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1. Introduction

Problems involving thermoviscoelastic effects arise in many fields of industry and everyday life. A physical body may
change its properties and shape when heated. In particular a contact between two physical bodies usually leads to a heat
exchange and a frictional contact is directly related to heat generation. For this reason many experts in contact mechanics
pay a special attention to this kind of problems.

The first existence and uniqueness results for contact problems with friction in elastodynamics were obtained by Duvaut
and Lions [1]. Later, Martins and Oden [2] studied the normal compliance model of contact with friction and showed exis-
tence and uniqueness results for a viscoelastic material. These results were extended by Figueiredo and Trabucho [3] to ther-
moelastic and thermoviscoelastic models. Recently dynamic viscoelastic frictional contact problems with or without thermal
effects have been investigated in a large number of papers, see e.g. Adly et al. [4] Amassad et al. [5], Andrews et al. [6,7],
Chau et al. [8], Han and Sofonea [9], JaruSek [ 10], Kuttler and Shillor [11], Migérski [ 12], Migérski and Ochal [13], Migérski
et al. [14,15], Rochdi and Shillor [16] and the references therein. Recently, a dynamic thermoviscoelastic contact problem
involving nonmonotone and nonsmooth friction law has been studied by Migérski and Szafraniec [ 17]. A mathematical for-
mulation of the above problem has been reduced to a system of parabolic and hyperbolic hemivariational inequalities. Under
some reasonable assumptions, an existence and uniqueness of a solution has been proved.

Existence and uniqueness results for contact problems in mechanics are definitely important from a theoretical point of
view. Nevertheless, it is also useful and interesting to approximate the solution numerically, study the error estimate for the
numerical method and carry out a computer simulation. There is a huge number of publications that deal with this task. We
refer the reader to [ 18-24] to learn more about numerical aspects of contact problems in mechanics. Our goal is to provide
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a numerical analysis of problem studied by Migérski and Szafraniec in [17]. Namely, we deal with a system of two dynamic
(first and second order, respectively) inclusions describing the displacement and the temperature of a thermoviscoelastic
body, which is in a contact with a foundation. However, in contrast to [17], we neglect a history dependent term in the
constitutive law and we deal with a bilateral contact instead of considering a normal damped condition. Nevertheless,
similarly to [17], we involve a nonmonotone friction law and possibly nonmonotone boundary heat flux law in our model.
Both relations are described by means of the Clarke subdifferential inclusion. In order to approximate the solution of our
problem, we introduce two numerical schemes: semidiscrete and fully discrete ones. In both cases we estimate the error
between the exact solution and the numerical one. In case of the first order finite element spatial approximation, we
guarantee a linear error estimate with respect to the size of spatial mesh and the time step length provided the exact solution
is sufficiently regular. Our theoretical result concerning the linear bound of the error is confirmed by computer simulations,
which illustrate the behaviour of the concrete physical body.

Our paper can be also seen as a continuation of [25], where the analogous result has been obtained for a dynamic
viscoelastic contact problem without a thermal effect.

The rest of the paper is organized as follows. In Section 2 we introduce some preliminary material to be used in the
rest of the paper. In Section 3 we formulate the mathematical model of the dynamic thermoviscoelastic contact problem
and present its variational formulation. The main results concerning the error estimates for semidiscrete and fully discrete
numerical schemes are presented in Sections 4 and 5, respectively. Finally, in Section 6, we present numerical results for
simulations of a two dimensional contact problem, and provide numerical evidence of optimal order convergence for the
linear elements.

2. Preliminaries

In this section we introduce notation and recall some definitions and results needed in the sequel, cf. [26,9,15,27].
We denote by S¢ the space RfXd of symmetric matrices of order d, where d = 2, 3. We recall that the canonical inner
product and the corresponding norm on S¢ is given by

o:t=051 |tllg=(: 1) forallo = (03), T = (t5) € S

Here and below, the indices i and j run from 1 to d, and the summation convention over repeated indices is adopted.
Let 2 C RY be a bounded domain with a Lipschitz boundary I". The unit outward normal vector v is defined a.e. on I".
We use notation [?(£2) = [?(£2; R) and H!(£2) = W12(£2; R). Moreover, we introduce the following function spaces:

H=D2;R) ={u= ) |uel*(2)}, Q={o=(oy |oy=o0;el’(2)}
Hi={ueH]|e@ eqQ}, Q: = {0 € Q | Divo € H}.

Here ¢: Hy — Q and Div: Q; — H are the deformation and divergence operators, defined by

1
() = (g5(w), &) = E(ui,j +u;i),  Divo = (oy)),

respectively, where the index following a comma indicates the partial derivative with respect to the corresponding
component of the independent variable.

For every elements u € H!(£2) and v € H; we use the same symbols u and v to denote the traces of u and v on I'. For
every v € Hy, we denote by v, and v, the normal and tangential components of v on the boundary I" given by

vV, =0V-V, Vr =V — V).
Similarly, for a regular tensor field o : £2 — S we denote by o, and o, the normal and tangential component of o,
o, =(ov) v, O; =0V — O,V.

We recall the definitions of the generalized directional derivative and the generalized gradient of Clarke for a locally
Lipschitz function ¢ : X — R, where X is a Banach space (see [28]). The generalized directional derivative of ¢ at x € X in
the direction v € X, denoted by ¢°(x; v), is defined by

0. . oy + tv) — o)
¢ (x; v) = limsup —— .
y—x, t}0 t

The generalized gradient of ¢ at x, denoted by d¢(x), is a subset of a dual space X* given by dp(x) = {¢ € X* | ¢°(x; v) >
(¢, v)xxxx forallv € X}.

We denote by .£(X, Y) the space of linear continuous mappings from X to Y. Given a reflexive Banach space Y, we denote
by (-, -)y the duality pairing between the dual space Y* and Y. We complete this section with the following version of the
Gronwall lemma which we use in next sections.
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Lemma 1. Let T > 0 be given. For a positive integer N we define k = T /N. Assume that {g, ’,;’:1 and {en}g:] are two sequences
of nonnegative numbers satisfying

n
enfcgn+cZkej forn=1,...,N,
=1

with a positive constant ¢ independent of N and k. Then there exists a positive constant ¢, independent of N and k, such that

max e, < ¢ max g,.
1<n<N 1<n<N

3. Mechanical problem and variational formulation

Let £2 be an open bounded domain in RY, d = 2, 3, with a Lipschitz continuous boundary I". The boundary I" is composed
of three sets I'p, I'y and I"¢, with mutually disjoint relatively open sets I'p, I'y and I'c such that meas (I'p) > 0. We consider
aviscoelastic body, which in the reference configuration, occupies volume §2 and which is supposed to be stress free and at a
constant temperature, conveniently set as zero. We assume that the temperature changes accompanying the deformations
are small and they do not produce any changes in the material parameters which are regarded temperature independent. We
are interested in a mathematical model that describes the evolution of the mechanical state of the body and its temperature
during the time interval [0, T], where 0 < T < oo. To this end, we denote by o = o (x, t) = (0jj(x, t)) the stress field, by
u=u(x,t) = (uj(x, t)) the displacement field, and by & = 0(x, t) the temperature, where x € £2 and t € [0, T] denote the
spatial and the time variables, respectively. The functions u: 2 x [0, T] — R% o: 2 x[0,T] — S?and6: 2 x[0,T] - R
will play the role of the unknowns of the frictional contact problem. From time to time, we suppress the explicit dependence
of the quantities on the spatial variable x, or both x and ¢.

