenspace. This is achieved by constructing an appropriate
matrix Sν in (23) which in turn changes all of the local stability numbers κ, ‖Mν‖ = ‖(W ν)−1‖
and ‖A0Y

ν + A1Y
νW ν + A2Y

ν(W ν)2‖F . Obviously the optimal choice, one giving the minimal
estimate, is an open question. The possibilities which we consider are the choice of Sν such that
Sν W ν(Sν)−1 is diagonal (e.g. semisimple Jordan form), or the choice of the orthogonal S such that
Sν W ν(Sν)−1 is upper triangular with eigenvalues appearing on the diagonal, e.g. Sν W ν(Sν)−1

is in the Schur form. This will have the effect of minimizing κ. In our experiments in photonic
crystal applications the κ for the semisimple Jordan form was always reasonable. We could not
prove a priori that this must be so, and so we only rigorously conclude that by reducing the norm of
the residual we have converged to the subspace of the algebraic eigenspace which is asymptotically
tending to the subspace spanned by the eigenvectors (in the case in which there might be associated
generalized eigenvectors).

2.5. Variational estimates of the residual

We will now present variational estimates of the subspace residual . First, we will present a
variational formula to estimate the norm ‖Q(λν)uν‖V . Recall that

(Q(λν)uν , v)V = a(λν ;ω)[u, v], v ∈ V.

Then we have

‖Q(λν)uν‖V = sup
v∈V,v 6=0

|(Q(λν)uν , v)|
‖v‖V

= sup
v∈V,v 6=0

|a(λν)[uν , v]|
‖v‖V

=: ‖a(λν)[uν , ·]‖V∗ .

In the experiments section we will use direct estimates of the dual norm of the residual. In these
examples the space V∗ will be the dual of the first order Sobolev space, and so we can use direct
residual estimators which are based on integration by parts formulae.

In the case in which we have a simple invariant pair Y1 : Cn → V, W ∈ Cn×n, we proceed using
(22). First note that for f ∈ Cn

‖A0Y1f +A1Y1Wf +A2Y1W
2f‖V = ‖a0[Y1f, ·] + a0[Y1Wf, ·] + a0[Y1W

2f, ·]‖V∗ , (26)

and by a direct calculation we obtain the Frobenius norm

‖A0Y1 +A1Y1W +A2Y1W
2‖F =

√√√√ n∑
i=1

‖a0[Y1ei, ·] + a0[Y1Wei, ·] + a0[Y1W 2ei, ·]‖2V∗ . (27)

11



Formula (27) will not use the in practical computations. However, we will show in Section 4.2 how
to construct an efficient and reliable estimator of (27).

3. Application to photonic crystal

In a photonic crystal, a complex wave vector k describes a wave attenuated along the direction
of propagation for a given (real) frequency ω. These Bloch-waves with a complex wave vector are
for example used to solve source problems in photonic crystals and photonic crystal wave-guides of
finite size [16, 34, 14].

In this paper, we study electromagnetic wave propagation in a non-magnetic material with the
relative permittivity ε(x1, x2) independent of the third coordinate x3. The x3- independent electro-
magnetic wave (E,H) is decomposed into transverse electric (TE) polarized waves and transverse
magnetic (TM) polarized waves [18]. This decomposition reduces the spectral problem for the
Maxwell operator to one scalar problem for H3 and one scalar problem for E3.

For the TM case with a real-valued permittivity (no losses), basic properties of the spectrum
were derived in [24]. Recently, both polarizations were studied for a complex-valued (lossy) per-
mittivity function [21].

3.1. TE and TM waves

A x3-independent transverse magnetic (TM) wave is an electromagnetic wave (E,H), where
the electric field is in the form E = (0, 0, E3) and the magnetic field is in the form H = (H1, H2, 0).
The TM-waves with frequency ω can then be determined from the scalar equation

−∆E3 − ω2ε(x, ω)E3 = 0, x ∈ R2, (28)

and Maxwell’s equations [18]. Similarly, the TE polarized waves (E,H) = (E1, E2, 0, 0, 0, H3) can
be determined from

−∇ ·
(

1

ε(x, ω)
∇H3

)
− ω2H3 = 0 (29)

and Maxwell’s equations. Let Γ denote the lattice Z2 and denote by Ω = (0, 1]2 the unit cell of the
lattice Γ. The dual lattice to Γ is

Γ∗ = {q ∈ R2 : γ · q ∈ 2πZ , ∀γ ∈ Γ} (30)

and we define the Brillouin zone of the dual lattice Γ∗ as the set

Ω∗ = (−π, π]2. (31)

A Bloch solution of (28) or (29) is a non-zero solution of the form

E3(x) = eik·xu(x), respectivelyH3(x) = eik·xu(x), (32)

where u is a Γ-periodic function and k ∈ C2 is the Floquet-Bloch wave vector [40, p. 152]. Since
∇(eik·xu(x)) = eik·x(∇+ ik)u(x) the Bloch solutions of (28),(29) are Γ-periodic solutions of

TM: − (∇+ ik) · (∇+ ik)u(x)− ω2ε(x, ω)u = 0, (33)

TE: − (∇+ ik) ·
(

1

ε(x, ω)
(∇+ ik)u(x)

)
− ω2u = 0. (34)

The frequency ω as a multi-valued function of the wave vector k is called the dispersion relation
and the graph of the dispersion relation defines the Bloch variety [40].
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3.2. The variationally posed quadratic eigenvalue problems

We assume that electromagnetic energy may be transferred into the material, but electromag-
netic energy is not transferred from the material into the electromagnetic field. Materials with this
property, which called are called passive [18, 22], satisfy the condition

ωε(ω) ∈ C+ = {z ∈ C : 0 ≤ arg z < π, z 6= 0} ∀ω ∈ C+. (35)

An important consequence of (35) is =ε(ω) ≥ 0 for ω > 0. Assume that ε(·, ω) ∈ L∞(T2) and that
it exists positive constants c0, c1 such that

0 < c0 ≤ |ε(x)| ≤ c1 (36)

for almost all x ∈ R2. In our setting ω > 0 is fixed and k = λk̂, where λ ∈ C and k̂ is a fixed unit
vector in R2. This means that, as in [32, 19, 23], the solutions (k, ω) ∈ C2 ×R+ have collinear real
and imaginary parts of k.

