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Abstract

This is the second in a series of papers on implementing a discontinuous Galerkin (DG) method as an open source
MATLAB / GNU Octave toolbox. The intention of this ongoing project is to offer a rapid prototyping package for
application development using DG methods. The implementation relies on fully vectorized matrix / vector operations
and is comprehensively documented. Particular attention was paid to maintaining a direct mapping between dis-
cretization terms and code routines as well as to supporting the full code functionality in GNU Octave. The present
work focuses on a two-dimensional time-dependent linear advection equation with space / time-varying coefficients,
and provides a general order implementation of several slope limiting schemes for the DG method.

Keywords: MATLAB, GNU Octave, discontinuous Galerkin method, slope limiting, vectorization, open source,
advection operator

1. Introduction

The development milestones for the MATLAB / GNU Octave toolbox FESTUNG (F inite E lement Simulation
Toolbox for UNstructured G rids) available at [1, 2] run somewhat counter to the history of the development of the
discontinuous Galerkin (DG) methods. Thus, our first paper in series [3] introduced a local discontinuous Galerkin
discretization for a time-dependent diffusion equation using the numerical methods introduced in [4]. The current
work, however, enhances the package with the functionality for purely hyperbolic equations—namely the original
purpose of the DG method proposed by Reed and Hill in [5] and analyzed by Johnson and Pitkäranta in [6]. The
reason behind this time inversion is that the numerical and software development technology necessary to produce a
fully functional DG solver for hyperbolic equations has to include upwind fluxes and slope limiters—both tasks more
complicated to solve in a computationally efficient manner than those needed for a pure diffusion equation.

The continued development of this toolbox still adheres to the same design principles declared in [3]:

1. Design a general-purpose software package using the DG method for a range of standard applications and
provide this toolbox as a research and learning tool in the open source format (cf. [1]).

2. Supply a well-documented, intuitive user-interface to ease adoption by a wider community of application and
engineering professionals.

3. Relying on the vectorization capabilities of MATLAB / GNU Octave, optimize the computational performance
of the toolbox components and demonstrate these software development strategies.

4. Maintain throughout full compatibility with GNU Octave to support users of open source software.
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We refer to [3] for a literature review on DG methods and open source packages offering a DG capability. The
present work expands the functionality of the numerical solver published in the first paper in series by adding linear
advection terms and vertex-based slope limiters of general order. The latter development is particularly interesting,
since, to the best of our knowledge, no closed form description of vertex-based slope limiters for general order dis-
cretizations are to be found in the literature, even less so implementations of such limiters. In addition to hierarchical
vertex-based limiters of Kuzmin [7], this publication and the accompanying code includes an extension of the standard
linear vertex-based slope limiter to general order discretizations and a new scheme based on the hierarchical vertex-
based limiter but using a stricter limiting strategy. Further additions in this work include a selection of TVD (total
variation diminishing) Runge–Kutta methods of orders one, two, and three employed for time discretization instead
of a simple implicit Euler method used in the first paper.

The rest of this paper is organized as follows: We introduce the model problem in the remainder of this section
and describe its discretization using the DG method in Sec. 2. Section 3 introduces slope limiting algorithms, first, for
linear DG discretizations followed by the general order case. Implementation specific details such as reformulation
and assembly of matrix blocks as well as numerical results are given in Sec. 4. All routines mentioned in this work
are listed and documented in Sec. 5. Section 6 concludes the work and gives future perspectives.

1.1. Model problem
Let J B (0, tend) be a finite time interval and Ω ⊂ R2 a polygonally bounded domain with boundary ∂Ω. We

consider the advection equation in conservative form

∂tc(t, x) + ∇ ·
(
u(t, x) c(t, x)

)
= f (t, x) in J × Ω (1a)

with time / space-varying coefficients u : J × Ω → R2 and f : J × Ω → R. A prototype application of (1a) is the
advective transport in fluids, i. e., the movement of a solute due to the bulk movement of the fluid, in which case the
primary unknown c denotes the solute concentration, u the velocity of the fluid, and f accounts for generation or
degradation of c, e. g., by chemical reactions. Equation (1a) is complemented by the following boundary and initial
conditions:

c = cD on J × ∂Ωin(t) , (1b)

c = c0 on {0} × Ω (1c)

with inflow boundary ∂Ωin(t) B {x ∈ ∂Ω |u(t, x) · ν(x) < 0} and ν(x) denoting the outward unit normal. The outflow
boundary ∂Ωout(t) is defined as ∂Ωout(t) B ∂Ω \ ∂Ωin(t); c0 : Ω→ R+

0 and cD : J × ∂Ωin(t)→ R+
0 are the given initial

and Dirichlet boundary data, respectively.

2. Discretization

2.1. Notation
Before describing the DG scheme for (1) we introduce some notation; an overview can be found in the Section “In-

dex of notation”. Let Th = {T } be a regular family of non-overlapping partitions of Ω into K closed triangles T of
characteristic size h such that Ω = ∪T . For T ∈ Th, let νT denote the unit normal on ∂T exterior to T . Let EΩ denote
the set of interior edges, E∂Ω the set of boundary edges, and E B EΩ ∪ E∂Ω = {E} the set of all edges (the subscript h
is suppressed here). For an interior edge E ∈ EΩ shared by triangles T− and T +, we define the one-sided values of
a scalar quantity w = w(x) on E by

w−(x) B lim
ε→0+

w(x − ε νT− ) and w+(x) B lim
ε→0+

w(x − ε νT + ) ,

respectively. For a boundary edge E ∈ E∂Ω, only the definition on the left is meaningful.

2.2. Variational formulation
Because of the local nature of the DG method, we can formulate the variational system of equations on a triangle-

by-triangle basis. To do that, we multiply (1a) by a smooth test function w : T → R and integrate by parts over
element T ∈ Th. This gives us∫

T
w ∂tc(t) dx −

∫
T
∇w · u(t) c(t) dx +

∫
∂T

w u(t) c(t) · νT ds =

∫
T

w f (t) dx .
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2.3. Semi-discrete formulation

We denote by Pp(T ) the space of complete polynomials of degree at most p on T ∈ Th. Let

Pp(Th) B
{
wh : Ω→ R ; ∀T ∈ Th, wh|T ∈ Pp(T )

}
denote the broken polynomial space on the triangulation Th. For the semi-discrete formulation, we assume that the
coefficient functions (for t ∈ J fixed) are approximated as: uh ∈ [Pp(Th)]2 and fh(t), c0

h ∈ Pp(Th). A specific way to
compute these approximations was given in the first paper of the series [3]; here we use the standard L2-projection into
Pp(T ), therefore the accuracy of this approximation improves with increasing polynomial order p. Choosing the same
polynomial space for all functions simplifies the implementation and is done in preparation for later applications, in
which uh might be part of the solution of a coupled system. Incorporating the boundary condition (1b), the semi-
discrete formulation reads:

Seek ch(t) ∈ Pp(Th) such that the following holds for t ∈ J and ∀T− ∈ Th, ∀wh ∈ Pp(Th) :∫
T−

wh ∂tch(t) dx −
∫

T−
∇wh · uh(t) ch(t) dx +

∫
∂T−

w−h
(
u(t) · νT−

)
ĉh(t) ds =

∫
T−

wh fh(t) dx , (2)

where the boundary integral is calculated using the upwind-sided value

ĉh(t, x)
∣∣∣
∂T− =


c−h (t, x) if u(t, x) · νT− ≥ 0 (outflow from T−)
c+

h (t, x) if u(t, x) · νT− < 0 ∧ x < ∂Ωin (inflow into T− from T +)
cD(t, x) if x ∈ ∂Ωin (inflow into T− over ∂Ωin)

 .
Note that we did not use the approximate representation of the velocity uh in the boundary integral. This is due to
the fact that the L2-projection on elements may have poor approximation quality on edges and generally produces
different values on both sides of the edge ultimately leading to different upwind-sided values and inconsistent flux
approximations. Instead we evaluate the normal velocity u · νT in each quadrature point analytically and use the result
for both the numerical integration and the determination of the upwind direction as will be demonstrated in Sec. 2.3.4.

Thus far, we used an algebraic indexing style. In the remainder, we switch to a mixture of algebraic and numerical
style: for instance, Ekn ∈ ∂Tk ∩ EΩ means all possible combinations of element indices k ∈ {1, . . . ,K} and local edge
indices n ∈ {1, 2, 3} such that Ekn lies in ∂Tk ∩ EΩ. This implicitly fixes the numerical indices which accordingly can
be used to index matrices or arrays.

We use a bracket notation followed by a subscript to index matrices and multidimensional arrays. Thus, for an
n-dimensional array X, the symbol [X]i1,...,in stands for the component of X with index il in the l-th dimension. As in
MATLAB / GNU Octave, a colon is used to abbreviate all indices within a single dimension. For example, [X]:,:,i3,...,in
is a two-dimensional array / matrix.

2.3.1. Local basis representation
In contrast to globally continuous basis functions mostly used by the continuous finite element method, the DG ba-

sis functions have no continuity constraints across triangle boundaries. Thus a standard DG basis function ϕki : Ω→ R

is only supported on the triangle Tk ∈ Th (i. e., ϕki = 0 on Ωr Tk) and can be defined arbitrarily while ensuring

∀k ∈ {1, . . . ,K} , Pp(Tk) = span
{
ϕki

}
i∈{1,...,Np}

, where Np B
(p + 1)(p + 2)

2
=

(
p + 2

p

)
(3)

is the number of local degrees of freedom. Note that Np may in general vary from triangle to triangle, but, for
simplicity, we assume here a uniform polynomial degree p for every triangle and abbreviate N B Np. Clearly, the
number of global degrees of freedom equals KN. Closed-form expressions for orthonormal basis functions on the
reference triangle T̂ (cf. Sec. 4.1) employed in our implementation up to order two can be found in our first paper [3].
The basis functions up to order four are provided in the routine phi and their gradients in gradPhi. Bases of even
higher order can be constructed, e. g., with the Gram–Schmidt algorithm or by using a three-term recursion relation—
the latter is unfortunately not trivial to derive in the case of triangles. Note that these so-called modal basis functions ϕ̂i
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do not posses interpolation properties at nodes unlike Lagrangian / nodal basis functions, which are often used by the
continuous finite element or nodal DG methods.

The local concentration ch and the local velocity uh on Tk ∈ Th can be represented in terms of the local ba-
sis {ϕki}i∈{1,...,N}:

ch(t, x)
∣∣∣
Tk
C

N∑
j=1

Ck j(t)ϕk j(x) , uh(t, x)
∣∣∣
Tk
C

N∑
j=1

2∑
m=1

Um
k j(t) emϕk j(x) ,

where em denotes the m-th unit vector in R2. We condense the coefficients associated with unknowns into two-
dimensional arrays C(t) such that Ck j(t) B [C(t)]k, j, etc. The symbol [C]k,: is called local representation matrix
of ch on Tk with respect to the basis

{
ϕki

}
i∈{1,...,N}. In a similar way, we express the coefficient functions as linear

combinations of the basis functions: On Tk ∈ Th, we use the local representation matrices [C0]k,: for c0
h and [F]k,:

for fh.

2.3.2. System of equations
Testing (2) with wh = ϕki for i ∈ {1, . . . ,N} yields a time-dependent system of equations whose contribution

from Tk (identified with Tk− in boundary integrals) reads

N∑
j=1

∂tCk j(t)
∫

Tk

ϕki ϕk j dx︸                          ︷︷                          ︸
I

−

N∑
j=1

Ck j(t)
N∑

l=1

2∑
m=1

Um
kl(t)

∫
Tk

∂xmϕki ϕkl ϕk j dx︸                                                    ︷︷                                                    ︸
II

+

∫
∂Tk−

ϕk−i

(
u(t) · νk−

)


N∑
j=1

Ck− j(t)ϕk− j if u(t) · νk− ≥ 0

N∑
j=1

Ck+ j(t)ϕk+ j if u(t) · νk− < 0 ∧ x < ∂Ωin

cD(t) if x ∈ ∂Ωin


ds

︸                                                                                             ︷︷                                                                                             ︸
III

=

N∑
l=1

Fkl(t)
∫

Tk

ϕki ϕkl dx︸                       ︷︷                       ︸
IV

,

(4)

where we abbreviated νTk by νk. Written in matrix form, system (4) is then given by

M ∂tC +
(
−G1 − G2 + R

)︸              ︷︷              ︸
C A(t)

C = L − KD︸  ︷︷  ︸
C V(t)

(5)

with the representation vector

C(t) B
[
C11(t) · · · C1N(t) · · · · · · CK1(t) · · · CKN(t)

]T
.

The block matrices and the right-hand side vectors of (5) are described in Sections 2.3.3 and 2.3.4. Note that all blocks
except for the mass matrix M are time-dependent (we have suppressed the time arguments here).

2.3.3. Contributions from area terms I, II, IV
The matrices in the remainder of this section have sparse block structure; by giving definitions for non-zero blocks

we tacitly assume a zero fill-in. The mass matrix M ∈ RKN×KN in term I is defined component-wise as

[M](k−1)N+i,(k−1)N+ j B

∫
Tk

ϕki ϕk j dx .

Since the basis functions ϕki, i ∈ {1, . . . ,N} are supported only on Tk, M has a block-diagonal structure

M =


MT1

. . .

MTK

 with MTk B

∫
Tk


ϕk1 ϕk1 · · · ϕk1 ϕkN

...
. . .

...
ϕkN ϕk1 · · · ϕkN ϕkN

 dx , (6)
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νk−n−E
k
−
n

−Tk−

Tk+

Figure 1: Two triangles adjacent to edge Ek−n− . It holds: Ek−n− = Ek+n+ and νk−n− = −νk+n+ .

i. e., it consists of K local mass matrices MTk ∈ R
N×N . Henceforth, we write M = diag

(
MT1 , . . . ,MTK

)
.

The block matrices Gm ∈ RKN×KN , m ∈ {1, 2} from term II are given by

[Gm](k−1)N+i,(k−1)N+ j B
N∑

l=1

Um
kl(t)

∫
Tk

∂xmϕki ϕkl ϕk j dx .

Similarly to M, the matrices Gm = diag
(
Gm

T1
, . . . ,Gm

TK

)
are block-diagonal with local matrices

Gm
Tk
B

N∑
l=1

Um
kl(t)

∫
Tk


∂xmϕk1 ϕkl ϕk1 · · · ∂xmϕk1 ϕkl ϕkN

...
. . .