We suppose that the body is clamped on I'p, the volume forces of density fo = fo(x, t) act in £2 and the surface tractions
of density f, = f>(x, t) are applied on I'y. Moreover, the body is subjected to a heat source term per unit volume g = g(x, t),
its temperature is fixed on I'p U I'y and it comes in contact with an obstacle, the so-called foundation, over the contact
surface Ic.

The classical formulation of the mechanical problem is the following.

Problem 2. Find adisplacementu: £ x[0, T] — R astress field o : £2 x[0, T] — S and temperature: 2 x[0,T] - R
such that

o = Ae(t) + Be(u) + CO in 2 x (0, T), (1)
pil =Divo + fy in £2 x (0, T), (2)
pcyf — div (KV6) = cu% +g in 2 x (0,T), (3)
j
ov=f on Iy x (0,7), (4)
u=20 onlp x (0,T), (5)
6=0 onlpUIy x(0,T), (6)
u, =0 onl¢ x (0,T), (7)
— o0, € 0j.(11y) onlt¢ x (0,T), (8)
—K(x,t,VO(t)) - v € 3j(O(t)) — h. (x, t, ||, (X, t)||ga) onlt¢ x (0,7), (9)
u(0) = uy, u(0) = uy, 6(0) = 6y in 2. (10)

Here, Eq. (1) represents the thermoviscoelastic constitutive law of the material, where 4, 8 and C = (c;;) are respectively
the viscosity, elasticity and heat expansion tensors. Eq. (2) is the equation of motion, with p being the density of the material.
Then, Eq. (3) is the energy equation expressed in terms of the temperature 6 with ¢, the heat capacity. Eq. (4) represents the
traction boundary condition on the part of the boundary I'y.Eqs. (5) and (6) are the displacement and temperature boundary
conditions, respectively. Conditions (7) and (8) represent bilateral contact coupled with a law of friction. Eq. (9) describes
the heat transfer between the body and the foundation and also takes into account the velocity heat generation phenomena.
Finally, (10) is the initial conditions in which ug, u1, and 6, denote the given initial displacement, velocity and temperature,
respectively. We assume the density p and a specific heat capacity ¢, are greater than zero and constant. In Sections 3-5,
without loss of generality, we assume p = ¢, = 1.In Section 6 we put specific values for numerical simulations.

In the study of the contact problem we need the following assumptions on its data.

H(A): The viscosity operator + : £2 x [0, T] x S — § satisfies
(a) A(-, -, ) is measurable on £2 x [0, T] for all ¢ € S%;
(b) ||Ax, t, &)llse < ao(x,t) + aille]lge forall e € S ae. (x,t) € 2 x (0, T) with ag € [2(§2 x (0, T)), apg > 0 and
a; > 0;
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(€) (A, t,81) — AX, L,82)) : (81— &) = myller — 82||§d forall ey, &, €S9, ae. (x,t) € £2 x (0, T) withm, > 0;
(d) A, t,8) e >0y ||8||§d foralle € S¢, ae. (x,t) € £2 x (0, T) with ay > 0;
(e) AR, t,e1) — A, t, 2)|lse < Laller — ezl forall eq, 3 € S ae. (x,t) € 2 x (0, T) withL, > 0.
H(8B): The elasticity operator B : 2 x S — S is bounded, symmetric, positive fourth order tensor, i.e.
(@) Bju € L(2),1<1i,j, k1 <d;
(b) Bo: 1t =0 : Brforallo, v €% ae.in 2;
(c) Br: > 0forallt € 8¢ ae.in 2.
H(C): The thermal expansion tensor C = (c;) satisfies
(@) g el™(2),1<i,j=d;
(b) Gij = Gji, 1<i,j<d.
H(K): The thermal conductivity operator K : 2 x [0, T] x R? — RY satisfies
(@) K(-, -, €) is measurable on £2 x [0, T] for all £ € RY;
(b) IK(x,t,&)||lga < ko(x,t) + ki ||E||ga forall & € RY ae. (x,t) € £2 x (0, T) with kg € L*(£2 x (0,T)), ko > 0,
k] > 0;
(€) (K(x,t,81) —K(x,t,8)) (51— &) = my [|§ — 52”]12@,1 forall &, & € RY, ae. (x,t) € 2 x (0, T) with mg > 0;
(d) K(x,t,&) - & > ag ||$||D2§d forall € € RY, ace. (x,t) € 2 x (0, T) with ax > 0;
(€) KX, t, &) — KX, t, &) llpa < Lell61 — & llpa forall &1, & € RY ae. (x, ) € 2 x (0, T) with Ly > 0.
The potentials j, and j satisfy the following hypotheses.
HGy): jr: I'e x (0, T) x RY — Ris such that
(@) j; (-, -, &) is measurable on It x (0, T) for all ¢ € R? and there exists e; € [>(I'c; RY) such thatj, (-, -, e1(-)) €
L'(I'c x (0,T));
(b) jr (x, t, ) is locally Lipschitz on R¢ for a.e. (x, t) € I'c x (0, T);
() 10j: (x, ¢, &) ||ge <, forallé e RY ae. (x,t) € I'c x (0, T) with ¢, > 0;
(d) (1= &) - 1 — &) = —me||& — &2, forall & € 8- (x, t, &), & € R, i =1,2,ae. (x,t) € I x (0, T) with
m; > 0;
(e) j:(x, t,-) is regular in the sense of Clarke for a.e. (x,t) € I't x (0, T).
H(@): j: It x (0,T) x R — Ris such that
(a) j(-, -, r) is measurable on I x (0, T) for all r € R and there exists e, € L[*(I¢) such that j(-, -, e2(-)) €
L'(I'c x (0,T));
(b) j(x, t, -) is locally Lipschitz on R for a.e. (x, t) € I't x (0, T);
(c) 10j(x, t, )| < co(1+|r]) forallr € R,a.e. (x,t) € It x (0, T) withcy > 0;
(d) |¢1 — &) < mglry —rp|forall g € dj(x, t, 1), 1 € R,i=1,2,a.e. (x,t) € It x (0, T) withmy > 0;
(e) j(x, t,-) is regular in the sense of Clarke for a.e. (x, t) € I'c x (0, T).
H(hy):hy: I't x Ry — R, issuch that
(@) h.(-,r) € I>’(I¢) forall r € R,
(b) |he(x, 1) —h:(x,12)| <L, |r;y —rp| forallry,r, € Ry,a.e.x € IcwithL; > 0.
H(f): The force and traction densities satisfy

fo e (0, T; [*(2;RY),  f, € [*(0, T; [*(I'n; RY)).

Remark 3. The assumption H(j)(d) implies that the Clarke subdifferential dj is single-valued, and, in a consequence, the
heat transfer inclusion (9) reduces to an equation. Nevertheless, in order to underline the connection of our result with
one obtained in [17], we decided to keep the same convention as used in [17] and to present the heat transfer law in a
form of inclusion involving Clarke subdifferential of the potential j. The results obtained hereafter are still open when the
assumption H(j)(d) is omitted.

In order to provide the variational formulation of Problem 2, we introduce the following spaces
E={veH" (2;R) |v=00nTIp, v, =00nIc},
V={neH' (@) |n=00nTpUTIy}.
On the spaces E and V we consider the inner products and the corresponding norms given by
(U, v)g = (e(W), e(V))12(0:59)5 lvlle = lle()ll2(q:s¢) foru, v € E,
W, v)v = (Vu, Vo) g.pa, lvllv = Vvl 2(;pe) foru, v € V.