Let T2 = R2/Γ denote the torus in two dimensions. The Sobolev space H1(T2) can be char-
acterized by considering its Fourier series with coefficients û(n) ∈ C, n ∈ Z2. Then u ∈ H1(T2) if
and only if ∑

n∈Z2

(1 + |2πn|2)2|û(n)|2 <∞. (37)

Define the continuous sesquilinear forms

sn : H1(T2)×H1(T2)→ C, (38)

where n = 0, 1, 2 and

s0(ω)[u, v] =

∫
Ω
∇u · ∇v − ω2εuv dx, s1[u, v] = 2i

∫
Ω
uk̂ · ∇v dx,

s2[u, v] =

∫
Ω
uv dx.

(39)

The variationally posed spectral problem for TM-waves (33) is: Find vectors u ∈ H1(T2)\{0} and
complex numbers λ satisfying

s(λ;ω)[u, v] = 0, s(λ;ω)[u, v] = λ2s2[u, v] + λs1[u, v] + s0(ω)[u, v], (40)

for all v ∈ H1(T2). Based on Riesz representation theorem we derive a quadratic operator poly-
nomial formulation of (38). The variational problem (40) can therefore be written as the operator
equation

QTM(λ;ω)u = 0, QTM(λ;ω) = S0(ω) + λS1 + λ2S2 (41)

in H1(T2). The variationally posed quadratic eigenvalue problem for TE-waves (34) is derived in
the same way. Define the continuous sesquilinear forms

tn : H1(T2)×H1(T2)→ C, (42)

where n = 0, 1, 2 and

t0(ω)[u, v] =

∫
Ω

1

ε
∇u · ∇v − ω2uv dx, t1(ω)[u, v] = 2i

∫
Ω

1

ε
uk̂ · ∇v dx,

t2(ω)[u, v] =

∫
Ω

1

ε
uv dx.

(43)
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The variationally posed spectral problem for TE-waves is: Find vectors u ∈ H1(T2)\{0} and
complex numbers λ satisfying

t(λ;ω)[u, v] = 0, t(λ;ω)[u, v] = λ2t2(ω)[u, v] + λt1(ω)[u, v] + t0(ω)[u, v], (44)

for all v ∈ H1(T2).
The quadratic eigenvalue problem (44) can alternatively be represented by the operators Tn :

H1(T2)→ H1(T2), with

(Tn(ω)u, v)1 = tn[u, v] for all u, v ∈ H1(T2) (45)

and (44) can therefore alternatively be written in terms of the operator polynomial

QTE(λ;ω)u = 0, QTE(λ;ω) = T0(ω) + λT1(ω) + λ2T2(ω) (46)

in H1(T2).
The frequency ω is in (41) and (46) a given real number. However, the spectral properties of

QTM and of QTE depend on the choice of ω.

3.3. Spectral properties

The permittivity ε is in applications usually piecewise constant and we therefore restrict ε to
the finite domain partitioning Ω = ∪Nn=1Ωn and assume that ε can be written in the form

ε(x) =

N∑
n=1

εnχΩn , (47)

where χΩn is the indicator function for subdomain Ωn, which is of positive measure.
In section 2, Fredholm-valued operator polynomials with invertible leading coefficient are stud-

ied. The polynomials QTM and QTE do not in general have an invertible leading coefficient but we
will consider two important cases where this requirement hold.

Lemma 3.1. Assume that =ε = 0 and that ω is band-gap frequency. That is there exist no Bloch
wave with a real k = λk̂ [24]. The operators function S0 and T0 are then invertible and the functions
QTM and QTE are Fredholm-valued.

Proof. The function ω 7→ S0(ω) in (41) is Fredholm. Assume =λ 6= 0. If S0(ω0)u0 = 0, then follows
QTM(λ)u0 = λ(S1 + λS2)u0, where S1 + λS2 is a compact operator and λ = 0 is a real eigenvalue.
Hence, QTM is a Fredholm function of index zero [24]. The proof for T0 is identical and QTE is
then a Fredholm function of index zero [21, Lemma 3].

Note that if S0(ω0)u0 = 0 the vector u0 can in general be an eigenvector for two different
eigenvalues λ = 0 and the solution of (S1 + λS2)u0 = 0.

Lemma 3.2. Assume that for a given ω > 0 the imaginary part of the permittivity ε is non-zero in
one of the subdomains Ωn. The operators function S0 and T0 are then invertible and the functions
QTM and QTE are Fredholm-valued.
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Proof. We can without loss of generality assume that ε1 is a positive constant and εn ∈ C, =εn > 0
for n = 2, 3, . . . , N . The operator T0 can then be written in the form

(T0u, v) =
1

ε1

∫
Ω1

∇u · ∇v dx +

N∑
n=2

1

εn

∫
Ωn

∇u · ∇v dx−
∫

Ω
ω2uv dx. (48)

The operator T0 is a Fredholm operator of index zero [21, Lemma 3]. Assume that ω is real and
(T0u, v) = 0 for all v ∈ H1(T2) . Then follows

0 = =(T0u, u) =

N∑
n=2

= 1

εn

∫
Ωn

|∇u|2 dx. (49)

Hence, ∇u = 0 for almost all x ∈ ∪Nn=2Ωn. This condition on the gradient of u implies that
ω2 ∈ σ(T0) ∩ R only if it exist a u ∈ H1(T2) such that∫

Ω

1

ε1
∇u · ∇v − ω2uv dx = 0 (50)

for all v ∈ H1(T2). However, the solutions of this problem have the form eim·x, m ∈ Z2, which do
not satisfy the condition on the gradient of u. It was proved in [21] that S0 is invertible.