...
∂xmϕkN ϕkl ϕk1 · · · ∂xmϕkN ϕkl ϕkN

 dx . (7)

Vector L(t) resulting from IV is obtained by multiplication of the representation vector of fh(t) to the global mass
matrix:

L(t) = M
[
F11(t) · · · F1N(t) · · · · · · FK1(t) · · · FKN(t)

]T
.

2.3.4. Contributions from edge term III
Interior Edges EΩ. In this section, we consider a fixed triangle Tk = Tk− with an interior edge Ek−n− ∈ ∂Tk− ∩ EΩ =

∂Tk−∩∂Tk+ shared by an adjacent triangle Tk+ and associated with fixed local edge indices n−, n+ ∈ {1, 2, 3} (cf. Fig. 1).
For a fixed index i ∈ {1, . . . ,N}, we have a contribution for ϕk−i in a block matrix RΩ ∈ R

KN×KN

∫
Ek−n−

ϕk−i

(
u(t) · νk−n−

) {∑N
j=1 Ck− j(t)ϕk− j if u · νk−n− ≥ 0∑N
j=1 Ck+ j(t)ϕk+ j if u · νk−n− < 0

}
ds .

This means that, depending on the direction of the velocity field u(t, x), we obtain entries in the diagonal or off-
diagonal blocks of RΩ. Entries in diagonal blocks are then component-wise given by

[RΩ](k−1)N+i,(k−1)N+ j B
∑

Ekn∈∂Tk∩EΩ

∫
Ekn

ϕki ϕk j

(
u·νkn

)
δu·νkn≥0 ds with δu·νkn≥0 (t, x) B

{
1 if u(t, x) · νkn ≥ 0
0 if u(t, x) · νkn < 0

}
.

(8a)

Entries in off-diagonal blocks in R are possibly non-zero only for pairs of triangles Tk− , Tk+ with ∂Tk− ∩ ∂Tk+ , ∅ and
read

[RΩ](k−−1)N+i,(k+−1)N+ j B

∫
Ek−n−

ϕk−i ϕk+ j

(
u · νk−n−

)
δu·νk−n−<0 ds with δu·νk−n−<0 B 1 − δu·νk−n−≥0 . (8b)

Boundary Edges E∂Ω. Similarly to interior edges we have contributions for a boundary edge Ekn ∈ ∂Tk ∩ E∂Ω∫
Ekn

ϕki

(
u(t) · νkn

) {∑N
j=1 Ck j(t)ϕk j if u(t) · νkn ≥ 0

cD(t) if u(t) · νkn < 0

}
ds .

5



These consist of entries in the block diagonal matrix R∂Ω ∈ R
KN×KN

[R∂Ω](k−1)N+i,(k−1)N+ j B
∑

Ekn∈∂Tk∩E∂Ω

∫
Ekn

ϕki ϕk j

(
u · νkn

)
δu·νkn≥0 ds , (9)

and in the right-hand side vector KD ∈ R
KN

[KD](k−1)N+i B
∑

Ekn∈∂Tk∩E∂Ω

∫
Ekn

ϕki cD(t)
(
u · νkn

)
δu·νkn<0 ds . (10)

We combine the block matrices RΩ,R∂Ω into a block matrix R ∈ RKN×KN

R B RΩ + R∂Ω . (11)

Since the definition of entries in the diagonal blocks in Eqns. (8a), (9) is the same for both matrices differing only in
the set of edges included in the sum, we can disregard the fact whether they are interior or boundary edges and simply
assemble the entries for all Ekn ∈ ∂Tk.

2.4. Time discretization
The system (5) is equivalent to

M∂tC(t) = V(t) − A(t) C(t) C S
(
C(t), t

)
(12)

with A(t) ∈ RKN×KN and right-hand-side vector V(t) ∈ RKN as defined in (5).
We discretize system (12) in time using TVD (total variation diminishing) Runge–Kutta methods [8] of orders one,

two, and three, which are representatives of the class of SSP (strong stability preserving) Runge–Kutta methods [9].
The advantage of using a time stepping algorithm of such type lies in the guaranteed preservation of the monotonicity
of the solution if the DG discretization is also post processed by a slope limiting method.

Let 0 = t1 < t2 < . . . < tend be a not necessarily equidistant decomposition of the time interval J and let
∆tn B tn+1 − tn denote the time step size. The update scheme of the s-step Runge–Kutta method is given by

C(0) = Cn ,

C(i) = ωi Cn + (1 − ωi)
(
C(i−1) + ∆tn M−1Sn+δi

)
, for i = 1, . . . , s ,

Cn+1 = C(s) ,

(13)

where we abbreviated Cn B C(tn) and Sn+δi B S(C(i−1), tn + δi∆tn) with coefficients

s = 1 : ω1 = 0 , δ1 = 0 .
s = 2 : ω1 = 0 , ω2 = 1/2 , δ1 = 0 , δ2 = 1 .
s = 3 : ω1 = 0 , ω2 = 3/4 , ω3 = 1/3 , δ1 = 0 , δ2 = 1 , δ3 = 1/2 .

When possible, we choose the order of the time-discretization to be p + 1, with p being the spatial approximation
order, in order to avoid the temporal discretization error dominating the spatial one. The chosen SSP Runge–Kutta
methods are optimal in the sense that they achieve p-th order with p stages. Unfortunately, no optimal SSP Runge–
Kutta methods higher than order three are known [9] (there exist, however, non-optimal higher order schemes), which
is why we restrict ourselves to orders one to three for the time discretization.

3. Slope limiting

Slope limiters are a technique to prevent the onset of spurious oscillations that violate the monotonicity preserving
property of the piecewise constant part of a DG solution by means of restricting some of the degrees of freedom (gen-
erally linear and superlinear) to certain bounds and thus eliminating over- and undershoots. All limiting procedures

6



utilize the fact that the lowest order (piecewise constant) part of a DG solution in explicit TVD time stepping schemes
is guaranteed to preserve the monotonicity of the solution and produce no spurious extrema. Using this physically
consistent but numerically not very accurate solution part, all slope limiters attempt to modify the full higher order
DG solution in a suitable way—on the one hand, to prevent any oscillations and, on the other hand, to preserve as
much of the accuracy as possible. The key differences in slope limiters affect the limiting stencil used (edge neigh-
bors, node neighbors, neighbors of the neighbors, etc.), presence of ad hoc parameters, the amount of the introduced
numerical diffusion, a strict or less strict preservation of the monotonicity, and the degree of solution degradation in
smooth extrema.

Whereas a large literature on slope limiting for piecewise linear DG discretizations exists [10, 11, 12], the limiting
of DG solutions with p ≥ 2 is a much less explored area. The traditional approach to dealing with superlinear
DG solutions [13] has been based on ignoring all higher order degrees of freedom on elements on which linear limiting
is active. Other methods require a much larger stencil [14, 15] to provide enough information for the reconstruction of
higher order derivatives. The hierarchical vertex-based limiters of Kuzmin [16, 7] represent a computationally efficient
scheme easily extendable to any discretization order and supporting fully unstructured meshes. These limiters do not
guarantee the strict monotonicity of the DG solution, but the violations are small and may be further reduced by simple
modifications described in Sec. 3.4.

3.1. Taylor basis representation
Many limiting procedures rely on some fundamental properties of a certain choice of basis, in our case the 2D Tay-

lor basis, which we introduce in a way similar to Kuzmin [16]. Consider the 2D Taylor series expansion of a local
solution ch ∈ Pp(Tk),

ch(x) =
∑

0≤|a|≤p

∂ach(xkc)
(x − xkc)a

a!
on Tk ∈ Th (14)

about the centroid xkc = [x1
kc, x

2
kc]T of Tk ∈ Th with a two-dimensional multi-index a = [a1, a2]T

∈ N2
0, where we use

some standard notation for multi-indices a, b ∈ N2
0 and x ∈ R2:

a ± b = [a1 ± b1, a2 ± b2]
T
, |a| B a1 + a2 , a! B a1!a2! ,

xa B (x1)a1
(x2)a2

, ∂a B ∂|a|
/
∂(x1)a1

∂(x2)a2
.

For v : Tk → R, let v B 1
|Tk |

∫
Tk

v(x) dx denote the integral mean of v on Tk. We express (14) in the equivalent
form [17, 18, 19]

ch(x) = ch +
∂ch

∂x1 (xkc)(x1 − x1
kc) +

∂ch

∂x2 (xkc)(x2 − x2
kc) +

∑
2≤|a|≤p

∂ach(xkc)
(x − xkc)a − (x − xkc)a

a!
on Tk ∈ Th . (15)

Note that varying any terms in (15) except ch does not affect the mean of ch(x) over Tk.
To be able to identify each term in expansions (14), (15) by a consecutive index, we introduce a linear index

mapping I : N2
0 → N corresponding to any two-dimensional multi-index a ∈ N2

0 as

I(a) = N|a|−1 + a2 + 1 =
|a|(|a| + 1)

2
+ a2 + 1 (16)

with Np = dimPp(T ) as defined in (3). We implicitly define a j such that ∀ j ∈ N, I(a j) = j. The linear indices,
polynomial degrees, and corresponding multi-indices up to order four are listed in Table 1. This leads to the following
definition of the local Taylor basis [17]:

φk1 = 1 , φk2 =
x1

k − x1
kc

∆(x1
k)

, φk3 =
x2

k − x2
kc

∆(x2
k)

, φki =
(x − xkc)ai − (x − xkc)ai

ai! (∆xk)ai
for i ≥ 4 . (17)

As opposed to the DG basis {ϕk j} (cf. [3], Sec. 2.4.1), the basis {φk j} cannot be defined on a reference element T̂ .
The scaling by ∆xk =

[
∆(x1

k), ∆(x2
k)
]T with ∆(x j

k) B (x j
k,max − x j

k,min)/2, where x j
k,max B maxi∈{1,2,3} x j

ki and x j
k,min B

7



p 0 1 2 3 4
I(ai) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ai

T [0, 0] [1, 0] [0, 1] [2, 0] [1, 1] [0, 2] [3, 0] [2, 1] [1, 2] [0, 3] [4, 0] [3, 1] [2, 2] [1, 3] [0, 4]

Table 1: Multi-indices (bottom), linear indices (middle), and corresponding polynomial degrees in the Taylor basis (17) (top).

mini∈{1,2,3} x j
ki are the minimum and maximum values of the corresponding spatial coordinates on Tk, is introduced to

obtain a better conditioned operator [17]. The Taylor degrees of freedom are now proportional to the cell mean values
ch and derivatives of ch at the centroid xkc

ch(x) = ch φk1+

(
∂ch

∂x1 (xkc)∆
(
x1

k

))
φk2(x)+

(
∂ch

∂x2 (xkc)∆
(
x2

k

))
φk3(x)+

Np∑
i=4

(
∂ai ch(xkc) (∆xk)ai

)
φki(x) on Tk ∈ Th . (18)

Note that the Taylor basis is non-orthogonal on triangular meshes [16], but the cell means are still decoupled from
the other degrees of freedom since∫

Tk

φ2
k1 dx = |Tk | ,

∫
Tk

φk1 φk j dx = 0 for j > 1 .

To transform a function ch from the modal basis representation with representation matrix C(t) ∈ RK×N—as
described in Sec. 2.3.1—into a Taylor basis representation with representation matrix CTaylor(t) ∈ RK×N , we employ
the L2-projection defined locally for Tk ∈ Th by

∀wh ∈ Pp(Tk) ,
∫

Tk

wh

 N∑
j=1

Ck j(t)ϕk j

 dx =

∫
Tk

wh

 N∑
j=1

CTaylor
k j (t) φk j

 dx .

Choosing wh = ϕki for i ∈ {1, . . . ,N} we obtain

N∑
j=1

Ck j(t)
∫

Tk

ϕki ϕk j dx =

N∑
j=1

CTaylor
k j (t)

∫
Tk

ϕki φk j dx ⇔ MTk [C]k,: = MDG,Taylor
Tk

[
CTaylor

]
k,:

with the local mass matrix MTk as defined in Eq. 6 and the local basis transformation matrix

MDG,Taylor
Tk

B

∫
Tk


ϕk1 φk1 · · · ϕk1 φkN

...
. . .

...
ϕkN φk1 · · · ϕkN φkN

 dx . (19)

Using MDG,Taylor B diag
(
MDG,Taylor

T1
, . . . ,MDG,Taylor

TK

)
and representation vectors C,CTaylor ∈ RKN we obtain a linear

system of equations

M C = MDG,TaylorCTaylor , (20)

which can be employed to transform back-and-forth between both bases.

3.2. Linear vertex-based limiter
Kuzmin [7, 16] and Aizinger [20] described the vertex-based limiter, which is based on the Barth–Jespersen

limiter [21] and improved it further by taking the bounds from all elements containing the vertex instead of taking
only edge neighbors of the cell. The goal is to determine the maximum admissible slope for a linear reconstruction of
the form

ch(x) = ckc + αke ∇ch(xkc) · (x − xkc) , 0 ≤ αke ≤ 1 , x ∈ Tk ,
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xki

Tk

Figure 2: The neighborhood of a vertex xki ∈ Tk (red circle) considered in Eq. (21) consists of the patch of elements containing xki (red area). The
bounds cmin

ki , cmax
ki from Eq. (22) are determined from all centroid values (green squares) within this neighborhood.

where we abbreviated the function value ckc B ch(xkc) in the centroid xkc. The correction factor αke is chosen such
that above reconstruction is bounded in all vertices xki ∈ Tk by the minimum and maximum centroid values of all
elements containing xki, that is

∀Tk ∈ Th ,∀i ∈ {1, 2, 3} , cmin
ki ≤ ch(xki) ≤ cmax

ki (21)

with

cmin
ki B min

{Tl∈Th | xki∈Tl}
clc , cmax

ki B max
{Tl∈Th | xki∈Tl}

clc (22)

(cf. Fig. 2 for an illustration). To enforce (21), the correction factor αke is defined as [16]

∀Tk ∈ Th , αke B min
i ∈ {1,2,3}


(cmax

ki − ckc)
/
(cki − ckc) if cki > cmax

ki
1 if cmin

ki ≤ cki ≤ cmax
ki

(cmin
ki − ckc)

/
(cki − ckc) if cki < cmin

ki

 , (23)

where cki B ckc +∇ch(xkc) · (xki − xkc) is the unconstrained linear reconstruction in xki. The limited counterpart of the
DG solution (18) becomes then

ch(x) = ch φk1 + αke

[(
∂ch

∂x1 (xkc)∆
(
x1

k

))
φk2(x) +

(
∂ch

∂x2 (xkc)∆
(
x2

k

))
φk3(x)

]
on Tk ∈ Th ,

i. e., the linear degrees of freedom are scaled by αke, and any degrees of freedom associated with higher polynomial
degrees are set to zero. In the particular case of a linear DG approximation, the limiting can be performed using any
hierarchical basis as opposed to higher-order DG solutions that require a Taylor basis representation (see Sec. 3.3). In
case of αke = 1, both linear and superlinear degrees of freedom remain unchanged.