From the Korn inequality [|v||y1(g.re) < clle()[lj2(g.se) fOor v € E with ¢ > 0, it follows that || - |[1o.gey and || - || are the
equivalent norms on E. Analogously, by the Poincare inequality, we know, that the norm || - ||y is equivalent with || - || 1)
LetZ = H%(£2; RY) withafixed § € (1/2, 1). We denote by i, : E — Z the embedding injection and by c; its norm ||iz Il £e.,2)-
Let y;: Z — [*(I'c; RY) be the trace operator. For simplicity we omit the notation of the embedding and trace and write
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v = yz(izv) for v € E. We also introduce the following spaces of vector valued functions & = 1?(0,T;E), 2 = 1[*(0, T; 2),
H=I1?0,T;H)andE={v e &|v e &*).

Similarly, we introduce the space Y = H?(£2) with the same § € (1/2, 1). We denote by iy: V — Y the embedding
injection and by cy its norm |[|iy || £(v.v)- Let yyv: Y — [*(I) be the trace operator. For simplicity, we omit the notation of
the embedding and trace and write v = yy (iyv) for v € V. We introduce the spaces V = [?(0, T; V), ¥ = L?(0, T; Y) and
WwW={nev|ne vk

Next, we define operatorsA: (0,T) X E — E*,B: E - E*,C;: V - E*,(,: V- V*,(3: E > V*by

(At, u), v)p = (AL, e(u)), e(v))q foru,v ek, t €(0,T),
(Bu, v)p = (Be(u), e(v))q foru,v ek,
av;
(C16, v)g =/ cj—60dx forveE,0eV,
Q 8XJ
(Cz(ta 9)5 n)V = (K(t’ V9)7 Vn)Lz(.Q) f0r95 n € V7
Bw,-
(GGw,n)y =— | ¢ig—ndx forweEneV.
Q 8XJ

We define the function f: (0, T) — E* by
(F ), viexxe = (fo(t), V) 2(@irdy + (F2(), V)12 R0

forallv € E,a.e.t € (0, T) and functionals J; : [>(I'c; RY),J: [>(I) — Rby

J.(v) = f jeydr forv e [*(It; RY)
I'c

Jan = / jydr fory € (I,
Ic

We need additional hypothesis on the data.
Ho:g € V*,up € E,uy €H,6p € V.
Now, we formulate the following lemmas concerning the properties of the above operators and functionals.

Lemma 4. Under hypothesis H(+A), operator A: (0, T) x E — E* satisfies

(a) A(-, v) is measurable on (0, T) forall v € E;

(b) A(t, -) is strongly monotone fora.e.t € (0, T),i.e. (A(t,v) —A(t,u),v—u)g > my|lv— u||§forall u,v e€Eaete(0,T);

(©) A, V)|lp < To(t) + @llvllg forallv € V,ae.t € (0,T) withd, € I[*(0,T),dy > 0andd; > O, where
Go(t) = V2 [|ag(D)llj2(q) and @ = ~/2 ay;

(d) (A(t,v), v)r > aullvli forallv € E,aet € (0,T);

(e) A(t, -) is pseudomonotone for a.e. t € (0, T);

(f) A(t, -) is Lipschitz continuous fora.e. t € (0, T),ie., ||A(t, vi) —A(t, v2)|lpx < Lx||lvi—v2llgforallvy, v, € E,ae.t € (0,T).

Lemma 5. Under hypotheses H(8) and H(C), operators B: E — E*,C;: V — E* and C3: E — V* satisfy

(a) B e L(E,E*);
(b) Gy € L(V,E¥);
(c) C3 € L(E,V*).

Lemma 6. Under hypothesis H(K), the operator C,: (0, T) x V — V* satisfies

(a) Gy(-, ) is measurable on (0, T) forall € V;
(b) Gy(t, -) is strongly monotone for a.e.t € (0, T), i.e.,
(Co(t, 61) — Ca(t, 62), 61 — Ba)y = mg |61 — 65|, for all 61,6, € V;

(©) 1Co(t, O)[lv+ < ko(t) + Ke[|O]ly forall@ € V, ae.t € (0, T) withko € 2(0, T), ko > O and k; > 0;

(d) (Co(t, 0),0)y > ak ||49||§fora110 eV,ae.t € (0,T);

(e) G(t, -) is pseudomonotone for a.e.t € (0, T);

(f) C(t, -)is Lipschitz continuous fora.e.t € (0, T),ie. |C(t, 61)—C(t, )|y < Lg||01—6O||g forall6,,6, € V,ae.t € (0,T).

Proceeding in a standard way, we obtain the following variational formulation of Problem 2.
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Problem 7. Find the displacement field u € & with ii € E, the temperature # € W and £ € [?(0, T; L>(I'c; RY)),
¢ € I2(0, T; [>(I't)) such that

(li(t) + A(t, u(t)) + Bu(t) + CiO@) —f(©),v)g = [ &) - v dl
I'c

forallv € E, ae.t € (0,7), (11)

O + Co(t, 0(0) + Cu®) — g, n)y = | ¢(@©Ondl
Ic
+ / he(t, |l (t)||g)ndl forally e V, ae.t € (0,T), (12)
I'c

— & € 9j. (1), —¢ €9j(0) onlt x(0,T), (13)

u(0) = uo, u(0) = uy, 6(0) = 6.
Next we consider an auxiliary problem.

Problem 8. Find displacement field u € & with i1 € E and the temperature & € W such that
ii(t) + A(t, u(t)) + Bu(t) + C10(t) + y,; 8] (yzu- (t)) > f(t) forae.t € (0,T),

6(t) + Cy(t, 0(t)) + C3u(t) + vy ] (wO(t)) 3 g(t) forae.t € (0,T),
u(0) = ug, u(0) = uy, 6(0) = 6.

We complete this section with a result on existence and uniqueness of solution to Problem 8.

Theorem 9. Assume H(A), H(8B), H(C), H(f), H(K), H(j,), H(j), Hy and the following conditions

either j. (x,t,-) or —j.(x,t,-)isregular, (14)

either j(x,t,-) or —j(x,t,-)isregular, (15)
2 2

My = m; C; ”VZHI(E‘z)v (16)

mg > mg cy vy .y (17)

g > Cy C32/ ||VY||?£(V,Y)~ (18)

Then there exists a unique solution to Problem 8.
Note, that regularity of functions imposed by (14) and (15) is understood in the sense of Clarke (see Definition 3.25
of [15]).

Remark 10. Using the basic properties of Clarke subdifferential of integral functionals J, and J (see Theorem 3.47 (v) of [ 15])
it is easy to see that every solution of Problem 8 is also a solution of Problem 7, provided H(j;) and H(j) hold. Moreover,
under regularity conditions (14) and (15), both problems are equivalent. In that case, they are also equivalent to a system of
two hemivariational inequalities corresponding to Problem Py of [17] without history dependent term.

In view of Remark 10, the proof of Theorem 9 follows the lines of the proof of a more general result, Theorem 9 in [17],
that deals with the unique solvability of Problem Py of [17].

4. Spatially semidiscrete error estimates

In this section we consider a spatially semidiscrete approximation of Problem 7 and examine the error between its
solution and the solution of the approximate problem.