4. Finite element approximations

Let us now discretize our model problems (40) and (44) using hp-finite element spaces. These
two problems can for fixed ω > 0 be written in the form (2), where V = H1(T2). In the following
sections, we assume that the leading coefficient A0 in the corresponding operator polynomial is
invertible. Two cases where we can guarantee that A0 is invertible were proved in Lemma 3.1 and
in Lemma 3.2.

Let T be a triangulation of Ω = (0, 1]2 with the piecewise constant mesh function h : T → (0, 1),
h(T ) = diam(T ) for T ∈ T . Further let there be a partition Ω = ∪pk=1Ωk of Ω into subdomains Ωk

with disjoint interiors and whose boundaries are piecewise smooth, such that ε(·, ω)|Ωk ∈W 1,∞(Ωk)
for each k.

We implicitly assume that T is subordinate to the polygonal partition of Ω in other words, each
T ∈ T is contained in precisely one of the polygons Ωk. Given a piecewise constant distribution of
polynomial degrees, p : T → N, we define the space

V p
h = {v ∈ H1(T2) : v

∣∣
T
∈ Pp(T ) for each T ∈ T } ,

where Pp(T ) is the collection of polynomials of total degree not greater than p on a given element
T ∈ Th and the topology of the torus is imposed by mapping the parallelogram edges situated on
one boundary on the corresponding parallelogram on opposite side.

Let E denote the set of edges in T . Additionally, we let T (e) denote the two triangles having
e ∈ E as an edge, and we extend p to E by p(e) = maxT∈T (e) p(T ). Without loss of generality, we
assume that the family of spaces satisfy the following standard regularity properties on T and p:
There exists a constant γ > 0 for which

(C1) γ−1h(T ) ≤ h(T ′) ≤ γh(T ) for adjacent T, T ′ ∈ T , T ∩ T ′ 6= ∅. In other words, the diameters
of adjacent elements are comparable.

15



(C2) γ−1(p(T )+1) ≤ p(T ′)+1 ≤ γ(p(T )+1) for adjacent T, T ′ ∈ T , T ∩T ′ 6= ∅. In other words,
the polynomial degrees associated with adjacent elements are comparable.

Let us now define the indicator function which will be used to compute an estimate of the
residual. Given uh,p ∈ V p

h \ {0} and λh,p ∈ C we define the element residual, RT (uh,p, λh,p), and
edge residual, Re(uh,p, λh,p), by

RT (uh,p, λh,p) := (−∇ · α∇uh,p − 2iλh,pαk̂ · ∇uh,p + (αλ2
h,p − ω2β)uh,p) ,

Re(uh,p, λh,p) := −(α∇uh,p + 2iλh,pαk̂uh,p)|T · nT − (α∇uh,p + 2iλh,pαk̂uh,p)|T ′ · nT ′ , (51)

where T and T ′ are the two adjacent elements of e ∈ E , having outward unit normal vectors nT
and nT ′ , respectively. Here we have allowed for the function parameters α and β which take on
appropriate values whether we tackle the TE or TM case in Section 3. For the TM case we have
α := 1, β := ε and for the TE case the parameters are α := ε−1 and β := 1.

We also define the dual local indicators as

RdT (udh,p, λh,p) := (−∇ · α∇udh,p − 2iλh,pαk̂ · ∇udh,p + (αλh,p
2 − ω2β)udh,p) ,

Rde(udh,p, λh,p) := −(α∇udh,p)|T · nT − (α∇udh,p)|T ′ · nT ′ . (52)

Let ‖ · ‖0,S and | · |1,S denote the L2-norm and the H1-seminorm over S ⊂ Ω, respectively.
As our global indicator we take

η(uh,p, λh,p)
2 :=

∑
T∈T

(
h(T )

p(T )

)2

‖RT (uh,p, λh,p)‖20,T +
∑
e∈E

h(e)

p(e)
‖Re(uh,p, λh,p)‖20,e .

and for the dual residual we use

ηd(u
d
h,p, λh,p)

2 :=
∑
T∈T

(
h(T )

p(T )

)2

‖RdT (udh,p, λh,p)‖20,T +
∑
e∈E

h(e)

p(e)
‖Rde(udh,p, λh,p)‖20,e .

Below, we present a reliability estimate of the dual norm of the residual. Because we are imposing
periodic boundary conditions, the edges along the boundary are considered interior edges. Then,
for a given vertex z we define its neighborhood in T as the set of triangles ωz which have z as
a vertex. Theorem 4.1 states a result for the interpolation operator which will be used to obtain
computable estimates of the residual.

Theorem 4.1 ([43]). There is a linear operator I : V → V p
h and a constant C depending only on

the shape-regularity parameter γ, such that: For any vertex z and any edge e having z as a vertex,

‖v − Iv‖0,ωz +
hz
pz
|Iv|1,ωz +

√
hz
pz
‖v − Iv‖0,e ≤ C

hz
pz
|v|1,Ωz .

Here, ωz is the patch of triangles having z as a vertex, hz is the largest of the diameters of these
triangles, pz−1 is the largest of the polynomial degrees associated with these triangles, and Ωz ⊃ ωz
is a larger, but still localized, patch of triangles.