3.3. Hierarchical vertex-based limiter

Further improvements by Kuzmin combine the vertex-based or standard Barth–Jespersen limiter with the higher
order limiting scheme of Yang and Wang [17], who limit the numerical solution by multiplying all derivatives of
order q by a common correction factor α(q)

ke instead of applying the correction only to the linear terms and dropping
all higher degrees of freedom. Kuzmin [16] described this scheme in detail for quadratic representations, and here we
offer a closed form expression of this limiting procedure for DG discretizations of arbitrary orders.

LetAq B {a ∈ N2
0

∣∣∣ |a| = q} be the set of all two-dimensional multi-indices of order q. We determine the correction
factor α(q)

ke for each order q ≤ p by computing correction factors (23) using the linear vertex-based limiter for all linear
reconstructions of derivatives of order q − 1,

∀ a ∈ Aq−1 , ck,a,i B CTaylor
k,I(a) φk1(xki) + CTaylor

k,I(a+[1,0]T)
φk2(xki) + CTaylor

k,I(a+[0,1]T)
φk3(xki) on Tk ∈ Th , (24)
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where the indices of the corresponding degrees of freedom are given by I(a) and the first x1-derivatives (identified by
I(a + [1, 0]T)) and x2-derivatives (identified by I(a + [0, 1]T)). Formally, the correction factor α(q)

ke is defined as

α
(q)
ke = min

a∈Aq−1
α

(q)
ka , with α

(q)
ka B min

i∈{1,2,3}


(cmax

k,a,i − ck,a,c)
/
(ck,a,i − ck,a,c) if ca,i > cmax

a,i
1 if cmin

k,a,i ≤ ck,a,i ≤ cmax
k,a,i

(cmin
k,a,i − ck,a,c)

/
(ck,a,i − ck,a,c) if ck,a,i < cmin

k,a,i

 , (25)

where cmin
k,a,i, c

max
k,a,i are defined as in (22). To avoid the loss of accuracy at smooth extrema, the lower order derivatives

should be limited by a factor not exceeding that of the higher order derivatives, since lower orders are typically
smoother. Beginning with the highest-order degrees of freedom, we compute the correction factors

∀q ≥ 1 α
(q)
ke B max

q≤d≤p
α(d)

ke . (26)

Once the correction factor α(q)
ke becomes equal to one for some d > 1, no further limiting on this element is necessary.

The limited solution becomes

ch(x) = ch φk1 +α(1)
ke

(
∂ch

∂x1 (xkc)∆
(
x1

k

))
φk2(x) +α(1)

ke

(
∂ch

∂x2 (xkc)∆
(
x2

k

))
φk3(x) +

N∑
i=4

α(|ai |)
ke

(
∂ai ch(xkc) (∆xk)ai

)
φki(x) .

3.4. Stricter form of the vertex-based limiter
Our numerical experiments showed that implicitly assuming that higher order derivatives are always smoother

than lower order derivatives results in limiting procedures that do not guarantee strict fulfillment of condition (21),
especially at discontinuities in the solution. We modified two key components of the limiter presented in the previous
section and obtained a limiter that exhibited slightly stronger peak clipping but turned out to be always effective:

1. Instead of employing only the linear reconstruction as given in Eq. (24), we replace ck,a,i in the computation of
the correction factor in Eq. (25) by the full reconstruction

∀ a ∈ Aq−1 , ck,a,i B
∑

0≤|b|<p−q

CTaylor
k,I(a+b) φk,I(b)(xki) ,

where p is the polynomial degree of the DG solution ch(x).
2. Again, we begin with the highest-order derivative but drop the hierarchical limiting condition (26) and instead

apply each correction coefficient α(q)
ke immediately to all coefficients corresponding to polynomial degree q or

higher. These limited coefficients are then used to compute the next correction coefficient α(q−1)
ke .

The result of our stricter limiter is

ch(x) = ch φk1+α(1)
ke

(
∂ch

∂x1 (xkc)∆
(
x1

k

))
φk2(x)+α(1)

ke

(
∂ch

∂x2 (xkc)∆
(
x2

k

))
φk3(x)+

N∑
i=4

(
α(1)

ke · · ·α
(|ai |)
ke

) (
∂ai ch(xkc) (∆xk)ai

)
φki(x) .

3.5. Slope limiting in time-dependent problems
For time-dependent problems, the slope limiting procedure is applied to each intermediate solution C(i) in the

update scheme (13). However, due to the fact that the Taylor basis is non-orthogonal on triangles—as discussed in
Sec. 3.1—an implicit coupling between the spatial derivatives is present and leads to non-smooth spatial variations
in the time derivatives of ch. For that reason, Kuzmin [7] applied the slope limiter not only to the solution of each
Runge–Kutta stage but also to the time derivative ċ B ∂tc and used in addition a filtering procedure that can be
interpreted as selective mass lumping.

We describe this technique first for a discretization in Taylor basis and extend it then to arbitrary basis representa-
tions. Let ΦTaylor denote the slope limiting operator that applies any of the above slope limiting procedures to a global
representation vector CTaylor(t) of a solution ch(t) in Taylor basis representation. The semi-discrete system (12) written
in a Taylor basis

MC∂tCTaylor(t) = STaylor
(
CTaylor(t), t

)
10



is replaced by

ML∂tCTaylor(t) = STaylor
(
ΦTaylorCTaylor(t), t

)
+ (ML −MC) ΦTaylor∂tCTaylor(t) ,

where MC = {mi j}, ML B diag{mii} denote the full and the lumped mass matrices in Taylor basis (to improve read-
ability, we drop the superscript ‘Taylor’ here). Note that for the case ΦTaylor = I both formulations are identical.
Consequently, update scheme (13) is modified replacing

CTaylor,(i) = ωi CTaylor,n + (1 − ωi)
(
CTaylor,(i−1) + ∆tn ĊTaylor,(i)

)
with ĊTaylor,(i) B M−1

C STaylor,n+δi

by the selectively lumped and limited update

CTaylor,(i) = ΦTaylor
[
ωi CTaylor,n + (1 − ωi)

(
CTaylor,(i−1) + ∆tn C̃Taylor,(i)

)]
with

C̃Taylor,(i) = M−1
L

[
(ML −MC)ΦTaylorĊTaylor,(i) + STaylor,n+δi

]
.

Although the mass matrix M in the modal basis is diagonal, the implicit coupling between the spatial x1- and x2-
derivatives is still present. Only the Taylor basis has vectors coinciding with the coordinate directions, hence, the
lumping technique cannot be directly applied to representations in other bases.

To get rid of this implicit coupling of the spatial derivatives in the time derivative of the modal DG basis, we
reformulate the lumped time derivative in Taylor basis as

C̃Taylor,(i) = M−1
L MLΦ

TaylorĊTaylor,(i) −M−1
L MCΦ

TaylorĊTaylor,(i) + M−1
L MCM−1

C︸  ︷︷  ︸
= I

STaylor,n+δi

= ΦTaylorĊTaylor,(i) + M−1
L MC

(
M−1

C STaylor,n+δi︸           ︷︷           ︸
=ĊTaylor,(i)

−ΦTaylorĊTaylor,(i)
)

= ΦTaylorĊTaylor,(i) + M−1
L MC

(
ĊTaylor,(i) −ΦTaylorĊTaylor,(i)

)
.

Using the time derivative in modal basis Ċ(i) = M−1Sn+δi and transformation (20), we obtain

C̃(i) = M−1MDG,TaylorC̃Taylor,(i) = M−1MDG,Taylor
[
ΦTaylorĊTaylor,(i) + M−1

L MC

(
ĊTaylor,(i) −ΦTaylorĊTaylor,(i)

)]
, (27)

where ĊTaylor,(i) B
(
MDG,Taylor

)−1
MĊ(i). Thus, the fully modified version of update scheme (13) reads as

C(0) = Cn ,

C(i) = Φ
[
ωi Cn + (1 − ωi)

(
C(i−1) + ∆tn C̃(i)

)]
for ∀i = 1, . . . , s ,

Cn+1 = C(s) ,

(28)

with C̃(i) as given in (27) and the slope limiting operator Φ formally defined as

Φ B M−1MDG,TaylorΦTaylor
(
MDG,Taylor

)−1
M . (29)

3.6. Boundary conditions
Problems can occur when computing the bounds cmin

ki , cmax
ki in Eq. (21) for control points xki ∈ ∂Ωin on the Dirichlet

boundary. To account for the boundary data in the limiting procedure we include on those control points the boundary
value cD(tn + δi∆tn, xki) in the minimum/maximum-operation in Eq. (22) for α(1)

ke when applying the slope limiting
operator Φ in Eq. (28).

4. Implementation

An extensive documentation on our data structures, grid, etc. can be found in the first paper of the series [3]. These
explanations are not reproduced here; greater detail is provided for routines first introduced in the present work.
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Ê3

F k

x1

x2

Tk

xk1

xk2

xk3

Ek1

Ek2

Ek3

Figure 3: The affine mapping Fk transforms the reference triangle T̂ with vertices x̂1 = [0, 0]T, x̂2 = [1, 0]T, x̂3 = [0, 1]T to the physical triangle Tk
with counter-clockwise-ordered vertices xki, i ∈ {1, 2, 3}.

4.1. Backtransformation to the reference triangle

We are using a back transformation to the reference triangle T̂ = {(0, 0), (1, 0), (0, 1)} defined by an affine mapping

Fk : T̂ 3 x̂ 7→ Bk x̂ + xk1 = x ∈ Tk , with R2×2 3 Bk B
[
xk2 − xk1

∣∣∣ xk3 − xk1

]
, (30)

for any triangle Tk = {xk1, xk2, xk3} ∈ Th (see Fig. 3). It holds 0 < det Bk = 2|Tk |. Any function w : Tk → R implies
ŵ : T̂ → R by ŵ = w ◦ Fk , i. e., w(x) = ŵ(x̂) . The transformation of the gradient is obtained by the chain rule:

∇ =
(
∇̂Fk

)−T
∇̂ , (31)

where we abbreviated ∇̂ = [∂x̂1 , ∂x̂2 ]T. This results in transformation formulas for integrals over an element Tk or
an edge Ekn ⊂ Tk for a function w : Ω→ R∫

Tk

w(x) dx =
|Tk |

|T̂ |

∫
T̂

w ◦ Fk(x̂) dx̂ = 2|Tk |

∫
T̂

w ◦ Fk(x̂) dx̂ = 2|Tk |

∫
T̂

ŵ(x̂) dx̂ , (32a)∫
Ekn

w(x) dx =
|Ekn|

|Ên|

∫
Ên

w ◦ Fk(x̂) dx̂ =
|Ekn|

|Ên|

∫
Ên

ŵ(x̂) dx̂ . (32b)

4.2. Numerical integration

As an alternative to the symbolic integration functions provided by MATLAB, we implemented a quadrature
integration functionality for triangle and edge integrals.

Since we transform all integrals on Tk ∈ Th to the reference triangle T̂ (cf. Sec. 4.1), it is sufficient to define the
quadrature rules on T̂ (which, of course, can be rewritten to apply for every physical triangle T = FT (T̂ )):∫

T̂
ĝ(x̂) dx̂ ≈

R∑
r=1

ωr ĝ(q̂r) (33)

with R quadrature points q̂r ∈ T̂ and quadrature weights ωr ∈ R. The order of a quadrature rule is the largest integer s
such that (33) is exact for polynomials g ∈ Ps(T̂ ). Note that we exclusively rely on quadrature rules with positive
weights and quadrature points located strictly in the interior of T̂ and not on ∂T̂ . The rules used in the implementation
are found in the routine quadRule2D. An overview of quadrature rules on triangles can be found in the “Encyclopaedia
of Cubature Formulas” [22]. For edge integration, we rely on standard Gauss quadrature rules of required order.

The integrals in (4) contain integrands that are polynomials of maximum order 3p−1 on triangles and of maximum
order 3p on edges. Using quadrature integration, one could choose rules that integrate all such terms exactly; however,
sufficient accuracy can be achieved with quadrature rules that are exact for polynomials of order 2p on triangles and
2p + 1 on edges (cf. [23]).
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4.3. Assembly

The aim of this section is to transform the terms required to build the block matrices in (5) to the reference
triangle T̂ and then to evaluate those either via numerical quadrature or analytically. The assembly of block matrices
from local contributions is then performed in vectorized operations.

For the implementation, we need the explicit form for the components of the mappings Fk : T̂ → Tk and their
inverses F−1

k : Tk → T̂ as defined in (30). Recalling that 0 < det Bk = 2|Tk | (cf. Sec. 4.1) we obtain

Fk(x̂) =

[
B11

k x̂1 + B12
k x̂2 + a1

k1
B21

k x̂1 + B22
k x̂2 + a2

k1

]
and F−1

k (x) =
1

2 |Tk |

[
B22

k (x1 − a1
k1) − B12

k (x2 − a2
k1)

B11
k (x2 − a2

k1) − B21
k (x1 − a1

k1)

]
.

From (31) we obtain the component-wise rule for the gradient in x ∈ Tk:[
∂x1

∂x2

]
=

1
2 |Tk |

[
B22

k ∂x̂1 − B21
k ∂x̂2

B11
k ∂x̂2 − B12

k ∂x̂1

]
. (34)

Similarly to the first paper in series [3], we make extensive use of the Kronecker product A ⊗ B of two matrices
A = [ai j] ∈ Rma×na , B = [bkl] ∈ Rmb×nb defined as

A ⊗ B B
[
ai jB

]
∈ Rmamb×nanb . (35)

In the following, we present the necessary transformation for all blocks of system (5) and name the corresponding
MATLAB / GNU Octave routines that can be found in Sec. 5.