Let V" and E" be finite dimensional subspaces of V and E, respectively, where h > 0 denotes a spatial discretization
parameter. Let ull, u" € E" and 6 € V" be suitable approximations of ug, uy, 6y characterized by

Wh —up, v =0, (W —u, vy =0 (6} —00,1") 20 =0 (19)
for all v € E", y" € V" It is easy to observe, that

I h h
luglle < lluolle,  Muilly < lwllw, 165122y < l€0ll2(q)-

Then we have the following semidiscrete approximation of Problem 7.
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Problem 11. Find displacement field u" e [%(0,T;EM), u", ii" e I?(0, T; E"), the temperature 6" e [%(0,T; V") and
EM e [2(0, T; I2(I'e; RY), ¢ € 12(0, T; I>(I'e)) such that

(i () + A, i (0) + Bu(©) + C,0"(©) — F(£), o™y = f £h0) o dr

Ic
forallv" € E", ae.t € (0, T), (20)
(O1(t) + Gy (t, 8"(0)) + Gt (6) — g(0), n")yv = | Mo dr
Ic
+/ he(t, |80 |a)n" dI forallp" e VP, ae.t € (0,T), (21)
I'c
—&hedj. @,  —¢"edj@" onrcx(0,T), (22)

)y =ult, o) =u",  6"0) =06l

Under the assumptions of Theorem 9 we have the existence and uniqueness of a solution to Problem 11.
We provide a result on the error estimate between the solutions to Problem 7 and Problem 11.

Theorem 12. Assume H(+A), H(8), H(C), H(K), H(f), Ho and (18) hold. Suppose, moreover, that
Cr = _ 1 2 2
1= My m; + er %% HVZ”,E(E,Z) >0, (23)

Q= mg — (me + %L) g Il %y = 0. (24)
Let u, 6 and u™, 6" be solutions to Problem 7 and Problem 11, respectively. Then there exists a positive constant ¢ depending only
on the data of the problem, such that for any v" € [*(0, T; E") N E, n" € [?(0, T; V*) N 'W, we have
= U180y + Wi = 5030 riny + N = G0Z 4+ 16 = 6"12 .12 + 16 — 6"
< (lluo — w2 + luy — il — o @ lly + i = o2 + i = 0" -

. hy 2 . h hy2 hy2
+ ”u -V ”C(O,T;H) + ”ul’ - vr”Lz(O,T;LZ(FC;Rd)) + ”0 -1 ”'\J + ”9 -1 “C(O,T;LZ(Q))

+ 160 = 63 2 10 = 1" @) 2@ + 16 = 120 2y + 16 = 13- (25)
Proof. Define w(t) = u(t) and w"(t) = i"(¢t). Then, we have
t
u(t) = (w)(t) :==ug +/ w(s) ds,
0

t
ul(t) = qwhy(t) = ull + / w'(s) ds

0
fort € (0, T). Using the above notation in (11), (12), (20) and (21), we obtain

(w(t) — w(t), v + (AL, w(t)) — AL, w (), V")
+ (BUw)(t) — BU"w")(t), v")e + (C10(t) — C:0" (), v")e
+ (0(t) — 0"(0), n")v + (Co(t, 0()) — Ca(t, 0" (1)), ")y

+ (Gw(t) — Gw(t), n")y +f E"e) —E@) - vhdr
I'c

+ | @"® —¢cen"dr+ | (e (w"©)llze) — he Qw(®)llza))n"dI = 0 (26)
I'c Ic
fort € (0, T) and all v" € E*, n* € V". Note that
1d
(w(t) — w"(6), w(t) — w" () = S w® - w' (O, (27)
. ) 1d
(B(t) — 6"), 6(t) — 6"(0))y = Pk 0" (Ol ) (28)
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fort € (0, T). Moreover, by Lemma 4(b), Lemma 6(b) and the assumptions H(j;)(d) and H(j)(d) and H (h,)(b), we have

(A, w(b) — A, w'(©), w(t) — w'(©))r > mallw(t) — w" O]
(Co(t, (D) — Ca(t, 0"(D)), O(8) — 0"(0))e = my [|0(2) — 8" (D) I3,

h b h 1d h h
(BUw)(t) — BA"w™)(t), w(t) —w' () = Ea(Bu(f) — Bu'(t), u(t) — u™(t)),

E"©) —E@D) - (we () — W) Al = —mGllyz g lw(®) — w"©]F,
Ic

/ @&"@©) = ¢®)O@) — 0" () dI" = —mocy |y 5.y, 108) = 6" (O3,
I'c
(he (W™ (©) lga) — he (w (O ) @ (E) — 0" (£)) T
I'c
> —Le[[w"(t) — W)l 2 10" — OOl 201
1 1
> —ELfcényznf@(E,Z)||wh(r) —w®llf - 5Lfc§||w||i(v_y>||9’1<t) -0}

Let the constants ¢ and ¢, be defined by (23) and (24). Taking into account (26)-(33), we obtain

1d hepy 2 hepyz 4 14 ey 2
5 e ® —wi Ol + allw® —w Ol + 5 2100 = Oz

1d
+ llo@®) — "ol + S ¢ B — Bu"(t), u(t) — u"(t))e

< (W () — W), w(t) — w(0)e + (AL, w(b) — AL, w'(©)), w(t) — W)
+ (BUw)(t) — BU"w™)(t), w(t) — w" () + (0(t) — 0"(t), 6(t) — 0" (D)
+ (GO(t) — CO"(©), w(t) — w"(O))y + (Ca(t, (D) — Ca(t, 8™(8)), O(t) — 0" (D))v

+ (Guw(t) —w"(©),6(0) — 6" O + [ ") —O)O ) —6"(t)dIr
Ic

+ | E"©) = EW®) - we®) —wh©)dIM + | (e (Jw"(©) lpa) — he (lw () [[2a)) (@) — 8" (6)) dI
I'c

I'c
= (w(t) — w"(t), w(t) — V(&) + (AL, w(t)) — AL, wh(t)), w(t) — V" ()¢
+ (BUw)(t) — BU"w")(£), w(t) — v"(6))e + (A(t) — 6" (1), 0(t) — n"())y
+ {C1O(8) — C1O"(E), w(t) — V(D) + (Go(t, O(D)) — Co(t, 6" (D)), O(t) — 0" (O))y

+ (Cw(t) —w'(1), 6(6) — n"(O)v + /r C (") — £ @)@ t) —n"(©) dr
. (E" (1) — £(0) - (wo(6) — V(D) dI" + i (he ([w" () [1e) = he (w0 (©) [ 2))OF) = n"(©)) dT,
where v" € E", n* € V. Fort € (0, T), assuming v" € H'(0, T; E), we integrate by parts
/0 {ib(s) — (5), w(s) — v ) ds = (w(®) — wh(0). w(t) — "D}

t
— (w(0) — w"(0), w(0) — v"(0))y — / (w(s) — w(s), w(s) — 1" (s))r ds.
0

Thus, for ¢ > 0, we obtain
t 1
/ (W (s) — w"(s), w(s) — v"(s))g ds < lew(t) —w" O + llwt) — " @O IF
0

t
1 . .
+ llur = ufllalluy — 0" Ol + 8/ lw(s) = w"(s)IIf ds + yrl o P
0

(29)
(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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Similarly, for e > 0, 5" € H'(0, T; V) and t € (0, T), we have
o __Ah _.h 1 a2 B2
(B(s) —67(s),0(s) —m'(s))v ds < 4||9(t) OOl T 16O =17 (Ol 2o
0

t
1 . .
+ 1160 — 651l 1600 — 0" (Ol 22y + € / 16(s) — 0" (s) 117 ds + v 1. (38)
0