Remark 4.2. The precise choice of Ωz is not essential here. It only matters that, if mz is the
number of triangles in Ωz and #T is the total number of triangles in T , then

∑
zmz ≤ δ(#T )

for some δ which depends only on the shape-regularity parameter γ. This is a consequence of the
shape-regularity assumption (C1) (cf. [43]).
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Theorem 4.3. There is a constant C depending only on shape-regularity parameter γ for which

‖a(λh,p;ω)[uh,p, ·]‖−1 ≤ Cη(uh,p, λh,p),

‖a(λh,p;ω)[·, udh,p]‖−1 ≤ Cηd(udh,p, λh,p),

where ‖ · ‖−1 denotes the norm of V∗ = H−1(T2).

Proof. It holds, because of Galerkin orthogonality, that

|a(λh,p;ω)[uh,p, v]| = |a(λh,p;ω)[uh,p, v − Iv]|

≤
∑
T∈T
‖RT (uh,p, λh,p)‖0,T ‖v − Iv‖0,T +

∑
e∈E
‖Re(uh,p, λh,p)‖0,e‖v − Iv‖0,e

.
∑
T∈T
‖RT (uh,p, λh,p)‖0,T

hz(T )

pz(T )
|v|1,Ωz(T )

+
∑
e∈E
‖Re(uh,p, λh,p)‖0,e

√
hz(e)

pz(e)
|v|1,Ωz(e) ,

where z(T ) is a vertex of T and z(e) is a vertex of e. The controlled overlap of patches (Remark 4.2)
guarantees that ∑

T∈T
|v|21,Ωz(T )

. |v|21 ,
∑
e∈E
|v|21,Ωz(e) . |v|

2
1 .

Now using the discrete Cauchy-Schwarz inequality and the fact that triangle diameters and poly-
nomial degrees are comparable for nearby elements and edges, we see that

a(λh,p;ω)[uh,p, v] .

(∑
T∈T

(
h(T )

p(T )

)2

‖RT (uh,p, λh,p)‖20,T +
∑
e∈E

h(e)

p(e)
‖Re(uh,p, λh,p)‖20,e

)1/2

|v|1 .

This completes the proof of the first statement. The proof of the second statement is analogous.

Note that equation (27) can be used to formulate an analogous error estimators for the residual
with the assumption that we have computed a Schur basis for a cluster of eigenvalues. We leave
out the details for a subsequent paper where we will analyze a continuous problem for which we
can a priori prove the existence of associated generalized eigenvectors.

4.1. Measures of the approximation error

In this paper we have opted to use the proximity measure of two eigenspaces of the linearization
of the quadratic eigenvalue problem as measures of the quality of approximation. This differs
somewhat from the usual approach taken in the literature. In this section we show how to derive
standard results based on our estimates. Also, we point out our reasons for choosing this particular
form of an estimator.

In Theorem 2.4 we have used the error measure from (18) to measure the quality of the approx-
imation of a semisimple eigenvalue λ0. The associated eigenspace Mλ−1 of the linearized problem
L consists of the functions of the form

Mλ−1 = Span
{[ u

λu

]
: u ∈ H1(T2) such that Q(λ)u = 0

}
.

17



Let v1 ∈ Mλ−1 and denote by v2 the vector v2 =

[
uh,p

λh,puh,p

]
, where Qh,p(λh,p)uh,p = 0. Then we

have

||v2 − v1||V⊕V
||v1||V⊕V

=

√
‖u− uh,p‖21 + ‖λu− λh,puh,p‖21√

‖u‖21 + λ2‖u‖21
,

where ‖ · ‖1 denotes the norm of V = H1(T2). In other words, the proximity measure δ(B1,B2) is
an “averaged” measure of the approximation quality for a given eigenpair.

In comparison one could take the standard approach as in Pester [47] which follows form the
work of Karma [35, 36] and obtain separate estimates for the approximation error in the eigenvalues
as well as in eigenfunctions. We will first show these estimates in the case of a simple eigenvalue.
Let as above u denote the right eigenfunction and let ud denote the left eigenfunction. Then the
distances between these functions and the approximating subspace V p

h are given by

dh,p = inf
v∈V ph

‖u− v‖1, ddh,p = inf
v∈V ph

‖ud − v‖1 .

From [36, Theorem 3] follows
|λ− λh,p|
|λ|

≤ Cdh,pddh,p

and using the estimates from Theorem 2.3 we obtain

dh,p = inf
v∈V ph

‖u− v‖1 ≤ C‖Q(λh,p)uh,p‖1 ≤ Cη(uh,p, λh,p) .

Equivalently, ddh,p is estimated by the left residual, which results in the practical estimate

|λ− λh,p|
|λ|

≤ Cη(uh,p, λh,p)ηd(u
d
h,p, λh,p) . (53)

Using the theory of [35, 36] it is possible to extend this estimate to semisimple and even defective
eigenvalues. However, this involves intricate averaging of either estimators η or the error measures
for the group of Galerkin values λnu.

Alternatively, based on the approach of Verfürth and using a newly dependent Clement type
interpolation operator, Pester [47] has shown that for simple eigenvalues and the space of P1
Lagrange elements the following estimate holds

C1η
2(uh,p, λh,p) ≤ |λ− λh,p|+ ‖u− uh,p‖21 ≤ C2η

2(uh,p, λh,p) (54)

It is straightforward to apply Verfürth’s analysis from [54], as has been described in [29], in our
setting. We further use the Clement type interpolation operator from Theorem 4.1 to obtain
approximation error estimates. Although the constant C2 depends on the shape regularity bound
γ, and the constant C1 depends both on γ as well as the maximal polynomial degree in V p

h , these
dependencies are not unexpected since the same holds for the boundary value estimator from [43].