4.3.1. Assembly of M
Using the transformation rule (32a), the following holds for the local mass matrix MTk as defined in (6):

MTk = 2|Tk | M̂ with M̂ B

∫
T̂


ϕ̂1 ϕ̂1 · · · ϕ̂1 ϕ̂N
...

. . .
...

ϕ̂N ϕ̂1 · · · ϕ̂N ϕ̂N

 , (36)

where M̂ ∈ RN×N is the representation of the local mass matrix on the reference triangle T̂ . With (6) we see that the
global mass matrix M can be expressed as a Kronecker product of a matrix containing the areas |Tk | and the local
matrix M̂:

M =


MT1

. . .

MTK

 = 2


|T1|

. . .

|TK |

 ⊗ M̂ .

In the corresponding assembly routine assembleMatElemPhiPhi, the sparse block-diagonal matrix is generated using
the command spdiags with the list g.areaT (cf. [3]).

4.3.2. Assembly of Gm

Application of the product rule, (32a), and (34) gives us∫
Tk

∂x1ϕki ϕkl ϕk j = B22
k [Ĝ]i, j,l,1 − B21

k [Ĝ]i, j,l,2 ,

∫
Tk

∂x2ϕki ϕkl ϕk j = −B12
k [Ĝ]i, j,l,1 + B11

k [Ĝ]i, j,l,2

with a multidimensional array Ĝ ∈ RN×N×N×2 representing the transformed integral on the reference triangle T̂ :

[Ĝ]i, j,l,m B

∫
T̂
∂x̂m ϕ̂i ϕ̂ j ϕ̂l , for m ∈ {1, 2} . (37)
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Now we can express the local matrix G1
Tk

from (7) as

G1
Tk

=

N∑
l=1

U1
kl(t)

B22
k

∫
T̂


∂x̂1 ϕ̂1ϕ̂1ϕ̂l · · · ∂x̂1 ϕ̂1ϕ̂N ϕ̂l

...
. . .

...
∂x̂1 ϕ̂N ϕ̂1ϕ̂l · · · ∂x̂1 ϕ̂N ϕ̂N ϕ̂l

 − B21
k

∫
T̂


∂x̂2 ϕ̂1ϕ̂1ϕ̂l · · · ∂x̂2 ϕ̂1ϕ̂N ϕ̂l

...
. . .

...
∂x̂2 ϕ̂N ϕ̂1ϕ̂l · · · ∂x̂2 ϕ̂N ϕ̂N ϕ̂l




=

N∑
l=1

U1
kl(t)

(
B22

k [Ĝ]:,:,l,1 − B21
k [Ĝ]:,:,l,2

)
and analogously G2

Tk
. With Gm = diag(Gm

T1
, . . . ,Gm

TK
) we can vectorize over all triangles using the Kronecker product

as done in the routine assembleMatElemDphiPhiFuncDiscVec. We would like to point out that this is identical to the
assembly of Gm in our first paper [3] except for the vectorial coefficient function; however, the respective section
had some typos, above is the corrected version. Additionally, in the assembly routine the wrong component of the
normal vector was used for the assembly of Gm. Corrected and up-to-date versions of the code can be found in our
Github-repository [2].

4.3.3. Assembly of R
To ease the assembly of R we split the global matrix as given in (11) into a block-diagonal part and a remainder so

that R = Rdiag + Roffdiag holds. We first consider the block-diagonal entries of R given in Eqns. (8a), (9) and transform
the integral terms to the n-th edge of the reference triangle Ên:∫

Ekn

ϕki ϕk j

(
u · νkn

)
δu·νkn≥0 dx =

|Ekn|

|Ên|

∫
Ên

ϕ̂i ϕ̂ j

(
(u ◦ Fk(x̂)) · νkn

)
δu·νkn≥0 dx̂

=
|Ekn|

|Ên|

∫ 1

0
ϕ̂i ◦ γ̂n(s) ϕ̂ j ◦ γ̂n(s)

(
(u ◦ Fk ◦ γ̂n(s))︸             ︷︷             ︸

C ûkn(s)

·νkn

)
δûkn·νkn≥0 |γ̂

′
n(s)| ds

≈ |Ekn|

R∑
r=1

ωr ϕ̂i ◦ γ̂n(qr) ϕ̂ j ◦ γ̂n(qr)︸                       ︷︷                       ︸
C[R̂diag]i, j,n,r

(
ˆukn(qr) · νkn

)
δûkn·νkn≥0 , (38)

where we used transformation rule (32b), quadrature rule (33), and |γ̂′n(s)| = |Ên|. The explicit forms of the map-
pings γ̂n : [0, 1]→ Ên can be easily derived:

γ̂1(s) B
[
1 − s

s

]
, γ̂2(s) B

[
0

1 − s

]
, γ̂3(s) B

[
s
0

]
. (39)

Thus, we can assemble the global matrix using the Kronecker product

Rdiag B
3∑

n=1

R∑
r=1

ωr


|E1n|

. . .

|EKn|

 ◦

(û1n(qr) · ν1n) δû1n·ν1n≥0

. . .

(ûKn(qr) · νKn) δûKn·νKn≥0

 ⊗ [
R̂diag

]
:,:,n,r

,

where ‘◦’ denotes the Hadamard product.
Next, we consider the off-diagonal blocks of R stored in Roffdiag. For an interior edge Ek−n− = Ek+n+ ∈ ∂Tk− ∩
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∂Tk+ , n−, n+ ∈ {1, 2, 3}, we obtain analogously:∫
Ek−n−

ϕk−i ϕk+ j

(
u · νk−n

)
δu·νk−n<0 dx

=
|Ek−n− |

|Ên− |

∫
Ên−

ϕ̂i ϕk+ j ◦

= I︷     ︸︸     ︷
Fk+ ◦ F−1

k+ ◦Fk− (x̂)
(

(u ◦ Fk− (x̂)) · νk−n−
)
δu·νk−n−<0 dx̂

=
|Ek−n− |

|Ên− |

∫
Ên−

ϕ̂i ϕ̂ j ◦ F−1
k+ ◦ Fk− (x̂)

(
(u ◦ Fk− (x̂)) · νk−n−

)
δu·νk−n−<0 dx̂

= |Ek−n− |

∫ 1

0
ϕ̂i ◦ γ̂n− (s) ϕ̂ j ◦ F−1

k+ ◦ Fk− ◦ γ̂n− (s)
(
ûk−n− (s) · νk−n−

)
δûk−n− ·νk−n−<0 ds .

Note that F−1
k+ ◦Fk− maps from T̂ to T̂ . Since we compute a line integral, the integration domain is further restricted to

an edge Ên− , n− ∈ {1, 2, 3} and its co-domain to an edge Ên+ , n+ ∈ {1, 2, 3}. As a result, this integration can be boiled
down to nine possible maps between the sides of the reference triangle expressed as

ϑ̂n−n+ : Ên− 3 x̂ 7→ ϑ̂n−n+ (x̂) = F−1
k+ ◦ Fk− (x̂) ∈ Ên+

for an arbitrary index pair {k−, k+} as described above. The closed-form expressions of the nine cases are given in our
first paper [3]. We apply quadrature rule (33) and define R̂offdiag ∈ RN×N×3×3×R by[

R̂offdiag
]
i, j,n−,n+,r

B ϕ̂i ◦ γ̂n− (qr) ϕ̂ j ◦ ϑ̂n−n+ ◦ γ̂n− (qr) (40)

and thus arrive at

Roffdiag B
3∑

n−=1

3∑
n+=1

R∑
r=1

ωr



0 δE1n−=E2n+ . . . . . . δE1n−=EKn+

δE2n−=E1n+ 0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 δE(K−1)n−=EKn+

δEKn−=E1n+ . . . . . . δEKn−=E(K−1)n+ 0


◦


|E1n− | (û1n− · ν1n− ) δû1n− ·ν1n−<0 · · · |E1n− | (û1n− · ν1n− ) δû1n− ·ν1n−<0

...
...

|EKn− | (ûKn− · νKn− ) δûKn− ·νKn−<0 · · · |EKn− | (ûKn− · νKn− ) δûKn− ·νKn−<0

 ⊗ [R̂offdiag]:,:,n−,n+,r .

The sparsity structure for off-diagonal blocks depends on the numbering of mesh entities and is given for each com-
bination of n− and n+ by the list markE0TE0T. Due to the upwind flux in the edge integrals, it is not possible here to
include the quadrature rule directly in the element-blocks R̂offdiag as opposed to the assembly of element integrals and
the assembly routines for edges in the first paper [3]. Implementing the assembly with above formulation is possible
but expensive, since the global matrix would have to to be built for every quadrature point. Instead we make use of
the fact that the sparsity structure is the same for every quadrature point as we solely rely on the element numbering
and do not account for the upwind direction when determining the structure of Roffdiag. We define a tensor of block
vectors R̃offdiag ∈ RKN×N×3×3

[
R̃offdiag

]
(k−1)N+1:kN,:,n−,n+

B
R∑

r=1

ωr


|E1n− | (û1n− · ν1n− ) δû1n− ·ν1n−<0

...
|EKn− | (ûKn− · νKn− ) δûKn− ·νKn−<0

 ⊗ [R̂offdiag]:,:,n−,n+,r .

For mb = rma, r ∈ N, let

· ⊗V · : Rma×na ×Rmb×nb 3 (A,B) 7→ A ⊗V B B
[
[A]i, j [B](i−1)r : ir,:

]
∈ Rmb×nanb (41)
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be an operator which can be interpreted as a Kronecker product (cf. Eq. (35)) that takes a different right-hand side for
every row of the left-hand side and is implemented in the routine kronVec. This allows us to write

Roffdiag =

3∑
n−=1

3∑
n+=1



0 δE1n−=E2n+ . . . . . . δE1n−=EKn+

δE2n−=E1n+ 0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 δE(K−1)n−=EKn+

δEKn−=E1n+ . . . . . . δEKn−=E(K−1)n+ 0


⊗V

[
R̃offdiag

]
:,:,n−,n+

,

which omits the expensive assembly of the global matrix in every quadrature point.
The routine assembleMatEdgePhiPhiValUpwind assembles the matrices Rdiag and Roffdiag directly into R with

a code very similar to the formulation above. To avoid repeated computation of the normal velocity u ·νkn, we evaluate
it once in all quadrature points on each edge using the globally continuous function u(t, x) and store it in a dedicated
variable vNormalOnQuadEdge, which is then employed in the decision of the upwind direction using δu·νkn≥0 and δu·νkn<0
as well as the normal velocity in the assembly of R and KD.

4.3.4. Assembly of KD

The entries of KD in (10) are transformed using transformation rule (32b) and mapping (39)

[KD](k−1)N+i =
∑

Ekn∈∂Tk∩E∂Ω

∫
Ekn

ϕki cD(t)
(
u · νm

kn

)
δu·νm

kn<0 dx

=
∑

Ekn∈∂Tk∩E∂Ω

|Ekn|

|Ên|

∫
Ên

ϕ̂i cD(t, Fk(x̂))
(
(u ◦ Fk(x̂)) · νm

kn

)
δu·νm

kn<0 dx̂

=
∑

Ekn∈∂Tk∩E∂Ω

|Ekn|

∫ 1

0
ϕ̂i ◦ γ̂n(s) cD(t, Fk ◦ γ̂n(s))

(
ûkn(s) · νm

kn

)
δûkn·ν

m
kn<0 ds ,

where we again implicitly assumed the application of Fk and γ̂n to δu·νkn≥0. This integral is then approximated using
a 1D quadrature rule (33) on the reference interval (0, 1)

[KD](k−1)N+i ≈
∑

Ekn∈∂Tk∩E∂Ω

|Ekn|

R∑
r=1

ωrϕ̂i ◦ γ̂n(qr) cD(t, Fk ◦ γ̂n(qr))
(
ûkn(qr) · νm

kn

)
δûkn·ν

m
kn<0

allowing to vectorize the computation over all triangles and resulting in the routine assembleVecEdgePhiIntFuncContVal.

4.4. Slope limiters
For the implementation of the slope limiters described in Sec. 3, three parts must be considered:

1. The assembly of the transformation matrix MDG,Taylor from Eq. (19);
2. the slope limiters themselves;
3. the selective mass lumping in the limiting of time-derivatives, as explained in Sec. 3.5.

4.4.1. Assembly of MDG,Taylor

The entries in MDG,Taylor are transformed using transformation rule (32a), and the integral is then approximated
using a 2D quadrature rule (33) on the reference triangle T̂[

MDG,Taylor
]
(k−1)N+i,(k−1)N+ j

=

∫
Tk

ϕki φk j dx = 2|Tk |

∫
T̂
ϕ̂i φk j ◦ Fk(x̂) dx̂ ≈ 2|Tk |

R∑
r=1

ϕ̂i(qr) φk j ◦ Fk(qr) .

Recall that we cannot define the Taylor basis (17) on the reference triangle T̂ since the basis functions depend directly
on the physical coordinates of the element. The assembly is vectorized over all triangles resulting in the routine
assembleMatElemPhiDiscPhiTaylor. Matrices MDG,Taylor and M assembled in Sec. 4.3.1 are then used in the routines
projectDataDisc2DataTaylor and projectDataTaylor2DataDisc to transform the representation matrix between the
modal and Taylor basis—as explained in Sec. 3.1—by solving system (20).
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4.4.2. Slope limiting operators
The slope limiters themselves are implemented in a generic manner according to Sec. 3. Beginning with the

highest-order derivatives, we evaluate the linear or the full reconstruction of these derivatives at all control points xki.
These values along with the centroid values are used to determine the minimum and maximum values cmin

ki and cmax
ki

(see Eq. (21)) for each control point and, from these, the element-wise correction factors αe according to Eq. (23)
or (25) are calculated. This is implemented in routine computeVertexBasedLimiter. Depending on the limiter type,
this value is then applied to a certain subset of degrees of freedom, and the computation is repeated for the next lower-
order derivatives. The full slope limiting operators Φ, ΦTaylor are provided by the functions applySlopeLimiterDisc

or applySlopeLimiterTaylor, respectively.
To overcome numerical problems for cases where cki ≈ cmax

ki or cki ≈ cmin
ki , we modify Eqs. (23) and (25) so that

the condition for cases 1 and 3 are modified to cki > cmax
ki − ε and cki < cmin

ki + ε for a small 0 < ε ∈ R. Additionally,
we increase the absolute value of the denominators in cases 1 and 3 by ε, i. e., add or subtract ε, respectively. This
makes our limiter slightly more strict than the one given by condition (21); ε = 10−8 has been found to be a suitable
value for double precision computations. Moreover, we enforce 0 ≤ αke ≤ 1 to overcome cases where the division by
a number close to zero might lead to values αke > 1. To reduce execution time, we perform the necessary evaluation
of the Taylor basis functions in all vertices only once and store the result in a global variable that is used in the slope
limiting routines. This is implemented in computeTaylorBasesV0T.