Using the Lipschitz properties of A and C,, we find that

t t 2
/ (A(s, w(s)) — A(s, w"(s)), w(s) — v"(s))pds < e / lw(s) — w'(s)|17 ds + i—*’;uw — "2, (39)
0 0
t t LZ
/ (Ca(5,0(5)) — Cas, eh(s)),ms)—nh(s»vdsssf 16(s) — 6"(s) |17 ds + ﬁne —n"|%. (40)
0 0

Using the properties of B, and the classical inequality ||u(t) — u"(t)||r < |luo — ug||E + fot lw(s) — wh(s)||g ds, we deduce

t t IBIIZ ¢ g+
[ 8106 = B w06 — vt oeds e [ us) Ol s T - o2
0 0 £
h 2 2 ‘ h 2 ”B”i(b‘ E*) hy 2
< 2eT|lug — ugllz + 2¢T lw(s) — w"(s)|lz ds + T’llw—v IIs. (41)
0
Since C; and Cs are linear, we have
' h h ' heayz o, NG ”«?C(V.E*) hy2
(C1O(s) — C1O7(s), w(s) — v (S)eds < e [ [|6(s) — 0 (S)IIV+TIIw—v lle (42)
0 0
' h h ' hiey2 ”C3”3C(E,V*) hy 2
(Gw(s) —w'(s),0(s) =n"(vds <& [ Jws) —w' ) lpds+ ————10 —n"ll5. (43)
0 0
Finally, from H(j;)(c), H(j)(d), H(h;)(b), (13) and (22), we have
t
/ (E"(5) — £(9)) - (we(s) — vI(s)) I ds < 2¢.y/Tmeas(IE) we — Vil 2012 (1m0 (44)
0 JI¢

and

t t
f (&"(5) = £(8)(6(s) — n'(5)) dI" ds < my f 16"(5) — 0Ol 166) — 1) 27 ds
0 JI¢ 0

2.4 4
mgcyllyy |l
4

t
<e / 16" (s) — 6(s)1% ds + , L0010 — "3 (45)
0

fort € (0, T). Moreover, we get
t
/ / (he (w"($) 1 za) — he (1w ($)1)) O (s) — n"(5)) AT ds
0o Jre

t
<L / 106) — W) 2y 1065) — 1O 27 s
0

2.2 2 2 2
Lfcy”VY”I(V’y)CZ lyz ||£(E,Z)

e 6 — ™13 (46)

< s/ 1w'(s) — w2 +
0

fort € (0, T). Let us denote by r the following quantity
hy 2 h h hyj2 . +h
r=luo — upllz + llur — uillullur — v O lln + [lw — v"{lg + lw — 0" lex
hy 2 h hy2
+ llw = v"lIcorm + lwe = vl m2aerdy + 10 =0"l5

+ 10 = "2 1.2y T 160 = 0122 160 = 0" O)lli2() + 116 — 7" [3+
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We integrate (35) over (0, t), use H(8B)(c) and apply (36)-(46) to get

1 1 t
2w ® - w'(O)I + 210® - 0" (O} + (61 — 4+ zrz)e)/o lw(s) — w"(s) |1} ds

t
+ (2 — 48)/ 16(s) — 6" (s} ds < car (47)
0
forall t € (0, T) with a constant c; depending only on the data of the problem. Since t € (0, T) is arbitrary, we obtain that

lw— wh”C(O,T;H) + [lw — wh”é + 1160 — eh”c(o,T;LZ((z)) + 1160 — 9h||%; = C4r (48)

with ¢4 > 0. Since

lu—u" 2075 < 2lluo — ugl® + 2T lw — w"[l} < car (49)
with ¢4 > 0, we obtain the result. O
Corollary 13. Let the hypotheses of Theorem 12 be satisfied. Assume 2 is a polygon/polyhedral domain, and let {Vh} and {Eh}
be families of linear element spaces, corresponding to a regular family of finite element triangulations of $2 into triangles or

tetrahedrons. Let u, # and u", " be solutions of Problems 7 and 11, respectively. Assume uy € H*(£2; R, u; € H'(£2; RY),
0o € H?(£2) and take ug, u’}, 9(’} to be projections of ug, Uy, and 6y characterized by (19). Under regularity conditions

i€ C(0,T; H3(2;RY), i e [2(0, T; H*(2; RY),

U, € (0, T; H*(I'g; RY), i1, € 120, T; H> (1)),

6 € C(0,T; HX(£2)) NI%(0, T; H*(I'v)), 6 € 12(0, T; H*(2)),
we have the optimal order error estimate

lu—u"llcorp + i — i llcorm + i — e + 16 — 6"llco.r.i20 + 16 — Ollv < ch
for a constant c independent of h.

Proof. Note that under the stated regularity assumptions, for a.e. t € [0, T], u(t), ii(t) are continuous on 2, and 1, (t) is
contmuous on I'c. Moreover, 6 is continuous on §2 and its trace, denoted still by 6 is continuous on I'c. Let v (t) = IT"i(t) €
E"and n"(t) = IT"6(t) € V" be the finite element interpolants of i1(t), and 6(t), respectively a.e. t € [0, T] (we refer to
(2.3.29) of [29] for the definition of interpolation operator I7"). Note that vﬁ(t) = (IT"u(t)), is the continuous piecewise
linear interpolant of il; (t) on I'-. Moreover, 0" (t) is the continuous piecewise linear interpolant of ii(t).

By standard finite element interpolation error estimates, cf. [29], we have the following approximation properties for
t e (0,7)

llu(t) — v (t)IIE < chfju(®)lly2(;zd)» 16(t) — n "Ollv < chlO Ol
lli(e) — v (t)IIE* = Chllu(f)llﬂzm R)> 16(6) — 77 ")l < Ch||9(f)||H2<:z),
llu(e) — v (f)IIH <ch? IIU(t)Ilyz(g Rd)> 16(t) —n (f)lle(m < ch? ||9(f)||H2(g),

lli: (t) — Uf(t)”LZ(rc,Rd) < ch? o O l2rerey  16) —n (t)”LZ(FC) < ch? 10O 2
and
lluo — USHE < chlluollp2(e:rd), lur — U’;”H < chljuallg (@:re),
160 — 65 lv < chllfolln2(q)-
It follows that
it = v"lly < chlldll o 11 (g:my
it = 9"llgx < chlliill 20 11 (g:m -
it — vhllc(o iy < (il co. 112 (2 my)
i, — vl ||L2(o T;12(Ig:RY)) = <ch® ||Uz||L2(o T;H2(I'c;RY))
16 — "y < chl1O1l12¢0.1:12(2)) s
||é - flh”v* =< Ch||é||L2(0,T;H2(9))v
e — Uh||C(0,T;L2(9)) < c?10lco.1:H2(2))
e — 77h||L2(0,T‘,L2(Fc)) < ch? 19112 0.7 H2(I'))+
Then the error bound follows from Theorem 12. O
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5. Fully discrete error estimates

In this section we introduce a fully discrete approximation of Problem 7. We need to impose the following regularity
assumptions

A(-,v) € C(0,T; E*) forallv € E, (50)
Gy (-, ) € C(0,T; V*) forally eV, (51)
feC@,T;E", geC,T;V". (52)

In addition to spatial discretization, we need temporal discretization. We define a uniform partition of [0, T], denoted by
0=ty <t; <---<ty=T.Letk =T/N be atime step size and for a continuous function h we denote h, = h(t,). For a
sequence {zn}’,;’zo, we denote by 6z, = (z;, — z,_1)/kforn = 1, ..., N the backward divided difference. The fully discrete
approximation of the problem is the following.