Rather than to discuss these technical results, we propose that the separation distance as given
by Theorem 2.4 is a good compromise to capture the approximating property for the whole algebraic
eigenspace as well as the associated eigenvalue while at the same time giving an estimator for the

whole group of approximating Galerkin values λ
(i)
h,p in a simple form.
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For numerical experiments we will also report the convergence history for the standard measures
of the approximation error, since it will be easier to compare the performance of our estimators
with what is reported in the literature elsewhere. Naturally, this is meaningful only for simple
eigenvalues since both of the estimates (53) and (54) require this assumption.

4.2. A construction of a reliable end efficient residual estimator

In order to benchmark the performance of our estimator, we will develop a more reliable and
efficient residual estimator. However, using this estimator to estimate the negative norm of the
residuals is computationally much more expensive. The construction is based on the theory from
Sections 5 and 4.1. This construction also shows one advantage of the flexibility which our operator
theoretic approach to error analysis offers. The developed estimator is reliable and efficient and
experiments will show effectivities close to one. We will use this method to compute benchmark
results for the purposes of testing of our marking strategy.

Based on the results from [43] we have in Theorem 4.3 established a reliability estimate for
the negative norm of the residual. Using technique from [43] it is easy to establish an efficiency
estimate, eg. for the right residual

cη(uh,p, λh,p) ≤ ‖a(λh,p;ω)[uh,p, ·]‖−1 .

However, as in [43] not only does the constant c depend on the shape regularity parameter γ,
but also on the maximal polynomial degree p. We note, that although in theory the efficiency
bound deteriorates with the increase of the polynomial degree, we do not see this deterioration
in experiments. The approach of goal oriented adaptivity is used to develop the estimator for
computing the benchmark results. A similar estimator has been considered in eg. [26] for self
adjoint eigenvalue problems. This will also illustrate a versatility of our approach to residual error
estimation.

We define the following alternative representation of the residual. Let ũr ∈ V := H1(T2) be a
vector such that

(ũr, v)1 = a(λh,p;ω)[uh,p, v], v ∈ V . (55)

Then, using the continuity a(λh,p;ω)[·, ·] with respect to ‖ · ‖1 = (·, ·)1/2
1 , we obtain

(ũr, ũr)1

‖ũr‖1
≤ sup

v∈V\{0}

|a(λh,p;ω)[uh,p, v]|
‖v‖1

≤ C sup
v∈V\{0}

‖ũr‖1‖v‖1
‖v‖1

(56)

and the conclusion

‖ũr‖1 ≤ sup
v∈V\{0}

|a(λh,p;ω)[uh,p, v]|
‖v‖1

≤ C‖ũr‖1

follows. Obviously, computing ũr is as hard as solving the original problem. Therefore we compute

ũr,h′p′ using a higher order finite element space V p′

h′ which contains as a subspace the space V p
h

which was used to compute uh,p. We construct the space V p′

h′ , V
p
h ⊂ V p′

h′ , by using the standard
refinement technique [43] for the source problem (55). As described in [26] we note that ‖ũr,h′,p′‖1
is a computable estimator for ‖a(λh,p;ω)[uh,p, ·]‖−1 which is both reliable and efficient. Following,
[26] we will call the estimator defined by (55) the goal oriented dual weighted residual estimator
and will abbreviate it by DWR. We treat the left residual ‖a(λh,p;ω)[·, udh,p]‖−1 equivalently.

19



Note that using the general nonlinear analysis of error estimators from [54] we have the estimate

C1‖a(λh,p;ω)[·, udh,p]‖−1 ≤ |λ− λh,p|+ ‖u− uh,p‖21 ≤ C2‖a(λh,p;ω)[·, udh,p]‖−1 , (57)

where the constants C1 and C2 depend only on the sesquilinear form, but not on the approximation
subspace [47]. Subsequently, we see that (55) provides an reliable and efficient estimator of the
eigenvalue error with constants depending only on the shape regularity parameters of the space V p

h .

Remark 4.4. The reliability constant C from (56) depends on λh,p. However, due to the continuity
of the function a(·; ω)[·, ·] in all of its variables, it is obviously possible to obtain a uniform constant
C for a given compact region of the complex plane. This is typical setting in applications since
with finite element approximations one can only hope to directly approximate a finite component
of the point spectrum.

Observe that (57) yields directly the efficiency and reliability for the containment gap measure
of the error. Namely we have

C̃1‖a(λh,p;ω)[·, udh,p]‖−1 ≤
‖u− uh,p‖1
‖u‖1

≤ max{1, |λ|}

√
‖u− uh,p‖21 + ‖λu− λh,puh,p‖21√

‖u‖21 + λ2‖u‖21
≤ C̃2‖a(λh,p;ω)[·, udh,p]‖−1,

where the last estimate follows directly from Theorem 2.4.