4.4.3. Limiting time-derivatives
To obtain the selectively lumped time-derivative C̃(i) required for update scheme (28), we compute the discrete

time derivative Ċ(i) as given in Sec. 3.5 and transform it to a Taylor basis representation using Eq. (20) (implemented
in routine projectDataDisc2DataTaylor). We compute the stationary matrix

Mcorr B M−1
L M

in the beginning (which is computationally cheap, since ML is a diagonal matrix) and calculate the selectively lumped
time-derivative C̃Taylor,(i) from Equation (27). Backtransformation to the modal DG basis is again cheap, since it
requires only the inverse of the diagonal matrix M (implemented in projectDataTaylor2DataDisc) to produce the
selectively lumped time-derivative C̃(i). Each intermediate solution C(i) in update scheme (28) is then obtained by
applying the slope limiting operator Φ implemented in applySlopeLimiterDisc.

4.5. Numerical results
4.5.1. Analytical convergence test

The code is verified by showing that the numerically estimated orders of convergences match the analytically
predicted ones for prescribed smooth solutions. To verify the spatial discretization, we restrict ourselves to the sta-
tionary version of (1) and investigate the impact of different slope limiting schemes on the convergence order. The
effectiveness of the slope limiters is verified in the next section.

We choose the exact solution c(x) B cos(7x1) cos(7x2) and velocity field u(x) B [exp((x1 + x2)/2), exp((x1 −

x2)/2)]T on the domain Ω B (0, 1)2. The data cD and f are derived analytically by inserting c and u into (1). We
then compute the solution ch j for a sequence of increasingly finer meshes with element sizes h j, where the coarsest
grid Th0 covering Ω is an irregular grid, and each finer grid is obtained by regular refinement of its predecessor. The
discretization error ‖ch(t) − c(t)‖L2(Ω) at time t ∈ J is computed as the L2-norm of the difference between the discrete
solution ch(t) and the analytical solution c(t), as it was described in detail in our first paper [3]. Table 2 contains the
results demonstrating the experimental order of convergence α estimated using

α B ln
(
‖ch j−1 − c‖L2(Ω)

‖ch j − c‖L2(Ω)

)/
ln

(
h j−1

h j

)
.

The interesting points to compare in Table 2 are the errors for different limiting schemes. Whereas the linear ap-
proximation does not get limited at all on finer grids—indicating that the vertex-based limiters are able to distinguish
between smooth and non-smooth solutions given sufficient mesh resolution, the case of higher order approximation
warrants a closer look. First of all, the linear limiter takes a heavy toll on the higher order degrees of freedom:
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p 0 0 1 1 2 2 3 3 4 4
limiter j ‖ch − c‖ α ‖ch − c‖ α ‖ch − c‖ α ‖ch − c‖ α ‖ch − c‖ α

no
ne

0 3.64e–1 — 5.44e–1 — 6.98e–1 — 2.73e–1 — 2.21e–1 —
1 5.64e–1 –0.63 4.25e–1 0.36 1.32e–1 2.40 8.51e–2 1.68 1.46e–2 3.92
2 3.49e–1 0.69 1.28e–1 1.73 2.82e–2 2.23 6.10e–3 3.80 1.25e–3 3.54
3 2.49e–1 0.49 3.65e–2 1.81 3.15e–3 3.16 3.87e–4 3.98 4.58e–5 4.77
4 1.73e–1 0.53 8.29e–3 2.14 3.68e–4 3.10 2.39e–5 4.02 1.51e–6 4.92
5 1.09e–1 0.66 1.93e–3 2.11 4.50e–5 3.03 1.50e–6 4.00 4.80e–8 4.97
6 6.35e–2 0.78 4.71e–4 2.03 5.59e–6 3.01 9.36e–8 4.00 1.51e–9 4.99

lin
ea

r

0 — — 5.15e–1 — 7.21e–1 — 4.60e–1 — 5.27e–1 —
1 — — 4.53e–1 0.19 3.55e–1 1.02 3.54e–1 0.38 3.59e–1 0.55
2 — — 1.64e–1 1.47 1.34e–1 1.41 1.51e–1 1.23 1.47e–1 1.29
3 — — 4.53e–2 1.85 3.12e–2 2.10 3.12e–2 2.27 3.12e–2 2.23
4 — — 8.76e–3 2.37 4.48e–3 2.80 4.46e–3 2.81 4.46e–3 2.81
5 — — 1.98e–3 2.14 6.20e–4 2.85 6.19e–4 2.85 6.19e–4 2.85
6 — — 4.74e–4 2.07 7.63e–5 3.02 7.61e–5 3.02 7.61e–5 3.02

hi
er

.v
er

t.
ba

se
d 0 — — 5.15e–1 — 6.98e–1 — 2.73e–1 — 2.21e–1 —

1 — — 4.53e–1 0.19 2.47e–1 1.50 2.57e–1 0.09 1.33e–1 0.73
2 — — 1.64e–1 1.47 1.06e–1 1.22 5.89e–2 2.12 5.10e–2 1.38
3 — — 4.53e–2 1.85 7.87e–3 3.76 4.02e–3 3.87 3.17e–3 4.01
4 — — 8.76e–3 2.37 6.39e–4 3.62 6.16e–5 6.03 6.53e–6 8.92
5 — — 1.98e–3 2.14 5.32e–5 3.59 2.62e–6 4.56 1.08e–7 5.92
6 — — 4.74e–4 2.07 5.94e–6 3.16 1.17e–7 4.48 5.48e–9 4.30

st
ri

ct

0 — — 5.15e–1 — 6.84e–1 — 3.28e–1 — 3.56e–1 —
1 — — 4.53e–1 0.19 3.79e–1 0.85 3.69e–1 –0.17 3.54e–1 0.00
2 — — 1.64e–1 1.47 1.14e–1 1.74 6.74e–2 2.45 6.15e–2 2.53
3 — — 4.53e–2 1.85 1.23e–2 3.21 1.20e–2 2.49 1.16e–2 2.40
4 — — 8.76e–3 2.37 1.15e–3 3.41 8.99e–4 3.74 8.85e–4 3.72
5 — — 1.98e–3 2.14 1.19e–4 3.27 1.33e–4 2.76 1.33e–4 2.74
6 — — 4.74e–4 2.07 6.64e–6 4.17 1.09e–6 6.93 1.13e–6 6.88

Table 2: Discretization errors measured in L2(Ω) and estimated orders of convergences for different polynomial degrees and limiter types. We
have h j = 1

3·2 j and K = 36 · 4 j triangles in the jth refinement level.

quadratic, cubic, and quartic solutions produce virtually the same error, thus negating the effect of a more accurate
DG solution. The strict limiter seems to flatten out after the cubic approximation, thus gaining one order of conver-
gence on the linear limiter. The hierarchical limiter of Kuzmin, however, appears to perform very well for all tested
meshes and approximation orders having a very small effect on the errors of the analytical test case.

4.5.2. Solid body rotation
As a benchmark problem, we use solid body rotation test proposed by LeVeque [24], which is often used to

investigate limiter performance [7, 13]. It consists of a slotted cylinder, a sharp cone, and a smooth hump (see
Figure 4a) that are placed in a square domain Ω = [0, 1]2 and transported by a time-independent velocity field u(x) =

[0.5 − x2, x1 − 0.5]T in a counterclockwise rotation over J = (0, 2π). With r = 0.0225 and G(x, x0) B 1
0.15‖x − x0‖2,

we choose initial data satisfying

c0(x) =


1 if (x1 − 0.5)2 + (x2 − 0.75)2 ≤ r

∧ (x1 ≤ 0.475 ∨ x1 ≥ 0.525 ∨ x2 ≥ 0.85)
(slotted cylinder)

1 −G(x, [0.5, 0.25]T) if (x1 − 0.5)2 + (x2 − 0.25)2 ≤ r (sharp cone)
1
4 (1 + cos(πG(x, [0.25, 0.5]T)) if (x1 − 0.25)2 + (x2 − 0.5)2 ≤ r (smooth hump)
0 otherwise


and zero boundary cD = 0 and right-hand side f = 0.
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(a) Projected and limited initial data. (b) Linear limiter, no lumped time-derivative.

(c) Hier. vert.-based lim., no lumped time-derivative. (d) Linear limiter, lumped time derivative.

(e) Hier. vert.-based limiter, lumped time derivative. (f) Strict limiter, lumped time derivative.

Figure 4: Visualization of the DG solutions with p = 2 at end time tend = 2π.

First, we would like to emphasize the huge improvement of the solution when applying Kuzmin’s selectively
lumped time-stepping scheme (cf. Sec. 3.5), which reduces numerical diffusion and peak clipping, as visible in the
intersection lines in Fig. 5 and the 3D visualization (Figs. 4b–4e) and results in a smaller error (see Tab. 3). Without
this technique, the implicit coupling of the derivatives renders the higher order limiter inferior to the linear limiter.
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The results for the different slope limiters (see Fig. 4d–4f) when applying the lumped time-stepping scheme are
similar with all limiters producing errors in the same range (see Tab. 3). The linear vertex based limiter exhibits
significantly stronger peak clipping than the higher order limiters in the intersection lines of Fig. 6. When looking at
the slotted cylinder the strict limiter outperforms the others, producing less fill-in in the slot and better preserving the
shape of the cylinder. Also, the total error is lowest for the strict limiter.
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Figure 5: Intersection lines of the DG solution with p = 2 at end time tend = 2π with and without the selectively lumped time-derivative, as
described in Section. 3.5. The large deviation of the solutions from the initial data in the lower right plot are due to fill-in of the slot in the cylinder.

For polynomial degrees p ≥ 2 the solution might still violate the bounds along the edges when using only control
points in the vertices of the element for the slope limiting procedure. When evaluating the numerical fluxes, these
values are transported to the neighboring elements and can lead to cell averages lying outside of the initial bounds in
the next time step. Table 3 shows that all limiter types suffer from this, however these small violations of the bounds
usually smooth out over time due to the effects of numerical diffusion and do not introduce numerical problems. The
linear limiter is the only that preserves the upper bound but comes at the price of stronger peak-clipping. To effectively
restrict the solution to these bounds for p = 2, additional control points on the edges are necessary, which leads to
a significant increase in numerical diffusion, hence this is not a suitable technique.

5. Register of Routines

We list here all routines of our implementation that were added since the first paper [3] in alphabetic order. For
the reason of compactness, we waive the check for correct function arguments, e. g., by means of routines as assert.
However, it is strongly recommended to catch exceptions if the code is to be extended. The argument g is always
a struct representing the triangulation Th, the argument N is always the number of local basis functions N. A script
that demonstrates the application of the presented routines is given in mainAdvection.m.
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Figure 6: Intersection lines of the DG solution with p = 2 at end time tend = 2π when applying the lumped time-stepping scheme (cf. Sec. 3.5).
Compared are solutions with the different limiters described in Section 3.

non-lumped lumped
linear hier. vertex-based linear hier. vertex-based strict

mink ch(xkc) 0.00 –1.11e–5 –3.95e–10 –6.18e–5 –6.42e–4
mink,i ch(xki) –2.93e–2 –2.47e–2 –9.53e–3 –9.69e–3 –9.79e–16
mink, j ch(xe,k j) –3.32e–8 –4.28e–3 –1.18e–7 –4.28e–3 –5.35e–3
maxk ch(xkc) 1.00000 1.00000 1.00000 1.00000 1.00142
maxk,i ch(xki) 1.00000 1.00915 1.00000 1.01760 1.00000
maxk, j ch(xe,k j) 1.00000 1.00014 1.00000 1.00297 1.00296
‖ch(0) − c0‖L2(Ω) 3.73e–2 3.66e–2 3.73e–2 3.66e–2 3.66e–2
‖ch(tend) − c0‖L2(Ω) 8.18e–2 1.15e–1 7.38e–2 7.40e–2 7.07e–2

Table 3: Minimum and maximum values in centroids xkc, nodes xki, and edge midpoints xe,k j with p = 2 over the entire simulation time J = (0, 2π).
Two last rows give the L2-errors of the slope-limited projection of initial data and the end solution when compared to the analytical initial data.

Additionally, we recommend using Laurent Sorbers slightly faster implementation of the Kronecker product [25]
for sparse matrices from MATLAB File Exchange1 to speed up the computation. Note that this implementation is
only suitable for logical and double matrices.

dataDisc = applySlopeLimiterDisc(g, dataDisc, markV0TbdrD, dataV0T, globM, globMDiscTaylor, type)
implements the slope limiting operator Φ, as given in Eq. (29) with the chosen limiter type given as a string in type. Parameter dataDisc is the
representation matrix in modal DG basis, markV0TbdrD is a logical matrix marking all Dirichlet boundary nodes for which boundary data is
given in dataV0T.