Problem 14. Find a velocity field {w*}N_/ C E", a temperature {§/}N_ C V" and {g/}N_, C [*(I; RY), {{MN_, €
L?(I'v) such thatforn = 0, ..., N, we have

(Swpk + A (wi) + Bl + GO — f 0" = / & vidr forallv" € E", 3
Ic
GO + Con (O + it —gn. ")y = | ¢ n"dr + / hea(lwy¥llga)n" I forall n" € V", (54)
Ic Ic
EM e a(wit),  —g* e djor), (55)
wo =uh, 6 =6y, (56)
where uff = ult and {uf¥}N_ C E" is given by

n
uﬁ":ug—l—kaf" forn=1,...,N. (57)

j=1

Under assumptions stated in Theorem 9, from [17], it follows that there exists a solution to Problem 14.

Now we pass to a fully discrete error estimate result. In what follows, we assume, that u and 6 solve Problem 7 and
define w(t) = u(t) fort € [0, T]. Let {w}N_ c EM {6/*IN_ | C V" be a solution of Problem 14. We formulate the following
theorem.

Theorem 15. Let the assumptions H(4), H(8B), H(C), H(K), H(j;), H(j), H(f), Ho, (16)—(18) and (50)-(52) hold. Moreover,
we impose the following additional regularity conditions u € C%(0,T;H) N C'(0,T;E), iy € C(0,T;L*(Ic;RY)), 0 €
C(0, T; L*(Ic)). Then, there exist ¢ > 0 such that for all {v!}", C E" and {n!}N_, C V" we have

N
max {[lwn — wilI7 + 162 — 0I5} + D Kllwy — wi|IF + Y klig; — 615

N
1<n=<N i—

j=1 j=1

N
. 2 hy 2 h
< c[k >l = 8wyl + 1wy — v I12) + max lwnr = v llz e
=1 ==

N—1
1
h h 2 hy2
+ 2 Z} Iy = o) = Cwper = o)l + max flwn = vyl
j=
hy 2 2 h 2 hy 2
+ lluo — gl + K llullyzor.) + lwo — thlf + 160 — 65117 g

N
) h h
+ k;(ne,» = 8612y + 16 = 0} I7) + max [16n = milliacr)

.1 N—1
+ 2 DN = 1) = O = 0 )y + max 6, — ﬂﬁllmm}
= =n=
Proof. Taking v" € E" and " € V" in both Problems 7 and 14, we obtainforn =1, ..., N

(Wn — SWI, V" + (An(wi) — An(wi¥), V")g + (B(up — ul™), v")p

+ (G (6 — O, My + [ (MK — g, - ohdr
I'c



738 K. Bartosz et al. / Computers and Mathematics with Applications 73 (2017) 727-746

(On — 800 ") 22y + (Cann — Can), ")y + (C3(wn — wi), ")y

/ €™ — gy n"dr + / (hen(lwllza) — hen(lwnllpe)) n" dI" = 0.
I'c

Thus, for given sequences {v"}V | C E"and {n!}N_, c V", wegetforn=1,...,N
(i — Swl, wy — wiVy + (An(wn) — Ag(w)¥), wy — W)

+ (B — u®), wy — w4 (C1 (00 — 6), wy — w*yp + (B, — 86, 6, — 6%y

+ (Conbn — Con™, 6, — 6/F)y + (C3(wy — w), 6, — 61y

G~ &) - (wnr — WAl + [ @G~ g0) 6, — 6%y dr
I'c I

+ / (en (1™ 1) — Ben(lwnllz0)) G — 6% I
I'c

= (y — S, wy — V! + (An(wy) — An(w¥), wy — v])E
+ (B(u, — UﬁkL Wy — vg)E +(C1(6n — 9;’1”()’ Wy — U2>E + <9n - Ser]zk, On — ﬂg)v
+ (Conbh — Con™, Oy — ) + (C3(wn — W), B, — )

M — &) - (wae — ] ) AT+ / (6 = &) On = ) dI”
Ic e

+/ (Ren (1™ 1) — Ben(lwnll5)) @ — 0" dT"
I'c

After some reformulation, taking into account Lemma 5(d), we obtain

(Swn — Sw, wy — WYy + (Aqwy — Ay, wy — WK + (860, — 80/, 6 — 1) 150

+ (Conn — ConB™, 0, — 01y + | E™ — &) - (wor — w)dI

+ f (& = O — 63 dr + / (hen(lfllze) = hen(llwnllz0)) @ — 01 dT
I'c

I'c
= (Swy — W, wy — VMg + (Wy — Swy, (Wy — v + WK — w,))y

+ (An(wp) — Ag(WI), Wy — VM + (Blun — ul), (wn — V1) + (WK — w))e

+ {(C1(On — %), wn — v!VE + (86, — 86, 6, — 0l 120
+ (O — 86n, Bn — 1) + (O — 0)) 122y + (Conhn — G260/, 60 — i)y

+ (C3(wn — w), 0, — nfyy + | E* — &) - (wye — I dD
Ic

€™ — )0 —nhydr + / (hen(lwllga) — hen(lwnllga)) 0 — 0y dI.
I'c I'c

Using formula 2(a — b, a)y = [la — b||Z + llall? — |Ib]|? fora = w, — w* and b = wy,_; — w'* |, we get

hk hk hk
2w —w R = llway — wi4 1) < (Swn — Swh, wy — wy)y.

Similarly,

22 U6 = 62112 ) = 1601 = 0251 ) < (860 = 86,7, 60 — 61 2q)-

(58)

(59)

(60)
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Let the constants c; and ¢, be defined by (23) and (24). Using Lemma 4(b), Lemma 6(b), H(j;)(d), H(j)(d), H(h;)(b), (22) and
(55) and using inequality analogous to (34), we get

hk
{(Aqwn _Anwn , Wp —

+ (Canby — Con®, 6, — 0%y, + | (£ — £) (6, — 0™ dIr
Ic

wikye + [ (& — &) - (wae — wydr
Ic

+ / (en (10! l12) — hen(lwallga)) @ — 0% I
I'c

ke 2 ke 2
> crllwn — wyllz + c2lln — ;7115

Next, from the Lipschitz continuity of A and C,, we have

hk
{(Aqwp _Anwn , Wp —

L

h hie (2
Ve < €llwn — wy ||E+4‘9

L2
(Conbn — ConB, 0 — ")y < ell6n — 0217 + ﬁnen — "3

From linearity of B, C; and C3, we obtain

(B(un — u®), (wy — 1) + (W — wy))e < ellw, — w!