Remark 4.5. Finally, we return to the invariant subspace estimator for the approximate invariant
pair (Y1,W ), Ran(Y1) ⊂ V p

h , from Section 2.5. Starting from formulas (26)–(27) and using the
technique from (55), we define the functions

(f̃i, b) = a0[Y1ei, v] + a0[Y1Wei, v] + a0[Y1W
2ei, v], v ∈ V (58)

and construct the continuous representation

‖A0Y1 +A1Y1W +A2Y1W
2‖F =

√√√√ n∑
i=1

‖f̃i‖2V .

of the Frobenius norm of the residual. We now directly proceed to the construction of a practical

estimator. Let V p′

h′ , V
p
h ⊂ V

p′

h′ be a given refinement of the current finite element space. Then from

(26) we can construct functions f̃ ′i ∈ V
p′

h′ , i = 1, · · · , n such that

(f̃ ′i , b) = a0[Y1ei, v] + a0[Y1Wei, v] + a0[Y1W
2ei, v], v ∈ V p′

h′ . (59)

Hence, from (27) we obtain a reliable and efficient estimator for the norm of the invariant subspace
residual ‖R‖F since√√√√ n∑

i=1

‖f̃ ′i‖2V ≤ ‖A0Y1 +A1Y1W +A2Y1W
2‖F ≤ C

√√√√ n∑
i=1

‖f̃ ′i‖2V . (60)

We leave out the technical details, since the reasoning is equivalent to the semisimple case.
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Remark 4.6. The use of estimates like (57) depends on the ability to reliably and efficiently compute
the negative order Sobolev norms of the residuals, eg. ‖a(λh,p;ω)[·, udh,p]‖−1. This problem is
equivalent to solving an auxiliary linear source type problem. Solving this problem, as has already
been mentioned, is not feasible in a general situation. Therefore to obtain a practical bound or
an estimator we solve the auxiliary problem numerically and estimate the error in the solution a-

posteriori. To be specific, we have restricted the variational problem from (58) to the space V p′

h to
obtain (59). If we have an a-posteriori error estimator for this source problem which is reliable and
efficient, then the practical error estimator like (60) will inherit such properties. For the solution of
problems like (59) there are simple reliable error estimators like [43]. Unfortunately, the efficiency
constant in [43] depends on the polynomial degree. This feature is an artifact of the proof and
we were not able to observe it in practical experiments. In such situation it is typical, as we have
done in the construction of DWR estimator, to assume the saturation assumption – it amounts to
assuming that the richer finite element space contains a better approximation of the source problem
than the original space – and to use the solution of the auxiliary problem as an error estimator
rather then as a bound. Technically, the saturation assumption allows us to prove that the part
of the error, which is not bounded by the estimator, decays at a higher asymptotic rate and can
thus be ignored. This is what we see in experiments like presented in Figure 5(b) in the next
section. We emphasize, for a reader’s convenience, that a bound like (57) presents an idealized but
provably efficient and reliable error bound. It is at the point where we start computing negative
order Sobolev norms that we either obtain a somewhat pessimistic bound as in Theorem 4.3 or
an efficient and reliable DWR estimator (at the price of a saturation assumption cf. [17] for a
justification of making a saturation assumption in a similar context). This can best be observed
by comparing Figures 1 and 5 in the next section. The estimators η and ηd are provably reliable,
but somewhat pessimistic. However, the DWR estimator whose reliability and efficiency depends
on the saturation assumption has measured effecitivities close to one on our model problems.

5. Experiments

In this section we provide several numerical results which illustrate the efficiency of our a-
posteriori error estimators and the exponential convergence of the error on a sequence of hp-adapted
meshes. Following [6], we assume an eigenvalue error model of the form

λh,p = λ+ Ce−2γ
√

#DOFs , (61)

for problems with analytic eigenvectors, and

λh,p = λ+ Ce−2γ 3√#DOFs , (62)

for problems possessing discontinuous coefficients in the second order term, which are expected
to have eigenvectors with isolated singularities. The constants C and γ are determined by least-
squares fitting [45]. The value of γ is reported for each problem and in all convergence plots a
straight line of slope γ is added for comparison. Although all convergence rates in the experiments
are seen to be exponential, with one of the two error models above, we will abuse terminology
slightly in the experiments by referring to γ as the convergence rate; the context will make it clear
if γ is to be associated with the model (61) or (62).
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For a given approximate eigentriple (λh,p, uh,p, u
d
h,p), we are interested in the relative eigenvalue

error, its a-posteriori estimate, and the associated effectivity index. These quantities are given by

|λh,p − λ|
|λh,p|

,
η(uh,p, λh,p)ηd(u

d
h,p, λh,p)

|λh,p|
,

η(uh,p, λh,p)ηd(u
d
h,p, λh,p)

|λh,p − λ|
.

Similarly for the eigenvectors uh,p, u
d
h,p, we analyze the eigenvector errors, their a-posteriori esti-

mates, and the associated effectivity indices:

‖u− uh,p‖1, η(uh,p, λh,p), η(uh,p, λh,p)/‖u− uh,p‖1,

‖ud − udh,p‖1, ηd(u
d
h,p, λh,p), ηd(u

d
h,p, λh,p)/‖ud − udh,p‖1.

Since the exact eigenvalues are not known for the problem under examination, we use highly
accurate computations on very fine grids and adapted finite element spaces generated by the method
described below to produce “exact eigenvalues” for our comparisons. In order to compute accurately
the errors for eigenvectors on a sequence of refined spaces, it is necessary that all the eigenvectors in
the sequence are approximations of the same continuous eigenvector. In general this is not true even
for simple eigenvalues. It is common that the computed eigenvectors for the same eigenvalue on two
consecutive refined spaces do not approximate the same continuous eigenvector, but two continuous
eigenvectors for the same eigenvalue. For eigenvalues with multiplicity more than one, the situation
is even more complicate because the same continuous eigenspace can split differently in discrete
eigenspaces on two consecutive refined spaces. To recover the errors for eigenvectors, we used
the reconstruction technique in [51], which has been extended to complex valued problems. Such
technique guarantees that the computed eigentriples (λh,p, uh,p, u

d
h,p) are always approximations

of the same continuous eigentriple. On each finite element space the computed eigentriple is in
general not an eigentriple of the discrete problem, but a linear combinations of one or more discrete
eigentriples [51]. In case of a continuous eigenvalue of multiplicity more than one, a number of
discrete eigentriples equal to the multiplicity of the continuous eigenvalue must be computed to
ensure that the reconstruction technique works.