1http://www.mathworks.com/matlabcentral/fileexchange/
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function dataDisc = applySlopeLimiterDisc(g,dataDisc ,markV0TbdrD ,dataV0T ,globM ,globMDiscTaylor ,type)
dataTaylor = projectDataDisc2DataTaylor(dataDisc , globM , globMDiscTaylor);
dataTaylor = applySlopeLimiterTaylor(g, dataTaylor , markV0TbdrD , dataV0T , type);
dataDisc = projectDataTaylor2DataDisc(dataTaylor , globM , globMDiscTaylor);
end

dataTaylor = applySlopeLimiterTaylor(g, dataTaylor, markV0TbdrD, dataV0T, type) implements the slope limit-
ing operator ΦTaylor, as described in Sec. 3.5. Parameter dataTaylor is the representation matrix in Taylor basis, the other parameters are
the same as for applySlopeLimiterDisc.

function dataTaylorLim = applySlopeLimiterTaylor(g, dataTaylor , markV0TbdrD , dataV0T , type)
switch type

case 'linear '
dataTaylorLim = applySlopeLimiterTaylorLinear(g, dataTaylor , markV0TbdrD , dataV0T);

case 'hierarch_vert '
dataTaylorLim = applySlopeLimiterTaylorHierarchicalVertex(g, dataTaylor , markV0TbdrD , dataV0T);

case 'strict '
dataTaylorLim = applySlopeLimiterTaylorStrict(g, dataTaylor , markV0TbdrD , dataV0T);

otherwise
error('Unknown limiter type');

end
end

dataTaylorLim = applySlopeLimiterTaylorHierarchicalVertex(g, dataTaylor, markV0TbdrD, dataV0T)
applies the hierarchical vertex-based limiter as described in Sec. 3.3, with input parameters as for applySlopeLimiterTaylor.

function dataTaylorLim = applySlopeLimiterTaylorHierarchicalVertex(g, dataTaylor , markV0TbdrD , dataV0T)
global gPhiTaylorV0T
[K, N] = size(dataTaylor); p = (sqrt (8*N+1) -3)/2;
dataTaylorLim = zeros(size(dataTaylor)); dataTaylorLim (:, 1) = dataTaylor (:, 1);
alpha = zeros(K, 1);
for ord = p : -1 : 1

alphaOrd = ones(K, 1);
indDOF = ord*(ord+1)/2 + 1 : (ord +1)*(ord+2)/2;
for i = 1 : ord

mult = bsxfun(@plus , [ord - i, i - 1], multiindex (1));
ind = mult2ind(mult);
valV0T = computeFuncDiscAtPoints(dataTaylor (:, ind), gPhiTaylorV0T (:, :, 1:3));
if ord > 1

alphaTmp = computeVertexBasedLimiter(g, dataTaylor (:, ind(1)), valV0T , markV0TbdrD , valV0T);
else

alphaTmp = computeVertexBasedLimiter(g, dataTaylor (:, ind(1)), valV0T , markV0TbdrD , dataV0T);
end
alphaOrd = min(alphaOrd , alphaTmp);

end
alpha = max(alpha , alphaOrd);
dataTaylorLim (:, indDOF) = bsxfun(@times , alpha , dataTaylor (:, indDOF));

end
end % function

dataTaylorLim = applySlopeLimiterTaylorLinear(g, dataTaylor, markV0TbdrD, dataV0T) applies the linear vertex-
based limiter as described in Sec. 3.2, with input parameters as for applySlopeLimiterTaylor.

function dataTaylorLim = applySlopeLimiterTaylorLinear(g, dataTaylor , markV0TbdrD , dataV0T)
global gPhiTaylorV0T
alphaE = computeVertexBasedLimiter(g, dataTaylor (:, 1), computeFuncDiscAtPoints(dataTaylor (:, 1:3),

↪→gPhiTaylorV0T (:,:,1:3)), markV0TbdrD , dataV0T);
dataTaylorLim = [dataTaylor (:,1), bsxfun(@times , alphaE , dataTaylor (:, 2:3)), bsxfun(@times , alphaE ==

↪→1, dataTaylor (:, 4:end))];
end % function

dataTaylorLim = applySlopeLimiterTaylorStrict(g,dataTaylor, markV0TbdrD, dataV0T) applies the stricter form of
the hierarchical vertex-based limiter as described in Sec. 3.4, with input parameters as for applySlopeLimiterTaylor.

function dataTaylorLim = applySlopeLimiterTaylorStrict(g, dataTaylor , markV0TbdrD , dataV0T)
global gPhiTaylorV0T
[K, N] = size(dataTaylor); p = (sqrt (8*N+1) -3)/2;
dataTaylorLim = dataTaylor;
for ord = p : -1 : 1

alphaOrd = ones(K, 1);
indDOF = ord * (ord + 1) / 2 + 1 : N;
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for i = 1 : ord
pReconstruction = p - ord + 1;
mult = bsxfun(@plus , [ord - i, i - 1], multiindex(pReconstruction)); ind = mult2ind(mult);
valV0T = computeFuncDiscAtPoints(dataTaylorLim (:, ind), gPhiTaylorV0T (:, :, 1 : size(ind , 1)));
if ord > 1

alphaTmp = computeVertexBasedLimiter(g, dataTaylorLim (:, ind (1)), valV0T , markV0TbdrD , valV0T);
else

alphaTmp = computeVertexBasedLimiter(g, dataTaylorLim (:, ind (1)), valV0T , markV0TbdrD , dataV0T);
end
alphaOrd = min(alphaOrd , alphaTmp);

end
dataTaylorLim (:, indDOF) = bsxfun(@times , alphaOrd , dataTaylorLim (:, indDOF));

end
end % function

ret = assembleMatEdgePhiPhiValUpwind(g, refEdgePhiIntPhiInt, refEdgePhiIntPhiExt, valOnQuad) assem-
bles the matrix R according to Sec. 4.3.3, containing edge integrals of products of two basis functions multiplied with for each quadrature
point specified values, stored in valOnQuad, and where the upwind-sided value w. r. t. valOnQuad is chosen. The input arguments
refEdgePhiIntPhiInt and refEdgePhiIntPhiExt provide the local matrices R̂diag and R̂offdiag (multidimensional arrays), respectively.

function ret = assembleMatEdgePhiPhiValUpwind(g, refEdgePhiIntPhiIntOnQuad , refEdgePhiIntPhiExtOnQuad ,
↪→valOnQuad)

K = g.numT; N = size(refEdgePhiIntPhiIntOnQuad , 1);
ret = sparse(K*N, K*N);
p = (sqrt (8*N+1) -3)/2;
qOrd = 2*p+1; [~, W] = quadRule1D(qOrd);
for nn = 1 : 3

Rkn = g.areaE0T(:, nn);
for r = 1 : length(W) % Diagonal blocks

ret = ret + kron(spdiags(W(r) .* Rkn .* valOnQuad(:, nn, r) .* (valOnQuad (:, nn , r) > 0), 0, K, K),
↪→refEdgePhiIntPhiIntOnQuad (:, :, nn, r));

end
for np = 1 : 3 % Off -diagonal blocks

RknTimesVal = sparse(K*N, N);
for r = 1 : length(W)

RknTimesVal = RknTimesVal + kron(W(r) .* Rkn .* valOnQuad(:, nn, r) .* sparse(valOnQuad(:, nn, r)
↪→< 0), refEdgePhiIntPhiExtOnQuad (:, :, nn, np, r));

end
ret = ret + kronVec(g.markE0TE0T{nn, np}, RknTimesVal);

end % for
end % for
end % function

ret = assembleMatElemDphiPhiFuncDiscVec(g, refElemDphiPhiPhi, dataDisc1, dataDisc2) assembles two matri-
ces, each containing integrals of products of a basis function with a (spatial) derivative of a basis function and with a component of a discon-
tinuous coefficient function whose coefficients are specified in dataDisc1 and dataDisc2, respectively. The matrices are returned in a 2 × 1
cell variable. This corresponds to the matrices Gm, m ∈ {1, 2} according to Sec. 4.3.2. The input argument refElemDphiPhiPhi stores
the local matrices Ĝ (multidimensional array) as defined in (37) and can be computed by integrateRefElemDphiPhiPhi [3]. The coeffi-
cients of the projection of the algebraic diffusion coefficient d into the broken polynomial space are stored in the input arguments dataDisc1
and dataDisc2 and can be computed by projectFuncCont2dataDisc.

function ret = assembleMatElemDphiPhiFuncDiscVec(g, refElemDphiPhiPhi , dataDisc1 , dataDisc2)
[K, N] = size(dataDisc1);
ret = cell(2, 1); ret{1} = sparse(K*N, K*N); ret{2} = sparse(K*N, K*N);
for l = 1 : N

ret {1} = ret{1} + kron(spdiags(dataDisc1(:,l) .* g.B(:,2,2), 0,K,K), refElemDphiPhiPhi (:,:,l,1)) ...
- kron(spdiags(dataDisc1(:,l) .* g.B(:,2,1), 0,K,K), refElemDphiPhiPhi (:,:,l,2));

ret {2} = ret{2} - kron(spdiags(dataDisc2(:,l) .* g.B(:,1,2), 0,K,K), refElemDphiPhiPhi (:,:,l,1)) ...
+ kron(spdiags(dataDisc2(:,l) .* g.B(:,1,1), 0,K,K), refElemDphiPhiPhi (:,:,l,2));

end % for
end % function

ret = assembleMatElemPhiDiscPhiTaylor(g, N) assembles the matrix MDG,Taylor according to Sec. 3.1, which corresponds to the
basis transformation matrix with one basis function from each, modal and Taylor basis. It is required for the transformation between modal and
Taylor basis in the routines projectDataDisc2DataTaylor and projectDataTaylor2DataDisc.

function ret = assembleMatElemPhiDiscPhiTaylor(g, N)
global gPhi2D
p = (sqrt (8*N+1) -3)/2; qOrd = max (2*p+1, 1); [Q1 ,Q2,W] = quadRule2D(qOrd);
K = g.numT; ret = sparse(K*N, K*N);
for i = 1 : N

for j = 1 : N
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intPhiIPhiJ = ( repmat(gPhi2D{qOrd}(:, i)', [K 1]) .* phiTaylorRef(g, j, Q1, Q2) ) * W';
ret = ret + sparse(i : N : K*N, j : N : K*N, 2 * g.areaT .* intPhiIPhiJ , K*N, K*N );

end % for
end % for
end % function

ret = assembleMatElemPhiTaylorPhiTaylor(g, N) assembles the mass matrix in Taylor basis MTaylor.

function ret = assembleMatElemPhiTaylorPhiTaylor(g, N)
p = (sqrt (8*N+1) -3)/2; qOrd = max (2*p, 1);
[Q1 , Q2 , W] = quadRule2D(qOrd);
K = g.numT;
ret = sparse(K*N, K*N);
for i = 1 : N

for j = 1 : N
intPhiIPhiJ = ( phiTaylorRef(g, i, Q1, Q2) .* phiTaylorRef(g, j, Q1, Q2) ) * W';
ret = ret + sparse(i : N : K*N, j : N : K*N, 2 * g.areaT .* intPhiIPhiJ , K*N, K*N );

end % for
end % for
end % function

ret = assembleVecEdgePhiIntFuncContVal(g, markE0Tbdr, funcCont, valOnQuad, N) assembles a vector containing
integrals of products of a basis function with a continuous function and a given value that is provided in each quadrature point on each edge for
all triangles. This corresponds to the contributions of Dirichlet boundaries KD to the right-hand side of (4) according to Sec. 4.3.4. markE0Tbdr
marks the boundary edges on which the vector should be assembled, funcCont is a function handle and valOnQuad is the value provided in
each quadrature point, as computed by computeFuncContNuOnQuadEdge.

function ret = assembleVecEdgePhiIntFuncContVal(g, markE0Tbdr , funcCont , valOnQuad , N)
global gPhi1D
K = g.numT; p = (sqrt (8*N+1) -3)/2; qOrd = 2*p+1; [Q, W] = quadRule1D(qOrd);
Q2X1 = @(X1,X2) g.B(:,1,1)*X1 + g.B(:,1,2)*X2 + g.coordV0T (:,1,1)*ones(size(X1));
Q2X2 = @(X1,X2) g.B(:,2,1)*X1 + g.B(:,2,2)*X2 + g.coordV0T (:,1,2)*ones(size(X1));
ret = zeros(K, N);
for n = 1 : 3

[Q1 , Q2] = gammaMap(n, Q); funcOnQuad = funcCont(Q2X1(Q1, Q2), Q2X2(Q1 , Q2));
Kkn = markE0Tbdr (:, n) .* g.areaE0T(:,n);
for i = 1 : N

integral = (funcOnQuad .* squeeze (( valOnQuad(:, n, :) < 0) .* valOnQuad(:, n, :))) * ( W' .* gPhi1D{
↪→qOrd}(:,i,n));

ret(:,i) = ret(:,i) + Kkn .* integral;
end % for

end % for
ret = reshape(ret ',K*N,1);
end % function

ret = computeFuncContNuOnQuadEdge(g, funcCont1, funcCont2, qOrd) assembles a three-dimensional array with the nor-
mal velocity u · νki evaluated in all quadrature points of all edges of each triangle.

function ret = computeFuncContNuOnQuadEdge(g, funcCont1 , funcCont2 , qOrd)
K = g.numT; [Q, W] = quadRule1D(qOrd);
ret = zeros(K, 3, length(W));
for n = 1 : 3

[Q1 , Q2] = gammaMap(n, Q);
ret(:,n,:) = bsxfun(@times ,g.nuE0T(:,n,1),funcCont1(g.mapRef2Phy (1,Q1,Q2),g.mapRef2Phy (2,Q1,Q2)))+...

bsxfun(@times ,g.nuE0T(:,n,2),funcCont2(g.mapRef2Phy (1,Q1,Q2),g.mapRef2Phy (2,Q1,Q2)));
end % for
end

valV0T = computeFuncContV0T(g, funcCont) assembles a matrix containing the function funcCont evaluated in each node of each
triangle.

function valV0T = computeFuncContV0T(g, funcCont)
valV0T = zeros(g.numT ,3);
for n = 1 : 3

valV0T(:, n) = funcCont(g.coordV0T(:, n, 1), g.coordV0T(:, n, 2));
end
end

ret = computeFuncDiscAtPoints(funcDisc, phiAtPoints) assembles a matrix containing the values of a discrete function with
representation matrix stored in funcDisc evaluated in all points, for which the evaluated basis functions are given in phiAtPoints.
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function ret = computeFuncDiscAtPoints(funcDisc , phiAtPoints)
nPoints = size(phiAtPoints , 2); K = size(funcDisc , 1);
ret = zeros(K, nPoints);
for i = 1 : nPoints

ret(:, i) = sum(funcDisc .* squeeze(phiAtPoints (:, i, :)), 2);
end %for
end % function

minMaxV0T = computeMinMaxV0TElementPatch(g, valCentroid, markV0TbdrD, dataV0T) determines a matrix with
bounds cmax

ki , cmin
ki of Eq. (22) for each vertex of each triangle, as required by computeVertexBasedLimiter.