IBIZ ¢ )
4e

(Cl(en - O#k)a Wp — U’,:

(C3(wn — W), 0, — )y < ellwn — wl¥|I7 +

k2
n ||E

hy2
lwy, — v"|IE,

1
hieyj2 ke 2 hyj2
lun —uy Il + §||B||£(E,E*) (lun = gl + llwn — vpl1E)

IC1 1%y =
hk )2 L(V,E¥) hy 2
Ve < ellOn — 0" Iy + ————lwn — vy,
4¢
||C3||?£(E V*)
. hy 2
———— 16 — mylly-

4e

Finally, by H(j;)(c), H(j)(d) and H (h;)(b), we get

& — &) - (wne — V1) AT < 26, /meas(To) | wne — Vi ll2( g
Ic

(&2 = 2) (O — ) AT < mpllON* — Onll2 ey 160 — 021
Ic

< el = 6ully +

2.4 4
mecy”yY”ﬁc(v.y)

" 16, — nhlIZ,

f (hen(Iw* 15a) — hen(lwallga)) 0 — 1) dT°
Ic

< ellwi* — wallz +

2.2 2 2 2
Ltcy||VY”£(v_y)Cz ”)/Z”‘,c(gyz)
4e

16, — 1112

Applying (59)-(69) in (58), we deduce

hk 12
i(“wn —w, ”H — lwp—1 —w

1
o 9 _Qhk
+ 5 Ulbn = O

hk 2 hk 2
niIHH) + (c1 —4e) |lwn — wn(”E
2 hk 12 hk 2
2 o = 80 = B B ) + (€2 — 36) 16 — 0242
. 2 hy2 hk 12 a 2
<C (”wn - 5wn||H + [lw, — Un”E + |lup — u, ”E + [|6n — (SOn”LZ(Q)

+ 1160 — 1% + |

+ (Sw, — Swz’k, Wy

h h2
e = O s, + 160 = 212 1) )

— UM+ (860 — 801, 0 — 1) 2)-

(61)

(67)

(68)

(69)
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Replacing n by j in the above relation, and summing up from 1 to n, we obtain
n
lwn — w™ |2 4 2k(c; — 4e) Z l|lw; — w]’?k”% 116, — ghk”LZ(Q)
j=1

+ 2k(c; — 3s)Z 165 — 615, < llwo — wlIF + 1160 — 63115
j=1

n
+ kY (I = 8wyl + llwy = v + ll — W IE + 16 — 8612 )
j=1

n
+ CkZ (065 = P2 + W = ol oz + 165 = 2 )
n
-+ 21<Z (Bwy — Swf*, wy — vy + 2k > (86 — 80, 6 — 0 20
=1

for all {vf'}l_; C E" and {n/}/_, C V". We have

kawj — 8w, wy — vy < ellwy — wF + Cllwa — VA + Cllwo — wit7

n—1 n—1
k 1
+ Cllws = vl + 5 lhwy — w5 + Yy = o) = (wger = o)l
j=1 j=1

and
Zk (86, — 86/, 6 — 120y < €l — O 1% ) + CllO — nlilZ g,
n—1
+ Cllfo — 651172 ) + ClI6T — 1122, + Z =0 220 + 7 Z 16 — ) — 641 — 6
Since

J
hk h hk
Nl — ™ [le < lluo — uglle + Y kllwy — wi*|le + 1.
=1

where J; is the integration error

t
/ w(s) ds — ka,

I=1

Ij=

E
We know that I[; < k|[ul|y2 o .- Hence, we get

hk 12 hI 2
ll; — w17 §C<|Iuo ug |17 +12k llwr — w17 + k ||u||,,z(m))

and using the fact that Nk = T, we have the estimate

n
>l = IZ = T (lluo — uIE + R lulagg ) +TZ/<Z’<||U)I — w12,
=1

=1 I=
We denote

n n

hk 2 hk 2 hk hk 2

en = llwn — Wikl + D Kkllw; — w17 + 160 — 0% 122, + Y KII6; — 6117,
j=1

=
n
&n = kZ

j=1

oy — 8wyl + llwy — v lIF + 16 — 8651172 ) + 116 — nf||5)

N

1

(s — vl = oy = DI + 16— 1 = Gper — 012 )
1

n

==

+

J

ho\p2
J’+1) ||L2(Q)'

(70)

(71)
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n

h h 2 2 hk 12

kY (g = v lzcime + 16 = 1] llzre) + Il 2 5. + lwo — wikI7
j=1

hie (2 hy2 k(2 k12
+Hllwo — w'lly + lluo — uglle + 160 — 5" 2, + 160 — Op" Iy

h 2 hy 2 h2 h 2
101 — 0112 g + = VTG + = VE I + 160 — 0112 -

Then, we find that

n
en§an+CZkej forn=1,...,N (72)
=

with C > 0. Using Lemma 1, we obtain the thesis. O

Corollary 16. Assume the hypotheses of Theorem 15. Assume $2 is a polygon/polyhedral domain, and let {V"}, {E"} be families
of linear element spaces, corresponding to a regular family of finite element triangulations of 2 into triangles or tetrahedrons.
Let u, 0 be solution to Problem 7 and the corresponding function w be defined as w = 1. Let {w!*}N_  {6/*}N_ " be solution

to Problem 14, and the corresponding sequence {u'*}N_, be defined by (57). Assume uy € H?(2; RY), u; € H'(2;R%), 6, €
H'(£2) and let ul, ull, 61 be defined by (19). Under the regularity conditions

ue Cl o, T; H2(2; RD) NH3(0, T; H), it € C(0, T; H*(I't; RY)),
i, € C(0,T; H*(IY)), 6 € C'(0, T; H2(2)) NH?(0, T; [*(£2))

we have the optimal order error estimate

n
max 1 flun = ulle + lwn = wi Il + 160 = 620y + kY16 — 67115 1 < c(h+ k). (73)
=n< j=1

Proof. Let uj? € E" 6" € V" be the finite element interpolations of ;, §;. Note that

N
B 2 2 2
kY iy — Swyllfy < ek llullZa g 1.,
j=1

N
/) 2 2 2
kY 16— 86122 o) < 10120 1120
j=1

N—-1
1
h h 2 2 2
o Dl = o) = g = I < Al
=1

1N
2 26 = 1)) = G = 1 D) < D102,y
j=1
Then by using similar arguments as in the proof of Corollary 13, we obtain (73). O

6. Numerical simulations

The aim of this Section is to present the numerical strategy used to solve the frictional contact Problem 7, to provide
numerical simulations and also to get a numerical evidence of the convergence of the discrete scheme established in
Section 5. Note that the different numerical methods have been implemented in a code which is based on Finite Element
Library in C++ under the GNU Public license: GEneric Tools for Finite Elements Methods (GETFEM++) developed by Julien
Pommier and Yves Renard. For more details, we refer to http://download.gna.org/getfem/html/homepage/.

The numerical solution is based on a iterative procedure which leads to a sequence of convex programming problems
already used in [25,30]. For each “convexification” iteration, the value of the friction coefficient w(||w;|||z¢) is fixed to a
given value depending on the tangential velocity solution w, found in the previous iteration. Then, the resulting nonsmooth
convex iterative problems are solved by classical numerical methods. Furthermore, the frictional contact conditions are
treated by using a numerical approach based on the augmented Lagrangian method. To this end, we consider additional
fictitious nodes for the Lagrange multiplier in the initial mesh. The construction of these nodes depends on the contact
element used for the geometrical discretization of the interface I'c. In the case presented below, the discretization is based
on “node-to-rigid” contact element, which is composed by one node of I'- and one Lagrange multiplier node. For more
details on the discretization step and Computational Contact Mechanics, we refer to [31-34]. The numerical solution of the
nonsmooth nonconvex variational Problem 7 is based on the iterative scheme given below.


http://download.gna.org/getfem/html/homepage/

742 K. Bartosz et al. / Computers and Mathematics with Applications 73 (2017) 727-746

Let €cony > O, wgk’(o) be given.
Forn=1,2...N, (time stepping)

Form=0,1..., (convexification loop: sequence of convex problems)

PROBLEM 17™. Find a velocity field {wy“ ™" V}N_ c E", a temperature
(Rl DN v a friction stress field {3 ™ TVIN_ € [2(I¢; RY)
and a field {¢;* ™ VIN_ C [*(I¢) such that

(WD A (e mi)y | gk (i) ¢ gl _ gy (74)
;_."hk,(m+1) . vi’ dr
Ic

for all v" € E,

(801-mED 1 ¢y (GIRMEDY o Cyppth (MY gy, (75)
= / ik Mt g 4 / hen(lw ™D o dr,
Ic I'c

forall n" € V",
with — ;T?k,(m+l) c 3j(9ril1k,(m+l)) (76)

and — &MY e (|| Tyw! ™| 20) S| Tpw!™ ™V || oa on I,

until [|ug Y — uf ™ e < econy |y ™ e, (77)
165D — 03 1y < €cons 16, ™ v, (78)
167D — 63 ™ 2 reimay < €coml1En ™ 2z (79)
and |0 — G M pdy < €com 164" ™ - (80)

Note that wt® yik® ghk®) £hk.®) gnq #k®) ysed in the algorithm above are in fact analogous to the fully discrete

unknowns introduced at the beginning of Section 5 with p, the index of the convexification iteration. In particular ulk®) g

defined by relation analogous to (57). We also remind that the symbol § stands for the backward divided difference defined
at the beginning of Section 5. For a given time step n, when the difference between the solution of two consecutive convex
problem fulfils the stop-criteria (77)-(80), we obtain the solution corresponding to this time step.