Let us shortly summarize the adaptive algorithm used in our simulations. At first we choose the
indices i of the eigenvalues of interest. On the initial coarse mesh we compute the corresponding
eigenpair (λh,p, uh,p) and the a-posteriori error estimators. We determine the elements T ∈ T for
refinement using a simple fixed-fraction strategy based on the values of the local error estimators

η(uh,p, λh,p)
2|T :=

(
h(T )

p(T )

)2

‖RT (uh,p, λh,p)‖20,T +
1

2

∑
e∈E(T )

h(e)

p(e)
‖Re(uh,p, λh,p)‖20,e ,

where E(T ) is the set of all edges of T .
The choice between refining the marked elements in h or p is based on an estimation of the

local analyticity of the exact eigenvectors using the computed ones, see [31] for more details. On
each successive refined space a desired number of eigenpairs are computed and the reconstruction
technique in [51] is applied. The reconstructed eigentriple is then used in the a-posteriori error
estimator and for refining the space.

All the experiments have been carried out using the AptoFEM package (www.aptofem.com)
on a single processor desktop machine. In particular, we have used ARPACK [41] to solve the
algebraic eigenvalue problems, employing MUMPS [1] to solve the necessary linear systems.
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(b) Effectivity index of the target eigenvalue.

Figure 1: Estimated convergence rate 0.1073.

Since ARPACK is based on the Arnoldi algorithm, we have to solve the projected eigenvalue
twice. Once for the left eigenvectors and once for the right eigenvectors. In contrast, if we were to
use a routine based on the nonsymetric Lanczos procedure such as implemented in ABLEpack, [7]
then we would obtain both left as well as right approximate eigenvectors in one go. The issue of
the choice of most efficient linear algebra routines is beyond the scope of this article.

5.1. TM Waves

In the first experiment we consider the TM waves problem (40) on the unit square with periodic
boundary conditions and with a square inclusion of size 0.5 in the center of the domain. For the
numerical results below we set ε = 6.340528711808362 + 0.005341062818090i outside the inclusion
and ε = 1 inside. Also we set ω = π/50 and k̂ = (1, 0). The target eigenvalue has multiplicity
two and its reference value is 6.2831865660155 + 6.2816125880788i with an accuracy of at least 12
digits.

In Figure 1(a) we present the relative eigenvalue errors and the error estimates for the target
eigenvalue using our hp-adaptive scheme with 15% for refinement in the fixed-fraction marking
strategy. In this case we have that the convergence rate for the eigenvalue estimated with least-
squares fitting is γ = 0.1957. The corresponding effectivity indices are shown in Figure 1(b).

Similarly, the right and left eigenvector errors corresponding to the target eigenvalue with
the associated error estimates are depicted in Figure 2(a). Here the convergence rate for the
right and left eigenvectors estimated with least-squares fitting are γ = 0.1168, 0.1120, respectively.
Figure 2(b) presents the effectivity indices for eigenvectors. The final hp-adapted mesh is displayed
in Figure 3. The fact that the order of polynomials are quite high almost everywhere, suggests
that the eigenvectors are smooth and so p−adaptivity is preferred to h−adaptivity. Finally in
Figure 4(b) and Figure 4(a) the real and imaginary part of the left eigenfunction is presented.

We note that the measured effectivity of the estimators for eigenvalues is further away from one
than is the effectivity of the eigenvectors. This is a typical behavior of the standard hp-residual
eigenvalue estimator. However, we also point out that the decay rate for the error is well replicated
by the decay rate of the estimator. This indicates, as the experiments corroborate that marking
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Figure 2: Convergence of the left and right eigenvectors (eigenfunctions) corresponding to the target eigenvalue.
Estimated convergence rates for the left and right eigenvectors (eigenfunctions) are respectively: 0.0537 and 0.0537.

Figure 3: Final hp-adapted mesh for the TM waves problem with the order p of polynomials expressed on the color
scale.
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(a) Imaginary part of the eigenfunction for the target
eigenvalue for the TM waves problem.

(b) Real part of the eigenfunction for the target eigen-
value for the TM waves problem.

Figure 4: TM eigenvector.

the triangles for refinement based on the hp-residual is a good strategy. We also make claims on
the highly accurate benchmark eigenvalues. They were computed using a goal oriented approach
on a much finer space. This estimator is defined in (55) and will be abbreviated as DWR (dual
weighted residual estimator) on the plots in Figure 5. To this end we present a convergence history
for the error estimator from Section 4.2. The observed effecitivities are close to one.

5.2. TE Waves

In the second experiment we consider the TE waves problem (42) on the unit square with
periodic boundary conditions and with a square inclusion of size 0.5 in the center of the domain.
For the numerical results below we set ε = 1/(6.340528711808362 + 0.005341062818090i) outside
the inclusion and ε = 1 inside. Also we set ω = π/50 and k̂ = (1, 0). The target eigenvalue has
multiplicity one and its reference value is 5.432928082− 3.125220283i with an accuracy of at least
8 digits.

In Figure 6(a) we present the relative eigenvalue errors and the error estimates for the target
eigenvalue using our hp-adaptive scheme with 15% for refinement in the fixed-fraction marking
strategy. In this case we have that the convergence rate for the eigenvalue estimated with least-
squares fitting is γ = 0.10723. The convergence rate for this example is lower compared to the
previous one, because the eigenfunction is less smooth around the corners of the inclusion. This is
also supported by Figure 8 where clearly a lot of h−refinement has been done in those areas. The
corresponding effectivity indices are shown in Figure 6(b).