function minMaxV0T = computeMinMaxV0TElementPatch(g, valCentroid , markV0TbdrD , dataV0T)
minMaxV0T = cell (2,1);
minMaxV0T {1} = zeros(g.numT , 3); minMaxV0T {2} = zeros(g.numT , 3);
shiftCentroidPos = abs(min(valCentroid)) + 1;
shiftCentroidNeg = abs(max(valCentroid)) + 1;
valCentroidPos = valCentroid + shiftCentroidPos;
valCentroidNeg = valCentroid - shiftCentroidNeg;
valD = NaN(g.numT , 3); valD(markV0TbdrD) = dataV0T(markV0TbdrD);
for i = 1 : 3

markNbV0T = g.markV0TV0T{i, 1} | g.markV0TV0T{i, 2} | g.markV0TV0T{i, 3};
if exist('OCTAVE_VERSION ','builtin ')

markNbV0T = markNbV0T + 0 * speye(size(markNbV0T , 1), size(markNbV0T , 2));
end
minMaxV0T {1}(:,i)=min(min(bsxfun(@times ,markNbV0T ,valCentroidNeg ') ,[],2)+shiftCentroidNeg ,valD(:,i));
minMaxV0T {2}(:,i)=max(max(bsxfun(@times ,markNbV0T ,valCentroidPos ') ,[],2)-shiftCentroidPos ,valD(:,i));

end % for
end % function

computeTaylorBasesV0T(g, N) evaluates the Taylor basis functions Φk j in all vertices of all triangles xki and stores them in a global
multidimensional array.

function computeTaylorBasesV0T(g, N)
global gPhiTaylorV0T
gPhiTaylorV0T = zeros(g.numT , 3, N);
for n = 1 : 3

for i = 1 : N
gPhiTaylorV0T (:, n, i) = phiTaylorPhy(g, i, g.coordV0T(:, n, 1), g.coordV0T(:, n, 2));

end
end
end

alphaE = computeVertexBasedLimiter(g, valCentroid, valV0T, markV0TbdrD, dataV0T) computes a vector with cor-
rection factors αke (cf. Eq. (23)) for all elements. Centroid values ckc are given in valCentroid, values of the unconstrained reconstruction cki are
specified in valV0T and markV0TbdrD is a logical matrix marking all Dirichlet boundary nodes for which boundary data is given in dataV0T.

function alphaE = computeVertexBasedLimiter(g, valCentroid , valV0T , markV0TbdrD , dataV0T)
minMaxV0T = computeMinMaxV0TElementPatch(g, valCentroid , markV0TbdrD , dataV0T);
diffV0TCentroid = valV0T - repmat(valCentroid , [1 3]);
diffMinCentroid = minMaxV0T {1} - repmat(valCentroid , [1 3]);
diffMaxCentroid = minMaxV0T {2} - repmat(valCentroid , [1 3]);
tol = 1.e-8;
markNeg = diffV0TCentroid < diffMinCentroid + tol;
markPos = diffV0TCentroid > diffMaxCentroid - tol;
alphaEV0T = ones(g.numT ,3);
alphaEV0T(markNeg) = max(0, min(1, diffMinCentroid(markNeg) ./ (diffV0TCentroid(markNeg) - tol) ) );
alphaEV0T(markPos) = max(0, min(1, diffMaxCentroid(markPos) ./ (diffV0TCentroid(markPos) + tol) ) );
alphaE = min(alphaEV0T ,[] ,2);
end % function

ret = integrateRefEdgePhiIntPhiExtPerQuad(N) computes a multidimensional array of functionals in the quadrature points on the
edges of the reference triangle T̂ that consist of all permutations of two basis functions of which one belongs to a neighboring element that is
transformed using ϑ̂. This corresponds to the local matrix R̂offdiag as given in (40).

function ret = integrateRefEdgePhiIntPhiExtPerQuad(N)
global gPhi1D gThetaPhi1D
p = (sqrt (8*N+1) -3)/2; qOrd = 2*p+1; [~, W] = quadRule1D(qOrd);
ret = zeros(N,N,3,3,length(W)); % [N x N x N x 3 x 3]
for nn = 1 : 3 % 3 edges

for np = 1 : 3
for i = 1 : N
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for j = 1 : N
ret(i, j, nn , np, :) = gPhi1D{qOrd}(:,i,nn) .* gThetaPhi1D{qOrd}(:,j,nn,np);

end % for
end % for

end % for
end % for
end

ret = integrateRefEdgePhiIntPhiIntPerQuad(N) computes a multidimensional array of functionals in the quadrature points on the
edges of the reference triangle T̂ that consist of all permutations of two basis functions. This corresponds to the local matrix R̂diag as given in (38).

function ret = integrateRefEdgePhiIntPhiIntPerQuad(N)
global gPhi1D
p = (sqrt (8*N+1) -3)/2; qOrd = max (2*p+1,1); [~, W] = quadRule1D(qOrd);
ret = zeros(N, N, 3, length(W)); % [N x N x 3 x R]
for n = 1 : 3 % 3 edges

for i = 1 : N
for j = 1 : N

ret(i,j,n,:) = gPhi1D{qOrd}(:,i,n).* gPhi1D{qOrd}(:,j,n);
end % for

end % for
end % for
end % function

K = kronVec(A,B) computes the result ofRmb×nanb 3 K = A ⊗V B as given in Eq. (41).

function K = kronVec(A, B)
[ma ,na] = size(A);
[mb ,nb] = size(B);
mc = mb / ma;
if ~issparse(A) && ~issparse(B) % Both inputs full , result is full.

A = reshape(A, [1 ma 1 na]);
B = reshape(B, [mc ma nb 1]);
K = reshape(bsxfun(@times , A, B), [mb na*nb]);

else
[i2 , j2, v2] = find(kron(A, ones(mc, 1)));
ik = repmat(i2, [1 nb]);
jk = bsxfun(@plus , nb * (j2 - 1), 1 : nb);
sk = bsxfun(@times , v2, B(i2 , :));
K = sparse(ik , jk , sk, mb, na * nb);

end % if
end % function

mainAdvection.m This is the main script to solve (1) which can be used as a template for further modifications. Modifiable parameters are
found in Lines 5–16, the problem data (initial condition, velocity, right-hand side and boundary data) is specified in Lines 35–42.

function mainAdvection ()
more off % disable paging of output
tic % Start time measurement
%% Parameters .
hmax = 2^-6; % maximum edge length of triangle
p = 2; % local polynomial degree
ordRK = min(p+1,3); % order of Runge Kutta time stepper.
tEnd = 2*pi; % end time
numSteps = 3142; % number of time steps
isVisGrid = false; % visualization of grid
isVisSol = true; % visualization of solution
isSlopeLim = true; % slope limiting
typeSlopeLim = 'hierarch_vert '; % Type of slope limiter (linear , hierarch_vert , strict)
outputFrequency = 100; % no visualization of every timestep
outputBasename = ['solution_ ' typeSlopeLim ]; % Basename of output files
outputTypes = cellstr (['vtk';'tec']);
%% Parameter check.
diary([ outputBasename '.log'])
assert(p >= 0 && p <= 4 , 'Polynomial order must be zero to four.' )
assert(ordRK >= 1 && ordRK <= 3, 'Order of Runge Kutta must be zero to three.')
assert(hmax > 0 , 'Maximum edge length must be positive.' )
assert(numSteps > 0 , 'Number of time steps must be positive.' )
assert (~ isSlopeLim || p > 0 , 'Slope limiting only available for p > 0.' )
%% Triangulation .
g = domainSquare(hmax); % Alternative : g = domainPolygon ([0 1 1 0], [0 0 1 1], hmax);
if isVisGrid , visualizeGrid(g); end
%% Globally constant parameters .
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K = g.numT; % number of triangles
N = nchoosek(p + 2, p); % number of local DOFs
tau = tEnd/numSteps; % time step size
markE0Tint = g.idE0T == 0; % [K x 3] mark local edges that are interior
markE0TbdrD = ~markE0Tint; % [K x 3] mark local edges on the Dirichlet boundary
markV0TbdrD = ismember(g.V0T , g.V0E(g.E0T(markE0TbdrD) ,:)); % [K x 3] mark vertices on Dirichlet bdr
%% Coefficients and boundary data (LeVeque 's solid body rotation).
G = @(x1, x2, x1_0 , x2_0) (1/0.15) * sqrt((x1-x1_0).^2 + (x2-x2_0).^2);
c0Cont = @(x1 , x2) ((x1 -0.5) .^2+(x2 -0.75) .^2 <= 0.0225 & (x1 <=0.475|x1 >=0.525|x2 >=0.85)) + ...

(1-G(x1, x2, 0.5, 0.25)) .* ((x1 - 0.5) .^2 + (x2 - 0.25) .^2 <= 0.0225) + ...
0.25*(1+ cos(pi*G(x1, x2, 0.25, 0.5))).*((x1 - 0.25) .^2 + (x2 - 0.5) .^2 <= 0.0225);

fCont = @(t,x1,x2) zeros(size(x1));
u1Cont = @(t,x1,x2) 0.5 - x2;
u2Cont = @(t,x1,x2) x1 - 0.5;
cDCont = @(t,x1,x2) zeros(size(x1));
%% Lookup table for basis function.
computeBasesOnQuad(N);
if isSlopeLim , computeTaylorBasesV0T(g, N); end
%% Computation of matrices on the reference triangle.
hatM = integrateRefElemPhiPhi(N);
hatG = integrateRefElemDphiPhiPhi(N);
hatRdiagOnQuad = integrateRefEdgePhiIntPhiIntPerQuad(N);
hatRoffdiagOnQuad = integrateRefEdgePhiIntPhiExtPerQuad(N);
%% Assembly of time - independent global matrices.
globM = assembleMatElemPhiPhi(g, hatM);
if isSlopeLim

globMTaylor = assembleMatElemPhiTaylorPhiTaylor(g, N);
globMDiscTaylor = assembleMatElemPhiDiscPhiTaylor(g, N);
globMCorr = spdiags (1./ diag(globMTaylor), 0, K*N, K*N) * globMTaylor;

end % if
%% Initial data.
cDisc = projectFuncCont2DataDisc(g, c0Cont , 2*p+1, hatM);
if isSlopeLim

cDV0T = computeFuncContV0T(g, @(x1, x2) cDCont(0, x1 , x2));
cDisc = applySlopeLimiterDisc(g, cDisc , markV0TbdrD , cDV0T , globM , globMDiscTaylor , typeSlopeLim);

end % if
fprintf('L2 error w.r.t. the initial condition: %g\n', computeL2Error(g, cDisc , c0Cont , 2*p));
%% visualization of inital condition .
if isVisSol

cLagrange = projectDataDisc2DataLagr(cDisc);
visualizeDataLagr(g, cLagrange , 'u_h', outputBasename , 0, outputTypes)

end
%% Time stepping.
fprintf('Starting time integration from 0 to %g using time step size %g (%d steps).\n', tEnd , tau ,

↪→numSteps)
for nStep = 1 : numSteps

[t, omega] = rungeKuttaSSP(ordRK , tau , (nStep - 1) * tau);
cDiscRK = cell(length(omega)+1, 1); cDiscRK {1} = reshape(cDisc ', [K*N 1]);
%% Perform Runge -Kutta steps
for rkStep = 1 : length(omega)

% L2 projections of Contebraic coefficients
fDisc = projectFuncCont2DataDisc(g, @(x1 ,x2) fCont(t(rkStep),x1,x2), 2*p, hatM);
u1Disc = projectFuncCont2DataDisc(g, @(x1,x2) u1Cont(t(rkStep),x1,x2), 2*p, hatM);
u2Disc = projectFuncCont2DataDisc(g, @(x1,x2) u2Cont(t(rkStep),x1,x2), 2*p, hatM);
% Evaluate normal velocity in quadrature points of edges
vNormalOnQuadEdge = computeFuncContNuOnQuadEdge(g, @(x1 ,x2) u1Cont(t(rkStep),x1,x2), @(x1 ,x2) u2Cont

↪→(t(rkStep),x1,x2), 2*p+1); % veloc \dot \nu on quadratur points on edges
% Assembly of time - dependent global matrices
globG = assembleMatElemDphiPhiFuncDiscVec(g, hatG , u1Disc , u2Disc);
globR = assembleMatEdgePhiPhiValUpwind(g, hatRdiagOnQuad , hatRoffdiagOnQuad , vNormalOnQuadEdge);
% Assembly of Dirichlet boundary contributions
globKD = assembleVecEdgePhiIntFuncContVal(g, markE0TbdrD , @(x1 ,x2) cDCont(t(rkStep),x1,x2),

↪→vNormalOnQuadEdge , N);
% Assembly of the source contribution
globL = globM * reshape(fDisc ', K*N, 1);
% Building the system
sysA = -globG {1} - globG {2} + globR;
sysV = globL - globKD;
% Computing the discrete time derivative
cDiscDot = globM \ (sysV - sysA * cDiscRK{rkStep });
% Apply slope limiting to time derivative
if isSlopeLim

cDiscDotTaylor = projectDataDisc2DataTaylor(reshape(cDiscDot , [N K])', globM , globMDiscTaylor);
cDiscDotTaylorLim = applySlopeLimiterTaylor(g,cDiscDotTaylor ,markV0TbdrD ,NaN(K,3),typeSlopeLim);
cDiscDotTaylor = reshape(cDiscDotTaylorLim ', [K*N 1]) + globMCorr * reshape (( cDiscDotTaylor -

↪→cDiscDotTaylorLim)', [K*N 1]);
cDiscDot = reshape(projectDataTaylor2DataDisc(reshape(cDiscDotTaylor , [N K])', globM ,
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↪→globMDiscTaylor)', [K*N 1]);
end
% Compute next step
cDiscRK{rkStep + 1} = omega(rkStep) * cDiscRK {1} + (1 - omega(rkStep)) * (cDiscRK{rkStep} + tau *