Numerical example. We consider the physical setting depicted in Fig. 1.
There, 2 = (0, Ly) x (0, [;) C R? withL;, L, > 0 and

I'p = {0} x [0, L,], I'v = ([0, L1] x {L;}) U ({L1} x [0, L,]), I'c =10, L;] x {0}.

The domain 2 represents the cross section of a three-dimensional linearly viscoelastic body subjected to the action of
tractions in such a way that a plane stress hypothesis is valid. On I'p; = {0} x [0, L] the body is clamped, i.e. the displacement
field vanishes there while on I'p U I'y = ({0} x [0, L,]) U ([0, L1] x {L,}) U ({L1} x [0, Ly]), the temperature is fixed. Vertical
compressions act on the part [0, L{] x {L,} of the boundary and the part {L;} x [0, L,] is traction free. The body is in frictional
bilateral contact with an obstacle on the part I = [0, L;] x {0} of the boundary.

The friction follows a nonmonotone law in which the friction coefficient depends on the tangential velocity ||w; ||gd. For
the coefficient of friction, we choose the function : R — R of the form

u@ =(@—hb)ye* +b forr eR (81)

with a, b, @ > 0, a > b. Note that such a function was used to describe the slip weakening phenomenon which appears in
the study of geophysical problems; see [35] for details. Defining j, : RY — R by

1€l
j (&) = S/ u(s)ds forallé e R, (82)
0
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Fig. 1. Reference configuration of the two dimensional example.
we observe that the contact condition (8) reduces to the following one
o . i e
lozllge < w(0)S ifa, =0,  —or = M(”ur“Rd)SW ifu, #0. (83)
iR

We also define j(x, t,r) = % ke (r — 0g)? forr € R, ae. (x,t) € I'c x (0, T), k. being the heat exchange coefficient

between the body and the foundation and 6; being the temperature of the foundation. Then the condition (9) reduces to the
equation

—— =ke (0 —Or) — he(x, t, |lUc]lga) on Tt x (0,T)
dvg

which was studied in [4,8]. As a simple tangential function h; in (9), we take
he(x,t,1) =A(x,t)r forallr e Ry, ae.(x,t) € Xc,

where A € L*°(X¢) represents a time-dependent rate coefficient for the gradient of the temperature.

The compressible material response is governed by a linearly viscoelastic constitutive law in which the viscosity tensor
A, the elasticity tensor 8 and the thermal expansion tensor C are given by

(Ae()ap = pn1(e(@)11 + e(@)22)8ap + U26(Wap, 1=, B <2,
Ex E

(Be(U))ap = m@(u)n + &(U)22)d0p + 1 +K8(U)a,3, 1<oa,B=<2,

_ E

i g

C I,

where 1 and p, are viscosity constants, E and « are Young's modulus and Poisson’s ratio of the material and 8,4 denotes
the Kronecker symbol.

For computation we use the following data:
[,=40m, [L[,=10m, p=100kg/m>, T=1s,
up = 0m, u; =0m/s, 6y = 25 °C,
w1 =50Ns/m?,  pup; =200Ns/m?, E=10000N/m?  «=0.3,
k=05W/(m°C), ¢, =0.1]/(kg°C), ke =2W/(m*°0),
g=0W/m’, 6=0°C, A=10t]/m’,  au, =3.10""°C"",
_ _ _ 2 _ (0,0) N/m on{L} x [0, L],
$=10N/m,  fo=(0,—-10)N/m",  fo = {(0, —800t)N/m on [0, L] x {L}.
a=1, b=02 a=100, €pn =107°.
Our results are presented below.
Mechanical behaviour of the solution. In Fig. 2 we plot the deformed configuration as well as the temperature distribution
in the body and the interface forces on I'c at the momentst = 0.25s,t = 0.5s,t = 0.75sand t = 1 s. At the beginning of
the process, most of the nodes are in status of stick (4 of them are in the slip status on the right side of the contact boundary
I'c att = 0.25 s). During the dynamic process, as the deformation increases, a large proportion of nodes switch to the

slip status since the compression of the domain is stronger. Therefore, the friction bound w(||w; [|g¢)S, which is, recall a
decreasing function with respect to ||w; ||zd, is reached for these nodes. At t = 1s, we have 30 nodes in the slip status.

Thermal expansion. In order to highlight the influence of the temperature on the model, we plot the deformed meshes and
the interface forces on I't for two different values of o, (see Fig. 3).
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Fig. 2. Evolution of deformed meshes and frictional contact forces during the dynamic process.

857 854
72 769
686 684

60 508
514 513
429 427
343 342

257 26
17 17
857 854
0 0

Temperature Temperature

1090403
%1 i
872

= T, 1=

Lagrange multplier Lagrange multplier

Fig. 3. Deformed meshes and the interface forces for atex, = 1.10~* and Qexp = 1.103att = 1s.

Note thatin the case ey = 1 .107%, the contribution of the temperature to the deformation of the body is small; therefore
the body is compressed by the actions of tractions. However, in the second case, the shape of the body changes greatly
because of the difference in temperature. Such a phenomena is particularly visible on the contact boundary: while there are
only 5 nodes in slip status in the first case, there are 33 in the second case. It seems consistent since it shows that the slip
rate is an increasing function of the thermal expansion on the boundary.

Error estimates. In order to check the convergence of the discrete scheme and to illustrate the optimal error estimate
obtained in Section 5, we computed a sequence of numerical solutions by using uniform triangulations of the body according
the spatial discretization parameter h and time step k. The numerical estimated error values E"™* = ||u — u"™|| are computed
for several discretization parameters of h and k. Here, the boundary It of £2 is divided into 4/h equal parts; the rest of
the boundary is divided accordingly in order to obtain uniform triangulations of the body. We start with h = 1/2 and
k = 1/2 which are successively halved. The numerical solution corresponding to h = 1/64 and k = 1/64 was taken as the
“exact” solution, which was used to compute the errors of the numerical solutions with higher values of h and k. This fine
discretization corresponds to a problem with 51 143 degrees of freedom and 32 768 elements at each time level and was
computed in 2898 CPU time (expressed in seconds) on a computer equipped with Intel Quad core processors (2.00 GHz). The
numerical results are presented in Fig. 4 where the dependence of the error estimate E™ with respect to h and k is plotted.

The curve of the numerical error estimate is asymptotically linear, which is consistent with the theoretically predicted
optimal linear convergence of the numerical solution established in Theorem 15.
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