Similarly, the right and left eigenvector errors corresponding to the target eigenvalue with the
associated error estimates are depicted in Figure 7(a). Here the convergence rate for the right and
left eigenvectors estimated with least-squares fitting are γ = 0.0537, 0.0537, respectively. As can be
seen the left end the right a-posteriori error estimators do not coincide as in Figure 2(a), this is due
to the fact that along the faces between different values for ε the quantity −(2iλh,pαk̂uh,p)|T ·nT −
(2iλh,pαk̂uh,p)|T ′ · nT ′ in (51), which is not present in (52), may not be zero. Figure 7(b) presents
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(b) Effectivity plot for the DWR error estimator.

Figure 5: Comparison of the hp-residual and goal oriented residual for TM waves problem.
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Figure 6: Estimated convergence rate 0.2109.
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Figure 7: Convergence of the left and right eigenvectors (eigenfunctions) corresponding to the target eigenvalue.
Estimated convergence rates for the left and right eigenvectors (eigenfunctions) are respectively: 0.1141 and 0.1108.

the effectivity indices for eigenvectors. The final hp-adapted mesh is displayed in Figure 8. The fact
that the order of polynomials are quite high almost everywhere, suggests that the eigenvectors are
smooth and so p−adaptivity is preferred to h−adaptivity. Finally in Figure 9(a) and Figure 9(b)
the real and imaginary part of the left eigenfunction is presented.

We now present in Figure 10 the performance of the DWR estimator, which was defined in (55),
in the TE case. The measured effectivity is again close to one. With this we justify the use of our
benchmark values for estimating convergence rates in the experiments.

Remark 5.1. Note that we use fixed fraction marking strategy for our h refinement. This marking
strategy does not always result in a refined mesh that possesses any of the symmetries of the ap-
proximated functions. The established estimates are operator theoretic results that do not assume
or need any symmetry properties of the approximating functions. Furthermore, the convergence
rates we observed in our experiments were not influenced by symmetry related properties. However,
after many iterations the sequence of refined meshes tended to replicate symmetries of the approx-
imated functions and we also observed that p refinement is eventually preferred. In this paper, we
concentrated on validating our convergence rate estimates and did not theoretically analyze those
features of the algorithm further.

6. Conclusion

In this paper we presented an analysis of the hp-residual estimators for Fredholm valued poly-
nomial eigenvalue problems. The experiments have shown that the estimator is correctly capturing
the convergence rate of the eigenvalues and eigenvectors. However, the measured empirical effec-
tivity of the estimator was frequently away from the ideal effectivity one. This is a known feature
of the hp-residual estimator and when one compares the performance of our nonlinear estimator,
then one observes that it is similar with the performance of the estimator in the linear case [3].
On the other hand, our operator analysis reduced the analysis of the approximation problem for
the eigenvalue problem on the analysis of the reliability and the efficiency the estimates for the
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Figure 8: Final hp-adapted mesh for the TE waves problem with the order p of polynomials expressed on the color
scale.

(a) Real part of the eigenfunction for the target eigenvalue
for the TE waves problem.

(b) Imaginary part of the eigenfunction for the target
eigenvalue for the TE waves problem.

Figure 9: Computed eigenvectors.
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(b) Effectivity plot for the DWR error estimator.

Figure 10: Comparison of the hp-residual and goal oriented residual for TE waves problem.

negative order Sobolev norm of the left and right residual. This residual norm has been shown as
a reliable and efficient estimator of the eigenvalue and eigenfunction error. We have also shown
how to construct a reliable a-posteriori error estimator for the invariant subspace approximation
error. In this case we have theoretically shown how to use different bases for the invariant subspace
than a basis of eigenvectors. Furthermore, any reliable and efficient estimator of the negative order
Sobolev norm would equally be reliable and efficient estimator of an eigenvalue error. Based on this,
we have constructed an auxiliary subspace error estimator. We call the estimator a goal oriented
error estimator since its construction was motivated by the standard techniques in goal oriented
adaptivity. The measured performance of this estimator showed not only that it is reliable and
efficient, but also has a measured effectivity close to one.
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[31] P. Houston and E. Süli. A note on the design of hp-adaptive finite element methods for elliptic
partial differential equations. Comp. Methods in Appl. Mech. Eng. 194, 229–243, 2005.

[32] K.C. Huang and E. Lidorikis, X. Jiang, J.D. Joannopoulos, K.A. Nelson, P. Bienstman and
S. Fan. Nature of lossy Bloch states in polaritonic photonic crystals. Phys. Rev. B 69, 195111,
10 Pages, 2004.

[33] E. Istrate, A.A. Green, and E.H. Sargent. Behavior of light at photonic crystal interfaces.
Phys. Rev. B. 71(19), 2005. 195122

[34] E. Istrate and E.H. Sargent. Photonic crystal heterostructures and interfaces. Rev. Modern
Phys. 78, 455–481, 2006.

[35] O. Karma. Approximation in eigenvalue problems for holomorphic Fredholm operator func-
tions. I. Numer. Funct. Anal. Optim. 17(3–4), 365–387, 1996.

31



[36] O. Karma. Approximation in eigenvalue problems for holomorphic Fredholm operator func-
tions. II. Numer. Funct. Anal. Optim. 17(3–4), 389–408, 1996.

[37] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.

[38] W.G. Kolata. Spectral approximation and spectral properties of variationally posed nonselfad-
joint problems. Dissertation, University of Maryland, 1976.

[39] W.G. Kolata. Approximation in variationally posed eigenvalue problems. Numer. Math 29,
159–171, 1978.

[40] P. Kuchment. Floquet Theory for Partial Differential Equations. Birkhäuser, Basel, 1993.
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