↪→cDiscDot);
% Limiting the solution
if isSlopeLim

cDV0T = computeFuncContV0T(g, @(x1, x2) cDCont(t(rkStep), x1 , x2));
cDiscRK{rkStep + 1} = reshape(applySlopeLimiterDisc(g, reshape(cDiscRK{rkStep + 1}, [N K])',

↪→markV0TbdrD , cDV0T , globM , globMDiscTaylor , typeSlopeLim)', [K*N 1]);
end % if

end % for
cDisc = reshape(cDiscRK{end}, N, K) ';
%% visualization
if isVisSol && mod(nStep , outputFrequency) == 0

cLagrange = projectDataDisc2DataLagr(cDisc);
visualizeDataLagr(g, cLagrange , 'u_h', outputBasename , nStep , outputTypes);

end
end % for
if isVisSol

cLagrange = projectDataDisc2DataLagr(cDisc);
visualizeDataLagr(g, cLagrange , 'u_h', outputBasename , nStep , outputTypes);

end
fprintf('L2 error w.r.t. the initial condition: %g\n', computeL2Error(g, cDisc , c0Cont , 2*p));
fprintf('Total computation time: %g seconds .\n', toc);
diary off
end % function

ind = mult2ind(a) computes the linear index I(a) corresponding to a two-dimensional multi-index a as defined in (16).

function ind = mult2ind(a)
p = sum(a, 2); N = p .* (p + 1) / 2;
ind = N + 1 + a(:, 2);

end

mult = multiindex(p) computes all two-dimensional multi-indices involved in the representation of a polynomial solution of degree p and
returns them in a N × 2 array.

function mult = multiindex(p)
mult = zeros(p * (p+1) / 2, 2);
mult (1,:) = [0, 0];
for ord = 1 : p

offset = ord * (ord+1) / 2;
for i = 1 : ord + 1

mult(offset + i, :) = mult(1, :) + [ord - i + 1, i - 1];
end

end
end

ret = phiTaylorPhy(g, i, X1, X2) evaluates the ith basis function φi on each triangle T ∈ Th (cf. Sec. 3.1) at points specified by a list
of n x1 coordinates X1 ∈ RK×n and x2 coordinates X2 ∈ RK×n.

function ret = phiTaylorPhy(g, i, X1, X2)
qOrd = ceil((sqrt (8*i+1) -3)/2);
[Q1 , Q2 , W] = quadRule2D(qOrd);
Q2X1 = @(X1, X2) g.B(:, 1, 1) * X1 + g.B(:, 1, 2) * X2 + g.coordV0T(:, 1, 1) * ones(size(X1));
Q2X2 = @(X1, X2) g.B(:, 2, 1) * X1 + g.B(:, 2, 2) * X2 + g.coordV0T(:, 1, 2) * ones(size(X1));
R = length(W); K = g.numT; numP = size(X1, 2);
dX1 = repmat (2 ./ (max(g.coordV0T (:,:,1) ,[],2) - min(g.coordV0T (:,:,1) ,[],2)), [1 numP]);
dX2 = repmat (2 ./ (max(g.coordV0T (:,:,2) ,[],2) - min(g.coordV0T (:,:,2) ,[],2)), [1 numP]);
switch i

case 1 % (0 ,0)
ret = ones(K, numP);

case 2 % (1 ,0)
ret = (X1-repmat(g.baryT (:,1), [1 numP]).*dX1;

case 3 % (0 ,1)
ret = (X2-repmat(g.baryT (:,2), [1 numP]).*dX2;

case 4 % (2 ,0)
ret = ( 0.5*(X1 -repmat(g.baryT (:,1), [1 numP]) ).^2 -...

repmat( ( Q2X1(Q1,Q2)-repmat(g.baryT (:,1), [1 R]) ).^2 * W', [1 numP])).*( dX1.*dX1);
case 5 % (1 ,1)

ret = ( ( X1-repmat(g.baryT (:,1), [1 numP]) ) .* ( X2-repmat(g.baryT (:,2), [1 numP])) -...
repmat( 2 * ( ( Q2X1(Q1 ,Q2)-repmat(g.baryT (:,1), [1 R]) ) .* ...
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( Q2X2(Q1,Q2)-repmat(g.baryT (:,2), [1 R]) ) ) * W', [1 numP])).*(dX1.*dX2);
case 6 % (0 ,2)

ret = ( 0.5*(X2 -repmat(g.baryT (:,2), [1 numP]) ).^2 -...
repmat( ( Q2X2(Q1,Q2)-repmat(g.baryT (:,2), [1 R]) ).^2 * W', [1 numP])).*( dX2.*dX2);

case 7 % (3 ,0)
ret = ( ( X1-repmat(g.baryT (:,1), [1 numP]) ).^3 / 6-...

repmat( ( Q2X1(Q1,Q2)-repmat(g.baryT (:,1), [1 R]) ).^3 * W' / 3, [1 numP])).*dX1 .^3;
case 8 % (2 ,1)

ret = ( 0.5*(X1 -repmat(g.baryT (:,1), [1 numP]) ).^2 .* ( X2-repmat(g.baryT (:,2), [1 numP])) -...
repmat( ( ( Q2X1(Q1,Q2)-repmat(g.baryT (:,1), [1 R]) ).^2 .* ...

( Q2X2(Q1,Q2)-repmat(g.baryT (:,2), [1 R]) ) ) * W', [1 numP])).*( dX1 .^2.* dX2);
case 9 % (1 ,2)

ret = ( 0.5*(X1 -repmat(g.baryT (:,1), [1 numP]) ) .* ( X2-repmat(g.baryT (:,2), [1 numP]) ).^2 -...
repmat( ( ( Q2X1(Q1,Q2)-repmat(g.baryT (:,1), [1 R]) ) .* ...

( Q2X2(Q1,Q2)-repmat(g.baryT (:,2), [1 R]) ).^2 ) * W', [1 numP])).*(dX1.*dX2 .^2);
case 10 % (0 ,3)

ret = ( ( X2-repmat(g.baryT (:,2), [1 numP]) ).^3 / 6-...
repmat( ( Q2X2(Q1,Q2)-repmat(g.baryT (:,2), [1 R]) ).^3 * W' / 3, [1 numP])).*dX2 .^3;

case 11 % (4 ,0)
ret = ( ( X1-repmat(g.baryT (:,1), [1 numP]) ).^4 / 24 -...

repmat( ( Q2X1(Q1,Q2)-repmat(g.baryT (:,1), [1 R]) ).^4 * W' / 12, [1 numP])).*dX1 .^4;
case 12 % (3 ,1)

ret = ( ( X1-repmat(g.baryT (:,1), [1 numP]) ).^3 .* ( X2 -repmat(g.baryT (:,2), [1 numP]) ) / 6-...
repmat( ( ( Q2X1(Q1,Q2)-repmat(g.baryT (:,1), [1 R]) ).^3 .* ...

( Q2X2(Q1,Q2)-repmat(g.baryT (:,2), [1 R]) ) ) * W' / 3, [1 numP])).*(dX1 .^3.* dX2);
case 13 % (2 ,2)

ret = ( ( X1-repmat(g.baryT (:,1), [1 numP]) ).^2 .* ( X2 -repmat(g.baryT (:,2), [1 numP])).^2 / 4-...
repmat( ( (Q2X1(Q1 ,Q2)-repmat(g.baryT (:,1), [1 R])).^2 .* ...

(Q2X2(Q1 ,Q2)-repmat(g.baryT (:,2), [1 R])).^2 ) * W'/2, [1 numP])).*( dX1.*dX2).^2;
case 14 % (1 ,3)

ret = ( ( X1-repmat(g.baryT (:,1), [1 numP]) ) .* ( X2-repmat(g.baryT (:,2), [1 numP])).^3 / 6-...
repmat( ( (Q2X1(Q1 ,Q2)-repmat(g.baryT (:,1), [1 R]) ) .* ...

(Q2X2(Q1 ,Q2)-repmat(g.baryT (:,2), [1 R])).^3) * W'/3, [1 numP])).*( dX1.*dX2 .^3);
case 15 % (0 ,4)

ret = ( ( X2-repmat(g.baryT (:,2), [1 numP]) ).^4 / 24 -...
repmat( ( Q2X2(Q1,Q2)-repmat(g.baryT (:,2), [1 R]) ).^4 * W' / 12, [1 numP])).*dX2 .^4;

end % switch
end

ret = phiTaylorRef(g, i, hatX1, hatX2) evaluates the ith basis function φi on each triangle T ∈ Th (cf. Sec. 3.1) at points specified
by a list of x̂1 coordinates hatX1 and x̂2 coordinates hatX2.

function ret = phiTaylorRef(g, i, hatX1 , hatX2)
Q2X1 = @(X1, X2) g.B(:, 1, 1) * X1 + g.B(:, 1, 2) * X2 + g.coordV0T(:, 1, 1) * ones(size(X1));
Q2X2 = @(X1, X2) g.B(:, 2, 1) * X1 + g.B(:, 2, 2) * X2 + g.coordV0T(:, 1, 2) * ones(size(X1));
ret = phiTaylorPhy(g, i, Q2X1(hatX1 , hatX2), Q2X2(hatX1 , hatX2));
end

dataTaylor = projectDataDisc2DataTaylor(dataDisc, globMDisc, globMDiscTaylor) converts the representation ma-
trix in the DG / modal basis to the respective representation matrix in a Taylor basis, both of size K × N. It solves Eq. (20) for CTaylor.

function dataTaylor = projectDataDisc2DataTaylor(dataDisc , globMDisc , globMDiscTaylor)
[K, N] = size(dataDisc);
dataTaylor = reshape(globMDiscTaylor \ ( globMDisc * reshape(dataDisc ', [K*N 1]) ), [N K]) ';
end % function

dataDisc = projectDataTaylor2DataDisc(dataTaylor, globMDisc, globMDiscTaylor) converts the representation ma-
trix in the Taylor basis to the respective representation matrix in a DG / modal basis, both of size K × N. It solves Eq. (20) for CDG.

function dataDisc = projectDataTaylor2DataDisc(dataTaylor , globMDisc , globMDiscTaylor)
[K, N] = size(dataTaylor);
dataDisc = reshape(globMDisc \ (globMDiscTaylor * reshape(dataTaylor ', [K*N 1]) ), [N K]) ';
end % function

[t, omega] = rungeKuttaSSP(ord, tau, nStep) provides a list of time levels t(i) = tn + δi∆tn and weights ωi for the n-th time step
nStep with time step size tau according to Sec. 2.4. The order of the Runge-Kutta method is given as parameter ord.

function [t, omega] = rungeKuttaSSP(ord , tau , t0)
switch ord

case 1
omega = 0; t = t0;

case 2
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omega = [0, 0.5]; t = t0 + [0, 1] * tau;
case 3

omega = [0, 3/4, 1/3]; t = t0 + [0, 1, 0.5] * tau;
end
end % function

6. Conclusion and Outlook

The second installment in the present paper series on implementing a MATLAB / GNU Octave toolbox introduced
performance optimized techniques for dealing with linear advection operators, higher order Runge–Kutta time dis-
cretizations, and a range of slope limiters designed to support general order DG discretizations. Our future work
plans include nonlinear advection operators and coupled systems of PDEs as well as multi-physics applications with
corresponding coupling mechanisms.
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Index of notation

Symbol Definition

· Integral mean, v B 1
|T |

∫
T v(x) dx, where v : T → R.

diag(A,B) B

[
A

B

]
, block-diagonal matrix with blocks A, B.

#M Cardinality of a setM.
a · b B

∑2
m=1 ambm, Euclidean scalar product inR2.

∇ B [∂x1 , ∂x2 ]T, spatial gradient in the physical domain Ω.
◦ Composition of functions or Hadamard product.
⊗ Kronecker product.
c Concentration (scalar-valued unknown).
c0 Concentration prescribed at initial time t = 0.
cD Concentration prescribed on the inflow boundary.
C ∈ RKN , representation vector of ch ∈ Pp(Th) with respect to {ϕk j}.
CTaylor ∈ RKN , representation vector of ch ∈ Pp(Th) with respect to {φk j}.
δ[condition] B {1 if condition is true, 0 otherwise}, Kronecker delta.
em mth unit vector.
Ekn, Ên nth edge of the physical triangle Tk , nth edge of the reference triangle T̂ .
V, E, T Sets of vertices, edges, and triangles.
EΩ, E∂Ω Set of interior edges, set of boundary edges.
f Source / sink (scalar-valued coefficient function).
Fk Affine mapping from T̂ to Tk .
h Mesh fineness of Th.
hT B diam(T ), diameter of triangle T ∈ Th.
J B (0, tend), open time interval.
K B #Th, number of triangles.
ν Unit normal on ∂Ω pointing outward of Ω.
νT Unit normal on ∂T pointing outward of T .
νk B νTk .
N = Np B (p + 1)(p + 2)/2, number of local degrees of freedom of Pp(T ).
ωr Quadrature weight associated with q̂r .
Ω, ∂Ω spatial domain in two dimensions, boundary of Ω.
∂Ωin, ∂Ωout inflow- and outflow boundaries, ∂Ω = ∂Ωin ∪ ∂Ωout.
p = (

√
8N + 1 − 3)/2, polynomial degree.

ϕki, ϕ̂i ith hierarchical basis function on Tk , ith hierarchical basis function on T̂ .
φki ith Taylor basis function on Tk .
Pp(T ) Space of polynomials on T ∈ Th of degree at most p.
Pp(Th) B {wh : Ω→ R ;∀T ∈ Th, wh |T ∈ Pp(T )}.
Φ Slope limiting operator with respect to {ϕk j}.
ΦTaylor Slope limiting operator with respect to {φk j}.
q̂r rth quadrature point in T̂ .
R Number of quadrature points.
R+, R+

0 Set of (strictly) positive real numbers, set of non-negative real numbers.
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t Time variable.
tn nth time level.
tend End time.
ϑ̂n−n+ Mapping from Ên− to Ên+ .
∆tn B tn+1 − tn, time step size.
Tk , ∂Tk kth physical triangle, boundary of Tk .
T̂ Bi-unit reference triangle.
u Velocity (vector-valued coefficient function).
x = [x1, x2]T, space variable in the physical domain Ω.
x̂ = [x̂1, x̂2]T, space variable in the reference triangle T̂ .
xkc Centroid of the element Tk ∈ Th.
xki ith vertex of the physical triangle Tk .
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